JP7422348B2 - Electrode materials for electrochemical devices - Google Patents

Electrode materials for electrochemical devices Download PDF

Info

Publication number
JP7422348B2
JP7422348B2 JP2020530284A JP2020530284A JP7422348B2 JP 7422348 B2 JP7422348 B2 JP 7422348B2 JP 2020530284 A JP2020530284 A JP 2020530284A JP 2020530284 A JP2020530284 A JP 2020530284A JP 7422348 B2 JP7422348 B2 JP 7422348B2
Authority
JP
Japan
Prior art keywords
alloy
electrode material
electrochemical device
current density
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020530284A
Other languages
Japanese (ja)
Other versions
JPWO2020013328A1 (en
Inventor
英紀 栗原
将史 稲本
鉄男 菊池
隆一 吉田
護 齋藤
雅彦 佐藤
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO-KOSAN., LTD.
SAITAMA PREFECTURE
Nippon Kinzoku Co Ltd
Original Assignee
CHUO-KOSAN., LTD.
SAITAMA PREFECTURE
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO-KOSAN., LTD., SAITAMA PREFECTURE, Nippon Kinzoku Co Ltd filed Critical CHUO-KOSAN., LTD.
Publication of JPWO2020013328A1 publication Critical patent/JPWO2020013328A1/en
Application granted granted Critical
Publication of JP7422348B2 publication Critical patent/JP7422348B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電気化学デバイス用電極材に関するものである。 The present invention relates to an electrode material for electrochemical devices.

電気化学デバイス用電極材は、たとえば2次電池の負極に用いる場合、マグネシウム金属が高い理論容量(3830Ahdm-3、リチウム金属:2060Ahdm-3)を有し、正負極が短絡するデンドライトが起こりにくく、大気中でハンドリングしやすいこと等から、実用的な高容量電気化学デバイス用電極材として期待されている。しかしながら、マグネシウムあるいはマグネシウム合金(以下、合金も含めてマグネシウム金属と呼ぶことがある)電極の表面には不働態被膜が形成されやすく、充放電サイクルが著しく劣化することが知られている。 When the electrode material for electrochemical devices is used, for example, as the negative electrode of a secondary battery, magnesium metal has a high theoretical capacity (3830 Ahdm -3 , lithium metal: 2060 Ahdm -3 ), and dendrites that short-circuit the positive and negative electrodes are unlikely to occur. Because it is easy to handle in the atmosphere, it is expected to be a practical electrode material for high-capacity electrochemical devices. However, it is known that a passive film is likely to be formed on the surface of a magnesium or magnesium alloy (hereinafter, the alloy may also be referred to as magnesium metal) electrode, which significantly deteriorates the charge/discharge cycle.

この課題を解決する方法として、特許文献1には、この不働態被膜を電池駆動中に除去する方法が記載されている。特許文献2には、溶液に浸漬して、不働態被膜を除去する方法が記載されている。特許文献3には、働態化被膜を形成する電解液が記載されている。 As a method for solving this problem, Patent Document 1 describes a method of removing this passive film during battery operation. Patent Document 2 describes a method of removing a passive film by immersing it in a solution. Patent Document 3 describes an electrolytic solution that forms an activation film.

特開2014-143170号公報Japanese Patent Application Publication No. 2014-143170 特開2016-201182号公報Japanese Patent Application Publication No. 2016-201182 特開2017-022024号公報Japanese Patent Application Publication No. 2017-022024

従来のマグネシウム金属電極、特にAlやZn等を含むマグネシウム合金電極には、上記不働態被膜が形成する課題に加えて、電流密度が低い、すなわち、電気化学的な活性が低いことに課題があった。このため、マグネシウム金属製電気化学デバイスは高出力や急速充電が必要となる用途では、実施を期待することができなかった。これは、通常のマグネシウム金属は六方晶の底面すなわち(0001)面が表面に平行に配列する集合組織が形成され、この面に強固な不働態皮膜が形成されるため酸化還元に対して安定となる、すなわち、電気化学的に不活性となるからである。
先行技術文献である特許文献1~3にはいずれも形成された不働態被膜を除去する方法もしくは電解液により不働態化を防ぐ方法が開示されている。しかしながら、これらの方法は不働態化を抑制するものであり、マグネシウム金属電極自体の電流密度を増大させ、電気化学的に活性化するものではない。
したがって、本発明は、電気化学的に活性な、マグネシウム金属製電気化学デバイス用電極材を提供することを目的とする。
Conventional magnesium metal electrodes, particularly magnesium alloy electrodes containing Al, Zn, etc., have the problem of low current density, that is, low electrochemical activity, in addition to the problem of the formation of the passive film described above. Ta. For this reason, electrochemical devices made of magnesium metal cannot be expected to be used in applications that require high output or rapid charging. This is because ordinary magnesium metal has a texture in which the hexagonal bottom plane, or (0001) plane, is arranged parallel to the surface, and a strong passive film is formed on this plane, making it stable against oxidation and reduction. This is because it becomes electrochemically inactive.
Patent Documents 1 to 3, which are prior art documents, all disclose a method of removing a formed passive film or a method of preventing passivation using an electrolytic solution. However, these methods suppress passivation, increase the current density of the magnesium metal electrode itself, and do not electrochemically activate it.
Therefore, an object of the present invention is to provide an electrochemically active electrode material for an electrochemical device made of magnesium metal.

本発明者らは、全く視点を変え、マグネシウム合金の組成を変えることによりマグネシウム元素を有する電極自体を電気化学的に活性化する方法を検討した。本発明は、この際の知見に基づいてなされたものであり、その技術的特徴はマグネシウム合金の成分としてCuを含むことにある。 The present inventors completely changed their viewpoint and investigated a method of electrochemically activating the electrode itself containing the magnesium element by changing the composition of the magnesium alloy. The present invention was made based on this knowledge, and its technical feature is that the magnesium alloy contains Cu as a component.

本発明者らは、マグネシウム合金にCuを添加すると電気化学デバイスとしての性能が格段に向上することを見出した。本発明は、この知見に基づいてなされたものであり、Cu含有の効果としては、理論に縛られるものではないが以下のように考えられる。Cuを含有すると導電性の高いMg2Cu化合物がネットワーク状に配置した構造となり、導電パスが形成される。図1は、質量%で、Cuを1%(記号C10)、3%(記号C30)、およびCu5%とMn0.5%(記号CM5005)を含有したマグネシウム合金の顕微鏡組織写真である。図1の組織をXRDにより解析した結果を図2に示す。図1、図2からCuを含有するマグネシウム合金にはネットワーク状に配置されたMg2Cu化合物が存在していることがわかる(黒色部分)。このMg2Cu近傍では、Mg2CuとMgとの間で電子授受反応(局所電池反応)が起こり、電気化学的に活性化すると考えられる。さらに、Cuの比率を上げると、Mg2Cuネットワークが増大するため、電気化学的に活性なサイトが増大する。これらのことから、電気化学デバイスとしての性能が格段に向上するものと考えられる。 The present inventors have discovered that adding Cu to a magnesium alloy significantly improves its performance as an electrochemical device. The present invention was made based on this knowledge, and the effect of containing Cu is thought to be as follows, although it is not bound by theory. When Cu is contained, a structure in which highly conductive Mg 2 Cu compounds are arranged in a network form is formed, and a conductive path is formed. FIG. 1 is a microscopic structure photograph of a magnesium alloy containing 1% (symbol C10), 3% (symbol C30) of Cu, and 5% Cu and 0.5% Mn (symbol CM5005) in terms of mass %. FIG. 2 shows the results of analyzing the structure in FIG. 1 by XRD. It can be seen from FIGS. 1 and 2 that Mg 2 Cu compounds arranged in a network are present in the magnesium alloy containing Cu (black portion). It is thought that an electron transfer reaction (local battery reaction) occurs between Mg 2 Cu and Mg in the vicinity of this Mg 2 Cu , resulting in electrochemical activation. Furthermore, increasing the Cu ratio increases the Mg 2 Cu network, thereby increasing the number of electrochemically active sites. For these reasons, it is thought that the performance as an electrochemical device will be significantly improved.

さらに本発明の好ましい態様として、Cu添加に加えて、電気化学デバイス用電極材として用いる際の表面からXRDにより測定した(0002)面極点図において、表面の法線方向に極大値を持たないマグネシウム合金を用いることが挙げられる。
マグネシウムは、六方晶の底面すなわち(0001)面が酸化還元に対して安定であることを出願人らは見出した。一般的な金属では、原子配列の最密面が電気化学的に活性であることが確認されているが、マグネシウムは一般の金属とは異なり、原子配列の最密面である(0001)面が電気化学反応においては安定であった。この理由は明確ではないが、(0001)面に強固な不働態皮膜が容易に形成されるためと考えられる。このため、(0001)面が反応面に現れている状態で電気化学デバイスの電極を形成すると、電極面は酸化還元反応が起こりにくい、すなわち、電気化学的な活性が低い(電流密度が低い)ものとなる。
これに対して、電極材の表面に(0001)面以外の面を露出することができれば、マグネシウム金属を電気化学的に活性化し、電気化学デバイスとしての充放電時間が短縮できる、すなわち、高出力化および急速充電が可能となるものと推察される。
本発明者らは、電気化学デバイス用電極材の表面とマグネシウム合金の(0001)面を傾斜するように配置することにより表面に(0001)面以外の面を露出すると、Cuを含むマグネシウム合金を電気化学的にさらに活性化して課題を達成できることを見いだした。
本明細書において電極材の「表面」とは、電気化学デバイスにおいて電極材を使用した際に電極反応に主として寄与する表面(「主たる反応面」ともいう)を意味する。電極反応に主として寄与する表面あるいは主たる反応面とは、電気化学反応に主として係る面を指し、たとえば通常の板のように6面で構成される電極では最も面積の大きい面を指し、円筒状の電極では円筒の端面ではなく側面の面積の広い面を指し、円盤状の電極では側面ではなく上下の円形の面などを指す。
Cu3%を含有する圧延板の板表面から測定した(0002)面極点図は図3のようになり、(0001)面がほとんど板表面の法線方向に向いている。これに対し、Cu3%にさらにZn1.5%、Ca0.1%を加えると図4のように(0002)面の極大値が2つあり、その位置が板表面の法線方向から傾いて存在していることがわかる。このように、Cuに他の元素を加えて表面法線方向への(0001)面の集積を緩和すればさらに電気化学デバイスとしての性能が向上することが期待できる。
Furthermore, as a preferred embodiment of the present invention, in addition to Cu addition, magnesium has no maximum value in the normal direction of the surface in the (0002) plane pole figure measured by XRD from the surface when used as an electrode material for an electrochemical device. An example of this is to use an alloy.
Applicants have discovered that the base of the hexagonal crystal, that is, the (0001) plane, of magnesium is stable against redox. It has been confirmed that in common metals, the closest-packed plane of the atomic arrangement is electrochemically active, but unlike other metals, magnesium has the (0001) plane, which is the closest-packed plane of the atomic arrangement. It was stable in electrochemical reactions. Although the reason for this is not clear, it is thought that it is because a strong passive film is easily formed on the (0001) plane. For this reason, if an electrode for an electrochemical device is formed with the (0001) plane appearing on the reaction surface, redox reactions are unlikely to occur on the electrode surface, that is, electrochemical activity is low (current density is low). Become something.
On the other hand, if a plane other than the (0001) plane can be exposed on the surface of the electrode material, the magnesium metal can be electrochemically activated and the charging/discharging time as an electrochemical device can be shortened, i.e., high output It is presumed that this will enable faster charging and faster charging.
The present inventors discovered that when the surface of an electrode material for an electrochemical device and the (0001) plane of the magnesium alloy are arranged so as to be inclined, and a plane other than the (0001) plane is exposed on the surface, a magnesium alloy containing Cu is formed. It was discovered that the task could be achieved by further activating it electrochemically.
In this specification, the "surface" of an electrode material means a surface that mainly contributes to electrode reaction (also referred to as "main reaction surface") when the electrode material is used in an electrochemical device. The surface that mainly contributes to the electrode reaction or the main reaction surface refers to the surface that is mainly involved in the electrochemical reaction. For example, in the case of an electrode consisting of six surfaces like a normal plate, it refers to the surface with the largest area. For electrodes, it refers to the wide side surface of a cylinder, not the end surface, and for disk-shaped electrodes, it refers to the upper and lower circular surfaces, rather than the side surfaces.
The (0002) plane pole figure measured from the plate surface of a rolled plate containing 3% Cu is as shown in FIG. 3, and the (0001) plane is almost oriented in the normal direction of the plate surface. On the other hand, when 1.5% Zn and 0.1% Ca are added to 3% Cu, there are two maximum values on the (0002) plane as shown in Figure 4, and their positions are tilted from the normal direction of the plate surface. I know what you're doing. In this way, if other elements are added to Cu to alleviate the accumulation of (0001) planes in the surface normal direction, it can be expected that the performance as an electrochemical device will be further improved.

本発明は、Cu添加の効果に加えて前記知見に基づいてなされたものであり、以下の技術要素から構成される。
(1)Cuを含有するマグネシウム合金を用いた電気化学デバイス用電極材。
(2)Cuの含有量が質量%で0.3~15.0%である(1)記載の電気化学デバイス用電極材。
(3)質量%でZnを0.5~3.5%、およびCaを0.1~1.0%の少なくとも一方をさらに含有する(1)または(2)記載の電気化学デバイス用電極材。
(4)C、Si、Ge,Sn、およびPbからなる群より選ばれる少なくとも1種の周期律表の4B元素を質量%で合計0.01~5.0%の範囲でさらに含有する(1)から(3)のいずれか一記載の電気化学デバイス用電極材。
(5)Sc,Y、La、Ce、Pr,Nd、およびSmからなる群より選ばれる少なくとも1種の希土類元素を質量%で合計0.01~3.0%の範囲でさらに含有する(1)から(4)のいずれか一記載の電気化学デバイス用電極材。
(6)希土類元素を、ミッシュメタルの形態で含有し、ミッシュメタルの含有量が質量%で0.01~3.0%である(5)記載の電気化学デバイス用電極材。
(7)MnおよびZrの少なくとも一方を質量%で0.2~3.0%の範囲でさらに含有する(1)から(6)のいずれか一記載の電気化学デバイス用電極材。
(8)電気化学デバイスとして用いたときの電気化学デバイス用電極材の表面方向からXRDにより測定した(0002)面極点図において、表面の法線方向に極大値を持たないことを特徴とする、(1)から(7)のいずれか一記載の電気化学デバイス用電極材。
The present invention has been made based on the above-mentioned findings in addition to the effects of adding Cu, and is comprised of the following technical elements.
(1) Electrode material for electrochemical devices using a magnesium alloy containing Cu.
(2) The electrode material for an electrochemical device according to (1), wherein the Cu content is 0.3 to 15.0% by mass.
(3) The electrode material for an electrochemical device according to (1) or (2), further containing at least one of 0.5 to 3.5% by mass of Zn and 0.1 to 1.0% of Ca. .
(4) Further contains at least one 4B element of the periodic table selected from the group consisting of C, Si, Ge, Sn, and Pb in a total range of 0.01 to 5.0% by mass (1 The electrode material for an electrochemical device according to any one of ) to (3).
(5) Further contains at least one rare earth element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, and Sm in a total range of 0.01 to 3.0% by mass (1 ) to (4), the electrode material for an electrochemical device according to any one of (4).
(6) The electrode material for an electrochemical device according to (5), which contains the rare earth element in the form of misch metal, and the content of misch metal is 0.01 to 3.0% by mass.
(7) The electrode material for an electrochemical device according to any one of (1) to (6), further containing at least one of Mn and Zr in a range of 0.2 to 3.0% by mass.
(8) In the (0002) plane pole figure measured by XRD from the surface direction of the electrode material for an electrochemical device when used as an electrochemical device, it is characterized by not having a maximum value in the normal direction of the surface. The electrode material for an electrochemical device according to any one of (1) to (7).

本発明の他の好ましい実施態様としては以下が挙げられる。
(1)Cuを含有するマグネシウム合金を用いた電極材。
(2)Cuの含有量が質量%で0.3~15.0%である(1)記載の電極材。
(3)質量%でZnを0.5~3.5%、およびCaを0.1~1.0%の少なくとも一方をさらに含有する(1)または(2)記載の電極材。
(4)C、Si、Ge,Sn、およびPbからなる群より選ばれる少なくとも1種の周期律表の4B元素を質量%で合計0.01~5.0%の範囲でさらに含有する(1)から(3)のいずれか一記載の電極材。
(5)Sc,Y、La、Ce、Pr,Nd、およびSmからなる群より選ばれる少なくとも1種の希土類元素を質量%で合計0.01~3.0%の範囲でさらに含有する(1)から(4)のいずれか一記載の電極材。
(6)希土類元素を、ミッシュメタルの形態で含有し、ミッシュメタルの含有量が質量%で0.01~3.0%である(5)記載の電極材。
(7)MnおよびZrの少なくとも一方を質量%で0.2~3.0%の範囲でさらに含有する(1)から(6)のいずれか一記載の電極材。
(8)(1)から(7)のいずれか一記載の電極材を含む電気化学デバイス。
(9)電極材の表面方向からXRDにより測定した(0002)面極点図において、表面の法線方向に極大値を持たないことを特徴とする、(8)に記載の電気化学デバイス。
Other preferred embodiments of the present invention include the following.
(1) Electrode material using a magnesium alloy containing Cu.
(2) The electrode material according to (1), wherein the Cu content is 0.3 to 15.0% by mass.
(3) The electrode material according to (1) or (2), further containing at least one of 0.5 to 3.5% by mass of Zn and 0.1 to 1.0% of Ca.
(4) Further contains at least one 4B element of the periodic table selected from the group consisting of C, Si, Ge, Sn, and Pb in a total range of 0.01 to 5.0% by mass (1 ) to (3).
(5) Further contains at least one rare earth element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, and Sm in a total range of 0.01 to 3.0% by mass (1 ) to (4).
(6) The electrode material according to (5), which contains the rare earth element in the form of misch metal, and the content of misch metal is 0.01 to 3.0% by mass.
(7) The electrode material according to any one of (1) to (6), further containing at least one of Mn and Zr in a range of 0.2 to 3.0% by mass.
(8) An electrochemical device comprising the electrode material according to any one of (1) to (7).
(9) The electrochemical device according to (8), wherein the (0002) plane pole figure measured by XRD from the surface direction of the electrode material has no maximum value in the normal direction of the surface.

本発明のマグネシウム合金を用いた電気化学デバイス用電極材は、2次電池、キャパシタ等の電気化学デバイスに用いたときに、充放電サイクルを繰り返しても高い電流密度を維持できることができる。不働態被膜が形成されにくくなり、充放電の回数を伸ばすことができたものと考えられる。 When the electrode material for electrochemical devices using the magnesium alloy of the present invention is used in electrochemical devices such as secondary batteries and capacitors, it is possible to maintain a high current density even after repeated charge/discharge cycles. It is thought that the formation of a passive film became difficult and the number of charging and discharging cycles could be increased.

Cuを1%(C10)、3%(C30)、並びにCuを5%およびMnを0.5%(CM5005)含有するマグネシウム合金の顕微鏡組織を示す。The microstructures of magnesium alloys containing 1% (C10), 3% (C30) of Cu, and 5% of Cu and 0.5% of Mn (CM5005) are shown. 図1に示す合金のXRD解析結果を示す。The results of XRD analysis of the alloy shown in FIG. 1 are shown. Cuを3%含有するマグネシウム合金の(0002)面極点図を示す。A (0002) plane pole figure of a magnesium alloy containing 3% Cu is shown. Cu3%、Zn1.5%、Ca0.1%を含有するマグネシウム合金の(0002)面極点図を示す。The (0002) plane pole figure of a magnesium alloy containing 3% Cu, 1.5% Zn, and 0.1% Ca is shown. 比較例1(AZ31合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Comparative Example 1 (AZ31 alloy) is shown. 比較例2(純Mg合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Comparative Example 2 (pure Mg alloy) is shown. 実施例1(C10合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and the redox potential of Example 1 (C10 alloy) is shown. 実施例1(C30合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and the redox potential of Example 1 (C30 alloy) is shown. 実施例1(C100合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 1 (C100 alloy) is shown. 実施例2(CZ3015合金)の(0002)面極点図を示す。The (0002) plane pole figure of Example 2 (CZ3015 alloy) is shown. 実施例2(CZ3015合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and the redox potential of Example 2 (CZ3015 alloy) is shown. 実施例3(CX3005合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 3 (CX3005 alloy) is shown. 実施例3(CX3010合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 3 (CX3010 alloy) is shown. 実施例4(CZX301501合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 4 (CZX301501 alloy) is shown. 実施例4(CZX301505合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 4 (CZX301505 alloy) is shown. 実施例4(CZX301510合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 4 (CZX301510 alloy) is shown. 実施例5(CT3015合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and the redox potential of Example 5 (CT3015 alloy) is shown. 実施例6(CZSX30151001合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 6 (CZSX30151001 alloy) is shown. 実施例7(CZEX30151001合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and redox potential of Example 7 (CZEX30151001 alloy) is shown. 実施例8(CM5005合金)の酸化還元電流密度と酸化還元電位の関係を示す。The relationship between the redox current density and the redox potential of Example 8 (CM5005 alloy) is shown.

本発明の特徴は、Cuを含有するマグネシウム合金を電気化学デバイス用電極材として用いることにあり、Cuの含有量の好適な範囲は質量%で0.3~15.0%である。Cuの含有量が、0.3%未満の場合、電気化学デバイスに用いる電極材として電流密度を増大させる効果が小さくなるので、少なくとも0.3%以上含有させることが好ましい。Cuの比率を上げすぎると、板材とするときの圧延が困難となる傾向にあるため、Cuの含有量は15%以下が好ましい。
Cuの含有量は、より好ましくは1.5~13.0%であり、さらに好ましくは2.5~12.0%である。
A feature of the present invention is that a magnesium alloy containing Cu is used as an electrode material for an electrochemical device, and a preferable range of the Cu content is 0.3 to 15.0% by mass. When the Cu content is less than 0.3%, the effect of increasing current density as an electrode material used in an electrochemical device becomes small, so it is preferable to contain at least 0.3% or more. If the Cu ratio is increased too much, it tends to become difficult to roll the sheet material, so the Cu content is preferably 15% or less.
The Cu content is more preferably 1.5 to 13.0%, even more preferably 2.5 to 12.0%.

マグネシウム合金のCu以外の成分としては、特に制限するものではないが、金属のマグネシウム以外は不可避的不純物のみからなってもよく、また以下に述べる他の成分を含んでいてもよい。
また他の態様として、マグネシウム合金のCu以外の成分としては、特に制限するものではないが、好ましくは、質量%でZnを0.1~3.5%、およびCaを0.05~1.0%の少なくとも一方を含有する。前述のごとく本発明者らは、Cu添加の効果に加えてさらに電気化学デバイスの充放電特性と六方晶の各面との関係を検討した結果、デバイス表面に(0001)面が強く集積していない方が良い結果をもたらすことを確認した。通常の鋳塊あるいは展伸材は、表面の法線方向に六方晶の(0001)面が極端に強く集積した集合組織を有する。これに対し、質量%でZnを0.1~3.5%、およびCaを0.05~1.0%の少なくとも一方を含有するとこの集積が弱くなり、(0001)面以外の面が表面に露出することになる。このため、Znを0.1~3.5%、およびCaを0.05~1.0%の少なくとも一方を含有することが好ましい。いずれの化学成分もその含有量が少ないと(0001)面の集積度を弱める効果が小さくなり、また多すぎてもその効果が無くなる。さらには、Caは1.0%以上含有すると、圧延板を製造することが困難になる傾向があるので、上限を1.0%とすることが好ましい。
Znのより好ましい含有量は0.5~2.5%であり、さらに好ましい含有量は1.0~2.0%である。Caのより好ましい含有量は0.1~0.9%である。
Components other than Cu in the magnesium alloy are not particularly limited, but the magnesium alloy may consist only of inevitable impurities other than metal magnesium, or may contain other components described below.
In another embodiment, the components other than Cu in the magnesium alloy are not particularly limited, but preferably include 0.1 to 3.5% by mass of Zn and 0.05 to 1.5% by mass of Ca. Contains at least one of 0%. As mentioned above, in addition to the effect of Cu addition, the present inventors further investigated the relationship between the charge/discharge characteristics of electrochemical devices and each face of the hexagonal crystal, and found that (0001) planes were strongly integrated on the device surface. It was confirmed that the results were better without it. A normal ingot or wrought material has a texture in which hexagonal (0001) planes are extremely concentrated in the normal direction of the surface. On the other hand, if at least one of 0.1 to 3.5% of Zn and 0.05 to 1.0% of Ca is contained by mass, this accumulation becomes weaker, and planes other than the (0001) plane become will be exposed to. Therefore, it is preferable to contain at least one of 0.1 to 3.5% Zn and 0.05 to 1.0% Ca. If the content of any chemical component is small, the effect of weakening the degree of integration of the (0001) plane will be small, and if the content is too large, the effect will be lost. Furthermore, if Ca is contained in an amount of 1.0% or more, it tends to become difficult to produce a rolled plate, so the upper limit is preferably 1.0%.
A more preferable content of Zn is 0.5 to 2.5%, and an even more preferable content is 1.0 to 2.0%. A more preferable content of Ca is 0.1 to 0.9%.

さらに上記化学成分に加えて、C、Si、Ge,Sn、およびPbからなる群より選ばれる少なくとも1種以上の周期律表の4B族元素を加えても、Zn、Caの場合と同じような効果が発揮でき、表面の法線方向への(0001)面の集積を弱くする傾向にある。このため、これらの元素を質量%で合計0.01~5.0%含有することが好ましい。いずれの元素も0.01%未満ではその効果が小さくなり、また5.0%を超えると板材の製造が困難になる傾向にあるので、この値を上限とすることが好ましい。より好ましい範囲としては、合計で0.1~2.0%である。 Furthermore, in addition to the above chemical components, even if at least one or more group 4B elements of the periodic table selected from the group consisting of C, Si, Ge, Sn, and Pb are added, the same effects as in the case of Zn and Ca can be obtained. This has a tendency to weaken the accumulation of (0001) planes in the normal direction of the surface. Therefore, it is preferable that these elements be contained in a total amount of 0.01 to 5.0% by mass. If the content of any element is less than 0.01%, the effect will be reduced, and if it exceeds 5.0%, it will tend to be difficult to manufacture the plate material, so it is preferable to set this value as the upper limit. A more preferable range is 0.1 to 2.0% in total.

さらにSc,Y、La、Ce、Pr,Nd、およびSmからなる群より選ばれる少なくとも1種以上の希土類元素を質量%で合計0.01~3.0%を含有しても(0001)面の集積を弱くする効果が得られるので、これらの元素を添加することも好ましい。含有量の上下限を外れると、いずれも(0001)面の集積を弱くする効果が低くなるので、この値を上下限とすることが好ましい。より好ましい範囲としては、合計で0.1~2.0%である。 Furthermore, even if a total of 0.01 to 3.0% by mass of at least one rare earth element selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, and Sm is contained, the (0001) plane It is also preferable to add these elements because they have the effect of weakening the accumulation of. If the content exceeds the upper and lower limits, the effect of weakening the accumulation of (0001) planes will decrease, so it is preferable to set these values as the upper and lower limits. A more preferable range is 0.1 to 2.0% in total.

希土類元素を添加する際に、希土類元素の混合物であるミッシュメタルを使用することもできる。希土類元素を単体で添加するよりもその混合体であるミッシュメタルを使用した方が容易に希土類元素を添加できる。その含有量は、上記希土類元素の含有量と同じ0.01~3.0%とする。含有量の上下限を外れると、いずれも(0001)面の集積を弱くする効果が小さくなるので、この値を上下限とすることが好ましい。より好ましい範囲としては、0.1~2.0%である。 When adding rare earth elements, misch metal, which is a mixture of rare earth elements, can also be used. Rare earth elements can be added more easily by using misch metal, which is a mixture of rare earth elements, than by adding rare earth elements alone. Its content is 0.01 to 3.0%, which is the same as the rare earth element content. If the content exceeds the upper and lower limits, the effect of weakening the accumulation of (0001) planes becomes smaller, so it is preferable to set these values as the upper and lower limits. A more preferable range is 0.1 to 2.0%.

さらに好ましくは、MnおよびZrの少なくとも一方を質量%で0.2~3.0%含有させる。この理由としては、MnおよびZrを含有すると結晶粒径が小さくなり、(0001)面以外の面が表面に露出する確率が高くなるためである。しかし、0.2%未満ではその効果が小さくなり、また3.0%を超えて含有すると板材の製造が困難になる傾向にあるので、上限を3.0%とすることが好ましい。より好ましい範囲としては、0.2~2.0%である。 More preferably, at least one of Mn and Zr is contained in an amount of 0.2 to 3.0% by mass. The reason for this is that when Mn and Zr are contained, the crystal grain size becomes smaller and the probability that planes other than the (0001) plane are exposed on the surface increases. However, if the content is less than 0.2%, the effect will be reduced, and if the content exceeds 3.0%, it will tend to be difficult to manufacture plate materials, so it is preferable to set the upper limit to 3.0%. A more preferable range is 0.2 to 2.0%.

本発明に記載したCuを含有するマグネシウム合金の製造工程は以下のとおりである。まず、高純度のマグネシウム地金を溶解し、歩留まりを考慮した必要量の添加元素を加え、スラブあるいはビレットとなす。スラブの場合は、粗圧延、仕上圧延を経て、コイル状あるいは切り板状の板とする。圧延は、必要に応じて温間で行う。ビレットの場合は、押し出しにより、板状とする。そのまま用いてもよいが、さらに薄くするには圧延を施す。板厚は特に規定しないが、使用される電気化学デバイスに応じて所望される板厚とする。圧延では、板厚数十ミクロンの箔を製造することが可能なので、特に薄型の電気化学デバイスでは箔を用いることが好ましい。 The manufacturing process of the Cu-containing magnesium alloy described in the present invention is as follows. First, a high-purity magnesium ingot is melted, and the necessary amount of additive elements are added in consideration of the yield to form a slab or billet. In the case of a slab, it is rough rolled and finished rolled into a coiled or cut plate. Rolling is performed warmly if necessary. In the case of a billet, it is made into a plate shape by extrusion. It may be used as is, but it may be rolled to make it even thinner. Although the plate thickness is not particularly specified, it is set to a desired plate thickness depending on the electrochemical device used. By rolling, it is possible to produce a foil with a thickness of several tens of microns, so it is preferable to use foil especially in thin electrochemical devices.

上記方法によって製造された板材を電気化学デバイス用電極に用いることができる。
本明細書において電気化学デバイスとは、電気エネルギーと化学エネルギーを変換するデバイスであり、具体的には、1次電池、2次電池、燃料電池などが挙げられる。電気化学デバイスが2次電池である場合には、例えば、2つの電極、セパレータおよび電解液から構成されていてもよい。
本発明に係る電極に対する対極は、活物質、導電助剤、バインダーを混錬して、集電箔に塗工して作製される。活物質は、マグネシウムイオンを吸蔵放出可能な物質、例えば、五酸化バナジウムや活性炭を用いることができる。
セパレータは、電解液が濡れるもので、マグネシウムイオンを透過できるものであり、ポリプロピレン等を利用することができる。
電解液は、マグネシウム金属表面にマグネシウムイオンが透過可能な被膜が形成されるもので、例えば、無水こはく酸添加グライム電解液(特許文献3)を利用することができる。この電解液を用いることにより、マグネシウム合金の不働態化を抑制することができる。
The plate material manufactured by the above method can be used as an electrode for an electrochemical device.
In this specification, an electrochemical device is a device that converts electrical energy and chemical energy, and specifically includes a primary battery, a secondary battery, a fuel cell, and the like. When the electrochemical device is a secondary battery, it may be composed of, for example, two electrodes, a separator, and an electrolyte.
The counter electrode to the electrode according to the present invention is prepared by kneading an active material, a conductive additive, and a binder and applying the mixture to a current collector foil. As the active material, a substance that can absorb and release magnesium ions, such as vanadium pentoxide and activated carbon, can be used.
The separator is wetted by the electrolyte and is permeable to magnesium ions, and polypropylene or the like can be used as the separator.
The electrolytic solution forms a film on the magnesium metal surface through which magnesium ions can permeate, and for example, succinic anhydride-added glyme electrolytic solution (Patent Document 3) can be used. By using this electrolytic solution, passivation of the magnesium alloy can be suppressed.

以下、本発明を実施例に基づいて具体的に説明する。
以下において「%」は特に示さない限り「質量%」を意味する。
表1に示すマグネシウム合金を溶製し、圧延後0.4mmの板とした。これらの板を用いて以下に示す電気化学的な評価を行った。
電気化学的な評価は、ビーカー式3極セルを用いて行った。作用極に、マグネシウム合金、対極に活性炭電極、参照極に銀電極、電解液には無水こはく酸添加グライム電解液(特開2017-022024)を用いた。35℃で、所定電流を印加したときのマグネシウム合金の酸還元電位を測定した。
本発明では、実用上の利用価値があると考えられるフラットな電圧が維持できる電流密度が90μAcm-2以上である場合、電気化学デバイスとして利用できると判断した。
ここでいうフラットな電圧が維持できる状態とは、酸化還元電流密度と電位の関係を測定した結果の図において、横軸のCapacityが20μAhと120μAhのときの電圧を比較して、その差が0.1V以内の状態を指す。20μAhまでの間では、測定初期の不安定さが残るので、この間の変化を除いて評価した。
XRDによる極点図の測定は、株式会社リガク製X線回折装置 RINT2000/PCを用いて、シュルツ反射法により行った。測定面を(0002)面とし、管電流40mA、管電圧40KVにて測定した。(0002)面のX線反射強度は、2θ=34.5度付近にピークが出るが、2θ=30度では反射強度のピークを現れないので、この角度で測定した値をバックグラウンドの値とした。
また、電気化学デバイスとしての性能としては、酸化と還元の電位差が小さい方が優れていると判断できる。
以下、その結果である。
Hereinafter, the present invention will be specifically explained based on Examples.
In the following, "%" means "% by mass" unless otherwise specified.
The magnesium alloy shown in Table 1 was melted and rolled into a 0.4 mm plate. The following electrochemical evaluations were performed using these plates.
Electrochemical evaluation was performed using a beaker-type three-electrode cell. A magnesium alloy was used as a working electrode, an activated carbon electrode was used as a counter electrode, a silver electrode was used as a reference electrode, and a succinic anhydride-added glyme electrolyte (Japanese Patent Application Laid-Open No. 2017-022024) was used as an electrolyte. The acid reduction potential of the magnesium alloy was measured at 35° C. when a predetermined current was applied.
In the present invention, it has been determined that if the current density at which a flat voltage can be maintained, which is considered to have practical utility, is 90 μAcm -2 or more, it can be used as an electrochemical device.
Here, the state where a flat voltage can be maintained means that in the diagram of the result of measuring the relationship between redox current density and potential, when the voltages when the horizontal axis Capacity is 20 μAh and 120 μAh are compared, the difference between them is 0. .1V or less. Up to 20 μAh, instability at the initial stage of measurement remains, so the evaluation was performed excluding changes during this period.
The measurement of the pole figure by XRD was performed by the Schulz reflection method using an X-ray diffractometer RINT2000/PC manufactured by Rigaku Co., Ltd. The measurement plane was set to the (0002) plane, and the measurement was performed at a tube current of 40 mA and a tube voltage of 40 KV. The X-ray reflection intensity of the (0002) plane has a peak near 2θ = 34.5 degrees, but the peak of reflection intensity does not appear at 2θ = 30 degrees, so the value measured at this angle is used as the background value. did.
Furthermore, it can be determined that the smaller the potential difference between oxidation and reduction, the better the performance as an electrochemical device.
Below are the results.

(比較例1)Al-Zn合金(AZ合金)
Al3%、Zn1%を含有し、残部マグネシウムからなる一般的に圧延材として用いられるAZ31合金の酸化還元電位を図5に示す。還元電流密度が30μAcm-2まではフラットな電位を維持するが、60μAcm-2以上では還元電位が大幅に負の方向に増大し、フラット電位が継続できなくなった。これは印加した電流密度に対して、電極反応が間に合わない、すなわち、電極の電気化学的に活性なサイト数が不足していることを示唆している。特に還元反応は酸化反応に比べて遅いため、この活性サイト数不足が顕著となる。フラット電位が継続しない状態では、電解液の分解が進行し、電極は不働態化するので、電気化学デバイスとして安定して動作させるには、フラット電位が維持できる電流密度30μAcm-2以下にしなければならず、実用に供するには低すぎる電流密度であり、電気化学デバイス用電極材としての利用価値はない。
(Comparative Example 1) Al-Zn alloy (AZ alloy)
FIG. 5 shows the oxidation-reduction potential of the AZ31 alloy, which contains 3% Al, 1% Zn, and the balance is magnesium, and is generally used as a rolled material. A flat potential was maintained up to a reduction current density of 30 μAcm −2 , but at a reduction current density of 60 μAcm −2 or more, the reduction potential significantly increased in the negative direction and the flat potential could no longer be maintained. This suggests that the electrode reaction is not in time for the applied current density, that is, the number of electrochemically active sites on the electrode is insufficient. In particular, since the reduction reaction is slower than the oxidation reaction, this lack of active sites becomes noticeable. If the flat potential does not continue, the electrolyte will decompose and the electrode will become passivated, so in order to operate stably as an electrochemical device, the current density must be lower than 30 μAcm -2 to maintain the flat potential. However, the current density is too low for practical use, and it has no value as an electrode material for electrochemical devices.

(比較例2)
純度99.999%の純Mgの酸化還元電位を図6に示す。還元電流密度が90μAcm-2でフラット電位が継続しなくなった。このため、電気化学デバイスとして実用上の利用価値は小さいと判断した。
(Comparative example 2)
FIG. 6 shows the redox potential of pure Mg with a purity of 99.999%. The flat potential no longer continued when the reduction current density was 90 μAcm −2 . For this reason, it was determined that the practical use value as an electrochemical device is small.

(実施例1)Cu添加合金(以下C合金と称す。記号のC以下の数値10~100は、それぞれCuを概ね1.0%~10.0%含有していることを表す。以下、同様に各元素の概ねの含有量を示す。)
C10、C30、C100の酸化還元電位を図7から図9に示す。C合金は、AZ31合金に比べて、高い還元電流密度までフラット電位が維持されている。Cuが1.0%では90μAcm-2まで、Cuが3.0%では概ね120μAcm-2まで、Cuが10.0%では180μAcm-2までフラットな電位が維持されている。Cuの割合が高いほど、より高い還元電流密度までフラット電位が維持されることがわかる。また、電流密度を上げたときの酸化電位と還元電位の差も小さくなる。これは、Cuを含有したマグネシウム合金は、一般的なAl-Zn合金より電気化学的に活性なサイトが多く、電流密度6倍以上の高い電流を印加しても安定して充放電できることを示唆している。したがって、Cuを含有したマグネシウム合金を用いると高出力で急速充電が可能な電気化学デバイスが実現できることを示している。
(Example 1) Cu-added alloy (hereinafter referred to as C alloy. The numbers 10 to 100 below C in the symbol each represent approximately 1.0% to 10.0% Cu content. The same applies hereinafter. shows the approximate content of each element.)
The redox potentials of C10, C30, and C100 are shown in FIGS. 7 to 9. Compared to the AZ31 alloy, the C alloy maintains a flat potential up to a high reduction current density. A flat potential is maintained up to 90 μAcm −2 when Cu is 1.0%, approximately 120 μAcm −2 when Cu is 3.0%, and 180 μAcm −2 when Cu is 10.0%. It can be seen that the higher the proportion of Cu, the more the flat potential is maintained up to a higher reduction current density. Furthermore, the difference between the oxidation potential and the reduction potential becomes smaller when the current density is increased. This suggests that the Cu-containing magnesium alloy has more electrochemically active sites than general Al-Zn alloys, and can be stably charged and discharged even when applied with a current that is more than 6 times as high as the current density. are doing. Therefore, it is shown that an electrochemical device capable of high output and rapid charging can be realized by using a magnesium alloy containing Cu.

(実施例2)Cu-Zn合金(CZ合金)
Cu添加の効果に加えて、(0001)面を表面の法線方向から傾けた効果を調べる一例として、CZ3015の集合組織と酸化還元電位を測定した。(0002)面極点図を図10に示す。極点図の縦横の軸の目盛りはそれぞれ法線方向からの角度10度ごとを示す。Cu3.0%のみ含む合金の極点図は図3に示すものであり、その極大を示す点は、図の中心からわずかに傾斜しているが、そのずれは10度以内である。これに対して、図10に示すCZ3015合金では、その傾斜が約15度あり、Cuを単独で含有するものよりも(0001)面が表面の法線方向からの傾斜が大きくなっている。このCZ3015合金の酸化還元電流密度と電位の関係を調べた結果を図11に示す。Cuを単独で3.0%含む合金の、120μAhにおける酸化電流密度900μAcm-2と還元電流密度180μAcm-2との電位差は、図8から0.33Vと読み取れる。これに対し、CuにさらにZnを加えたC3015合金の電位差は図11から0.25Vと読み取れ、Znを加え、(0001)面を表面の法線方向から傾けることによって電気化学デバイスとしての性能が向上していることがわかる。
図11から、この合金は高い酸化還元電流密度までフラットな電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電ができることを示唆している。
(Example 2) Cu-Zn alloy (CZ alloy)
In addition to the effect of adding Cu, as an example of investigating the effect of tilting the (0001) plane from the normal direction of the surface, the texture and redox potential of CZ3015 were measured. The (0002) surface pole figure is shown in FIG. The scales on the vertical and horizontal axes of the pole figure each indicate an angle of 10 degrees from the normal direction. The pole figure of the alloy containing only 3.0% Cu is shown in FIG. 3, and the point showing the maximum is slightly inclined from the center of the figure, but the deviation is within 10 degrees. On the other hand, in the CZ3015 alloy shown in FIG. 10, the inclination is about 15 degrees, and the (0001) plane has a greater inclination from the normal direction of the surface than in the case of the alloy containing Cu alone. FIG. 11 shows the results of investigating the relationship between the redox current density and potential of this CZ3015 alloy. The potential difference between the oxidation current density of 900 μAcm −2 and the reduction current density of 180 μAcm −2 at 120 μAh of the alloy containing 3.0% Cu alone can be read as 0.33V from FIG. On the other hand, the potential difference of the C3015 alloy, which is made by adding Zn to Cu, can be read as 0.25 V from Figure 11, and by adding Zn and tilting the (0001) plane from the normal direction of the surface, the performance as an electrochemical device is improved. I can see that it is improving.
As can be seen from FIG. 11, this alloy maintains a flat potential up to a high redox current density and suppresses overvoltage. This suggests that stable charging and discharging is possible even when high current is applied.

(実施例3)Cu-Ca合金(CX合金;XはCaを表す。)
CX3005およびCX3010の酸化還元電位を図12および図13に示す。CX3005(Ca0.5%添加)では還元電流密度180μAcm-2でやや不安定な挙動を示すが120μAcm-2以下では高い電位が維持できている。高い還元電流密度までフラット電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 3) Cu-Ca alloy (CX alloy; X represents Ca)
The redox potentials of CX3005 and CX3010 are shown in FIGS. 12 and 13. CX3005 (with 0.5% Ca added) exhibits somewhat unstable behavior at a reduction current density of 180 μAcm −2 , but a high potential is maintained below 120 μAcm −2 . Results have been obtained in which a flat potential is maintained up to a high reduction current density and overvoltage is also suppressed. This suggests that stable charging and discharging is possible even when high current is applied.

(実施例4)Cu-Zn-Ca合金(CZX合金)
Cu添加の効果に加えて、(0001)面を表面の法線方向から傾けた効果を調べるもう一つの例として、CZX301501の(0002)面極点図および酸化還元電流密度と電位の関係を調べた。図4に(0002)面極点図を、図14に酸化還元電流密度と電位の関係を示す。図14から、CZX301501合金では、表面の法線方向に(0001)面の極大値はなく、板の圧延方向(図では上下方向)とほぼ直角な方向に2箇所極大を持ち、(0001)面が表面と傾斜して存在していることわかる。この合金の酸化還元電流密度と電位の関係を示す図14から120μAhにおける酸化電流密度900μAcm-2と還元電流密度180μAcm-2との電位差を読み取ると、0.20Vとなり、Cuのみ3.0%を含有するC30合金の結果である0.33Vと比較して小さな値となり、(0001)面と表面を傾斜させて存在させることにより、より性能の良い電気化学デバイスが得られることがわかる。
同じ成分系として、CZX301505およびCZX301510の酸化還元電位を図15、および図16に示す。Caの割合が高くなると、還元過電圧が増大する傾向にあるが、一般的なAl-Zn合金より著しく高い電流を印加してもフラット電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 4) Cu-Zn-Ca alloy (CZX alloy)
In addition to the effect of Cu addition, as another example of investigating the effect of tilting the (0001) plane from the normal direction of the surface, we investigated the (0002) plane pole figure of CZX301501 and the relationship between redox current density and potential. . FIG. 4 shows a (0002) plane pole figure, and FIG. 14 shows the relationship between redox current density and potential. From Figure 14, it can be seen that in the CZX301501 alloy, there is no local maximum on the (0001) plane in the normal direction of the surface, but there are two local maxima in a direction almost perpendicular to the rolling direction of the plate (vertical direction in the figure), It can be seen that the surface is inclined to the surface. When reading the potential difference between the oxidation current density of 900 μAcm -2 and the reduction current density of 180 μAcm -2 at 120 μAh from FIG. 14, which shows the relationship between the redox current density and potential of this alloy, it is 0.20 V, and only Cu is 3.0%. This value is smaller than 0.33V, which is the result of the containing C30 alloy, and it can be seen that an electrochemical device with better performance can be obtained by making the (0001) plane and the surface inclined.
The redox potentials of CZX301505 and CZX301510 are shown in FIG. 15 and FIG. 16 as the same component system. As the proportion of Ca increases, the reduction overvoltage tends to increase, but even when a significantly higher current is applied than in general Al-Zn alloys, a flat potential is maintained and overvoltage is suppressed. . This suggests that stable charging and discharging is possible even when high current is applied.

(実施例5)Cu-Sn合金(CT合金)
周期表4B族元素の代表としてSnを選び、Snを添加した合金を作成して測定を実施した。
CT3015の酸化還元電位を図17に示す。高い還元電流密度までフラット電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 5) Cu-Sn alloy (CT alloy)
Sn was selected as a representative of Group 4B elements of the periodic table, and an alloy to which Sn was added was prepared and measured.
The redox potential of CT3015 is shown in FIG. Results have been obtained in which a flat potential is maintained up to a high reduction current density and overvoltage is also suppressed. This suggests that stable charging and discharging is possible even when high current is applied.

(実施例6)Cu-Zn-Si-合金(CS合金)
CZSX30151001の酸化還元電位を図18に示す。高い還元電流密度までフラット電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 6) Cu-Zn-Si-alloy (CS alloy)
The redox potential of CZSX30151001 is shown in FIG. Results have been obtained in which a flat potential is maintained up to a high reduction current density and overvoltage is also suppressed. This suggests that stable charging and discharging is possible even when high current is applied.

(実施例7)Cu-Mm合金(CE合金)
CZEX30151001の酸化還元電位を図19に示す。高い還元電流密度までフラット電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 7) Cu-Mm alloy (CE alloy)
The redox potential of CZEX30151001 is shown in FIG. Results have been obtained in which a flat potential is maintained up to a high reduction current density and overvoltage is also suppressed. This suggests that stable charging and discharging is possible even when high current is applied.

(実施例8)Cu-Mn合金(CM合金)
MnおよびZr添加の一例として、CuにさらにMnを添加したCM5005合金の酸化還元電位を図20に示す。Cuのみを含有するC30、C100合金の結果である、図7および図8と比較して、Mnを含有することにより酸化還元電流密度と電位の関係がより高いフラット性を示している。このようにMnを添加するとCu単独よりもよりフラットな電位が維持され、過電圧も抑制される結果が得られている。これは高電流を印加しても安定して充放電できることを示唆している。
(Example 8) Cu-Mn alloy (CM alloy)
As an example of Mn and Zr addition, FIG. 20 shows the oxidation-reduction potential of a CM5005 alloy in which Mn is further added to Cu. Compared to FIGS. 7 and 8, which are the results of C30 and C100 alloys containing only Cu, the relationship between redox current density and potential shows a higher flatness due to the inclusion of Mn. When Mn is added in this manner, a flatter potential is maintained than when Cu alone is used, and overvoltage is also suppressed. This suggests that stable charging and discharging is possible even when high current is applied.

前記比較例、実施例の化学成分と電気化学デバイスとしての性能をまとめて表1に示す。表1中で電気化学デバイスとしての性能欄に○が記載されているものは還元電流密度90μAcm-2までフラットな電位が維持され(Capacityが20μAhと120μAhのときの電圧を比較して、その差が0.1V以内)、電気化学デバイスの電極材として優れていることを表している。×はその性能が劣ることを表している。 The chemical components and performance as an electrochemical device of the Comparative Examples and Examples are summarized in Table 1. In Table 1, devices marked with a circle in the performance column as electrochemical devices maintain a flat potential up to a reduction current density of 90 μAcm -2 (comparing the voltages when the capacity is 20 μAh and 120 μAh, the difference is (within 0.1 V), indicating that it is excellent as an electrode material for electrochemical devices. × indicates that the performance is inferior.

表1

Figure 0007422348000001
Table 1
Figure 0007422348000001

本発明の電極材は、電気化学デバイスすなわち1次電池、2次電池、およびキャパシタなどに適用することができる。本発明は、マグネシウムを用いているため、安全でかつ資源の確保も容易であり、工業的かつ社会的に極めて有効である。 The electrode material of the present invention can be applied to electrochemical devices, ie, primary batteries, secondary batteries, capacitors, and the like. Since the present invention uses magnesium, it is safe and easy to secure resources, and is extremely effective industrially and socially.

Claims (8)

Cuを質量%で0.3~15.0%含有するマグネシウム合金を用いた電気化学デバイス用電極材。 An electrode material for electrochemical devices using a magnesium alloy containing 0.3 to 15.0% by mass of Cu. 電気化学デバイスとして用いたときの電気化学デバイス用電極材の表面方向からXRDにより測定した(0002)面極点図において、表面の法線方向に極大値を持たないことを特徴とする、Cuを含有するマグネシウム合金を用いた電気化学デバイス用電極材。A Cu-containing material characterized by having no maximum value in the normal direction of the surface in the (0002) plane pole figure measured by XRD from the surface direction of the electrode material for an electrochemical device when used as an electrochemical device. Electrode material for electrochemical devices using magnesium alloy. 質量%でZnを0.1~3.5%、およびCaを0.05~1.0%の少なくとも一方をさらに含有する請求項1または2記載の電気化学デバイス用電極材。 The electrode material for an electrochemical device according to claim 1 or 2, further containing at least one of 0.1 to 3.5% by mass of Zn and 0.05 to 1.0% by mass of Ca. C、Si、GeSn、およびPbからなる群より選ばれる少なくとも1種の周期律表の4B元素を質量%で合計0.01~5.0%の範囲でさらに含有する請求項1から3のいずれか一項記載の電気化学デバイス用電極材。 Claims 1 to 3 further contain at least one 4B element of the periodic table selected from the group consisting of C, Si, Ge , Sn, and Pb in a total range of 0.01 to 5.0% by mass. An electrode material for an electrochemical device according to any one of the above. ScY、La、Ce、PrNd、およびSmからなる群より選ばれる少なくとも1種の希土類元素を質量%で合計0.01~3.0%の範囲でさらに含有する請求項1から4のいずれか一項記載の電気化学デバイス用電極材。 Claims 1 to 4 further contain at least one rare earth element selected from the group consisting of Sc , Y, La, Ce, Pr , Nd, and Sm in a total range of 0.01 to 3.0% by mass. An electrode material for an electrochemical device according to any one of the above. 希土類元素を、ミッシュメタルの形態で含有し、ミッシュメタルの含有量が質量%で0.01~3.0%である請求項5記載の電気化学デバイス用電極材。 6. The electrode material for an electrochemical device according to claim 5, wherein the rare earth element is contained in the form of misch metal, and the content of misch metal is 0.01 to 3.0% by mass. MnおよびZrの少なくとも一方を質量%で0.2~3.0%の範囲でさらに含有する請求項1から6のいずれか一項記載の電気化学デバイス用電極材。 The electrode material for an electrochemical device according to any one of claims 1 to 6, further containing at least one of Mn and Zr in a range of 0.2 to 3.0% by mass. 電気化学デバイスとして用いたときの電気化学デバイス用電極材の表面方向からXRDにより測定した(0002)面極点図において、表面の法線方向に極大値を持たないことを特徴とする、請求項記載の電気化学デバイス用電極材。 Claim 1 , characterized in that the (0002) plane pole figure measured by XRD from the surface direction of the electrode material for an electrochemical device when used as an electrochemical device does not have a maximum value in the normal direction of the surface. The described electrode material for electrochemical devices.
JP2020530284A 2018-07-13 2019-07-12 Electrode materials for electrochemical devices Active JP7422348B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018133516 2018-07-13
JP2018133516 2018-07-13
PCT/JP2019/027770 WO2020013328A1 (en) 2018-07-13 2019-07-12 Electrode material for electrochemical device

Publications (2)

Publication Number Publication Date
JPWO2020013328A1 JPWO2020013328A1 (en) 2021-09-24
JP7422348B2 true JP7422348B2 (en) 2024-01-26

Family

ID=69141947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020530284A Active JP7422348B2 (en) 2018-07-13 2019-07-12 Electrode materials for electrochemical devices

Country Status (2)

Country Link
JP (1) JP7422348B2 (en)
WO (1) WO2020013328A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191481A (en) 2012-03-15 2013-09-26 Furukawa Battery Co Ltd:The Metal electrode, manufacturing method therefor, and magnesium cell
JP2014192009A (en) 2013-03-27 2014-10-06 Honda Foundry Co Ltd Negative pole for secondary battery using magnesium alloy and manufacturing method thereof
WO2018012360A1 (en) 2016-07-13 2018-01-18 Canon Kabushiki Kaisha Continuum robot, modification method of kinematic model of continuum robot, and control method of continuum robot
WO2018021361A1 (en) 2016-07-26 2018-02-01 株式会社三徳 Magnesium-lithium alloy, and magnesium air battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6290520B1 (en) * 2016-07-26 2018-03-07 株式会社三徳 Magnesium-lithium alloy and magnesium-air battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191481A (en) 2012-03-15 2013-09-26 Furukawa Battery Co Ltd:The Metal electrode, manufacturing method therefor, and magnesium cell
JP2014192009A (en) 2013-03-27 2014-10-06 Honda Foundry Co Ltd Negative pole for secondary battery using magnesium alloy and manufacturing method thereof
WO2018012360A1 (en) 2016-07-13 2018-01-18 Canon Kabushiki Kaisha Continuum robot, modification method of kinematic model of continuum robot, and control method of continuum robot
WO2018021361A1 (en) 2016-07-26 2018-02-01 株式会社三徳 Magnesium-lithium alloy, and magnesium air battery

Also Published As

Publication number Publication date
JPWO2020013328A1 (en) 2021-09-24
WO2020013328A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP2021158119A5 (en)
Wachtler et al. Anodic materials for rechargeable Li-batteries
KR20170131239A (en) A material of negative electrode for lithium secondary battary
JP6099001B2 (en) Lead acid battery
JP6536538B2 (en) Fluoride ion battery and method of manufacturing the same
WO2009142220A1 (en) Lead storage battery and process for producing the lead storage battery
JP2004311429A5 (en)
JP2009252579A5 (en)
EP2515364A1 (en) Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP6572918B2 (en) Lead storage battery and electrode current collector for lead storage battery
JP2010519718A5 (en)
Wall et al. Effects of micro-alloying with lead for battery grid material
JP7422348B2 (en) Electrode materials for electrochemical devices
JP7344487B2 (en) Electrode material for electrochemical devices and its manufacturing method
US9276241B2 (en) Molten salt battery case, and molten salt battery
JPH1197032A (en) Current collector made of aluminum foil for secondary cell
JP2007109618A (en) Lead-acid battery
JP6726798B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP2000133276A (en) Negative electrode current collector for secondary battery
JP5342188B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP5329066B2 (en) Negative electrode active material for secondary battery and secondary battery using the same
JP2003257417A (en) Negative electrode for lithium ion secondary battery
JP2003257418A (en) Negative electrode for lithium ion secondary battery
JP2014175243A (en) Sodium secondary battery
JP2024002369A (en) NEGATIVE ELECTRODE MATERIAL AND CURRENT COLLECTOR MATERIAL FOR Mg SECONDARY BATTERY, AND Mg SECONDARY BATTERY USING THE SAME

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7422348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150