JP7416806B2 - Four-rail power supply control system for short stator type magnetic levitation railway - Google Patents

Four-rail power supply control system for short stator type magnetic levitation railway Download PDF

Info

Publication number
JP7416806B2
JP7416806B2 JP2021540006A JP2021540006A JP7416806B2 JP 7416806 B2 JP7416806 B2 JP 7416806B2 JP 2021540006 A JP2021540006 A JP 2021540006A JP 2021540006 A JP2021540006 A JP 2021540006A JP 7416806 B2 JP7416806 B2 JP 7416806B2
Authority
JP
Japan
Prior art keywords
current collector
conductive rail
railway
rail
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021540006A
Other languages
Japanese (ja)
Other versions
JP2022517972A (en
JPWO2020143190A5 (en
Inventor
群湛 李
▲紹▼▲鋒▼ 解
子▲ハン▼ 李
小▲紅▼ 黄
▲カイ▼ 郭
▲書▼▲謙▼ 李
波 ▲呉▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Publication of JP2022517972A publication Critical patent/JP2022517972A/en
Publication of JPWO2020143190A5 publication Critical patent/JPWO2020143190A5/en
Application granted granted Critical
Publication of JP7416806B2 publication Critical patent/JP7416806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/30Power rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/36Current collectors for power supply lines of electrically-propelled vehicles with means for collecting current simultaneously from more than one conductor, e.g. from more than one phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems

Description

本発明は、磁気浮上列車の給電及び運行制御の技術分野に関する。 The present invention relates to the technical field of power supply and operation control for maglev trains.

磁気浮上列車は、電磁気力を利用して列車の自重を相殺することにより浮上する軌道交通ツールであり、登坂能力が強く、旋回半径が小さいなどの利点を有し、都市や都市間の軌道交通輸送システムにおいて将来性が期待できる。 A magnetic levitation train is a rail transportation tool that levitates by using electromagnetic force to offset the train's own weight.It has advantages such as strong hill climbing ability and a small turning radius, and is suitable for rail transportation between cities and cities. It holds promise for the future in transportation systems.

磁気浮上列車の駆動にはロングステータとショートステータの2つの形態がある。ロングステータ形態の磁気浮上列車は、ロングステータリニア同期モータで駆動され、即ち、モータステータの三相交流巻線が地面の線路の両側に敷設され、地面の変電所に設けられたコンバータ(周波数変化・電圧変化)で動力を供給され、地面運行センタが同期モータによる同期制御を通じて列車の運行を操縦する。その利点として、地面の同期モータのパワーが大きく、磁気浮上列車とロングステータ線路とには機械的接触がなく、高速の運行に適しており、一方、その欠点として、線路にモータステータ(ロングステータ)巻線が敷設されていることから、コストが高まる。ショートステータ形態の磁気浮上列車は、リニア非同期モータステータの三相巻線を車両(両側)に配置するものであり、モータステータの三相巻線が地面の線路の両側に敷設されるロングステータ形態に比べて、車両のステータの三相巻線が遥かに短くなり、これによりショートステータ形態と命名されている。ショートステータ形態では、非同期モータのロータリーは極めて薄くて線路(車両のステータの位置に対応する)に敷設されたアルミ板から構成され、構造が非常に簡単であり、したがって、ショートステータ磁気浮上線路のコストがロングステータ磁気浮上線路よりもはるかに低い。これも、ショートステータタイプ磁気浮上列車の突出した利点、人気がある主な原因である。しかし、ショートステータタイプ磁気浮上列車では、明らかな欠点があり、まず、給電と受電の問題であり、ショートステータタイプ磁気浮上列車のモータの巻線が車両に配置されているので、動力電源を供給するコンバータ(周波数変化・電圧変化)も車両内に装着されて、地面から給電されなければならず、一方、従来の形態では、地面の導電レールと車両における集電靴が接触することにより車両のコンバータへの給電と受電が行われ、このため、列車の波動や振動が接触性能に深刻な影響を与え、さらに受電性能に影響し、しかも、列車の速度が高いほど、影響が大きく、よって、ショートステータ形態は低価であるものの、高速の場合に向いていない。この技術的問題を解決するために、出願者は出願番号201810660427.2の「磁気浮上列車の三相給電集電装置」を出願し、列車の波動や振動による受電性能への悪影響を解消し、長短を補い合い、それにより、低価なショートステータ駆動磁気浮上列車は高速線路に適するようになり、より高いコストパフォーマンスを実現する。次に、列車自重と負荷効率の問題である。浮上レールの断面形状が決定されると、単位長さの車載浮上磁石の浮上能力により磁気浮上列車の総負荷能力が決定され、明らかなように、総負荷能力が一定である場合、磁気浮上列車の自重が小さいほど、乗降人員が多くなり、磁気浮上列車の負荷効率が高い。したがって、負荷効率を高めるには磁気浮上列車の自重を減らす必要がある。ここで、車載設備の構造を最適化させ、車載設備の重量を減らすことは、磁気浮上列車の自重を減らし、負荷効率を高めるのに有効な方法の1つである。車載設備の重点は主にトラクションインバータ及び補助電気設備を含む車載電気設備であり、このような設備は、重量が車載電気設備の重量のほとんどである一方、これらの放熱ファンの騒音も車載設備の主な騒音である。 There are two types of drive for magnetic levitation trains: long stator and short stator. The long stator type magnetic levitation train is driven by a long stator linear synchronous motor, that is, the three-phase AC windings of the motor stator are laid on both sides of the ground track, and the converter (frequency change・Voltage change), and the ground operation center controls the train operation through synchronous control by synchronous motors. Its advantage is that the power of the ground synchronous motor is large, and there is no mechanical contact between the maglev train and the long stator track, making it suitable for high-speed operation.On the other hand, its disadvantage is that the motor stator (long stator track) ) The windings are installed, which increases the cost. A short stator type magnetic levitation train has three-phase windings of a linear asynchronous motor stator placed on both sides of the train, while a long stator type has three-phase windings of a motor stator placed on both sides of the track on the ground. Compared to this, the three-phase windings of the vehicle's stator are much shorter, hence the name short stator configuration. In the short stator form, the rotary of the asynchronous motor is made of extremely thin aluminum plates laid on the track (corresponding to the position of the stator of the vehicle) and is very simple in construction, thus making it suitable for short stator magnetic levitation tracks. The cost is much lower than long stator magnetic levitation line. This is also the outstanding advantage of short stator type maglev trains, the main reason for their popularity. However, the short stator type maglev train has obvious drawbacks, firstly, the problem of power supply and power reception, the winding of the motor of the short stator type maglev train is located on the vehicle, so it can not supply the motive power. A converter (frequency change/voltage change) must also be installed inside the vehicle and be supplied with power from the ground.On the other hand, in conventional configurations, the vehicle Power is supplied to and received by the converter, so the waves and vibrations of the train will seriously affect the contact performance, which will also affect the power receiving performance, and the higher the train speed, the greater the effect. Although short stator configurations are less expensive, they are not suitable for high speed applications. In order to solve this technical problem, the applicant filed application number 201810660427.2 for "Three-phase power supply collector for magnetically levitated trains," which eliminates the negative effects on power receiving performance caused by train waves and vibrations. By compensating for the length and shortness, the low-cost short stator-driven maglev train becomes suitable for high-speed railways and achieves higher cost performance. Next is the issue of train weight and load efficiency. Once the cross-sectional shape of the levitation rail is determined, the total load capacity of the maglev train is determined by the levitation capacity of the on-board levitation magnet of unit length, and as is clear, if the total load capacity is constant, the maglev train The smaller the dead weight of the train, the more people can get on and off the train, and the higher the load efficiency of the magnetic levitation train. Therefore, to increase load efficiency, it is necessary to reduce the dead weight of maglev trains. Here, optimizing the structure of the onboard equipment and reducing the weight of the onboard equipment is one effective method for reducing the dead weight of the magnetic levitation train and increasing the load efficiency. The focus of on-board equipment is mainly on-board electrical equipment, including traction inverters and auxiliary electrical equipment, and while such equipment weighs most of the weight of on-board electrical equipment, the noise of these heat dissipation fans also contributes to the weight of on-board equipment. This is the main noise.

現在解決すべき技術的課題は、システムの給電方式を変え、システムの構造を最適化させることによって、車載設備の重量を減らし、負荷効率を高める一方、磁気浮上列車の運行に対する地面制御及び自律運転を可能とすることである。 The current technical challenges to be solved are changing the system power supply method and optimizing the system structure to reduce the weight of onboard equipment and increase load efficiency, while also providing ground control and autonomous operation for maglev train operation. The goal is to make it possible.

本発明の目的は、システムの給電方式を変え、システムの構造を最適化させることによって、車載設備の重量を効果的に減らし、列車の軽量化を実現し、負荷効率を高め、ショートステータタイプ磁気浮上列車の優位性をより効果的に発揮させ、また、地面での給電を通じて磁気浮上列車運行に対する自動制御及び自律運転を直接行い、そして、高低速の運行に適するようにするショートステータタイプ磁気浮上列車の4本レール給電制御システムを提供することである。 The purpose of the present invention is to change the power supply method of the system and optimize the structure of the system, thereby effectively reducing the weight of onboard equipment, realizing lightening of trains, increasing load efficiency, and short stator type magnetic Short stator type magnetic levitation that more effectively demonstrates the advantages of levitation trains, directly performs automatic control and autonomous operation of maglev train operations through ground power supply, and is suitable for high-low speed operation. The purpose is to provide a four-rail power supply control system for trains.

本発明の目的は以下の技術案により実現される。AC-DC-AC可変電圧可変周波数制御装置、整流装置、導電レール、車載集電装置、磁気浮上列車の三相駆動巻線、及び列車補助電気設備を含むショートステータタイプ磁気浮上列車の4本レール給電制御システムであって、
前記導電レールは、第1の導電レール、第2の導電レール、第3の導電レール、第4の導電レールに分けられ、前記第1の導電レール、前記第2の導電レールは前記第3の導電レールと三相交流給電回路を構成し、地面でのAC-DC-AC可変電圧可変周波数制御装置によって給電され、
前記三相交流給電回路において前記第3の導電レールが接地し、
前記第4の導電レールは前記三相交流給電回路において接地している第3の導電レールと直流給電回路を構成し、地面での整流装置によって給電され、
前記車載集電装置は、第1の集電装置、第2の集電装置、第3の集電装置、及び第4の集電装置を含み、
前記第1の集電装置、前記第2の集電装置、及び前記第3の集電装置の末端は、それぞれケーブルを介して前記磁気浮上列車の三相駆動巻線の三相端子に接続され、前記第1の集電装置、前記第2の集電装置、及び前記第3の集電装置の先端は、それぞれ前記第1の導電レール、前記第2の導電レール及び前記第3の導電レールと接触して受電し、
前記AC-DC-AC可変電圧可変周波数制御装置は、前記第1の導電レールと前記第1の集電装置、前記第2の導電レールと前記第2の集電装置、前記第3の導電レールと前記第3の集電装置によって前記磁気浮上列車の三相駆動巻線に給電し、磁気浮上列車の起動停止及び運行が前記AC-DC-AC可変電圧可変周波数制御装置の周波数、電圧を調整することにより制御され、
前記第3の集電装置の末端はケーブルを介して前記列車補助電気設備の負極に接続され、前記第4の集電装置の末端はケーブルを介して列車補助電気設備の正極に接続され、前記第4の集電装置の先端は前記第4の導電レールと接触して受電し、
前記整流装置は前記第3の導電レールと前記第3の集電装置、前記第4の導電レールと前記第4の集電装置によって前記列車補助電気設備に給電する。
The purpose of the present invention is achieved by the following technical solution. Four rails of short stator type maglev train including AC-DC-AC variable voltage variable frequency controller, rectifier, conductive rail, onboard current collector, three-phase drive winding of maglev train, and train auxiliary electrical equipment. A power supply control system,
The conductive rail is divided into a first conductive rail, a second conductive rail, a third conductive rail, and a fourth conductive rail, and the first conductive rail and the second conductive rail are divided into the third conductive rail. Configure a three-phase AC power supply circuit with a conductive rail, powered by an AC-DC-AC variable voltage variable frequency control device at the ground,
In the three-phase AC power supply circuit, the third conductive rail is grounded,
The fourth conductive rail constitutes a DC power supply circuit with a third conductive rail that is grounded in the three-phase AC power supply circuit, and is powered by a ground rectifier,
The vehicle-mounted current collector includes a first current collector, a second current collector, a third current collector, and a fourth current collector,
Terminals of the first current collector, the second current collector, and the third current collector are each connected to a three-phase terminal of a three-phase drive winding of the magnetic levitation train via a cable. , the tips of the first current collector, the second current collector, and the third current collector are connected to the first conductive rail, the second conductive rail, and the third conductive rail, respectively. Receive power by contacting
The AC-DC-AC variable voltage variable frequency control device includes the first conductive rail and the first current collector, the second conductive rail and the second current collector, and the third conductive rail. and the third current collector supplies power to the three-phase drive winding of the magnetically levitated train, and the frequency and voltage of the AC-DC-AC variable voltage variable frequency control device are adjusted to start, stop, and operate the magnetically levitated train. controlled by
An end of the third current collector is connected to the negative pole of the train auxiliary electrical equipment via a cable, an end of the fourth current collector is connected to the positive pole of the train auxiliary electrical equipment via a cable, The tip of the fourth current collector contacts the fourth conductive rail to receive electricity,
The rectifying device supplies power to the train auxiliary electrical equipment through the third conductive rail and the third current collector, and the fourth conductive rail and the fourth current collector.

好ましくは、前記第1の導電レール、第2の導電レール、第3の導電レール、第4の導電レールは磁気浮上線路に沿って敷設され、前記第1の導電レール、及び第2の導電レールは若干のセクションに分割され、各セクションは独立したAC-DC-AC可変電圧可変周波数制御装置によって給電され、それにより、磁気浮上列車の運行をセクションごとに制御することを可能とする。
好ましくは、前記磁気浮上列車の補助電気設備は主に、浮上コントローラ、空調設備、照明設備などを含み、前記補助電気設備は整流装置と同じ電圧レベルを用いる。
Preferably, the first conductive rail, the second conductive rail, the third conductive rail, and the fourth conductive rail are laid along a magnetic levitation track, and the first conductive rail and the second conductive rail is divided into several sections, each section being powered by an independent AC-DC-AC variable voltage variable frequency controller, thereby making it possible to control the operation of the maglev train section by section.
Preferably, the auxiliary electrical equipment of the maglev train mainly includes a levitation controller, air conditioning equipment, lighting equipment, etc., and the auxiliary electrical equipment uses the same voltage level as the rectifier.

さらに好ましくは、前記車載集電装置は、すべて列車のボギーの端部又はボギーの両側に設けられ、それぞれ磁気浮上列車のボギーと絶縁しており、前記車載集電装置の第1の集電装置、第2の集電装置、第3の集電装置及び第4の集電装置は互いに絶縁している。 More preferably, all of the on-vehicle current collectors are provided at an end of a bogie of a train or on both sides of the bogie, and are insulated from the bogie of a magnetically levitated train, and the first current collector of the on-vehicle current collector is , the second current collector, the third current collector, and the fourth current collector are insulated from each other.

従来技術に比べて、本発明の有益な効果は以下のとおりである。
一、磁気浮上線路に沿って4本の導電レールが敷設されており、これらのうち、2本の導電レールは接地している共用導電レールと三相交流給電回路を構成し、残りの導電レールは接地している共用導電レールと直流導電レールを構成し、それにより、システム給電構造及び給電方式を最適化させ、地面のAC-DC-AC可変電圧可変周波数制御装置は三相交流給電回路を介して磁気浮上列車の三相駆動巻線に給電し、地面の整流装置は導電レールを介して磁気浮上列車の補助的な電力を供給し、それにより、車載インバータ及び補助電源を省略し、磁気浮上列車の自重を効果的に減らし、列車の軽量化を実現し、負荷効率を高め、そして、磁気浮上列車の速度向上に有利であり、ショートステータタイプ磁気浮上列車の優位性をより効果的に発揮させる。
二、地面AC-DC-AC可変電圧可変周波数制御装置が三相交流給電回路を介して磁気浮上列車の三相駆動巻線に給電することにより、磁気浮上列車の駆動及び運行に対する自動制御及び自律運転を直接行い、スマート制御や運行を可能とする。
三、本発明の導電レールは、コストがロングステータのコストよりもはるかに低く、経済性が良好である。
四、補助電気設備には同じ電圧レベルが使用されているので、車載設備を介して電圧変換をする必要がなくなり、簡便でシンプルである。
五、車載インバータ及び補助電源が省略されると、磁気浮上列車の放熱ファンの省略が可能になり、その結果、騒音も大幅に低減する。
六、AC-DC-AC可変電圧可変周波数制御装置及び整流装置のいずれも送電網にて負シーケンス電流を発生させることはなく、このため、電力品質が確保される。
七、技術が先進的であり、性能に優れ、実施されやすい。
Compared with the prior art, the beneficial effects of the present invention are as follows.
1. Four conductive rails are laid along the magnetic levitation line, two of these conductive rails form a three-phase AC power supply circuit with the grounded common conductive rail, and the remaining conductive rails form a three-phase AC power supply circuit. configures the grounded common conductive rail and the DC conductive rail, thereby optimizing the system power supply structure and power supply method, and the ground AC-DC-AC variable voltage variable frequency control device connects the three-phase AC power supply circuit. The ground rectifier supplies the auxiliary power of the maglev train through the conductive rail, thereby omitting the onboard inverter and auxiliary power supply, and It can effectively reduce the dead weight of levitation trains, realize train weight reduction, increase load efficiency, and increase the speed of maglev trains, making the advantages of short stator type maglev trains more effective. Make it work.
2. The ground AC-DC-AC variable voltage variable frequency control device supplies power to the three-phase drive winding of the magnetically levitated train through the three-phase AC power supply circuit, thereby providing automatic control and autonomy for the drive and operation of the magnetically levitated train. Direct operation enables smart control and operation.
Third, the cost of the conductive rail of the present invention is much lower than that of a long stator, and has good economic efficiency.
4. Since the same voltage level is used for the auxiliary electrical equipment, there is no need for voltage conversion through on-board equipment, which is convenient and simple.
5. If the on-board inverter and auxiliary power supply are omitted, the heat dissipation fan of the magnetic levitation train can be omitted, and as a result, the noise is also significantly reduced.
6. Neither the AC-DC-AC variable voltage variable frequency controller nor the rectifier will generate negative sequence currents in the power grid, thus ensuring power quality.
7. The technology is advanced, has excellent performance, and is easy to implement.

本発明の実施例1の構造模式図である。FIG. 2 is a schematic structural diagram of Example 1 of the present invention. 本発明の実施例2の構造模式図である。FIG. 2 is a schematic structural diagram of Example 2 of the present invention.

本発明の構想をよりよく理解できるように、以下、本発明の作動原理を簡単に説明する。従来のショートステータタイプ磁気浮上列車に比べて、トラクションインバータや補助電源などの車載電気設備を省略し、列車の自重を効果的に減らし、負荷効率を高め、また、大容量の駆動(トラクション)用電力と小容量の補助用電力とを個別にし、それぞれ三相交流と直流により給電し、このように、長短を補い合い、調和的に給電し、システムの給電構造及び給電方式を最適化させ、三相交流給電回路によって周波数、電圧を調整しながら給電することにより磁気浮上列車の駆動及び運行制御を実現し、自律運転を実現し、ショートステータタイプ磁気浮上列車の優位性をより効果的に発揮させ、高低速の運行に適している。以下、図面及び特定実施形態にて本発明をさらに説明する。 In order to better understand the concept of the invention, the working principle of the invention will be briefly explained below. Compared to conventional short stator type magnetic levitation trains, on-board electrical equipment such as traction inverters and auxiliary power supplies are omitted, effectively reducing the train's own weight and increasing load efficiency. Electric power and small-capacity auxiliary power are separated and fed using three-phase alternating current and direct current, respectively.In this way, the advantages and disadvantages of each other are compensated for, the power is fed harmoniously, and the power feeding structure and method of the system are optimized. By supplying power while adjusting the frequency and voltage using a phase AC power supply circuit, it is possible to drive and control the operation of maglev trains, realize autonomous operation, and more effectively demonstrate the advantages of short stator type maglev trains. , suitable for high and low speed operation. The invention will be further explained below with reference to the drawings and specific embodiments.

実施例1
図1に示すように、本発明の実施例はショートステータタイプ磁気浮上列車の4本レール給電制御システムを提供し、このシステムは、磁気浮上線路と並行して敷設された導電レール1と、地面に設けられたAC-DC-AC可変電圧可変周波数制御装置3及び整流装置4と、車載集電装置2、磁気浮上列車の三相駆動巻線6及び車載補助電気設備7とを含み、
前記AC-DC-AC可変電圧可変周波数制御装置3及び整流装置4は、それぞれ導電レール1、車載集電装置2を介して磁気浮上列車の三相駆動巻線6及び車載補助電気設備7に給電し、
前記導電レール1は、第1の導電レール1a、第2の導電レール1b、第3の導電レール1c、及び第4の導電レール1dを含み、
前記第1の導電レール1a、前記第2の導電レール1bは前記第3の導電レール1cと三相交流給電回路を構成し、地面に設けられたAC-DC-AC可変電圧可変周波数制御装置3によって給電され、
前記三相交流給電回路においていずれか1つの導電レールが接地し、ここでは、前記第3の導電レール1cが接地し、
前記第4の導電レール1dは前記三相交流給電回路において接地している第3の導電レール1cと直流給電回路を構成し、地面に設けられた整流装置4によって給電され、
前記車載集電装置2は、第1の集電装置2a、第2の集電装置2b、第3の集電装置2c、及び第4の集電装置2dを含み、
前記第1の集電装置2a、前記第2の集電装置2b、及び前記第3の集電装置2cの末端は、それぞれケーブルを介して前記磁気浮上列車の三相駆動巻線6の三相端子に接続され、前記第1の集電装置2a、前記第2の集電装置2b、及び前記第3の集電装置2cの先端は、それぞれ前記第1の導電レール1a、前記第2の導電レール1b、及び前記第3の導電レール1cと接触して受電し、
前記AC-DC-AC可変電圧可変周波数制御装置3は、前記第1の導電レール1aと前記第1の集電装置2a、前記第2の導電レール1bと前記第2の集電装置2b、前記第3の導電レール1cと前記第3の集電装置2cによって、前記磁気浮上列車の三相駆動巻線6に給電し、磁気浮上列車5の起動停止及び運行が前記AC-DC-AC可変電圧可変周波数制御装置3の周波数、電圧を調整することにより制御され、
前記第3の集電装置2cの末端はケーブルを介して前記列車補助電気設備7の負極に接続され、前記第4の集電装置2dの末端はケーブルを介して列車補助電気設備7の正極に接続され、前記第4の集電装置2dの先端は前記第4の導電レール1dと接触して受電し、
前記整流装置4は前記第3の導電レール1cと前記第3の集電装置2c、前記第4の導電レール1dと前記第4の集電装置2dによって、前記列車補助電気設備7に給電する。
Example 1
As shown in FIG. 1, an embodiment of the present invention provides a four-rail power supply control system for a short stator type maglev train, which consists of a conductive rail 1 laid parallel to the maglev track, and a conductive rail 1 laid parallel to the magnetic levitation train; An AC-DC-AC variable voltage variable frequency control device 3 and a rectifier 4 provided in the vehicle, an on-board current collector 2, a three-phase drive winding 6 for a magnetically levitated train, and an on-board auxiliary electrical equipment 7,
The AC-DC-AC variable voltage variable frequency control device 3 and rectifier 4 supply power to the three-phase drive winding 6 and on-board auxiliary electrical equipment 7 of the magnetically levitated train via the conductive rail 1 and on-board current collector 2, respectively. death,
The conductive rail 1 includes a first conductive rail 1a, a second conductive rail 1b, a third conductive rail 1c, and a fourth conductive rail 1d,
The first conductive rail 1a and the second conductive rail 1b constitute a three-phase AC power supply circuit with the third conductive rail 1c, and an AC-DC-AC variable voltage variable frequency control device 3 provided on the ground. powered by
Any one conductive rail in the three-phase AC power supply circuit is grounded, and here, the third conductive rail 1c is grounded,
The fourth conductive rail 1d constitutes a DC power supply circuit with the third conductive rail 1c that is grounded in the three-phase AC power supply circuit, and is powered by a rectifier 4 provided on the ground,
The vehicle-mounted current collector 2 includes a first current collector 2a, a second current collector 2b, a third current collector 2c, and a fourth current collector 2d,
The ends of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the three phases of the three-phase drive winding 6 of the magnetic levitation train via cables, respectively. The tips of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the terminals, and the tips of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the first conductive rail 1a and the second conductive rail 1a, respectively. receiving electricity by contacting the rail 1b and the third conductive rail 1c;
The AC-DC-AC variable voltage variable frequency control device 3 includes the first conductive rail 1a and the first current collector 2a, the second conductive rail 1b and the second current collector 2b, and the second current collector 2b. The third conductive rail 1c and the third current collector 2c supply power to the three-phase drive winding 6 of the magnetically levitated train, and the start/stop and operation of the magnetically levitated train 5 is controlled by the AC-DC-AC variable voltage. Controlled by adjusting the frequency and voltage of the variable frequency control device 3,
The end of the third current collector 2c is connected to the negative electrode of the train auxiliary electrical equipment 7 via a cable, and the end of the fourth current collector 2d is connected to the positive electrode of the train auxiliary electrical equipment 7 via a cable. connected, the tip of the fourth current collector 2d contacts the fourth conductive rail 1d to receive power,
The rectifying device 4 supplies power to the train auxiliary electrical equipment 7 through the third conductive rail 1c and the third current collector 2c, and the fourth conductive rail 1d and the fourth current collector 2d.

本発明の実施例において、前記車載集電装置2は、すべて列車のボギーの端部又はボギーの両側に設けられ、それぞれ磁気浮上列車のボギーと絶縁しており、前記車載集電装置2の第1の集電装置2a、第2の集電装置2b、第3の集電装置2c及び第4の集電装置2dは互いに絶縁している。 In the embodiment of the present invention, all the on-vehicle current collectors 2 are installed at the ends of the bogies of the train or on both sides of the bogies, and are insulated from the bogies of the magnetically levitated train, respectively. The first current collector 2a, the second current collector 2b, the third current collector 2c, and the fourth current collector 2d are insulated from each other.

本発明の実施例において、前記磁気浮上列車5の補助電気設備7は、主に浮上コントローラ、空調設備、照明設備などを含み、前記補助電気設備7は整流装置4と同じ電圧レベルを用いる。前記AC-DC-AC可変電圧可変周波数制御装置3及び前記整流装置4は、すべて変電所の三相ケーブルを介して給電される。 In the embodiment of the present invention, the auxiliary electrical equipment 7 of the magnetic levitation train 5 mainly includes a levitation controller, air conditioning equipment, lighting equipment, etc., and the auxiliary electrical equipment 7 uses the same voltage level as the rectifier 4. The AC-DC-AC variable voltage variable frequency control device 3 and the rectifying device 4 are all powered through a three-phase cable of a substation.

実施例2
図2に示すように、ショートステータタイプ磁気浮上列車の4本レール給電制御システムであって、このシステムは、磁気浮上線路と並行して敷設された導電レール1と、地面に設けられたAC-DC-AC可変電圧可変周波数制御装置3及び整流装置4と、車載集電装置2、磁気浮上列車の三相駆動巻線6、及び車載補助電気設備7とを含み、
前記AC-DC-AC可変電圧可変周波数制御装置3及び整流装置4は、それぞれ導電レール1、車載集電装置2を介して、磁気浮上列車の三相駆動巻線6及び車載補助電気設備7に給電し、
前記導電レール1は、第1の導電レール1a、第2の導電レール1b、第3の導電レール1c、及び第4の導電レール1dを含み、
前記第1の導電レール1a、前記第2の導電レール1bは前記第3の導電レール1cと三相交流給電回路を構成し、地面に設けられたAC-DC-AC可変電圧可変周波数制御装置3によって給電され、
前記三相交流給電回路においていずれか1つの導電レールが接地し、ここで、前記第3の導電レール1cが接地し、
前記第4の導電レール1dは前記三相交流給電回路において接地している第3の導電レール1cと直流給電回路を構成し、地面に設けられた整流装置4によって給電され、
前記車載集電装置2は、第1の集電装置2a、第2の集電装置2b、第3の集電装置2c、及び第4の集電装置2dを含み、
前記第1の集電装置2a、前記第2の集電装置2b、及び前記第3の集電装置2cの末端は、それぞれケーブルを介して前記磁気浮上列車の三相駆動巻線6の三相端子に接続され、前記第1の集電装置2a、前記第2の集電装置2b、及び前記第3の集電装置2cの先端は、それぞれ前記第1の導電レール1a、前記第2の導電レール1b、及び前記第3の導電レール1cと接触して受電し、
前記AC-DC-AC可変電圧可変周波数制御装置3は、前記第1の導電レール1aと前記第1の集電装置2a、前記第2の導電レール1bと前記第2の集電装置2b、前記第3の導電レール1cと前記第3の集電装置2cによって、前記磁気浮上列車の三相駆動巻線6に給電し、磁気浮上列車5の起動停止及び運行が前記AC-DC-AC可変電圧可変周波数制御装置3の周波数、電圧を調整することにより制御され、
前記第3の集電装置2cの末端はケーブルを介して前記列車補助電気設備7の負極に接続され、前記第4の集電装置2dの末端はケーブルを介して列車補助電気設備7の正極に接続され、前記第4の集電装置2dの先端は前記第4の導電レール1dと接触して受電し、
前記整流装置4は、前記第3の導電レール1cと前記第3の集電装置2c、前記第4の導電レール1dと前記第4の集電装置2dによって前記列車補助電気設備7に給電する。
Example 2
As shown in Fig. 2, this is a four-rail power supply control system for a short stator type magnetic levitation train. It includes a DC-AC variable voltage variable frequency control device 3 and a rectifier 4, an on-board current collector 2, a three-phase drive winding 6 of a magnetically levitated train, and an on-board auxiliary electric equipment 7,
The AC-DC-AC variable voltage variable frequency control device 3 and rectifier 4 are connected to a three-phase drive winding 6 and an on-board auxiliary electrical equipment 7 of a magnetically levitated train via a conductive rail 1 and an on-board current collector 2, respectively. supply power,
The conductive rail 1 includes a first conductive rail 1a, a second conductive rail 1b, a third conductive rail 1c, and a fourth conductive rail 1d,
The first conductive rail 1a and the second conductive rail 1b constitute a three-phase AC power supply circuit with the third conductive rail 1c, and an AC-DC-AC variable voltage variable frequency control device 3 provided on the ground. powered by
Any one conductive rail in the three-phase AC power supply circuit is grounded, where the third conductive rail 1c is grounded,
The fourth conductive rail 1d constitutes a DC power supply circuit with the third conductive rail 1c that is grounded in the three-phase AC power supply circuit, and is powered by a rectifier 4 provided on the ground,
The vehicle-mounted current collector 2 includes a first current collector 2a, a second current collector 2b, a third current collector 2c, and a fourth current collector 2d,
The ends of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the three phases of the three-phase drive winding 6 of the magnetic levitation train via cables, respectively. The tips of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the terminals, and the tips of the first current collector 2a, the second current collector 2b, and the third current collector 2c are connected to the first conductive rail 1a and the second conductive rail 1a, respectively. receiving electricity by contacting the rail 1b and the third conductive rail 1c;
The AC-DC-AC variable voltage variable frequency control device 3 includes the first conductive rail 1a and the first current collector 2a, the second conductive rail 1b and the second current collector 2b, and the second current collector 2b. The third conductive rail 1c and the third current collector 2c supply power to the three-phase drive winding 6 of the magnetically levitated train, and the start/stop and operation of the magnetically levitated train 5 is controlled by the AC-DC-AC variable voltage. Controlled by adjusting the frequency and voltage of the variable frequency control device 3,
The end of the third current collector 2c is connected to the negative electrode of the train auxiliary electrical equipment 7 via a cable, and the end of the fourth current collector 2d is connected to the positive electrode of the train auxiliary electrical equipment 7 via a cable. connected, the tip of the fourth current collector 2d contacts the fourth conductive rail 1d to receive power,
The rectifying device 4 supplies power to the train auxiliary electrical equipment 7 through the third conductive rail 1c, the third current collector 2c, the fourth conductive rail 1d, and the fourth current collector 2d.

本発明の実施例において、前記車載集電装置2は磁気浮上列車のボギーと絶縁しており、前記車載集電装置2の第1の集電装置2a、第2の集電装置2b、第3の集電装置2c、及び第4の集電装置2dは互いに絶縁している。 In the embodiment of the present invention, the on-vehicle current collector 2 is insulated from the bogie of the magnetic levitation train, and the on-vehicle current collector 2 includes a first current collector 2a, a second current collector 2b, and a third current collector. The current collector 2c and the fourth current collector 2d are insulated from each other.

本発明の実施例において、前記磁気浮上列車5の補助電気設備7は、主に、浮上コントローラ、空調設備、照明設備などを含み、前記補助電気設備7は整流装置4と同じ電圧レベルを用いる。前記AC-DC-AC可変電圧可変周波数制御装置3及び前記整流装置4は、すべて変電所の三相ケーブルを介して給電される。 In the embodiment of the present invention, the auxiliary electrical equipment 7 of the maglev train 5 mainly includes a levitation controller, air conditioning equipment, lighting equipment, etc., and the auxiliary electrical equipment 7 uses the same voltage level as the rectifier 4. The AC-DC-AC variable voltage variable frequency control device 3 and the rectifying device 4 are all powered through a three-phase cable of a substation.

上記実施例1に比べて、本発明の実施例では、主に以下の点が異なる。前記第1の導電レール1a、第2の導電レール1b、第3の導電レール1c、第4の導電レール1dは磁気浮上線路に沿って敷設され、前記第1の導電レール1a、及び第2の導電レール1bは列車5の運行区間に応じてセクションを設定し、各セクションは独立したAC-DC-AC可変電圧可変周波数制御装置3によって給電され、それにより、磁気浮上列車5の運行をセクションごとに制御する。本発明の特定実施例では、隣接する2つのセクションがセクションiとセクションi+1(iは1以上)であると想定し、セクションごとに、独立したAC-DC-AC可変電圧可変周波数制御装置3によって給電し、このように、磁気浮上列車5をセクションごとに制御することが容易になる。磁気浮上列車の安全性、制御性を確保するために、一般には、セクションごとに1台の磁気浮上列車が通行することに限定される。 The embodiment of the present invention differs from the above-mentioned embodiment 1 mainly in the following points. The first conductive rail 1a, the second conductive rail 1b, the third conductive rail 1c, and the fourth conductive rail 1d are laid along the magnetic levitation line, and the first conductive rail 1a and the second conductive rail 1d are The conductive rail 1b has sections set according to the operating section of the train 5, and each section is supplied with power by an independent AC-DC-AC variable voltage variable frequency control device 3, thereby controlling the operation of the magnetically levitated train 5 section by section. control. In a particular embodiment of the present invention, it is assumed that two adjacent sections are section i and section i+1 (i is greater than or equal to 1), and each section is controlled by an independent AC-DC-AC variable voltage variable frequency controller 3. In this way, it becomes easy to control the magnetic levitation train 5 section by section. In order to ensure the safety and controllability of maglev trains, generally only one maglev train can pass through each section.

以上のように、本発明では、システムの給電方式を変え、システムの構造を最適化させることにより、車載設備の重量を効果的に減らし、列車の軽量化を実現し、負荷効率を高め、ショートステータタイプ磁気浮上列車の優位性をより効果的に発揮させ、地面給電を通じて磁気浮上列車の運行に対する自動制御及び自律運転を実現し、高低速の運行に適するようにする。 As described above, in the present invention, by changing the power supply method of the system and optimizing the structure of the system, it is possible to effectively reduce the weight of on-board equipment, realize lighter trains, increase load efficiency, and short circuit. The advantages of stator-type magnetic levitation trains will be more effectively demonstrated, automatic control and autonomous operation of magnetic levitation trains will be realized through ground power supply, and they will be suitable for high- and low-speed operations.

Claims (3)

AC-DC-AC可変電圧可変周波数制御装置(3)、整流装置(4)、及び導電レール(1)を地面に含み鉄道搭載集電装置(2)、鉄道搭載三相駆動巻線(6)、及び鉄道搭載補助電気設備(7)を含むショートステータタイプ磁気浮上式鉄道の4本レール給電制御システムであって、
前記導電レール(1)は第1の導電レール(1a)、第2の導電レール(1b)、第3の導電レール(1c)、第4の導電レール(1d)に分けられ、前記第1の導電レール(1a)、前記第2の導電レール(1b)は前記第3の導電レール(1c)と三相交流給電回路を構成し、地面でのAC-DC-AC可変電圧可変周波数制御装置(3)によって給電され、
前記三相交流給電回路において前記第3の導電レール(1c)が接地し、
前記第4の導電レール(1d)は前記三相交流給電回路において接地している第3の導電レール(1c)と直流給電回路を構成し、地面での整流装置(4)によって給電され、
前記鉄道搭載集電装置(2)は、第1の集電装置(2a)、第2の集電装置(2b)、第3の集電装置(2c)、及び第4の集電装置(2d)を含み、
前記第1の集電装置(2a)、前記第2の集電装置(2b)、及び前記第3の集電装置(2c)の末端は、それぞれケーブルを介して前記鉄道搭載三相駆動巻線(6)の三相端子に接続され、前記第1の集電装置(2a)、前記第2の集電装置(2b)、及び前記第3の集電装置(2c)の先端は、それぞれ前記第1の導電レール(1a)、前記第2の導電レール(1b)及び前記第3の導電レール(1c)と接触して受電し、
前記AC-DC-AC可変電圧可変周波数制御装置(3)は、前記第1の導電レール(1a)と前記第1の集電装置(2a)、前記第2の導電レール(1b)と前記第2の集電装置(2b)、前記第3の導電レール(1c)と前記第3の集電装置(2c)によって前記鉄道搭載三相駆動巻線(6)に給電し、磁気浮上式鉄道(5)の起動停止及び運行が、前記AC-DC-AC可変電圧可変周波数制御装置(3)の周波数、電圧を調整することにより制御され、
前記第3の集電装置(2c)の末端はケーブルを介して前記鉄道搭載補助電気設備(7)の負極に接続され、前記第4の集電装置(2d)の末端はケーブルを介して鉄道搭載補助電気設備(7)の正極に接続され、前記第4の集電装置(2d)の先端は前記第4の導電レール(1d)と接触して受電し、
前記整流装置(4)は前記第3の導電レール(1c)と前記第3の集電装置(2c)、前記第4の導電レール(1d)と前記第4の集電装置(2d)によって前記鉄道搭載補助電気設備(7)に給電する、
ことを特徴とするショートステータタイプ磁気浮上式鉄道の4本レール給電制御システム。
The ground includes an AC-DC-AC variable voltage variable frequency controller (3), a rectifier (4), and a conductive rail (1), a railway-mounted current collector (2), a railway-mounted three-phase drive winding ( 6), and a four-rail power supply control system for a short stator type magnetic levitation railway , including a railway-mounted auxiliary electrical equipment (7),
The conductive rail (1) is divided into a first conductive rail (1a), a second conductive rail (1b), a third conductive rail (1c), and a fourth conductive rail (1d). The conductive rail (1a) and the second conductive rail (1b) constitute a three-phase AC power supply circuit with the third conductive rail (1c), and the AC-DC-AC variable voltage variable frequency control device ( 3) powered by
In the three-phase AC power supply circuit, the third conductive rail (1c) is grounded,
The fourth conductive rail (1d) constitutes a DC power supply circuit with a third conductive rail (1c) that is grounded in the three-phase AC power supply circuit, and is powered by a ground rectifier (4),
The railway-mounted current collector (2) includes a first current collector (2a), a second current collector (2b), a third current collector (2c), and a fourth current collector ( 2d),
The ends of the first current collector (2a), the second current collector (2b), and the third current collector (2c) are connected to the railway-mounted three-phase drive winding via cables, respectively. (6), and the tips of the first current collector (2a), the second current collector (2b), and the third current collector (2c) are connected to the three-phase terminal of the Receives electricity by contacting the first conductive rail (1a), the second conductive rail (1b) and the third conductive rail (1c),
The AC-DC-AC variable voltage variable frequency control device (3) includes the first conductive rail (1a) and the first current collector (2a), the second conductive rail (1b) and the first current collector (2a), and the second conductive rail (1b) and the first current collector (2a). The second current collector (2b), the third conductive rail (1c), and the third current collector (2c) supply power to the railway-mounted three-phase drive winding (6), and the magnetic levitation railway ( 5) The start/stop and operation of the AC-DC-AC variable voltage variable frequency control device (3) is controlled by adjusting the frequency and voltage,
The end of the third current collector (2c) is connected to the negative electrode of the railway-mounted auxiliary electrical equipment (7) via a cable, and the end of the fourth current collector (2d) is connected to the railway via a cable. connected to the positive electrode of the on-board auxiliary electrical equipment (7), the tip of the fourth current collector (2d) contacts the fourth conductive rail (1d) to receive power,
The rectifying device (4) includes the third conductive rail (1c), the third current collector (2c), the fourth conductive rail (1d) and the fourth current collector (2d). Supplies power to the railway-mounted auxiliary electrical equipment (7),
This is a four-rail power supply control system for short stator type magnetic levitation railways .
前記第1の導電レール(1a)、第2の導電レール(1b)、第3の導電レール(1c)、第4の導電レール(1d)は磁気浮上線路に沿って敷設され、前記第1の導電レール(1a)、第2の導電レール(1b)は若干のセクションに分割され、各セクションは独立したAC-DC-AC可変電圧可変周波数制御装置(3)によって給電される、ことを特徴とする請求項1に記載のショートステータタイプ磁気浮上式鉄道の4本レール給電制御システム。 The first conductive rail (1a), the second conductive rail (1b), the third conductive rail (1c), and the fourth conductive rail (1d) are laid along the magnetic levitation line, and characterized in that the conductive rail (1a), the second conductive rail (1b) is divided into several sections, each section being powered by an independent AC-DC-AC variable voltage variable frequency controller (3). The four-rail power supply control system for a short stator type magnetic levitation railway according to claim 1. 前記磁気浮上式鉄道(5)の前記鉄道搭載補助電気設備(7)は、浮上コントローラ、空調設備、照明設備を含み、前記鉄道搭載補助電気設備(7)は整流装置(4)と同じ電圧レベルを用いる、ことを特徴とする請求項1に記載のショートステータタイプ磁気浮上式鉄道の4本レール給電制御システム。 The railway-mounted auxiliary electrical equipment (7) of the maglev railway (5) includes a levitation controller, air conditioning equipment, and lighting equipment, and the railway-mounted auxiliary electrical equipment (7) has the same voltage level as the rectifier (4). The four-rail power supply control system for a short stator type magnetic levitation railway according to claim 1, characterized in that the system uses:
JP2021540006A 2019-01-09 2019-06-27 Four-rail power supply control system for short stator type magnetic levitation railway Active JP7416806B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910019230.5A CN109532569B (en) 2019-01-09 2019-01-09 Short stator maglev train four-rail power supply control system
CN201910019230.5 2019-01-09
PCT/CN2019/093246 WO2020143190A1 (en) 2019-01-09 2019-06-27 Four-rail power supply control system for short-stator magnetic levitation train

Publications (3)

Publication Number Publication Date
JP2022517972A JP2022517972A (en) 2022-03-11
JPWO2020143190A5 JPWO2020143190A5 (en) 2023-11-20
JP7416806B2 true JP7416806B2 (en) 2024-01-17

Family

ID=65834556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021540006A Active JP7416806B2 (en) 2019-01-09 2019-06-27 Four-rail power supply control system for short stator type magnetic levitation railway

Country Status (4)

Country Link
JP (1) JP7416806B2 (en)
CN (1) CN109532569B (en)
DE (1) DE112019006602T5 (en)
WO (1) WO2020143190A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109532569B (en) * 2019-01-09 2020-01-03 西南交通大学 Short stator maglev train four-rail power supply control system
CN110001457B (en) * 2019-04-18 2024-02-06 成都尚华电气有限公司 Power train uninterrupted power section control system and method thereof
CN114407734B (en) * 2021-12-21 2022-08-23 西南交通大学 Flexible traction power supply system and protection method
WO2023247932A2 (en) * 2022-06-22 2023-12-28 First Greater Western Limited Electric rail vehicle charging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238109A (en) 2001-02-08 2002-08-23 Railway Technical Res Inst System for driving, propelling and controlling of linear motor car
CN207631024U (en) 2017-12-05 2018-07-20 西南交通大学 A kind of three-phase traction power supply system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932310A (en) * 1982-08-13 1984-02-21 Toshiba Corp Power feeding method for electric rolling stock
JPS6166502A (en) * 1984-09-05 1986-04-05 Shinko Electric Co Ltd Emergency braking method in linear induction motor type convertor
DE19722451C1 (en) * 1997-05-28 1998-09-10 Doehler Peter Dipl Kaufm Electrical model railway with central signalling station
CN101289065A (en) * 2007-04-18 2008-10-22 上海磁浮交通工程技术研究中心 Method and device for increasing the power supply efficiency of maglev train power supply
US8047138B2 (en) * 2008-07-08 2011-11-01 Tozoni Oleg V Self-regulating magneto-dynamic system for high speed ground transportation vehicle
CN108616207A (en) * 2018-05-09 2018-10-02 同济大学 A kind of long-stator linear motor winding for rail traffic
CN108725211B (en) * 2018-06-25 2023-06-20 西南交通大学 Three-phase power supply and collection device of maglev train
CN209381846U (en) * 2019-01-09 2019-09-13 西南交通大学 A kind of four rail powered construction of short stator magnetic-levitation train
CN109532569B (en) * 2019-01-09 2020-01-03 西南交通大学 Short stator maglev train four-rail power supply control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002238109A (en) 2001-02-08 2002-08-23 Railway Technical Res Inst System for driving, propelling and controlling of linear motor car
CN207631024U (en) 2017-12-05 2018-07-20 西南交通大学 A kind of three-phase traction power supply system

Also Published As

Publication number Publication date
WO2020143190A1 (en) 2020-07-16
DE112019006602T5 (en) 2021-09-23
CN109532569B (en) 2020-01-03
CN109532569A (en) 2019-03-29
JP2022517972A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP7416806B2 (en) Four-rail power supply control system for short stator type magnetic levitation railway
KR101536492B1 (en) Driving system, driving system for railroad-vehicle, and railroad-vehicle and multi-car train mounted with same
Cassat et al. MAGLEV projects technology aspects and choices
RU2422299C1 (en) Power supply system of electric train with asynchronous traction drive
US11890945B2 (en) Electric multi-mode drive system and method for operating the same, a track and a vehicle for use in such a drive system
JP2002238107A (en) System for supplying power to electrically propelled vehicle
US20150231989A1 (en) Two-phase two-column linear pulse motor propulsion system
JP7144619B2 (en) Three-rail power supply control system for electrified railway trains
CN109532571B (en) Three-phase power supply control system of electrified railway train
CN112009504A (en) Multi-stator traction high-speed magnetic suspension train system
JP2002238109A (en) System for driving, propelling and controlling of linear motor car
CN109532567B (en) Three-rail power supply control system of short-stator magnetic levitation train
RU133060U1 (en) Shunting Electric Locomotive
CN209381845U (en) A kind of three rail powered construction of short stator magnetic-levitation train
JP7130141B2 (en) Three-rail power supply control system for short stator type trains
CN209381846U (en) A kind of four rail powered construction of short stator magnetic-levitation train
JP3879439B2 (en) Electric vehicle power circuit system and feeding system
CN209381848U (en) A kind of five rail powered construction of short stator magnetic-levitation train
CN109532572B (en) Five rail power supply control system of short stator maglev train
Lee Advances in the application of power electronics to railway traction
CN109532570B (en) Three-phase power supply control system of short stator train
CN209700446U (en) A kind of short stator train three phase supply construction
CN217892525U (en) High-speed magnetic levitation traction power supply system
CN113691191B (en) Device and method for reducing power supply voltage of long-stator synchronous linear motor stator
Nagamani et al. PERMANENT MAGNET SYNCHRONOUS MOTOR TRACTION DRIVE SYSTEM FOR SUB-URBAN SERVICES IN INDIA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230731

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7416806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150