JP7419716B2 - Manufacturing method of recycled polymer material - Google Patents

Manufacturing method of recycled polymer material Download PDF

Info

Publication number
JP7419716B2
JP7419716B2 JP2019171598A JP2019171598A JP7419716B2 JP 7419716 B2 JP7419716 B2 JP 7419716B2 JP 2019171598 A JP2019171598 A JP 2019171598A JP 2019171598 A JP2019171598 A JP 2019171598A JP 7419716 B2 JP7419716 B2 JP 7419716B2
Authority
JP
Japan
Prior art keywords
recycled
treatment liquid
polymer material
polymeric material
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019171598A
Other languages
Japanese (ja)
Other versions
JP2021046521A (en
Inventor
哲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2019171598A priority Critical patent/JP7419716B2/en
Publication of JP2021046521A publication Critical patent/JP2021046521A/en
Application granted granted Critical
Publication of JP7419716B2 publication Critical patent/JP7419716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、近年大量に廃棄されている産業廃棄物における高分子材料、一般にプラスチック類と呼ばれる廃棄物類の再生方法に関し、さらに詳しくは、主には縮合系高分子材料である飽和ポリエステル樹脂、ポリイミド、ポリアミド樹脂(ナイロン)、多糖類、デンプン類、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂を含む高分子材料から、再生層高分子材料を得るための製造方法である。
本発明は、好ましくは不溶不融の高分子材料から再生高分子材料を得る方法であり、このような高分子廃棄物を回収処理し、耐熱性電材部品、自動車部品などに利用することができる高分子粉末として再生利用することができる方法に関するものである。
The present invention relates to a method for recycling polymeric materials in industrial waste that have been discarded in large quantities in recent years, wastes generally called plastics. This is a manufacturing method for obtaining a recycled layer polymer material from a polymer material including polyimide, polyamide resin (nylon), polysaccharide, starch, phenol resin, urea resin, melamine resin, polycarbonate resin, and unsaturated polyester resin. .
The present invention is a method for obtaining recycled polymeric materials from preferably insoluble and infusible polymeric materials, and such polymeric waste can be recovered and processed and used for heat-resistant electrical parts, automobile parts, etc. The present invention relates to a method that can be recycled as polymer powder.

ポリイミド、不飽和ポリエステル樹脂に代表される縮合系高分子材料は高い機械的強度や耐熱性を有するが、優れた耐薬品性も有しており、溶媒に溶けず、非熱可塑性である場合が多く、ポリエチレン、ポリプロピレン、ポリスチレンなどの熱可塑性プラスチックのように溶融して再利用することができなかった。
従って、多くの場合、縮合系高分子材料などの不溶不融の高分子材料を含む産業廃棄物は、再生処理や再資源化が困難であり、現状は残念ながら、大部分はそのまま埋め立てられて廃棄処分されるか又は焼却処分されている。
一部産業廃棄物等として大量に廃棄される縮合系高分子などの不溶不融高分子材料を含む廃棄物をリサイクルして有効利用するために、を機械的に粉砕して粉体を得ることが行われているが、機械の摩耗による金属不純物が含まれること、平均粒径が数十μmオーダーの粉体しか得ることができず、再利用の際に成形材料として限りがあることが重要な課題となっている。
この課題解決のために、例えばポリイミドにおいては、化学的に分解するケミカルリサイクルの手段や技術が提案されている。
Condensation polymer materials represented by polyimide and unsaturated polyester resins have high mechanical strength and heat resistance, but they also have excellent chemical resistance, are insoluble in solvents, and are sometimes non-thermoplastic. Many cannot be melted and reused like thermoplastics such as polyethylene, polypropylene, and polystyrene.
Therefore, in many cases, industrial waste containing insoluble and infusible polymer materials such as condensation polymer materials is difficult to recycle or recycle, and unfortunately, most of it is currently landfilled. Disposed of or incinerated.
In order to recycle and effectively utilize waste containing insoluble and infusible polymer materials such as condensation polymers, which are discarded in large quantities as some industrial wastes, mechanically pulverize to obtain powder. However, it is important that it contains metal impurities due to machine wear and that it can only obtain powder with an average particle size on the order of several tens of micrometers, so it is limited as a molding material when reused. This has become a major issue.
To solve this problem, chemical recycling means and techniques for chemically decomposing polyimide, for example, have been proposed.

例えば、オートクレーブなどを用いて、ポリイミドを水またはアルコールと共存させて110℃以上、1MPa以上の高温高圧条件で低分子量体に分解する方法(特許文献1参照)、ポリイミド系樹脂を有する部材と水を入れたオートクレーブ中で200℃以上400℃以下、かつその温度での水の飽和水蒸気圧以上の条件で分解する方法(特許文献2参照)、ポリイミドなどの高分子含有固体を、溶解パラメータが18(MJ/m1/2以上を有する溶剤を含有する高分子材料に、200℃以上の温度で接触させて、前記高分子固体を分解する方法(特許文献3参照)、高分子分解材料として極性の大きい溶剤を用いるかまたは超臨界水又は亜臨界水などを用いて、200~700℃の高温、および2~100MPaの高圧状態で保持することで、ポリイミドを加水分解する方法(特許文献4参照)などが提案されている。これらの提案手段においては、極々低分子量まで分解するために金属成分からのポリイミド除去などに用いられるため、得られるポリイミド成分をそのまま成形体として再利用することができないこと、高温高圧条件であるが故に工業的には大容量の高温高圧反応容器などの特殊な設備を必要とするために、設備投資が高額となり、安全維持のためのメンテナンスが必須で高度な運転技術も必要とするなど、実用上課題が多い。 For example, using an autoclave or the like, a method in which polyimide is made to coexist with water or alcohol and decomposed into low molecular weight substances under high temperature and high pressure conditions of 110° C. or higher and 1 MPa or higher (see Patent Document 1), a method in which a member having a polyimide resin and water A method of decomposing polymer-containing solids such as polyimide at temperatures above 200°C and below 400°C and above the saturated water vapor pressure of water at that temperature in an autoclave with a solubility parameter of 18 (see Patent Document 2). (MJ/m 3 ) A method of decomposing the polymer solid by contacting it with a solvent containing a solvent having 1/2 or more at a temperature of 200° C. or higher (see Patent Document 3), a polymer decomposition material A method of hydrolyzing polyimide by holding it at a high temperature of 200 to 700°C and a high pressure of 2 to 100 MPa using a highly polar solvent or supercritical water or subcritical water (patent document) 4) have been proposed. These proposed methods are used to remove polyimide from metal components in order to decompose it to an extremely low molecular weight, so the resulting polyimide component cannot be reused as it is as a molded product, and it requires high temperature and high pressure conditions. Therefore, for industrial use, special equipment such as large-capacity high-temperature, high-pressure reaction vessels is required, which requires high capital investment, requires maintenance to maintain safety, and requires advanced operating technology, making it difficult to put into practical use. There are many top issues.

また、ポリイミドをアルカリ加水分解して低分子量体とするとともにこの低分子量体を回収する手段において、高温高耐圧反応容器などの特殊な設備や溶媒の使用を不要とし、分解や中和に用いる薬品に起因する不純物が少ない状態で平均粒径の小さい低分子量体にし、かつこの低分子量体を粉末として回収して成形材料等として用いられる方法(例えば、特許文献5および6参照)が提案されているが、これらの手法については、得られるポリイミド粉末の耐熱性に関する明確な記述がなく、本来ポリイミドの持つ耐熱性を大きく損なっている可能性が高い。また、これらの提案手法では、分解や中和に使用する薬品をワンウエィで使用するために、酸・アルカリ使用量が莫大なものとなり、ケミカルコスト負担が非常に大きなものとなってしまうといった工業上、実用上の課題を有している。 In addition, the method for alkaline hydrolysis of polyimide to produce low molecular weight products and the recovery of these low molecular weight products eliminates the need for special equipment such as high-temperature, high-pressure resistant reaction vessels, and the use of solvents, and the use of chemicals used for decomposition and neutralization. A method has been proposed in which a low-molecular-weight material with a small average particle size is produced in a state with few impurities caused by oxidation, and the low-molecular-weight material is recovered as a powder and used as a molding material, etc. (see, for example, Patent Documents 5 and 6). However, there is no clear description regarding the heat resistance of the polyimide powder obtained using these methods, and it is highly likely that the heat resistance originally possessed by polyimide is greatly impaired. In addition, in these proposed methods, since the chemicals used for decomposition and neutralization are used in one way, the amount of acids and alkalis used is enormous, resulting in an extremely large chemical cost burden. , there are practical issues.

特開2001-163973号公報Japanese Patent Application Publication No. 2001-163973 特開2002-284924号公報JP2002-284924A 特開2002-256104号公報Japanese Patent Application Publication No. 2002-256104 特開平10-287766号公報Japanese Patent Application Publication No. 10-287766 特開2006-124530号公報Japanese Patent Application Publication No. 2006-124530 特許第5695675号公報Patent No. 5695675

以上、ポリイミドを代表例として、主に縮合系高分子を含む廃棄物の再生方法について概観してきたが、いずれも高温高圧反応容器などの特殊な設備、高度な運転技術を必要とし、また得られた再生品の品質についても必ずしも保障された物とは云えないなどの多々問題を含むものであった。
本発明は、大容量の高温高圧反応容器などの特殊な設備、高度な運転技術を必要とすることなく、分解や中和に必要な薬品使用量を限りなく抑え、かつ、回収して得られた高分子材料を、成形材料に使用する事が可能となる好適な平均粒径の粉体とすることができる再生高分子材料の製造方法を提供せんとするものである。
Above, we have provided an overview of the recycling methods for waste mainly containing condensation polymers, using polyimide as a representative example, but all of them require special equipment such as high-temperature, high-pressure reaction vessels, advanced operating techniques, and are difficult to obtain. There were also many problems, such as the quality of recycled products that could not always be guaranteed.
The present invention minimizes the amount of chemicals required for decomposition and neutralization without requiring special equipment such as large-capacity high-temperature, high-pressure reaction vessels, or advanced operating techniques, and can be obtained by recovering the chemicals. It is an object of the present invention to provide a method for producing a recycled polymer material, which can turn the recycled polymer material into powder with a suitable average particle size that can be used as a molding material.

すなわち本発明は、下記の構成によるものである。
[1]a)アルカリイオン濃度が0.5~20.0mol/Lの範囲の第1の処理液に、常温で固体の被再生高分子材料を浸漬する第1の工程、
b)被再生高分子材料の加水分解が臨界分解状態に進んだ段階で、臨界分解状態の被再生高分子材料を前記第1の処理液から取り出す工程、
c)前記取出した臨界分解状態の被再生高分子材料をアルカリイオン濃度が0.0~0.5mol/Lの第2の処理液に浸漬して溶解させて被再生高分子材料の溶液を得る工程、
d)前記溶液を酸中和し、溶解物を析出させて粉体として回収する工程、
を少なくとも有する再生高分子材料の製造方法。
[2]前記被再生高分子材料が縮合系高分子であることを特徴とする請求項1に記載の再生高分子材料の製造方法。
[3]前記被再生高分子材料が主鎖にイミド結合を有する高分子材料であることを特徴とする[1]または[2]に記載の再生高分子材料の製造方法。
[4]前記被再生高分子材料が主鎖にエステル結合を有する高分子材料であることを特徴とする[1]または[2]に記載の再生高分子材料の製造方法。
[5]前記被再生高分子材料が主鎖にカーボネート結合を有する高分子材料であることを特徴とする[1]または[2]に記載の再生高分子材料の製造方法。
[6]前記第2の処理液のpHが6~9である弱電解質水溶液であることを特徴とする[1]~[5]のいずれかに記載の再生高分子材料の製造方法。
[7]前記主鎖にイミド結合を有する高分子材料が、芳香族テトラカルボン酸無水物と、ベンゾオキサゾール構造を有する芳香族ジアミン類の縮合物であることを特徴とする[3]または[6]に記載の再生高分子材料の製造方法。
That is, the present invention has the following configuration.
[1] a) A first step of immersing the recycled polymer material, which is solid at room temperature, in a first treatment liquid with an alkali ion concentration in the range of 0.5 to 20.0 mol/L;
b) At the stage where the hydrolysis of the recycled polymeric material has progressed to a critical decomposition state, the step of removing the recycled polymeric material in a critical decomposition state from the first treatment liquid;
c) The recovered polymer material in a critical decomposition state is immersed in a second treatment liquid having an alkali ion concentration of 0.0 to 0.5 mol/L and dissolved to obtain a solution of the recycled polymer material. process,
d) neutralizing the solution with an acid, precipitating the dissolved substance, and recovering it as a powder;
A method for producing a recycled polymer material having at least the following.
[2] The method for producing a recycled polymer material according to claim 1, wherein the recycled polymer material is a condensation polymer.
[3] The method for producing a recycled polymeric material according to [1] or [2], wherein the recycled polymeric material is a polymeric material having an imide bond in its main chain.
[4] The method for producing a recycled polymeric material according to [1] or [2], wherein the recycled polymeric material is a polymeric material having an ester bond in its main chain.
[5] The method for producing a recycled polymeric material according to [1] or [2], wherein the recycled polymeric material is a polymeric material having a carbonate bond in its main chain.
[6] The method for producing a recycled polymeric material according to any one of [1] to [5], wherein the second treatment liquid is a weak electrolyte aqueous solution having a pH of 6 to 9.
[7] The polymer material having an imide bond in the main chain is a condensation product of an aromatic tetracarboxylic acid anhydride and an aromatic diamine having a benzoxazole structure [3] or [6] ] The method for producing a recycled polymer material according to.

さらに本発明は、以下の構成を含む事が好ましい。
[8]前記被再生高分子材料の比表面積が100平方cm/g以上であることを特徴とする[1]~[7]のいずれかに記載の再生高分子材料の製造方法。
[9]前記被再生高分子材料が、長径が10mm以下の破砕フィルム片であることを特徴とする[1]~[8]のいずれかに記載の再生高分子材料の製造方法。
[10]前記第1の処理液による処理温度より、前記第2の処理液による処理温度の法が5℃以上高いことを特徴とする[1]~[9]のいずれかに記載の再生高分子材料の製造方法。
Further, the present invention preferably includes the following configuration.
[8] The method for producing a recycled polymeric material according to any one of [1] to [7], wherein the specific surface area of the recycled polymeric material is 100 square cm/g or more.
[9] The method for producing a recycled polymer material according to any one of [1] to [8], wherein the recycled polymer material is a crushed film piece having a major axis of 10 mm or less.
[10] The regeneration height according to any one of [1] to [9], wherein the processing temperature with the second processing liquid is 5° C. or more higher than the processing temperature with the first processing liquid. Method of manufacturing molecular materials.

本発明のa)アルカリイオン濃度が0.5~20.0mol/Lの範囲の第1の処理液に、常温で固体の被再生高分子材料を浸漬する第1の工程、b)加水分解が臨界分解状態に進んだ段階で、被再生高分子材料を前記第1の処理液から取り出す工程、c)前記取出した被再生高分子材料をアルカリイオン濃度が0.0~0.5mol/Lの第2の処理液に溶解して溶液を得る工程を少なくとも有する再生高分子材料の製造方法によれば、以下に説明するとおり、被再生高分子材料を加水分解して低分子量体にするとともにこの低分子量体を回収する手段において、従来技術における高温高耐圧反応容器などの特殊な設備や溶媒が不要であって、さらにアルカリイオン濃度が濃い第1の処理液を複数回反復使用することが可能となるため、分解や中和に使用する薬品使用量を大幅に低減できる。
かつ、d)前記溶液を酸中和し、溶解物を析出させて粉体として回収する工程を経ることにより成形材料として好適な平均粒径や耐熱性を有する再生高分子粉体を回収することができる。
本発明は好ましくは縮合系高分子材料全般に適用する事ができ、特にポリイミド、ポリアミド。ポリエステル、ポリカーボネートに好ましく適用できる。
The present invention includes a) a first step of immersing the recycled polymeric material, which is solid at room temperature, in a first treatment solution with an alkali ion concentration in the range of 0.5 to 20.0 mol/L, and b) hydrolysis. c) removing the recycled polymeric material from the first treatment liquid at the stage where it has reached a critical decomposition state; According to the method for producing a recycled polymeric material, which includes at least the step of dissolving in a second treatment liquid to obtain a solution, as explained below, the recycled polymeric material is hydrolyzed into a low molecular weight substance and this The means for recovering low molecular weight substances does not require special equipment such as high-temperature, high-pressure resistant reaction vessels or solvents in conventional technology, and the first treatment liquid with a high alkali ion concentration can be repeatedly used multiple times. Therefore, the amount of chemicals used for decomposition and neutralization can be significantly reduced.
and d) recovering recycled polymer powder having an average particle size and heat resistance suitable as a molding material through a step of neutralizing the solution with an acid, precipitating the dissolved material, and recovering it as a powder. I can do it.
The present invention is preferably applicable to all condensation polymer materials, particularly polyimide and polyamide. It can be preferably applied to polyester and polycarbonate.

本発明が再生処理の対象とする高分子材料は、主には縮合系高分子材料である飽和ポリエステル、ポリイミド、ポリアミド樹脂(ナイロン)、多糖類、デンプン類、フェノール樹脂類、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂などを例示する事ができる。
これら被再生高分子材料は、処理する際に、破砕した状態でも用いることが好ましい。破砕された状態としては、比表面積が100平方cm/g以上となるように破砕された状態が好ましい。
また、本発明では被再生高分子材料が、長径が10mm以下の破砕フィルム片、または長径が10mm以下の切断糸形状であることが好ましい。比表面積が小さすぎると、第1の処理液から第2の処理液に持ち込まれるアルカリ量が少なくなり、処理効率が低下する。
The polymer materials targeted for recycling in the present invention are mainly condensation polymer materials such as saturated polyester, polyimide, polyamide resin (nylon), polysaccharides, starches, phenolic resins, urea resins, and melamine resins. , epoxy resin, polycarbonate resin, unsaturated polyester resin and the like.
It is preferable to use these recycled polymer materials in a crushed state during processing. The crushed state is preferably crushed so that the specific surface area is 100 square cm/g or more.
Further, in the present invention, it is preferable that the polymeric material to be recycled is in the form of a crushed film piece with a major axis of 10 mm or less, or a cut thread shape with a major axis of 10 mm or less. If the specific surface area is too small, the amount of alkali carried from the first treatment liquid to the second treatment liquid will be reduced, resulting in a decrease in treatment efficiency.

本発明の被再生高分子材料としては、特にポリイミドに適用することが好ましい。ポリイミドとは主鎖にイミド結合を有する高分子である。
本発明におけるポリイミドは、その形態は様々であり、フィルム状態、フィルムに金属薄膜や無機薄膜やそれらの複合体が積層された状態などがその例として挙げられる。ポリイミドは、ジアミン類とテトラカルボン酸類とを重縮合して得られるポリイミドであれば特に限定されるものではないが、好ましくは芳香族ジアミン類と芳香族テトラカルボン酸類との反応によって得られるポリイミドであり、より好ましくは、下記の芳香族ジアミン類(ジアミンやイミド結合性ジアミン誘導体、以下同)と芳香族テトラカルボン酸類(酸や二無水物やイミド結合性酸誘導体、以下同)との組合せが好ましい例として挙げられるが、カルボン酸としては、ピロメリット酸が好ましいものであり、ジアミン類としてはベンゾオキサゾール骨格(構造)を有するジアミンが好ましい。
A.ベンゾオキサゾール構造を有する芳香族ジアミン類と芳香族テトラカルボン酸類との組み合わせ。
B.ジアミノジフェニルエーテル骨格を有する芳香族ジアミン類とピロメリット酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
C.フェニレンジアミン骨格を有する芳香族ジアミン類とピロメリット酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
D.フェニレンジアミン骨格を有する芳香族ジアミン類とビフェニルテトラカルボン酸骨格を有する芳香族テトラカルボン酸類との組み合わせ。
また、上記ABCDの一種以上の組み合わせが好ましい。
As the recycled polymer material of the present invention, it is particularly preferable to apply the present invention to polyimide. Polyimide is a polymer having imide bonds in its main chain.
The polyimide in the present invention has various forms, such as a film state and a state in which a metal thin film, an inorganic thin film, or a composite thereof is laminated on a film. The polyimide is not particularly limited as long as it is a polyimide obtained by polycondensation of diamines and tetracarboxylic acids, but preferably it is a polyimide obtained by the reaction of aromatic diamines and aromatic tetracarboxylic acids. More preferably, a combination of the following aromatic diamines (diamines and imide-binding diamine derivatives, hereinafter the same) and aromatic tetracarboxylic acids (acids, dianhydrides, and imide-binding acid derivatives, the same hereinafter) is used. Preferred examples include pyromellitic acid as the carboxylic acid, and diamines having a benzoxazole skeleton (structure) as the diamines.
A. A combination of aromatic diamines having a benzoxazole structure and aromatic tetracarboxylic acids.
B. A combination of aromatic diamines having a diaminodiphenyl ether skeleton and aromatic tetracarboxylic acids having a pyromellitic acid skeleton.
C. A combination of aromatic diamines having a phenylenediamine skeleton and aromatic tetracarboxylic acids having a pyromellitic acid skeleton.
D. A combination of aromatic diamines having a phenylenediamine skeleton and aromatic tetracarboxylic acids having a biphenyltetracarboxylic acid skeleton.
Moreover, a combination of one or more of the above ABCD is preferable.

また、本発明に特に好ましい被再生高分子材料としては、ポリエステルが例示できる。ポリエステルとは主鎖にエステル結合を有する高分子である。ポリエステルとしてはジカルボン酸成分とグリコールの縮合物として得られるポリエステルが好ましい。
ジカルボン酸成分には、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,5-ナフタル酸などの芳香族ジカルボン酸、p-オキシ安息香酸、p-(ヒドロエトキシ)安息香酸などの芳香族オキシカルボン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ジカルボン酸、フマル酸、マレイン酸、イタコン酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸等の不飽和脂肪族および脂環族ジカルボン酸等がある。
必要によりトリメリット酸、トリメシン酸、ピロメリット酸等のトリおよびテトラカルボン酸を少量含んでいても良い。
グリコール成分には、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、1,4-シクロヘキサンジメタノール、スピログリコール、1,4-フェニレングリコール、1,4-フェニレングリコールのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のジオール、ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物、水素化ビスフェノールAのエチレンオキサイド付加物およびプロピレンオキサイド付加物等がある。
必要により、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエルスリトール等のトリオールおよびテトラオールを少量含んでも良い。
ポリエステルポリオールとしては、他に、ε-カプロラクトン等のラクトン類を開環重合して得られる、ラクトン系ポリエステルポリオール類があげられる。
本発明は不溶不融となる不飽和ポリエステル樹脂に適用する事が好ましい。ここに不飽和ポリエステル樹脂とは、不飽和ポリエステルをスチレンなどビニル重合ポリマーで架橋した樹脂を含む。
Furthermore, polyester can be exemplified as a particularly preferable recycled polymer material for the present invention. Polyester is a polymer having ester bonds in its main chain. The polyester is preferably a polyester obtained as a condensate of a dicarboxylic acid component and a glycol.
Examples of dicarboxylic acid components include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and 1,5-naphthalic acid; aromatic oxycarboxylic acids such as p-oxybenzoic acid and p-(hydroethoxy)benzoic acid; acids, aliphatic dicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, unsaturated aliphatic and alicyclic acids such as fumaric acid, maleic acid, itaconic acid, hexahydrophthalic acid, tetrahydrophthalic acid, etc. group dicarboxylic acids, etc.
If necessary, a small amount of tri- and tetracarboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid may be included.
Glycol components include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, dipropylene glycol. , 2,2,4-trimethyl-1,3-pentanediol, 1,4-cyclohexanedimethanol, spiroglycol, 1,4-phenylene glycol, ethylene oxide adduct of 1,4-phenylene glycol, polyethylene glycol, polypropylene Examples include diols such as glycol and polytetramethylene glycol, ethylene oxide and propylene oxide adducts of bisphenol A, and ethylene oxide and propylene oxide adducts of hydrogenated bisphenol A.
If necessary, a small amount of triol and tetraol such as trimethylolethane, trimethylolpropane, glycerin, and pentaerthritol may be included.
Other examples of polyester polyols include lactone-based polyester polyols obtained by ring-opening polymerization of lactones such as ε-caprolactone.
The present invention is preferably applied to unsaturated polyester resins that are insoluble and infusible. The unsaturated polyester resin herein includes a resin obtained by crosslinking unsaturated polyester with a vinyl polymer such as styrene.

また、この他に本発明に好ましい被再生高分子としては、ポリカーボネート樹脂が挙げられる。ポリカーボネート樹脂とは、主鎖にカーボネート結合を有する高分子であり、主に炭酸ジエステル成分とジヒドロキシ成分の縮合物として得られる。
炭酸ジエステル成分には、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネーと、m-クレジルカーボネーと、ジナフチルカーボネート、ビス(ジフェニル)カーボネートなどの芳香族系カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート及びジシクロへキシルカーボネートなどの脂肪族系カーボネートが挙げられる。
ジヒドロキシ成分には、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールAともいわれる)、2,2-ビス(4-ヒドロキシフェニル)ブタン、ビス(4-ヒドロキシフェニル)フェニルメタンなどの芳香族系ジヒドロキシ化合物、エチレンクリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノールなどの脂肪族系ヒドロキシ化合物が挙げられる。
In addition, polycarbonate resins can be mentioned as preferred recycled polymers for the present invention. A polycarbonate resin is a polymer having a carbonate bond in its main chain, and is mainly obtained as a condensate of a carbonic acid diester component and a dihydroxy component.
Carbonic diester components include, for example, diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, m-cresyl carbonate, aromatic carbonates such as dinaphthyl carbonate and bis(diphenyl) carbonate, dimethyl carbonate, and diethyl carbonate. carbonate, aliphatic carbonates such as dibutyl carbonate and dicyclohexyl carbonate.
Examples of dihydroxy components include bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane (also called bisphenol A), 2, Aromatic dihydroxy compounds such as 2-bis(4-hydroxyphenyl)butane and bis(4-hydroxyphenyl)phenylmethane, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6- Examples include aliphatic hydroxy compounds such as hexanediol and 1,2-cyclohexanedimethanol.

本発明における第1の処理は、所定の温度に加温した第1の処理液に、被再生高分子材料を臨界分解状態に達するまで浸漬した後に取り出す処理工程である。
本発明における第1の処理液とは、アンモニウムないしアルカリ金属の水酸化物の水溶液であって、被再生高分子材料のアルカリ加水分解を臨界分解状態まで進行させることができるものであれば特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、アンモニア、水酸化テトラメチルアンモニウムなどが挙げられる。尚、ここで言う臨界分解状態とは、加水分解対象の被再生高分子材料が反応により質量増加から質量減少に転じた時の状態を言う。
加水分解反応は、水分子が高分子材料の主に主鎖に係わる結合に割り込むことにより主鎖の結合を切断することによって進行するが、進行が比較的緩やかな場合には、水分子が加わることによる分子量増加と、さらに高分子材料の親水性が高まることによる膨潤により見掛けの固体部分の質量は増加する。加水分解反応がさらに進行すると、主鎖切断の進行により低分子量化した部分が処理液に溶出し、見掛け固体部分の質量が減少に転ずる。この変曲点を本発明では臨界分解状態と称する。
臨界分解状態に達する時間を知るには、被再生高分子材料を所定の条件において第一の処理液に浸漬し、被再生高分子材料を一定時間間隔で処理液から取り出して質量を計測し、その時間プロットから上記の変曲点を求めれば良い。実作業を行う観点からは、臨界分解状態に達するまでの時間が10~600分の間になるように、処理液のpHないしアルカリイオン濃度と処理液の温度を調整することが好ましい。この程度の条件であれば数分おきレベルに質量変化を計測することにより臨界分解状態に達する時間を計測することができる。
The first treatment in the present invention is a treatment step in which the polymeric material to be recycled is immersed in a first treatment liquid heated to a predetermined temperature until it reaches a critical decomposition state, and then taken out.
The first treatment liquid in the present invention is an aqueous solution of ammonium or alkali metal hydroxide, and is particularly limited as long as it can advance alkaline hydrolysis of the recycled polymer material to a critical decomposition state. However, examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, ammonia, and tetramethylammonium hydroxide. The term "critical decomposition state" as used herein refers to a state when the recycled polymer material to be hydrolyzed changes from an increase in mass to a decrease in mass due to reaction.
The hydrolysis reaction progresses as water molecules break into the bonds in the main chain of the polymeric material, cutting the bonds in the main chain. However, if the progress is relatively slow, water molecules are added to the polymer material. The mass of the apparent solid portion increases due to an increase in molecular weight due to this and swelling due to further increase in hydrophilicity of the polymer material. As the hydrolysis reaction further progresses, a portion with a lower molecular weight due to the progression of main chain scission is eluted into the treatment liquid, and the mass of the apparent solid portion begins to decrease. This inflection point is referred to as a critical decomposition state in the present invention.
In order to know the time to reach the critical decomposition state, the recycled polymeric material is immersed in the first treatment liquid under predetermined conditions, and the recycled polymeric material is taken out from the treatment liquid at regular time intervals and its mass is measured. The above inflection point can be found from the time plot. From the point of view of actual work, it is preferable to adjust the pH or alkali ion concentration of the treatment liquid and the temperature of the treatment liquid so that the time required to reach the critical decomposition state is between 10 and 600 minutes. Under these conditions, it is possible to measure the time it takes to reach a critical decomposition state by measuring changes in mass every few minutes.

本発明における第1の処理液のアルカリイオン濃度は0.5~20.0mol/Lの範囲であることが好ましい。第1の処理液の温度は50~100℃の範囲であることが好ましい。アルカリイオン濃度が0.5mol/Lを超える場合は、加水分解速度が遅すぎて実用上問題が生じる場合が多く、20.0mol/Lを超える場合は被再生高分子材料が分解しすぎて実用的ではない。第1の処理液の温度が50℃未満であれば加水分解速度が遅すぎて実用上問題が生じる場合が多く、100℃を超える場合には被再生高分子材料が分解しすぎること、加圧容器が必要になるなどの技術的な課題が生じる。第1の処理液のアルカリイオン濃度は、1.0~10.0mol/Lの範囲であることが好ましく、その第1の処理液の温度は70~95℃の温度であることがさらに好ましい。 The alkali ion concentration of the first treatment liquid in the present invention is preferably in the range of 0.5 to 20.0 mol/L. The temperature of the first treatment liquid is preferably in the range of 50 to 100°C. When the alkali ion concentration exceeds 0.5 mol/L, the hydrolysis rate is too slow, which often causes practical problems, and when it exceeds 20.0 mol/L, the recycled polymer material is too decomposed to be practical. Not the point. If the temperature of the first treatment liquid is less than 50°C, the hydrolysis rate is too slow, which often causes practical problems, and if it exceeds 100°C, the recycled polymer material may decompose too much, and pressure may be applied. Technical issues arise, such as the need for containers. The alkali ion concentration of the first treatment liquid is preferably in the range of 1.0 to 10.0 mol/L, and the temperature of the first treatment liquid is more preferably 70 to 95°C.

本発明の第1の処理液は反復使用することが可能である。反復使用とは、繰り返し高分子材料の再生処理に使うことができることを意味し、本発明では繰り返し5回以上の使用が可能な場合に反復使用が可能であると判断する。 The first treatment liquid of the present invention can be used repeatedly. Repeated use means that it can be used repeatedly for the recycling treatment of polymeric materials, and in the present invention, it is determined that repeated use is possible when it can be used repeatedly five or more times.

本発明における、第1の処理の浴比、すなわち被処理物の質量と処理液との質量比は好ましくは15/100以下、さらに好ましくは7/100以下、なおさらに好ましくは4/100以下である。浴比が所定範囲を超えると処理効率が著しく低下するとともに、処理液の反復利用が困難になる。
本発明における第1の処理の浴比の下限は0.5/100、好ましくは0.2/100である。浴比がこの範囲より低くなると、処理効率が低くなるだけで無く、第2の処理浴へのアルカリの持ち込み量が少なくなるため、第2処理に支障がでる場合がある。
In the present invention, the bath ratio of the first treatment, that is, the mass ratio of the mass of the object to be treated and the treatment liquid, is preferably 15/100 or less, more preferably 7/100 or less, even more preferably 4/100 or less. be. If the bath ratio exceeds a predetermined range, the treatment efficiency will drop significantly and it will become difficult to repeatedly use the treatment liquid.
The lower limit of the bath ratio for the first treatment in the present invention is 0.5/100, preferably 0.2/100. If the bath ratio is lower than this range, not only the treatment efficiency will be lowered, but also the amount of alkali brought into the second treatment bath will be reduced, which may interfere with the second treatment.

本発明における第2の処理液とは、第1の処理液中で加水分解が臨界分解状態まで進んだ被再生高分子材料が持ち込むアルカリ成分と、被再生高分子成分の分解物から成るものであって、加水分解が臨界分解状態まで進んだ被再生高分子材料を溶解するものであれば特に限定されない。純水ないしはイオン交換水、緩衝液といった弱電解質水溶液などが例示されるが、好ましくは純水ないしはイオン交換水である。 The second treatment liquid in the present invention is composed of an alkaline component brought in by the recycled polymer material whose hydrolysis has reached a critical decomposition state in the first treatment liquid, and decomposition products of the recycled polymer component. There is no particular limitation as long as it dissolves the recycled polymer material whose hydrolysis has progressed to a critical decomposition state. Examples include pure water or ion-exchanged water, and weak electrolyte aqueous solutions such as buffer solutions, but pure water or ion-exchanged water is preferable.

本発明における第2の処理は、所定の温度に加温した第2の処理液に、第1の処理後の被再生高分子材料を所定時間浸漬して溶解させ、被再生高分子材料の溶液を得る処理工程である。なお、便宜上、被再生高分子材料の溶液としたが、化学的には被再生高分子材料の分解物ないしアルカリ変性物としてアルカリ溶液に可溶な状態になった物の溶液である。
本発明における第2の処理液のアルカリイオン濃度は0.0~0.5mol/L、pHは6~9の範囲であることが好ましく、その第2の処理液を使用しての加水分解が臨界分解状態まで進んだ被再生高分子材料の溶解処理は70~100℃の温度で行うことが好ましい。第2の処理液のpHが6未満であれば被再生高分子材料の溶解度が著しく低下してしまう場合が多く、アルカリイオン濃度が0.5mol/L以上ないしはpH9以上になると被再生高分子材料が塩析してしまう場合が多く実用的では無い。溶解処理温度も70℃未満であれば被再生高分子材料の溶解度が著しく低下してしまう場合が多く、100℃を超える場合には耐圧性や技術的な課題が多くなる。より好ましくは第2の処理液のアルカリイオン濃度は0.0~0.1mol/L、pHは7~8の範囲であり、その第2の処理液を使用しての溶解処理温度は80~95℃である。
In the second treatment of the present invention, the recycled polymer material after the first treatment is immersed in a second treatment liquid heated to a predetermined temperature for a predetermined period of time to dissolve the recycled polymer material. This is a processing step to obtain For the sake of convenience, this is a solution of the polymeric material to be recycled, but chemically, it is a solution of the polymeric material to be recycled that has become soluble in an alkaline solution as a decomposed product or an alkali-denatured product.
The alkali ion concentration of the second treatment liquid in the present invention is preferably in the range of 0.0 to 0.5 mol/L, and the pH is preferably in the range of 6 to 9. It is preferable that the melting treatment of the recycled polymeric material that has reached a critical decomposition state is carried out at a temperature of 70 to 100°C. If the pH of the second treatment liquid is less than 6, the solubility of the recycled polymeric material often decreases significantly, and if the alkali ion concentration is 0.5 mol/L or higher or the pH is 9 or higher, the recycled polymeric material It is not practical as it often results in salting out. If the melting treatment temperature is also less than 70°C, the solubility of the recycled polymer material often decreases significantly, and if it exceeds 100°C, pressure resistance and technical problems will increase. More preferably, the second treatment liquid has an alkali ion concentration of 0.0 to 0.1 mol/L, a pH of 7 to 8, and a dissolution treatment temperature of 80 to 80. The temperature is 95°C.

本発明における、第2の処理の浴比、すなわち被処理物の質量と処理液との質量比は好ましくは15/100以下、さらに好ましくは7/100以下、なおさらに好ましくは4/100以下である。浴比が所定範囲を超えると処理効率が著しく低下するとともに、処理液の反復利用が困難になる。
本発明における第2の処理の浴比の下限は0.5/100、好ましくは0.2/100である。浴比がこの範囲より低くなると、処理効率が低くなるだけで無く、第2の処理浴へのアルカリの持ち込み量が少なくなるため、第2処理に支障がでる場合がある。
In the present invention, the bath ratio of the second treatment, that is, the mass ratio of the mass of the object to be treated and the treatment liquid, is preferably 15/100 or less, more preferably 7/100 or less, even more preferably 4/100 or less. be. If the bath ratio exceeds a predetermined range, the treatment efficiency will drop significantly and it will become difficult to repeatedly use the treatment liquid.
The lower limit of the bath ratio for the second treatment in the present invention is 0.5/100, preferably 0.2/100. If the bath ratio is lower than this range, not only the treatment efficiency will be lowered, but also the amount of alkali brought into the second treatment bath will be reduced, which may interfere with the second treatment.

本発明においては、第2の処理液に溶解した被再生高分子材料を粉末として回収するにあたっては、未溶解物の濾過、酸性水溶液添加による沈殿分離により簡単に行うことができる。また、回収物に残存するアルカリ金属類は、回収物を水洗することで十分に除去することができる。 In the present invention, recovering the recycled polymer material dissolved in the second treatment liquid as a powder can be easily carried out by filtration of undissolved materials and precipitation separation by adding an acidic aqueous solution. Further, alkali metals remaining in the recovered material can be sufficiently removed by washing the recovered material with water.

本発明においてフィルム状の被再生高分子材料を処理する場合、当該フィルム状被再生高分子材料を細片化して処理することが好ましく、より好ましくは細片の平均サイズが最大辺10mm以下、さらに好ましくは7mm以下、なお好ましくは4mm以下程度に微細片化すると良い。細片サイズが大きすぎると処理装置内での撹拌や流動、輸送に支障を来す場合がある。
本発明におけるフィルム状被再生高分子材料の処理量は、処理液に対して0.1質量%以上20質量%以下であることが好ましく、0.5質量%以上10質量%以下がさらに好ましく、1質量%以上5質量%以下とすることがない好ましい。処理量がこの範囲に満たないと処理効率が悪くなり、処理量がこの範囲を超えると処理中の流動性が悪く処理ムラが大きくなるうえ、第1の処理液の汚染が著しくリサイクル使用が困難になる場合がある。
本発明におけるプロセスとしては、(1)開放系の反応槽を用い、常圧下にて処理液を加熱撹拌し、場合によっては還流を行う方法、(2)高温の処理浴にベルトコンベアなどでゆっくり流通させていく方法を、それぞれ例示することができる。反応効率および処理ムラの観点からは前者が好ましいが、生産性の観点からは後者が好ましく、実用のスケールなどによって(1)、(2)を適宜選択すればよい。
When processing a film-shaped recycled polymer material in the present invention, it is preferable to process the film-shaped recycled polymer material by cutting it into pieces, and more preferably, the average size of the pieces is 10 mm or less on the maximum side, and Preferably, it is finely divided into pieces of 7 mm or less, more preferably 4 mm or less. If the size of the pieces is too large, stirring, flow, and transportation within the processing equipment may be hindered.
The amount of the film-shaped recycled polymer material to be processed in the present invention is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.5% by mass or more and 10% by mass or less, based on the treatment liquid. It is preferable that the amount is not less than 1% by mass and not more than 5% by mass. If the processing amount is less than this range, the processing efficiency will be poor, and if the processing amount exceeds this range, the fluidity during processing will be poor and processing unevenness will increase, and the first processing liquid will be extremely contaminated and difficult to recycle. It may become.
The process of the present invention includes (1) using an open reaction tank to heat and stir the treatment liquid under normal pressure, and in some cases refluxing; (2) slowly moving the treatment liquid into a high-temperature treatment bath using a belt conveyor, etc. Examples of methods of distribution can be given. The former is preferred from the viewpoint of reaction efficiency and treatment unevenness, but the latter is preferred from the viewpoint of productivity, and (1) and (2) may be appropriately selected depending on the practical scale.

以下の実施例により本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における各特性の評価方法は以下の通りである。 The present invention will be specifically explained with reference to the following examples, but the present invention is not limited to the following examples. In addition, the evaluation method of each characteristic in the following examples is as follows.

[熱分解温度]
乾燥した高分子粉体を試料として、下記条件で熱天秤測定(TGA)を行い、試料の質量が5%減る温度を熱分解温度とみなした。
装置名 ; TAインストルメント社製 TGA-Q50
パン ; 白金パン(非気密型)
試料質量 ; 10mg
昇温開始温度 ; 室温
昇温終了温度 ; 800℃
昇温速度 ; 10℃/min
雰囲気 ; 窒素
[Thermal decomposition temperature]
Using a dried polymer powder as a sample, thermogravimetric analysis (TGA) was performed under the following conditions, and the temperature at which the mass of the sample decreased by 5% was regarded as the thermal decomposition temperature.
Device name: TGA-Q50 manufactured by TA Instruments
Bread: Platinum bread (non-airtight)
Sample mass: 10mg
Heating start temperature: room temperature Heating end temperature: 800℃
Temperature increase rate: 10℃/min
Atmosphere: Nitrogen

[イミド化率]
ポリイミド粉体のイミド化率評価は、次に示すIR(ATR)測定手順に従って行った。
測定対象となるポリイミド粉体を2mg採取し、ATR結晶と密着させてIR測定装置にセットして下記特定波長吸光度を測定して下記(1)式によって、測定対象ポリイミド粉体のイミド化率(IMx)を得た。
IMx = λ1778/λ1478・・・(1)
λ1778は、イミド特定波長1778cm-1付近における吸光度であり、λ1478は、芳香族環特定波長1478cm-1付近における吸光度である。下記に、今回用いたIR(ATR)測定条件を示す。
<IR測定条件>
使用装置名 ; 日本分光社製 FT/IR6100
分解能 ; 4cm-1
測定波数範囲 ; 600~4000cm-1
感度 ; 1
検出時間 ; 1.05sec
[Imidization rate]
The imidization rate of the polyimide powder was evaluated according to the following IR (ATR) measurement procedure.
Collect 2 mg of the polyimide powder to be measured, place it in close contact with the ATR crystal, set it in an IR measuring device, measure the absorbance at the specific wavelength below, and calculate the imidization rate ( IMx) was obtained.
IMx = λ1778/λ1478...(1)
λ1778 is the absorbance near the imide specific wavelength of 1778 cm −1 , and λ1478 is the absorbance near the aromatic ring specific wavelength 1478 cm −1 . The IR (ATR) measurement conditions used this time are shown below.
<IR measurement conditions>
Name of equipment used: JASCO Corporation FT/IR6100
Resolution: 4cm -1
Measurement wave number range: 600 to 4000 cm -1
Sensitivity; 1
Detection time: 1.05sec

<実施例1>
被再生高分子材料(ポリイミド)としては、東洋紡株式会社製の25μm厚のポリイミドフィルム「ゼノマックス」(登録商標)を破砕機により長径が5mm以下となるように処理した破砕品を用いた。フィルムの単位体積あたりの質量から見積もられた破砕品の比表面積は530平方m/gである。
<Example 1>
As the recycled polymer material (polyimide), a crushed product obtained by processing a 25 μm thick polyimide film “Xenomax” (registered trademark) manufactured by Toyobo Co., Ltd. using a crusher so that the major axis was 5 mm or less was used. The specific surface area of the crushed product estimated from the mass per unit volume of the film is 530 square meters/g.

4.0mol/Lの水酸化ナトリウム水溶液を第1の処理液として用いた。第1の処理液のpHは14であった。予備試験として、本第1の処理液を70℃とし、一定量の被再生高分子材料を浸漬して5分単位で固形分の質量変化を測定したところ、質量増から質量減に転じる時間(臨界分解状態に達する時間)は75分であった。 A 4.0 mol/L aqueous sodium hydroxide solution was used as the first treatment liquid. The pH of the first treatment liquid was 14. As a preliminary test, we immersed a certain amount of recycled polymer material in the first treatment solution at 70°C and measured the change in mass of the solid content in 5 minute increments. The time required to reach a critical decomposition state was 75 minutes.

第1の処理液100質量部に対して被再生高分子材料のポリイミド1質量部を浸漬して温度が70℃の条件でアルカリ加水分解を行った。75分間後に臨界分解状態の固体(加水分解が進んだポリイミド)を濾過して取り出した。濾液は別途保管した。 1 part by mass of polyimide as a recycled polymer material was immersed in 100 parts by mass of the first treatment liquid, and alkaline hydrolysis was performed at a temperature of 70°C. After 75 minutes, a solid in a critical decomposition state (polyimide with advanced hydrolysis) was filtered out. The filtrate was stored separately.

第2の処理液として 温度90℃の イオン交換水100質量部を準備した。
前記第1の処理液から取り出した臨界分解状態の固体(加水分解の進んだポリイミド)1質量部を第2の処理液に加え、30分間撹拌することにより目視により固体が視認できなくなったことを確認し、被処理物の溶液を得た。
100 parts by mass of ion-exchanged water at a temperature of 90° C. was prepared as the second treatment liquid.
Add 1 part by mass of the solid in a critical decomposition state (polyimide with advanced hydrolysis) taken out from the first treatment liquid to the second treatment liquid, stir for 30 minutes, and confirm that the solid is no longer visible. After confirmation, a solution of the object to be treated was obtained.

次に、前記溶液に5質量%の硫酸を、pHが7に達するまで滴下することにより溶液を中和した。中和により溶液中の溶解物が固体粉末として析出した。 Next, the solution was neutralized by dropping 5% by mass of sulfuric acid into the solution until the pH reached 7. Upon neutralization, the dissolved substance in the solution was precipitated as a solid powder.

析出した固体粉末を濾過して取り出し、水洗した。水洗は、固体粉末を100倍量の水に入れて常温で5分間撹拌したのちに濾過して固体粉末として取り出す工程を3回繰り返した。水洗後の固体粉末を減圧脱水し、温度80℃で12時間以上乾燥することによって、含水率1.0%以下の固体粉末を得た。 The precipitated solid powder was filtered out and washed with water. For washing with water, the process of putting the solid powder into 100 times the volume of water, stirring for 5 minutes at room temperature, and then filtering to take out the solid powder was repeated three times. The solid powder after washing with water was dehydrated under reduced pressure and dried at a temperature of 80° C. for 12 hours or more to obtain a solid powder with a water content of 1.0% or less.

前記固体粉末を加熱炉において1℃/minの昇温速度で昇温し、450℃で7分間加熱することにより、再生高分子材料として、イミド化率が85%以上のポリイミド粉体を得た。
同じ第1の処理液を用いて、同様の操作を5回繰り返した。5回目についても十分な処理が可能であった。
The solid powder was heated in a heating furnace at a heating rate of 1°C/min and heated at 450°C for 7 minutes to obtain polyimide powder with an imidization rate of 85% or more as a recycled polymer material. .
The same operation was repeated five times using the same first treatment liquid. Sufficient treatment was also possible for the fifth time.

<実施例2~6><比較例1、2>
以下同様に表1に示す材料と条件を用いて再生高分子材料を得た。得られた再生高分子材料を評価した。結果を表1に示す。
なお、表1中
ポリイミド1 はXenomax(登録商標)25μm厚[東洋紡社製]の破砕品、
ポリイミド2 はKapton(登録商標)12.5μm厚[東レ・デュポン社製]の破砕品、
ポリエステル は東洋紡エステルフィルム(登録商標)50μm厚[東洋紡社製]の破砕品、
ポリカーボネートは、ユーピロン(登録商標)100μm厚[三菱ガス化学社製]の破砕品
である。
<Examples 2 to 6><Comparative Examples 1 and 2>
Recycled polymer materials were similarly obtained using the materials and conditions shown in Table 1. The obtained recycled polymer material was evaluated. The results are shown in Table 1.
In addition, polyimide 1 in Table 1 is a crushed product of Xenomax (registered trademark) 25 μm thick [manufactured by Toyobo Co., Ltd.];
Polyimide 2 is a crushed product of Kapton (registered trademark) 12.5 μm thick [manufactured by DuPont-Toray],
The polyester is a crushed product of Toyobo Ester Film (registered trademark) 50 μm thick [manufactured by Toyobo Co., Ltd.]
The polycarbonate is a crushed product of Iupilon (registered trademark) 100 μm thick [manufactured by Mitsubishi Gas Chemical Company].

以上述べてきたように、本発明によれば、主には縮合系高分子材料である飽和ポリエステル樹脂、ポリイミド、ポリアミド樹脂(ナイロン)、多糖類、デンプン類、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリカーボネート樹脂、不飽和ポリエステル樹脂を含む、好ましくは不溶不融の高分子材料から再生高分子材料を効率よく得ることができ、さらに再生工程に於ける処理液を再利用することも可能である。本発明で得られる再生高分子材料は、たとえば成形原料として広範囲に使用することも可能であり、廃棄物の低減だけで無く、工業的に有用な材料の提供に貢献するものである。 As described above, according to the present invention, mainly condensation polymer materials such as saturated polyester resin, polyimide, polyamide resin (nylon), polysaccharide, starch, phenolic resin, urea resin, melamine resin, Recycled polymer materials can be efficiently obtained from preferably insoluble and infusible polymer materials containing polycarbonate resins and unsaturated polyester resins, and it is also possible to reuse the treatment liquid in the regeneration process. The recycled polymer material obtained by the present invention can be widely used, for example, as a raw material for molding, and contributes not only to the reduction of waste but also to the provision of industrially useful materials.

Claims (4)

a)アルカリイオン濃度が0.5~20.0mol/Lの範囲の第1の処理液に、常温で固体の被再生高分子材料を浸漬する第1の工程であって、前記被再生高分子材料が主鎖にイミド結合、エステル結合、及びカーボネート結合からなる群より選択される結合を有する高分子材料である、第1の工程
b)被再生高分子材料の加水分解が臨界分解状態に進んだ段階で、臨界分解状態の被再生高分子材料を前記第1の処理液から取り出す工程、
c)前記取出した臨界分解状態の被再生高分子材料をアルカリイオン濃度が0.0~0.5mol/Lの第2の処理液に浸漬して溶解させて被再生高分子材料の溶液を得る工程、
d)前記溶液を酸中和し、溶解物を析出させて粉体として回収する工程、
を少なくとも有する再生高分子材料の製造方法。
a) A first step of immersing the regenerated polymer material, which is solid at room temperature, in a first treatment liquid with an alkali ion concentration in the range of 0.5 to 20.0 mol/L , the regenerated polymer material A first step in which the material is a polymeric material having a bond selected from the group consisting of imide bonds, ester bonds, and carbonate bonds in its main chain ;
b) At the stage where the hydrolysis of the recycled polymeric material has progressed to a critical decomposition state, the step of removing the recycled polymeric material in a critical decomposition state from the first treatment liquid;
c) The recovered polymer material in a critical decomposition state is immersed in a second treatment liquid having an alkali ion concentration of 0.0 to 0.5 mol/L and dissolved to obtain a solution of the recycled polymer material. process,
d) neutralizing the solution with an acid, precipitating the dissolved substance, and recovering it as a powder;
A method for producing a recycled polymer material having at least the following.
前記被再生高分子材料が縮合系高分子であることを特徴とする請求項1に記載の再生高分子材料の製造方法。 2. The method for producing a recycled polymeric material according to claim 1, wherein the recycled polymeric material is a condensation polymer. 前記第2の処理液のpHが6~9である弱電解質水溶液であることを特徴とする請求項1又は2に記載の再生高分子材料の製造方法。 3. The method for producing a recycled polymeric material according to claim 1, wherein the second treatment liquid is a weak electrolyte aqueous solution having a pH of 6 to 9. 前記主鎖にイミド結合を有する高分子材料が、芳香族テトラカルボン酸無水物と、ベンゾオキサゾール構造を有する芳香族ジアミン類の縮合物であることを特徴とする請求項1~3のいずれかに記載の再生高分子材料の製造方法。 Any one of claims 1 to 3 , wherein the polymer material having an imide bond in the main chain is a condensate of an aromatic tetracarboxylic acid anhydride and an aromatic diamine having a benzoxazole structure. The method for producing the recycled polymeric material described.
JP2019171598A 2019-09-20 2019-09-20 Manufacturing method of recycled polymer material Active JP7419716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019171598A JP7419716B2 (en) 2019-09-20 2019-09-20 Manufacturing method of recycled polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019171598A JP7419716B2 (en) 2019-09-20 2019-09-20 Manufacturing method of recycled polymer material

Publications (2)

Publication Number Publication Date
JP2021046521A JP2021046521A (en) 2021-03-25
JP7419716B2 true JP7419716B2 (en) 2024-01-23

Family

ID=74877808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019171598A Active JP7419716B2 (en) 2019-09-20 2019-09-20 Manufacturing method of recycled polymer material

Country Status (1)

Country Link
JP (1) JP7419716B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124530A (en) 2004-10-29 2006-05-18 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovering low molecular weight compound
JP2009051958A (en) 2007-08-28 2009-03-12 Toyobo Co Ltd Decomposition-recovery method for polyimide
WO2012096374A1 (en) 2011-01-14 2012-07-19 前久保 龍志 Polyimide powder, polyimide solution, and method for producing polyimide powder
JP2013087148A (en) 2011-10-14 2013-05-13 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovery of low molecular weight compound and metal from polyimide metal laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69522479T2 (en) * 1995-12-30 2002-05-08 Sunkyong Ind Ltd METHOD FOR PRODUCING TEREPHTALIC ACID

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124530A (en) 2004-10-29 2006-05-18 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovering low molecular weight compound
JP2009051958A (en) 2007-08-28 2009-03-12 Toyobo Co Ltd Decomposition-recovery method for polyimide
WO2012096374A1 (en) 2011-01-14 2012-07-19 前久保 龍志 Polyimide powder, polyimide solution, and method for producing polyimide powder
JP2013087148A (en) 2011-10-14 2013-05-13 Toray Ind Inc Method for alkaline hydrolysis of polyimide and method for recovery of low molecular weight compound and metal from polyimide metal laminate

Also Published As

Publication number Publication date
JP2021046521A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP4952441B2 (en) Decomposition and recovery method of polyimide
US5958987A (en) Process for separating polyester from other materials
JP4985085B2 (en) Decomposition and recovery method of polyimide
JP7419716B2 (en) Manufacturing method of recycled polymer material
EP1409575B1 (en) Process for separating polyester from other materials
AU760736B2 (en) Method for cleaning and decontaminating polyesters
JP2009051957A (en) Decomposition-recovery method for polyimide
JP2006241380A (en) Method for decomposing plastic
JP2010168560A (en) Method for decomposing composite material
WO2016111289A1 (en) Method for producing terephthalic acid and method for producing recycled polyethylene terephthalate
WO2015137365A1 (en) Polyester resin hydrolyzate production method
JP4806758B2 (en) Decomposition and recovery method of thermosetting resin
US8304464B2 (en) Polyester with caustic material mixing methods and mixing reactors
JP4344621B2 (en) Cleaning method for inorganic materials
Katoch Kinetics study of Unsaturated Polyester synthesized from waste PET
WO2022265112A1 (en) Separation/collection method for resin mixture
Vinnakota Chemical Recycling of Poly (Ethylene Terephthalate) and its Co-polyesters with 2, 5-Furandicarboxylic Acid using Alkaline Hydrolysis
TW201630992A (en) Method for producing terephthalic acid, and method for producing recycled polyethylene terephthalate
JP2023001085A (en) Separation and recovery method for resin mixture
EA013407B1 (en) Separation of contaminants from polyester materials
JP2007297522A (en) Method for producing polyester copolymer
JP2000239435A (en) Treatment of plastic mixed waste
TR2021007024T2 (en) CHEMICAL GLYCOLYSIS METHOD WHERE TRANSPARENT PET WASTE IS RECYCLED FOR USE IN THE PRODUCTION OF BOTTLE GRADE PET RESIN
EP4352128A1 (en) Process for recovery and exploitation of polyesters and polyamides from waste polymeric artifacts
CN118307778A (en) Extrusion type polyimide material, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231225

R151 Written notification of patent or utility model registration

Ref document number: 7419716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151