JP7415703B2 - DC uninterruptible power supply and control method for DC uninterruptible power supply - Google Patents

DC uninterruptible power supply and control method for DC uninterruptible power supply Download PDF

Info

Publication number
JP7415703B2
JP7415703B2 JP2020048017A JP2020048017A JP7415703B2 JP 7415703 B2 JP7415703 B2 JP 7415703B2 JP 2020048017 A JP2020048017 A JP 2020048017A JP 2020048017 A JP2020048017 A JP 2020048017A JP 7415703 B2 JP7415703 B2 JP 7415703B2
Authority
JP
Japan
Prior art keywords
output
section
current value
power supply
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048017A
Other languages
Japanese (ja)
Other versions
JP2021151062A (en
Inventor
陽大 北野
陽 黒▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2020048017A priority Critical patent/JP7415703B2/en
Publication of JP2021151062A publication Critical patent/JP2021151062A/en
Application granted granted Critical
Publication of JP7415703B2 publication Critical patent/JP7415703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、直流無停電電源装置および直流無停電電源装置の制御方法に関し、特に、装置外部から入力された交流電力を出力するバイパス部を備える直流無停電電源装置および直流無停電電源装置の制御方法に関する。 The present invention relates to a DC uninterruptible power supply and a control method for the DC uninterruptible power supply, and particularly to a DC uninterruptible power supply that includes a bypass section that outputs AC power input from outside the device and a control method for the DC uninterruptible power supply. Regarding the method.

従来、装置外部から入力された交流電力を出力するバイパス回路を備える交流無停電電源装置が知られている(たとえば、特許文献1参照)。 BACKGROUND ART Conventionally, an AC uninterruptible power supply device is known that includes a bypass circuit that outputs AC power input from outside the device (see, for example, Patent Document 1).

上記特許文献1には、装置外部の交流電源からの交流電力を直流電力に変換するPWMコンバータと、PWMコンバータから出力される直流電力またはバッテリからの直流電力を交流電力に変換して装置外部の負荷に供給(出力)するインバータと、装置外部の交流電源と装置外部の負荷との間に接続されたバイパス回路とを備える交流無停電電源装置が開示されている。この特許文献1に記載の交流無停電電源装置では、通常時(交流電源から正常に交流電力が供給されている時)はインバータによって生成された交流電力を装置外部の負荷に供給し、インバータが故障した場合に交流電源からの交流電力をバイパス回路を介して装置外部の負荷に供給するように構成されている。 The above-mentioned Patent Document 1 describes a PWM converter that converts AC power from an AC power source external to the device into DC power, and a PWM converter that converts the DC power output from the PWM converter or the DC power from a battery into AC power and converts the DC power output from the PWM converter into AC power. An AC uninterruptible power supply device is disclosed that includes an inverter that supplies (outputs) to a load, and a bypass circuit connected between an AC power source external to the device and a load external to the device. In the AC uninterruptible power supply device described in Patent Document 1, during normal times (when AC power is normally supplied from the AC power source), AC power generated by the inverter is supplied to a load outside the device, and the inverter The device is configured to supply AC power from the AC power source to a load outside the device via a bypass circuit in the event of a failure.

上記特許文献1には明示されていないが、上記特許文献1に記載のような従来の交流無停電電源装置では、バイパス回路との切り換えを行うバイパス切換動作時には、バイパス回路側からの突入電流と、装置外部の負荷に対する負荷変動とを抑制するために、インバータからの出力電圧の位相をずらしながら、インバータから電流が出力されている状態からバイパス回路から電流が出力されている状態へ電流分担を徐々に移動させる制御を行っている。すなわち、インバータからの電流量を減少させ、バイパス回路からの電流量を増加させる制御を行っている。 Although it is not explicitly stated in Patent Document 1, in the conventional AC uninterruptible power supply device as described in Patent Document 1, during the bypass switching operation to switch with the bypass circuit, inrush current from the bypass circuit side and In order to suppress load fluctuations due to loads external to the device, the phase of the output voltage from the inverter is shifted, and the current is shared from the state where the current is being output from the inverter to the state where the current is being output from the bypass circuit. It is controlled to move gradually. That is, control is performed to reduce the amount of current from the inverter and increase the amount of current from the bypass circuit.

また、装置外部の交流電源からの交流電力を直流電力に変換するPWMコンバータと、装置外部の交流電源と装置外部の負荷との間に接続されたバイパス回路とを備える直流無停電電源装置が従来知られている。直流無停電電源装置は、装置外部の交流電源からの交流電力をPWMコンバータにより直流電力に変換して、PWMコンバータから出力される直流電力もしくはバッテリからの直流電力を装置外部の負荷に供給するか、または、交流電源からの交流電力をバイパス回路に設けられた整流器により直流電力に変換して装置外部の負荷に供給するように構成されている。 Furthermore, conventional DC uninterruptible power supplies include a PWM converter that converts AC power from an AC power source external to the device into DC power, and a bypass circuit connected between the AC power source external to the device and the load external to the device. Are known. A DC uninterruptible power supply converts AC power from an AC power source external to the device into DC power using a PWM converter, and supplies the DC power output from the PWM converter or the DC power from a battery to a load external to the device. Alternatively, the AC power source is configured to convert AC power from an AC power source into DC power using a rectifier provided in a bypass circuit, and to supply the DC power to a load outside the device.

国際公開第2017/094142号International Publication No. 2017/094142

ここで、直流無停電電源装置において、バイパス回路からの出力およびPWMコンバータからの出力は、共に、直流電力であるので、電圧の高低によって、バイパス回路からの出力と、PWMコンバータからの出力との間の電流分担が決まってしまう。そのため、交流電力をPWMコンバータにより直流電力に変換する直流無停電電源装置において、上記特許文献1に記載のような従来の交流無停電電源装置のように、PWMコンバータから電流が出力されている状態からバイパス回路から電流が出力されている状態へ電流分担を徐々に移動させる制御を行う場合、バイパス回路からの出力電圧がPWMコンバータからの出力電圧よりも低い場合には、PWMコンバータからの出力電圧を減少させ、バイパス回路からの出力電圧に追従させる必要がある。 Here, in the DC uninterruptible power supply, the output from the bypass circuit and the output from the PWM converter are both DC power, so depending on the voltage level, the output from the bypass circuit and the output from the PWM converter may differ. The current sharing between them is determined. Therefore, in a DC uninterruptible power supply that converts AC power into DC power using a PWM converter, a state in which current is output from the PWM converter as in the conventional AC uninterruptible power supply as described in Patent Document 1 mentioned above is avoided. When performing control to gradually shift the current share from the bypass circuit to the state where current is output, if the output voltage from the bypass circuit is lower than the output voltage from the PWM converter, the output voltage from the PWM converter It is necessary to reduce the voltage to follow the output voltage from the bypass circuit.

しかしながら、PWMコンバータは、原理上、PWMコンバータから出力させる直流電圧によって、PWMコンバータに入力可能な交流入力の上限値が変化する。具体的には、PWMコンバータから出力させる電圧が低くなると装置外部の交流電力から入力可能な交流入力の上限値が低下する。そのため、バイパス回路からの出力電圧に合わせるために、PWMコンバータからの出力電圧を減少させる際に、PWMコンバータへ入力可能な交流入力の電圧の上限値が装置外部の交流電力の電圧より低くなった場合には、装置外部の交流電力からPWMコンバータに交流入力される正弦波の波形のピーク部分が潰れ、装置外部の交流電力の一部しかPWMコンバータに入力することができなくなる。 However, in the PWM converter, in principle, the upper limit value of the AC input that can be input to the PWM converter changes depending on the DC voltage output from the PWM converter. Specifically, as the voltage output from the PWM converter decreases, the upper limit value of AC input that can be input from AC power external to the device decreases. Therefore, when reducing the output voltage from the PWM converter to match the output voltage from the bypass circuit, the upper limit of the AC input voltage that can be input to the PWM converter becomes lower than the voltage of the AC power external to the device. In this case, the peak portion of the waveform of the sine wave that is input to the PWM converter from the AC power external to the device is collapsed, and only a portion of the AC power external to the device can be input to the PWM converter.

そのため、正弦波の波形のピーク部分の潰れが大きくなり、PWMコンバータに入力可能な交流入力の電圧の上限値と、装置外部の交流電力の電圧との差が大きくなり過ぎるとPWMコンバータからの出力電圧の制御が困難になる。そのため、PWMコンバータからの出力電圧をバイパス回路からの出力電圧に合わせ(追従させ)、PWMコンバータから電流が出力されている状態からバイパス回路から電流が出力されている状態へ電流分担を徐々に移動させる制御を行うことが困難になる。すなわち、PWMコンバータからの電流量を減少させ、バイパス回路からの電流量を増加させる制御を行うことが困難になる。その結果、装置外部の負荷に対する負荷変動の増大を抑制することができず、バイパス切換が行えないという問題が考えられる。そのため、交流電力をPWMコンバータにより直流電力に変換する直流無停電電源においても、バイパス切換動作時における装置外部の負荷に対する負荷変動を抑制することが望まれている。 As a result, if the peak part of the sine wave waveform becomes more distorted and the difference between the upper limit of the AC input voltage that can be input to the PWM converter and the voltage of AC power outside the device becomes too large, the output from the PWM converter becomes too large. Voltage control becomes difficult. Therefore, the output voltage from the PWM converter is made to match (follow) the output voltage from the bypass circuit, and the current sharing is gradually shifted from a state where current is being output from the PWM converter to a state where current is being output from the bypass circuit. It becomes difficult to control the That is, it becomes difficult to perform control to decrease the amount of current from the PWM converter and increase the amount of current from the bypass circuit. As a result, there may be a problem in that it is not possible to suppress an increase in load fluctuations due to loads external to the device, and bypass switching cannot be performed. Therefore, even in a DC uninterruptible power supply that converts AC power into DC power using a PWM converter, it is desired to suppress load fluctuations with respect to a load external to the device during a bypass switching operation.

この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、交流電力をPWMコンバータにより直流電力に変換するとともに、バイパス切換動作時における装置外部の負荷に対する負荷変動を抑制可能な直流無停電電源装置および直流無停電電源装置の制御方法を提供することである。 This invention has been made to solve the above-mentioned problems, and one object of the invention is to convert AC power into DC power using a PWM converter, and to reduce the load outside the device during bypass switching operation. An object of the present invention is to provide a DC uninterruptible power supply and a control method for the DC uninterruptible power supply capable of suppressing load fluctuations.

上記目的を達成するために、この発明の第1の局面による直流無停電電源装置は、PWM制御により装置外部から入力された交流電力を直流電力に変換して出力するPWMコンバータと、バッテリから出力された直流電力を昇圧または降圧して出力するとともに、出力側がPWMコンバータの出力側に接続される昇降圧部とを含む電力変換部と、電力変換部の出力側に接続され、装置外部から入力された交流電力を直流電力に変換して出力するバイパス整流器を含むバイパス部と、装置外部の負荷への出力を電力変換部の出力からバイパス部の出力に切り換えるバイパス給電切換動作または装置外部の負荷への出力をバイパス部の出力から電力変換部の出力に切り換える電力変換部給電切換動作の少なくともいずれかの切換動作時において、バイパス部からの出力電流の電流値である第1電流値またはバイパス部からの出力電圧である第1出力電圧の少なくともいずれか一方に基づいて、昇降圧部からの出力電圧である第2出力電圧を変化させる制御を行うように構成されている制御部と、を備える。 In order to achieve the above object, a DC uninterruptible power supply device according to a first aspect of the present invention includes a PWM converter that converts AC power input from outside the device into DC power and outputs the DC power by PWM control, and a battery that outputs the DC power. A power converter unit includes a buck-boost unit whose output side is connected to the output side of the PWM converter, and which outputs the converted DC power by boosting or stepping down the voltage and outputs the DC power. a bypass section including a bypass rectifier that converts the converted AC power into DC power and outputs it, and a bypass power switching operation that switches the output to the load outside the device from the output of the power conversion section to the output of the bypass section or the load outside the device. During at least one of the power converter feeding switching operations in which the output to the bypass unit is switched from the output of the bypass unit to the output of the power converter, the first current value that is the current value of the output current from the bypass unit or the bypass unit a control unit configured to perform control to change a second output voltage, which is the output voltage from the buck-boost unit, based on at least one of the first output voltage, which is the output voltage from the buck-boost unit. .

上記第1の局面による直流無停電電源装置では、上記のように、バッテリから出力された直流電力を昇圧または降圧して出力するとともに、出力側がPWMコンバータの出力側に接続される昇降圧部を含む電力変換部を備える。そして、バイパス部の出力に切り換えるバイパス給電切換動作または電力変換部の出力に切り換える電力変換部給電切換動作の少なくともいずれかの切換動作時において、バイパス部からの出力電流の電流値である第1電流値またはバイパス部からの出力電圧である第1出力電圧の少なくともいずれか一方に基づいて、昇降圧部からの出力電圧である第2出力電圧を変化させる制御を行うように構成されている。これにより、バッテリから出力された直流電力を昇圧または降圧して出力する昇降圧部を電力変換部からの出力電圧の調整に用いることによって、出力させる電圧が低い場合に装置外部の交流電力から入力可能な交流入力の上限値が低下するPWMコンバータを用いる場合と異なり、電力変換部からの出力電圧をバイパス部からの出力電圧である第1出力電圧に容易に追従させることができる。したがって、バイパス部からの出力電流の電流値である第1電流値またはバイパス部からの出力電圧である第1出力電圧に基づいて、昇降圧部からの出力電圧である第2出力電圧を変化(昇圧または降圧)させることにより、電力変換部から電流が出力されている状態からバイパス部から電流が出力されている状態へ電流分担を徐々に移動させることができる。その結果、交流電力をPWMコンバータにより直流電力に変換するとともに、バイパス切換動作時における装置外部の負荷に対する負荷変動を抑制可能な直流無停電電源装置を提供することができる。 As described above, the DC uninterruptible power supply according to the first aspect boosts or steps down the DC power output from the battery and outputs the voltage, and also includes a buck-boost section whose output side is connected to the output side of the PWM converter. A power conversion unit including a power conversion unit is provided. Then, during at least one of the bypass power supply switching operation for switching to the output of the bypass section or the power conversion section power supply switching operation for switching to the output of the power conversion section, a first current that is the current value of the output current from the bypass section is generated. The second output voltage, which is the output voltage from the step-up/down section, is controlled to be changed based on at least either the value or the first output voltage, which is the output voltage from the bypass section. This allows the buck-boost section, which steps up or steps down the DC power output from the battery and outputs the voltage, to adjust the output voltage from the power conversion section. Unlike the case of using a PWM converter in which the upper limit value of possible AC input is lowered, the output voltage from the power conversion section can be easily made to follow the first output voltage that is the output voltage from the bypass section. Therefore, the second output voltage, which is the output voltage from the buck-boost section, is changed based on the first current value, which is the current value of the output current from the bypass section, or the first output voltage, which is the output voltage from the bypass section. By increasing the voltage (up or down), it is possible to gradually shift the current share from a state in which current is being output from the power conversion section to a state in which current is being output from the bypass section. As a result, it is possible to provide a DC uninterruptible power supply device that can convert AC power into DC power using a PWM converter and suppress load fluctuations with respect to a load external to the device during a bypass switching operation.

上記第1の局面による直流無停電電源装置において、好ましくは、制御部は、バイパス給電切換動作時に、昇降圧部を制御して、第1出力電圧の電圧よりも第2出力電圧の電圧を降圧する制御を行うように構成されている。このように構成すれば、バイパス給電切換動作時において、制御部による昇降圧部の制御によって、昇降圧部からの出力電圧である第2出力電圧をバイパス部からの出力電圧である第1出力電圧よりも低くすることができる。その結果、バイパス給電切換動作時において、昇降圧部からの出力電流を減少させることができるとともに、バイパス部からの出力電流の電流値である第1電流値を増加させることができる。 In the DC uninterruptible power supply according to the first aspect, preferably, the control section controls the buck-boost section to step down the voltage of the second output voltage more than the voltage of the first output voltage during the bypass power supply switching operation. The system is configured to perform control such as: With this configuration, during the bypass power supply switching operation, the control section controls the buck-boost section to change the second output voltage, which is the output voltage from the buck-boost section, to the first output voltage, which is the output voltage from the bypass section. can be lower than. As a result, during the bypass power supply switching operation, the output current from the step-up/down section can be reduced, and the first current value, which is the current value of the output current from the bypass section, can be increased.

上記給電切換動作時に、第1出力電圧の電圧よりも第2出力電圧の電圧を降圧する制御を行う構成において、好ましくは、制御部は、バイパス給電切換動作時に、昇降圧部からの出力電流の電流値である第2電流値と、第1電流値と第2電流値との合計値である第3電流値との差分に基づいて、昇降圧部により第2出力電圧を降圧することによって、第1電流値および第2電流値を変化させる制御を行うように構成されている。このように構成すれば、バイパス給電切換動作時において、第2電流値と、第3電流値との差分からバイパス部からの出力電流の電流値である第1電流値を取得することができる。その結果、第1電流値と、第2電流値とに基づいて、昇降圧部からの出力電圧である第2出力電圧を降圧させることにより、容易に電力変換部(昇降圧部)の出力からバイパス部の出力へ電流量の分担を徐々に移動させることができる。 In the configuration in which the voltage of the second output voltage is controlled to be lower than the voltage of the first output voltage during the power supply switching operation, preferably, the control section controls the output current from the buck-boost section during the bypass power supply switching operation. By stepping down the second output voltage by the step-up/down section based on the difference between the second current value, which is the current value, and the third current value, which is the total value of the first current value and the second current value, It is configured to perform control to change the first current value and the second current value. With this configuration, during the bypass power supply switching operation, the first current value, which is the current value of the output current from the bypass section, can be obtained from the difference between the second current value and the third current value. As a result, by stepping down the second output voltage, which is the output voltage from the buck-boost section, based on the first current value and the second current value, the output of the power conversion section (buck-boost section) can be easily reduced. It is possible to gradually shift the amount of current to the output of the bypass section.

上記第2電流値と、第3電流値との差分に基づいて、昇降圧部により第2出力電圧を降圧する構成において、好ましくは、バイパス給電切換動作時に、第2電流値が所定の電流値以下になった場合に、昇降圧部とバイパス部との電気的な接続を切り離すように構成されている。このように構成すれば、バイパス給電切換動作時において、昇降圧部からの出力電流の電流値である第2電流値が十分に低下して、装置外部の負荷に対する電流量の分担が昇降圧部の出力からバイパス部の出力に十分に移った状態において、装置外部の負荷への出力を昇降圧部の出力からバイパス部の出力へ切り換えることができる。その結果、バイパス給電切換動作時における装置外部の負荷に対する負荷変動をより抑制することができる。 In the configuration in which the second output voltage is stepped down by the buck-boost section based on the difference between the second current value and the third current value, preferably, the second current value is set to a predetermined current value during the bypass power supply switching operation. The configuration is such that the electrical connection between the step-up/down section and the bypass section is disconnected when the following conditions occur. With this configuration, during the bypass power supply switching operation, the second current value, which is the current value of the output current from the buck-boost section, is sufficiently reduced, and the current amount for the load outside the device is shared by the buck-boost section. In a state where the output has sufficiently shifted from the output of the step-up/down section to the output of the bypass section, the output to the load outside the device can be switched from the output of the step-up/down section to the output of the bypass section. As a result, it is possible to further suppress load fluctuations with respect to the load external to the device during the bypass power supply switching operation.

この場合、好ましくは、バイパス給電切換動作後に、PWMコンバータと装置外部の交流電源との間の電流経路を電気的に接続してバッテリへの充電を開始するように構成されている。このように構成すれば、バッテリから電力が放電されるバイパス給電切換動作後に、バッテリへの充電が開始されるので、バイパス給電切換動作後に、装置外部の負荷への出力をバイパス部の出力から電力変換部の出力に切り換える電力変換部給電切換動作を行う際に、バッテリに充電された電力が不足することを防止することができる。 In this case, preferably, after the bypass power supply switching operation, the current path between the PWM converter and the AC power source external to the device is electrically connected to start charging the battery. With this configuration, charging of the battery starts after the bypass power supply switching operation in which power is discharged from the battery, so that after the bypass power supply switching operation, the output to the external load of the device is changed from the output of the bypass section. When performing a power conversion section power supply switching operation of switching to the output of the conversion section, it is possible to prevent the power charged in the battery from running out.

上記第1の局面による直流無停電電源装置において、好ましくは、制御部は、電力変換部給電切換動作時に、昇降圧部を制御して、第1出力電圧の電圧よりも第2出力電圧の電圧を昇圧する制御を行うように構成されている。このように構成すれば、電力変換部給電切換動作時において、制御部による昇降圧部の制御によって、昇降圧部からの出力電圧である第2出力電圧をバイパス部からの出力電圧である第1出力電圧よりも高くすることができる。その結果、バイパス給電切換動作時において、昇降圧部からの出力電流の電流値である第2電流値を増加させることができるとともに、バイパス部からの出力電流の電流値である第1電流値を減少させることができる。 In the DC uninterruptible power supply according to the first aspect, preferably, the control unit controls the buck-boost unit to lower the voltage of the second output voltage than the voltage of the first output voltage during the power conversion unit power supply switching operation. It is configured to perform control to boost the voltage. With this configuration, when switching the power supply to the power conversion unit, the control unit controls the buck-boost unit to change the second output voltage, which is the output voltage from the buck-boost unit, to the first output voltage, which is the output voltage from the bypass unit. It can be higher than the output voltage. As a result, during the bypass power supply switching operation, it is possible to increase the second current value, which is the current value of the output current from the buck-boost section, and to increase the first current value, which is the current value of the output current from the bypass section. can be reduced.

上記電力変換部給電切換動作時に、第1出力電圧の電圧よりも第2出力電圧の電圧を昇圧する制御を行う構成において、好ましくは、制御部は、電力変換部給電切換動作時に、第2電流値と、第3電流値との差分に基づいて、昇降圧部により第2出力電圧を昇圧することによって、第1電流値および第2電流値を変化させる制御を行うように構成されている。このように構成すれば、電力変換部給電切換動作時において、第2電流値と、第3電流値との差分からバイパス部からの出力電流の電流値である第1電流値を取得することができる。その結果、第1電流値と、第2電流値とに基づいて、昇降圧部からの出力電圧である第2出力電圧を昇圧させることにより、容易にバイパス部の出力から電力変換部(昇降圧部)の出力へ電流量の分担を徐々に移動させる(電力変換部からの出力の電流分担を上げる)ことができる。 In the configuration that performs control to boost the voltage of the second output voltage more than the voltage of the first output voltage during the power conversion section power supply switching operation, preferably, the control section controls the second output voltage during the power conversion section power supply switching operation. The step-up/down section is configured to step up the second output voltage based on the difference between the current value and the third current value, thereby performing control to change the first current value and the second current value. With this configuration, it is possible to obtain the first current value, which is the current value of the output current from the bypass section, from the difference between the second current value and the third current value when the power conversion section power supply switching operation is performed. can. As a result, by boosting the second output voltage, which is the output voltage from the buck-boost section, based on the first current value and the second current value, it is possible to easily convert the output of the bypass section from the output of the bypass section to the power conversion section (buck-boost It is possible to gradually shift the share of the current amount to the output of the power converter (increase the share of the current in the output from the power converter).

この場合、好ましくは、電力変換部給電切換動作時に、第1電流値が所定の電流値以下になった場合に、昇降圧部とバイパス部との電気的な接続を切り離すように構成されている。このように構成すれば、電力変換部給電切換動作時において、バイパス部からの出力電流の電流値である第1電流値が十分に低下して、装置外部の負荷に対する電流量の分担がバイパス部の出力から昇降圧部の出力へ十分に移った状態において、装置外部の負荷への出力をバイパス部の出力から昇降圧部の出力へ切り換えることができる。その結果、電力変換部給電切換動作時における装置外部の負荷に対する負荷変動をより抑制することができる。 In this case, it is preferably configured to disconnect the electrical connection between the buck-boost section and the bypass section when the first current value becomes equal to or less than a predetermined current value during the power conversion section power supply switching operation. . With this configuration, when switching the power supply to the power conversion section, the first current value, which is the current value of the output current from the bypass section, is sufficiently reduced, and the current amount to be shared with the load outside the device is shared by the bypass section. In a state where the output has sufficiently shifted from the output of the step-up/down section to the output of the step-up/down section, the output to the load outside the device can be switched from the output of the bypass section to the output of the step-up/down section. As a result, it is possible to further suppress load fluctuations with respect to the load external to the device during the power converter feeding switching operation.

上記第1の局面による直流無停電電源装置において、好ましくは、昇降圧部は、バッテリから出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータであり、制御部は、切換動作時に、PWMコンバータと装置外部の交流電源との間の電流経路を電気的に切り離した状態において、チョッパ方式コンバータを制御して、チョッパ方式コンバータからの出力電圧である第2出力電圧を変化させる制御を行うように構成されている。このように構成すれば、フライバック方式などにより、バッテリからの電力を絶縁形直流電圧変換する場合に比べて、バッテリからの電力を効率よく、昇圧または降圧することができる。 In the DC uninterruptible power supply according to the first aspect, preferably, the step-up/down section is a chopper type converter that steps up or steps down the DC power output from the battery and outputs the voltage, and the control section, during the switching operation, Control the chopper type converter to change the second output voltage, which is the output voltage from the chopper type converter, in a state where the current path between the PWM converter and the AC power source outside the device is electrically separated. It is configured as follows. With this configuration, the power from the battery can be stepped up or down more efficiently than when the power from the battery is converted into an isolated DC voltage using a flyback method or the like.

上記目的を達成するために、この発明の第2の局面による直流無停電電源装置の制御方法は、バッテリから出力された直流電力を昇圧または降圧して出力する昇降圧部と、昇降圧部の出力側に接続され、装置外部の交流電源からの交流電力を直流電力に変換して出力するバイパス部とを含み、直流電力を装置外部に出力する直流無停電電源装置の制御方法であって、バイパス部からの出力電流の電流値である第1電流値またはバイパス部の出力電圧である第1出力電圧を取得するステップと、取得した第1電流値または第1出力電圧の少なくともいずれか一方に基づいて、昇降圧部からの出力電圧である第2出力電圧を変化させるステップと、を備える。 In order to achieve the above object, a method for controlling a DC uninterruptible power supply according to a second aspect of the present invention includes a step-up/down section that steps up or steps down the DC power output from the battery and outputs the voltage, A method for controlling a DC uninterruptible power supply device that outputs DC power to the outside of the device, the bypass section being connected to the output side and converting AC power from an AC power source outside the device into DC power and outputting the same, the method comprising: acquiring a first current value that is the current value of the output current from the bypass section or a first output voltage that is the output voltage of the bypass section; and at least one of the acquired first current value or first output voltage. the step of changing a second output voltage, which is the output voltage from the step-up/down section, based on the step-up/down section.

上記第2の局面による直流無停電電源装置の制御方法では、上記のように、バイパス部からの出力電流の電流値である第1電流値またはバイパス部の出力電圧である第1出力電圧を取得するステップと、取得した第1電流値または第1出力電圧の少なくともいずれか一方に基づいて、バッテリから出力された直流電力を昇圧または降圧して出力する昇降圧部からの出力電圧である第2出力電圧を変化させるステップと、を備える。これにより、バッテリから出力された直流電力を昇圧または降圧して出力する昇降圧部を電力変換部からの出力電圧の調整に用いることによって、出力させる電圧が低い場合に装置外部の交流電力から入力可能な交流入力の上限値が低下するPWMコンバータを用いる場合と異なり、電力変換部からの出力電圧をバイパス部からの出力電圧である第1出力電圧に容易に追従させることができる。したがって、取得したバイパス部からの出力電流の電流値である第1電流値またはバイパス部からの出力電圧である第1出力電圧の少なくともいずれか一方に基づいて、昇降圧部からの出力電圧である第2出力電圧を変化(昇圧または降圧)させることにより、電力変換部から電流が出力されている状態からバイパス部から電流が出力されている状態へ電流分担を徐々に移動させることができる。その結果、交流電力をPWMコンバータにより直流電力に変換するとともに、バイパス切換動作時における装置外部の負荷に対する負荷変動を抑制可能な直流無停電電源装置の制御方法を提供することができる。 In the method for controlling a DC uninterruptible power supply according to the second aspect, as described above, the first current value that is the current value of the output current from the bypass section or the first output voltage that is the output voltage of the bypass section is obtained. and a second output voltage from a step-up/down section that steps up or steps down the DC power output from the battery and outputs the step, based on at least one of the acquired first current value and first output voltage. and a step of changing the output voltage. As a result, by using the buck-boost section, which steps up or steps down the DC power output from the battery and outputs it, to adjust the output voltage from the power conversion section, when the voltage to be output is low, it is possible to input AC power from outside the device. Unlike the case of using a PWM converter in which the upper limit value of possible AC input is lowered, the output voltage from the power conversion section can be easily made to follow the first output voltage that is the output voltage from the bypass section. Therefore, the output voltage from the buck-boost section is determined based on at least one of the first current value, which is the obtained current value of the output current from the bypass section, or the first output voltage, which is the output voltage from the bypass section. By changing the second output voltage (stepping up or stepping down), it is possible to gradually shift the current share from a state in which current is being output from the power conversion section to a state in which current is being output from the bypass section. As a result, it is possible to provide a control method for a DC uninterruptible power supply that can convert AC power into DC power using a PWM converter and suppress load fluctuations to external loads during bypass switching operations.

上記第2の局面による直流無停電電源装置の制御方法において、好ましくは、昇降圧部は、バッテリから出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータであり、第2出力電圧を変化させるステップは、チョッパ方式コンバータからの出力電圧である第2出力電圧を変化させるステップである。このように構成すれば、第2出力電圧を変化させるステップにおいて、フライバック方式などにより、バッテリからの電力を絶縁形直流電圧変換する場合に比べて、バッテリからの電力を効率よく、昇圧または降圧することができる。 In the method for controlling a DC uninterruptible power supply according to the second aspect, preferably, the step-up/down section is a chopper type converter that steps up or steps down the DC power output from the battery and outputs the second output voltage. The step of changing is a step of changing the second output voltage, which is the output voltage from the chopper converter. With this configuration, in the step of changing the second output voltage, the power from the battery can be boosted or stepped down more efficiently than when the power from the battery is converted into isolated DC voltage using a flyback method or the like. can do.

本発明によれば、上記のように、交流電力をPWMコンバータにより直流電力に変換するとともに、バイパス切換動作時における装置外部の負荷に対する負荷変動を抑制可能な直流無停電電源装置および直流無停電電源装置の制御方法を提供することができる。 According to the present invention, as described above, a DC uninterruptible power supply and a DC uninterruptible power supply are capable of converting AC power into DC power using a PWM converter and suppressing load fluctuations with respect to a load external to the device during bypass switching operation. A method for controlling a device can be provided.

本発明の一実施形態による直流無停電電源装置の構成を示した図である。1 is a diagram showing the configuration of a DC uninterruptible power supply according to an embodiment of the present invention. 本発明の一実施形態の直流無停電電源装置による制御部の制御を説明するための図である。FIG. 3 is a diagram for explaining control of a control unit by a DC uninterruptible power supply according to an embodiment of the present invention. バイパス給電切換動作時の制御部の処理の一例を説明するための第1フローチャートである。FIG. 7 is a first flowchart for explaining an example of processing of the control unit during bypass power supply switching operation. FIG. バイパス給電切換動作時の制御部の処理の一例を説明するための第2フローチャートである。It is a 2nd flowchart for demonstrating an example of the process of a control part at the time of a bypass power supply switching operation. 電力変換部給電切換動作時の制御部の処理の一例を説明するための第1フローチャートである。FIG. 2 is a first flowchart for explaining an example of processing of a control unit during a power conversion unit power feeding switching operation; FIG. 電力変換部給電切換動作時の制御部の処理の一例を説明するための第2フローチャートである。12 is a second flowchart for explaining an example of the processing of the control section during the power conversion section power feeding switching operation.

以下、本発明を具体化した実施形態を図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments embodying the present invention will be described based on the drawings.

(直流無停電電源装置の全体構成)
図1を参照して、本実施形態による直流無停電電源装置100の構成について説明する。
(Overall configuration of DC uninterruptible power supply)
With reference to FIG. 1, the configuration of a DC uninterruptible power supply 100 according to this embodiment will be described.

本実施形態による直流無停電電源装置100は、直流電力を装置外部の負荷200に出力する無停電電源装置(UPS:Uninterruptible Power Supply、または、PCS:Power Conditioning System)である。直流無停電電源装置100は、装置外部の交流電源201(交流電源202)からの交流電力を変換した直流電力を装置外部の負荷200に出力する装置である。そして、直流無停電電源装置100は、停電時など、装置外部の交流電源201からの交流電力が供給されない場合において、装置外部のバッテリ40からの出力電力を変換して、装置外部の負荷200に出力する装置である。なお、バッテリ40は、装置内部に設けられていてもよい。 The DC uninterruptible power supply 100 according to this embodiment is an uninterruptible power supply (UPS) or PCS (Power Conditioning System) that outputs DC power to a load 200 outside the device. The DC uninterruptible power supply 100 is a device that converts AC power from an AC power source 201 (AC power source 202) outside the device and outputs DC power to a load 200 outside the device. Then, when AC power is not supplied from the AC power source 201 external to the device, such as during a power outage, the DC uninterruptible power supply 100 converts the output power from the battery 40 external to the device and supplies it to the load 200 external to the device. It is an output device. Note that the battery 40 may be provided inside the device.

直流無停電電源装置100は、電力変換部10と、バイパス部20と、制御部30と、を備える。電力変換部10は、PWMコンバータ11と、昇降圧部12とを含む。また、電力変換部10は、電解コンデンサC1と、ヒューズF1、F2およびF3とを含む。 The DC uninterruptible power supply 100 includes a power conversion section 10, a bypass section 20, and a control section 30. Power conversion section 10 includes a PWM converter 11 and a buck-boost section 12. Further, power conversion section 10 includes an electrolytic capacitor C1 and fuses F1, F2, and F3.

PWMコンバータ11は、PWM制御により装置外部から入力された交流電力を直流電力に変換して出力するように構成されている。具体的には、PWMコンバータ11は、パルス幅変調(PWM:Pulse Width Modulation)制御方式の三相電圧系コンバータであって、装置外部の交流電源201から交流電力を直流電力に変換して出力するように構成されている。 The PWM converter 11 is configured to convert AC power input from outside the device into DC power by PWM control and output the DC power. Specifically, the PWM converter 11 is a three-phase voltage converter using a pulse width modulation (PWM) control method, and converts AC power from an AC power supply 201 external to the device into DC power and outputs the DC power. It is configured as follows.

電力変換部10のPWMコンバータ11と、装置外部の交流電源201との間には、交流入力スイッチ51が設けられている。交流入力スイッチ51は、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に接続した状態(ON状態)と、電気的に切り離した状態(OFF状態)とに切り換え可能に構成されている。 An AC input switch 51 is provided between the PWM converter 11 of the power converter 10 and an AC power supply 201 external to the device. The AC input switch 51 can be switched between a state in which the current path between the PWM converter 11 and the AC power source 201 outside the device is electrically connected (ON state) and a state in which it is electrically disconnected (OFF state). It is configured.

また、交流入力スイッチ51と、電力変換部10との間には、交流入力スイッチ51側から順に、リアクトルL1、コンデンサC2、リアクトルL2が設けられている。また、PWMコンバータ11と、リアクトルL2との間には、ヒューズF1が設けられている。 Furthermore, a reactor L1, a capacitor C2, and a reactor L2 are provided between the AC input switch 51 and the power converter 10 in this order from the AC input switch 51 side. Further, a fuse F1 is provided between the PWM converter 11 and the reactor L2.

昇降圧部12は、バッテリ40から出力された直流電力を昇圧または降圧して出力するように構成されている。また、昇降圧部12は、出力側がPWMコンバータ11の出力側に接続されるように構成されている。昇降圧部12は、PWMコンバータ11から出力された直流電力を昇圧または降圧して出力して、バッテリ40を充電可能に構成されている。すなわち、昇降圧部12は、直流電力を双方向(バッテリ40またはPWMコンバータ11)に入力および出力可能に構成されている。 The step-up/down section 12 is configured to step up or step down the DC power output from the battery 40 and output the voltage. Further, the step-up/down section 12 is configured such that its output side is connected to the output side of the PWM converter 11. The step-up/down section 12 is configured to step up or step down the DC power output from the PWM converter 11 and output the voltage to charge the battery 40 . That is, the buck-boost section 12 is configured to be able to input and output DC power in both directions (to the battery 40 or the PWM converter 11).

昇降圧部12は、バッテリ40から出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータである。具体的には、昇降圧部12は、バッテリ40から出力された直流電力を昇圧または降圧して出力するように構成されている昇降圧チョッパ方式双方向DC/DCコンバータである。 The step-up/down section 12 is a chopper converter that steps up or steps down the DC power output from the battery 40 and outputs the voltage. Specifically, the buck-boost unit 12 is a buck-boost chopper bidirectional DC/DC converter configured to boost or step down the DC power output from the battery 40 and output the voltage.

電力変換部10の昇降圧部12と、バッテリ40との間には、バッテリ入力スイッチ52が設けられている。バッテリ入力スイッチ52は、昇降圧部12とバッテリ40との間の電流経路を電気的に接続した状態(ON状態)と、電気的に切り離した状態(OFF状態)とに切り換え可能に構成されている。 A battery input switch 52 is provided between the step-up/down section 12 of the power conversion section 10 and the battery 40. The battery input switch 52 is configured to be able to switch between a state in which the current path between the buck-boost unit 12 and the battery 40 is electrically connected (ON state) and a state in which the current path is electrically disconnected (OFF state). There is.

バッテリ入力スイッチ52と、電力変換部10との間には、交流入力スイッチ51側から順に、コンデンサC3、リアクトルL3が設けられている。また、昇降圧部12と、リアクトルL3との間には、ヒューズF3が設けられている。 A capacitor C3 and a reactor L3 are provided between the battery input switch 52 and the power converter 10 in this order from the AC input switch 51 side. Further, a fuse F3 is provided between the voltage step-up/down section 12 and the reactor L3.

また、電力変換部10と、装置外部の負荷200との間には、電力変換部10の出力側から順に、ダイオードDおよびUPS出力スイッチ53が設けられている。UPS出力スイッチ53は、電力変換部10(PWMコンバータ11および昇降圧部12)とバイパス部20からの出力(装置外部の負荷200)との間の電流経路を電気的に接続した状態(ON状態)と、電気的に切り離した状態(OFF状態)とに切り換え可能に構成されている。 Further, a diode D and a UPS output switch 53 are provided between the power converter 10 and a load 200 outside the device, in this order from the output side of the power converter 10. The UPS output switch 53 is in a state in which the current path between the power conversion unit 10 (PWM converter 11 and buck-boost unit 12) and the output from the bypass unit 20 (load 200 outside the device) is electrically connected (ON state). ) and an electrically disconnected state (OFF state).

また、PWMコンバータ11(昇降圧部12)と、ダイオードDとの間には、ヒューズF2が設けられており、PWMコンバータ11(昇降圧部12)と、ヒューズF2との間には、電解コンデンサC1が設けられている。 Further, a fuse F2 is provided between the PWM converter 11 (buck-boost section 12) and the diode D, and an electrolytic capacitor is provided between the PWM converter 11 (buck-boost section 12) and the fuse F2. C1 is provided.

本実施形態では、バイパス部20は、電力変換部10の出力側(昇降圧部12の出力側)に接続され、装置外部から入力された交流電力を直流電力に変換して出力するバイパス整流器21を含む。また、バイパス部20には、半導体スイッチSW、リアクトルL4、および、バイパススイッチ22が設けられている。バイパススイッチ22は、バイパス整流器21と、装置外部の交流電源202との間の電流経路を電気的に接続した状態(ON状態)と、電気的に切り離した状態(OFF状態)とに切り換え可能に構成されている。 In the present embodiment, the bypass section 20 is connected to the output side of the power conversion section 10 (the output side of the buck-boost section 12), and a bypass rectifier 21 that converts AC power input from outside the device into DC power and outputs the DC power. including. Further, the bypass section 20 is provided with a semiconductor switch SW, a reactor L4, and a bypass switch 22. The bypass switch 22 can be switched between a state in which the current path between the bypass rectifier 21 and the AC power source 202 outside the device is electrically connected (ON state) and a state in which it is electrically disconnected (OFF state). It is configured.

バイパス整流器21は、三相全波方式の整流器であって、装置外部の交流電源202から入力された交流電力を直流電力に変換して出力するように構成されている。 The bypass rectifier 21 is a three-phase full-wave type rectifier, and is configured to convert AC power input from an AC power supply 202 outside the device into DC power and output the DC power.

バイパススイッチ22および半導体スイッチSWは、装置外部の交流電源202と、バイパス整流器21との間に配置されており、リアクトルL4は、バイパススイッチ22および半導体スイッチSWと、バイパス整流器21との間に配置されている。 Bypass switch 22 and semiconductor switch SW are arranged between AC power supply 202 outside the device and bypass rectifier 21, and reactor L4 is arranged between bypass switch 22 and semiconductor switch SW and bypass rectifier 21. has been done.

制御部30は、後述する制御に基づいて、昇降圧部12のゲートを駆動させるゲート駆動回路60を制御することにより、昇降圧部12による電力の昇圧および降圧(昇降圧)の制御を行うように構成されている。制御部30は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含む。 The control section 30 controls the step-up and step-down (step-up and step-down) of the power by the step-up and step-down section 12 by controlling a gate drive circuit 60 that drives the gate of the step-up and step-down section 12 based on control described below. It is composed of The control unit 30 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).

直流無停電電源装置100には、電流検出部71および72が設けられている。電流検出部71および72は、直流無停電電源装置100の電流経路における電流を検出するように構成されている。電流検出部71および72は、電流の検出結果を制御部30に出力するように構成されている。電流検出部71および72は、ホールCT(Current Transformer)などを含む。 The DC uninterruptible power supply 100 is provided with current detection units 71 and 72. Current detection units 71 and 72 are configured to detect current in a current path of DC uninterruptible power supply 100. The current detection units 71 and 72 are configured to output current detection results to the control unit 30. Current detection units 71 and 72 include Hall CTs (Current Transformers) and the like.

電流検出部71は、昇降圧部12(電力変換部10)からの出力電流の電流値である電流値IDCを検出するように構成されている。なお、電流値IDCは、特許請求の範囲の「第2電流値」の一例である。 The current detection section 71 is configured to detect a current value I DC that is the current value of the output current from the step-up/down section 12 (power conversion section 10). Note that the current value I DC is an example of a "second current value" in the claims.

電流検出部72は、直流無停電電源装置100から装置外部の負荷200に対して出力される出力電流の電流値である電流値IOUTを検出するように構成されている。なお、電流値IOUTは、特許請求の範囲の「第3電流値」の一例である。 The current detection unit 72 is configured to detect a current value I OUT that is the current value of the output current output from the DC uninterruptible power supply 100 to the load 200 outside the device. Note that the current value I OUT is an example of a "third current value" in the claims.

また、直流無停電電源装置100から装置外部の負荷200に対して出力される出力電流の電流値である電流値IOUTは、昇降圧部12(電力変換部10)からの出力電流の電流値である電流値IDCと、バイパス部20からの出力電流の電流値である電流値IBypとの合計値である。これにより、電流値IOUTと電流値IDCとの差分から、電流値IBypを算出することができる。なお、電流値IBypは、特許請求の範囲の「第1電流値」の一例である。 Further, the current value I OUT , which is the current value of the output current output from the DC uninterruptible power supply 100 to the load 200 outside the device, is the current value of the output current from the buck-boost unit 12 (power conversion unit 10). This is the total value of the current value I DC which is , and the current value I Byp which is the current value of the output current from the bypass section 20 . Thereby, the current value I Byp can be calculated from the difference between the current value I OUT and the current value I DC . Note that the current value I Byp is an example of a "first current value" in the claims.

また、直流無停電電源装置100には、電圧検出部81、82および83が設けられている。電圧検出部81~83は、直流無停電電源装置100の電流経路における電圧を検出するように構成されている。電圧検出部81、82および83は、電圧の検出結果を制御部30に出力するように構成されている。電圧検出部81~83は、シャント抵抗、ホールCT(Current Transformer)などを含む。 Further, the DC uninterruptible power supply 100 is provided with voltage detection sections 81, 82, and 83. The voltage detection units 81 to 83 are configured to detect the voltage in the current path of the DC uninterruptible power supply 100. The voltage detection units 81 , 82 , and 83 are configured to output voltage detection results to the control unit 30 . The voltage detection units 81 to 83 include a shunt resistor, a Hall CT (Current Transformer), and the like.

電圧検出部81は、バッテリ40からの出力電圧である出力電圧VBATを検出するように構成されている。 Voltage detection section 81 is configured to detect output voltage V BAT that is the output voltage from battery 40 .

電圧検出部82は、昇降圧部12(電力変換部10)からの出力電圧である出力電圧VDCを検出するように構成されている。なお、出力電圧VDCは、特許請求の範囲の「第2出力電圧」の一例である。 The voltage detection section 82 is configured to detect the output voltage V DC that is the output voltage from the step-up/down section 12 (power conversion section 10). Note that the output voltage V DC is an example of a "second output voltage" in the claims.

電圧検出部83は、直流無停電電源装置100から装置外部の負荷200に対して出力される出力電圧である出力電圧VOUTを検出するように構成されている。 The voltage detection unit 83 is configured to detect an output voltage V OUT that is an output voltage output from the DC uninterruptible power supply 100 to a load 200 outside the device.

また、直流無停電電源装置100から装置外部の負荷200に対して出力される出力電圧である出力電圧VOUTは、昇降圧部12(電力変換部10)からの出力電圧である出力電圧VDCと、バイパス部20からの出力電圧である出力電圧VBypとの合計値である。これにより、出力電圧VOUTと出力電圧VDCとの差分から、出力電圧VBypを算出することができる。なお、出力電圧VBypは、特許請求の範囲の「第1出力電圧」の一例である。 Further, the output voltage V OUT , which is the output voltage output from the DC uninterruptible power supply 100 to the load 200 outside the device, is the output voltage V DC , which is the output voltage from the buck-boost unit 12 (power conversion unit 10). and the output voltage V Byp , which is the output voltage from the bypass section 20. Thereby, the output voltage V Byp can be calculated from the difference between the output voltage V OUT and the output voltage V DC . Note that the output voltage V Byp is an example of a "first output voltage" in the claims.

(制御部の構成)
次に、本実施形態における制御部30の切換動作時における制御のための構成について、図2を参照して、説明する。
(Configuration of control unit)
Next, the configuration for controlling the switching operation of the control section 30 in this embodiment will be described with reference to FIG. 2.

制御部30は、電流検出部71により検出された電流値IDCと、電流検出部72により検出された電流値IOUTとの差分から、バイパス部20からの出力電流の電流値である電流値IBypを算出する。そして、算出した電流値IBypと出力電流指令IDC[ref]とに基づいて、電流分担制御を行う。電流分担制御は、電流値IBypを昇降圧部12から出力される出力電流を目標となる値に近づけるための制御であり、PI制御(比例・積分制御)により行われる。電流分担制御により、昇降圧部12から出力される出力電流を目標となる値に近づけるための指令値である出力電流指令値が出力される。 The control unit 30 determines a current value, which is the current value of the output current from the bypass unit 20, from the difference between the current value I DC detected by the current detection unit 71 and the current value I OUT detected by the current detection unit 72. Calculate I Byp . Then, current sharing control is performed based on the calculated current value I Byp and the output current command I DC[ref] . The current sharing control is a control for bringing the current value I Byp closer to a target value of the output current output from the step-up/down section 12, and is performed by PI control (proportional/integral control). Through the current sharing control, an output current command value that is a command value for bringing the output current output from the step-up/down section 12 closer to a target value is output.

出力電流指令IDC[ref]に対して、電流値IBypが低い場合には、昇降圧部12からの出力電圧である出力電圧VDCを降圧するための指令値(出力電流指令値)が出力され、出力電流指令に対して、電流値IBypが高い場合には、昇降圧部12からの出力電圧である出力電圧VDCを昇圧するための指令値(出力電流指令値)が出力される。 When the current value I Byp is lower than the output current command I DC[ref] , the command value (output current command value) for stepping down the output voltage V DC , which is the output voltage from the buck-boost unit 12, is When the current value I Byp is higher than the output current command, a command value (output current command value) for boosting the output voltage V DC , which is the output voltage from the buck-boost unit 12, is output. Ru.

制御部30は、電圧検出部82により検出された出力電圧VDCと、電圧検出部83により検出された出力電圧VOUTとの差分から、バイパス部20からの出力電圧である出力電圧VBypを算出する。そして、算出した出力電圧VBypと出力電圧指令VDC[ref]とに基づいて、昇降圧部12から出力される出力電圧を目標となる値に近づけるための指令値である出力電圧指令値を出力する。 The control unit 30 determines the output voltage V Byp, which is the output voltage from the bypass unit 20, from the difference between the output voltage V DC detected by the voltage detection unit 82 and the output voltage V OUT detected by the voltage detection unit 83 . calculate. Then, based on the calculated output voltage V Byp and the output voltage command V DC[ref] , an output voltage command value, which is a command value for bringing the output voltage output from the buck-boost unit 12 closer to the target value, is determined. Output.

そして、制御部30は、出力電流指令値と、出力電圧指令値とに基づいて、出力定電圧制御を行う。出力定電圧制御は、出力電圧を一定にするための制御であり、ドループ制御により行われる。 Then, the control unit 30 performs output constant voltage control based on the output current command value and the output voltage command value. Output constant voltage control is control for keeping the output voltage constant, and is performed by droop control.

また、制御部30は、電圧検出部81により検出された出力電圧VBATと、バッテリ40からの出力電圧の設定値(出力電圧指令VBAT[ref])とに基づいて、バッテリ40から出力される出力電圧を目標となる値に近づけるための指令値であるバッテリ電圧指令値を出力する。 Further, the control unit 30 controls the output voltage from the battery 40 based on the output voltage V BAT detected by the voltage detection unit 81 and the set value of the output voltage from the battery 40 (output voltage command V BAT[ref] ). A battery voltage command value is output, which is a command value for bringing the output voltage closer to the target value.

次に、制御部30は、バッテリ定電圧制御を行う。バッテリ定電圧制御は、バッテリ電圧指令値と出力定電圧制御の結果に対して、急激な放電をしないための昇降圧部12の入力側の調整制御を行う制御であり、PI制御により行われる。 Next, the control unit 30 performs battery constant voltage control. Battery constant voltage control is control for adjusting the input side of voltage step-up/down section 12 in order to prevent rapid discharge with respect to the battery voltage command value and the result of output constant voltage control, and is performed by PI control.

そして、制御部30は、バッテリ定電圧制御により得られた結果をλ(ラムダ)演算した後に、PWM変換することにより得られた制御信号より、昇降圧部12のゲートを駆動させるゲート駆動回路60をPWM制御する。これにより、昇降圧部12を制御して、昇降圧部12からの出力電圧である出力電圧VDCの昇降圧の制御を行うように構成されている。前述した制御部30による制御の応答速度は各制御ブロックで設定の時定数に従う一方、出力電圧に大きな変動を与えないよう、緩やかに行われる。 Then, the control unit 30 performs a λ (lambda) calculation on the result obtained by battery constant voltage control, and then uses a gate drive circuit 60 that drives the gate of the buck-boost unit 12 using a control signal obtained by performing PWM conversion. is controlled by PWM. Thereby, the voltage step-up/down section 12 is controlled to control the step-up/down of the output voltage V DC , which is the output voltage from the step-up/down section 12 . The response speed of the control by the control unit 30 described above follows the time constant set in each control block, and is performed slowly so as not to cause large fluctuations in the output voltage.

また、制御部30は、図2に示した制御に基づいて、切換動作(バイパス給電切換動作時および電力変換部給電切換動作)時において、バイパス電圧追従制御を行う。バイパス電圧追従制御は、バイパス入力電圧(交流電源202からの出力電圧)を参照し、出力電圧VDCを所定値に合わせる制御である。 Further, the control unit 30 performs bypass voltage follow-up control during the switching operation (the bypass power supply switching operation and the power converter power supply switching operation) based on the control shown in FIG. 2 . The bypass voltage follow-up control is a control that refers to the bypass input voltage (output voltage from the AC power supply 202) and adjusts the output voltage V DC to a predetermined value.

本実施形態では、制御部30は、バイパス給電切換動作または電力変換部給電切換動作の少なくともいずれかの切換動作時において、バイパス部20からの出力電流の電流値であるIBypまたはバイパス部20からの出力電圧であるVBypの少なくともいずれか一方に基づいて、昇降圧部12からの出力電圧であるVDCを変化させる制御を行うように構成されている。 In the present embodiment, the control unit 30 controls the current value of the output current from the bypass unit 20, I Byp , or It is configured to perform control to change V DC , which is the output voltage from the step-up/down section 12, based on at least one of the output voltages, V Byp .

具体的には、制御部30は、切換動作時に、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に切り離した状態において、昇降圧部12(チョッパ方式コンバータ)を制御して、昇降圧部12(チョッパ方式コンバータ)からの出力電圧である出力電圧VDCを変化させる制御を行うように構成されている。すなわち、PWMコンバータ11の運転を停止させ、バッテリ40からの出力電力を、昇降圧部12を介して装置外部の負荷200に出力するバッテリ運転状態で、電力変換部10(昇降圧部12)の出力と、バイパス部20からの出力との間の電流量の負荷分担を行うように構成されている。 Specifically, during the switching operation, the control unit 30 controls the buck-boost unit 12 (chopper type converter) in a state where the current path between the PWM converter 11 and the AC power supply 201 outside the device is electrically disconnected. The converter is configured to perform control to change the output voltage V DC , which is the output voltage from the step-up/down section 12 (chopper type converter). That is, in a battery operating state in which the operation of the PWM converter 11 is stopped and the output power from the battery 40 is output to the load 200 outside the device via the buck-boost section 12, the power converter 10 (step-up/step-down section 12) is operated. It is configured to share the load of the amount of current between the output and the output from the bypass section 20.

バイパス給電切換動作は、装置外部の負荷200への出力を電力変換部10の出力からバイパス部20の出力に切り換える動作である。具体的には、バイパス給電切換動作は、直流無停電電源装置100のメンテナンス時などにおいて行われる切換動作であり、装置外部の負荷200への出力を電力変換部10の出力から、バイパス部20の出力(装置外部の交流電源202からの出力)へ切り換える切換動作である。 The bypass power supply switching operation is an operation of switching the output to the load 200 outside the device from the output of the power converter 10 to the output of the bypass unit 20. Specifically, the bypass power supply switching operation is a switching operation performed during maintenance of the DC uninterruptible power supply 100, and changes the output to the load 200 outside the device from the output of the power conversion unit 10 to the bypass unit 20. This is a switching operation to switch to the output (output from the AC power supply 202 outside the device).

また、電力変換部給電切換動作は、装置外部の負荷200への出力をバイパス部20の出力から電力変換部10の出力に切り換える動作である。具体的には、バイパス給電切換動作は、直流無停電電源装置100のメンテナンス終了後に直流無停電電源装置100の通常運転に戻す際において行われる切換動作であり、装置外部の負荷200への出力をバイパス部20の出力(装置外部の交流電源202からの出力)から、装置外部の負荷200への出力を電力変換部10の出力に切り換える切換動作である。 Further, the power conversion section power supply switching operation is an operation of switching the output to the load 200 outside the device from the output of the bypass section 20 to the output of the power conversion section 10. Specifically, the bypass power supply switching operation is a switching operation performed when returning the DC uninterruptible power supply 100 to normal operation after maintenance of the DC uninterruptible power supply 100 is completed, and is a switching operation that is performed when returning the DC uninterruptible power supply 100 to normal operation. This is a switching operation in which the output of the bypass unit 20 (output from the AC power supply 202 external to the device) is switched to the output of the power converter 10 to be output to the load 200 external to the device.

(バイパス給電切換動作時の制御)
バイパス給電切換動作時において、制御部30は、昇降圧部12を制御して、出力電圧VBypの電圧よりも出力電圧VDCの電圧を降圧する制御を行うように構成されている。
(Control during bypass power supply switching operation)
During the bypass power supply switching operation, the control section 30 is configured to control the step-up/down section 12 to perform control such that the voltage of the output voltage V DC is lower than the voltage of the output voltage V Byp .

制御部30は、バイパス給電切換動作時において、バイパス電圧追従制御の開始のために、バッテリ40からの出力電力を、昇降圧部12を介して、装置外部の負荷200へ出力するバッテリ運転に切り換える。そして、制御部30は、電力変換部10(昇降圧部12)からの出力が通常のバッテリ運転時と同じ所定の電圧を出力するように昇降圧部12を制御する。これにより、装置外部の負荷200への出力の全てが、電力変換部10(昇降圧部12)からの出力となるようにする。そして、制御部30は、通常のバッテリ運転時と同じ所定の電圧を出力した状態で、バイパススイッチ22をON状態にし、目標となる電流指令値に従い、出力電圧VDCを降圧する制御を行う。 During the bypass power supply switching operation, the control unit 30 switches to battery operation in which the output power from the battery 40 is output to the load 200 outside the device via the step-up/down unit 12 in order to start bypass voltage follow-up control. . Then, the control section 30 controls the voltage step-up/down section 12 so that the output from the power conversion section 10 (step-up/down section 12) is the same predetermined voltage as during normal battery operation. Thereby, all of the output to the load 200 outside the device is made to be the output from the power converter 10 (step-up/step-down section 12). Then, the control unit 30 turns on the bypass switch 22 while outputting the same predetermined voltage as during normal battery operation, and performs control to step down the output voltage V DC in accordance with the target current command value.

制御部30は、バイパス給電切換動作時に、昇降圧部12からの出力電流の電流値である電流値IDCと、電流値IBypと電流値IDCとの合計値である電流値IOUTとの差分(電流値IByp)に基づいて、昇降圧部12により出力電圧VDCを降圧することによって、電流値IBypおよび電流値IDCを変化させる制御を行うように構成されている。 During the bypass power supply switching operation, the control unit 30 controls a current value I DC that is the current value of the output current from the buck-boost unit 12, and a current value I OUT that is the sum of the current value I Byp and the current value I DC . The step-up/down section 12 steps down the output voltage V DC based on the difference (current value I Byp ), thereby performing control to change the current value I Byp and the current value I DC .

また、直流無停電電源装置100は、バイパス給電切換動作時に、電流値IDCが所定の電流値以下になった場合に、昇降圧部12とバイパス部20との電気的な接続を切り離すように構成されている。具体的には、直流無停電電源装置100は、制御部30の制御により、電流値IDCが所定の電流値以下になった場合、すなわち、電流値IDCが電流値IBypに対して十分に小さく負荷変動が十分に抑制可能な値になった場合にUPS出力スイッチ53をOFF状態にして、直流無停電電源装置100からの出力電力をバイパス部20からの出力に切り換えるように構成されている。なお、所定の電流値は、負荷変動を十分に抑制することができる値である。所定の電流値は、たとえば、電流値IBypの1割から2割程度である。 The DC uninterruptible power supply 100 also disconnects the electrical connection between the buck-boost section 12 and the bypass section 20 when the current value I DC becomes equal to or less than a predetermined current value during the bypass power supply switching operation. It is configured. Specifically, under the control of the control unit 30, the DC uninterruptible power supply 100 controls when the current value I DC becomes equal to or less than a predetermined current value, that is, when the current value I DC becomes sufficient for the current value I Byp. is configured to turn off the UPS output switch 53 and switch the output power from the DC uninterruptible power supply 100 to the output from the bypass section 20 when the load fluctuation reaches a value that can be sufficiently suppressed. There is. Note that the predetermined current value is a value that can sufficiently suppress load fluctuations. The predetermined current value is, for example, about 10% to 20% of the current value I Byp .

直流無停電電源装置100は、バイパス給電切換動作後に、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に接続してバッテリ40への充電を開始するように構成されている。具体的には、直流無停電電源装置100は、バイパス給電切換動作後に、制御部30の制御により、交流入力スイッチ51をON状態にして、PWMコンバータ11を運転状態に戻して、バッテリ40への充電を開始するように構成されている。 The DC uninterruptible power supply 100 is configured to electrically connect the current path between the PWM converter 11 and the AC power supply 201 external to the device to start charging the battery 40 after the bypass power supply switching operation. There is. Specifically, after the bypass power supply switching operation, the DC uninterruptible power supply 100 turns on the AC input switch 51 under the control of the control unit 30, returns the PWM converter 11 to the operating state, and supplies power to the battery 40. configured to start charging.

(電力変換部給電切換動作時の制御)
本実施形態では、制御部30は、電力変換部給電切換動作時に、昇降圧部12を制御して、出力電圧VBypの電圧よりも出力電圧VDCの電圧を昇圧する制御を行うように構成されている。
(Control during power conversion section power supply switching operation)
In this embodiment, the control unit 30 is configured to control the buck-boost unit 12 to boost the voltage of the output voltage V DC more than the voltage of the output voltage V Byp during the power conversion unit feeding switching operation. has been done.

電力変換部給電切換動作において、制御部30は、バイパス電圧追従制御の開始のために、バッテリ40からの出力電力を、昇降圧部12を介して、装置外部の負荷200へ出力するバッテリ運転に切り換える。そして、制御部30は、電力変換部10(昇降圧部12)からの出力が通常のバッテリ運転時と同じ所定の電圧を出力するように昇降圧部12を制御する。そして、制御部30は、昇降圧部12を制御して、昇降圧部12からの出力電圧VDCを所定の初期値に降圧する。なお、昇降圧部12の出力電圧VDCを降圧する際の所定の初期値は、バイパス整流器21からの出力電圧の最小値以下である。たとえば、バイパス入力電圧(交流)の実効値の1.2倍以下である。また、所定の初期値への降圧は、バッテリ運転に切り換える際に行ってもよい。そして、制御部30は、UPS出力スイッチ53をON状態にして、目標となる電流指令値に従い、出力電圧VDCを昇圧する制御を行う。 In the power conversion unit power supply switching operation, the control unit 30 switches to battery operation in which the output power from the battery 40 is output to the load 200 outside the device via the step-up/down unit 12 in order to start bypass voltage follow-up control. Switch. Then, the control section 30 controls the voltage step-up/down section 12 so that the output from the power conversion section 10 (step-up/down section 12) is the same predetermined voltage as during normal battery operation. Then, the control section 30 controls the voltage step-up/down section 12 to step down the output voltage V DC from the voltage step-up/down section 12 to a predetermined initial value. Note that the predetermined initial value when stepping down the output voltage V DC of the step-up/down section 12 is less than or equal to the minimum value of the output voltage from the bypass rectifier 21 . For example, it is 1.2 times or less the effective value of the bypass input voltage (AC). Furthermore, the step-down to a predetermined initial value may be performed when switching to battery operation. Then, the control unit 30 turns on the UPS output switch 53 and performs control to boost the output voltage V DC according to the target current command value.

制御部30は、電流値IDCと、電流値IOUTとの差分(電流値IByp)に基づいて、昇降圧部12により出力電圧VDCを昇圧することによって、電流値IBypおよび電流値IDCを変化させる制御を行うように構成されている。 The control unit 30 increases the current value I Byp and the current value by boosting the output voltage V DC by the buck-boost unit 12 based on the difference between the current value I DC and the current value I OUT (current value I Byp ) . It is configured to perform control to change I DC .

また、直流無停電電源装置100は、電力変換部給電切換動作時に、電流値IBypが所定の電流値以下になった場合に、昇降圧部12とバイパス部20との電気的な接続を切り離すように構成されている。具体的には、直流無停電電源装置100は、制御部30の制御により、電流値IBypが所定の電流値以下になった場合、すなわち、電流値IBypが電流値IDCに対して十分に小さく負荷変動が十分に抑制可能な値になった場合にUPS出力スイッチ53をOFF状態にして、直流無停電電源装置100からの出力電力を電力変換部10からの出力にするように構成されている。なお、所定の電流値は、負荷変動を十分に抑制することができる値である。所定の電流値は、たとえば、電流値IDCの1割から2割程度である。 Further, the DC uninterruptible power supply 100 disconnects the electrical connection between the buck-boost section 12 and the bypass section 20 when the current value I Byp becomes equal to or less than a predetermined current value during the power conversion section power supply switching operation. It is configured as follows. Specifically, under the control of the control unit 30, the DC uninterruptible power supply 100 controls when the current value I Byp becomes equal to or less than a predetermined current value, that is, when the current value I Byp becomes sufficient for the current value I DC . The UPS output switch 53 is turned OFF when the load fluctuation reaches a value that is small enough to suppress the load fluctuation, and the output power from the DC uninterruptible power supply 100 is changed to the output from the power conversion unit 10. ing. Note that the predetermined current value is a value that can sufficiently suppress load fluctuations. The predetermined current value is, for example, about 10% to 20% of the current value I DC .

(バイパス給電切換動作時の処理)
次に、図3および図4を参照して、本実施形態の制御部30によるバイパス給電切換動作時の制御の処理の一例をフローチャートに基づいて説明する。なお、一連のバイパス給電切換動作時における制御部30による制御は、バイパス給電切換動作を開始するための操作に基づいて開始される。
(Processing during bypass power supply switching operation)
Next, with reference to FIGS. 3 and 4, an example of control processing performed by the control unit 30 of the present embodiment during the bypass power supply switching operation will be described based on a flowchart. Note that control by the control unit 30 during a series of bypass power supply switching operations is started based on an operation for starting the bypass power supply switching operation.

なお、バイパス給電切換動作の開始において、交流入力スイッチ51、バッテリ入力スイッチ52、および、UPS出力スイッチ53は、ON状態である。また、バイパススイッチ22は、OFF状態である。そして、PWMコンバータ11および昇降圧部12が運転状態であり、バッテリ40は充電中である。 Note that at the start of the bypass power supply switching operation, the AC input switch 51, the battery input switch 52, and the UPS output switch 53 are in the ON state. Moreover, the bypass switch 22 is in an OFF state. The PWM converter 11 and the step-up/down section 12 are in operation, and the battery 40 is being charged.

ステップS1において、制御部30は、出力電圧(バイパス電圧)VBypが定格範囲内であるか否かの判定を行う。制御部30により、出力電圧VBypが定格範囲内でないと判定された場合には、処理ステップは、ステップS2へ移行する。制御部30により、出力電圧VBypが定格範囲内であると判定された場合には、処理ステップは、ステップS3へ移行する。 In step S1, the control unit 30 determines whether the output voltage (bypass voltage) V Byp is within the rated range. If the control unit 30 determines that the output voltage V Byp is not within the rated range, the processing step moves to step S2. If the control unit 30 determines that the output voltage V Byp is within the rated range, the processing step moves to step S3.

ステップS2において、制御部30は、バイパス給電切換動作を開始するための操作の受付を拒否する。ステップS2の完了後、処理ステップは、ステップS1に戻る。 In step S2, the control unit 30 refuses to accept the operation for starting the bypass power supply switching operation. After completion of step S2, the processing steps return to step S1.

ステップS3において、制御部30は、バイパス給電切換動作時を開始するための操作を受け付ける。操作受付後、処理ステップは、ステップS4へ移行する。 In step S3, the control unit 30 receives an operation for starting the bypass power supply switching operation. After receiving the operation, the processing step moves to step S4.

ステップS4において、制御部30は、交流入力スイッチ51をOFF状態にする制御を行い、PWMコンバータ11を停止させ、バッテリ運転モードに切り換える制御を行う。そして、制御部30は、バッテリ40からの出力電力を昇降圧部12により昇圧する制御を行う。 In step S4, the control unit 30 performs control to turn off the AC input switch 51, stop the PWM converter 11, and perform control to switch to the battery operation mode. Then, the control unit 30 controls the output power from the battery 40 to be boosted by the voltage step-up/down unit 12 .

ステップS5において、制御部30は、バイパススイッチ22をON状態にする。バイパススイッチ22をON状態にすることにより、電力変換部10(昇降圧部12)からの出力とバイパス部20からの出力とが突き合わせされる(合流させられる)。この時、昇降圧部12から出力電圧である出力電圧VDCがバイパス部20からの出力電圧である出力電圧VBypよりも高い状態である。 In step S5, the control unit 30 turns on the bypass switch 22. By turning on the bypass switch 22, the output from the power conversion section 10 (step-up/down section 12) and the output from the bypass section 20 are matched (merged). At this time, the output voltage V DC , which is the output voltage from the step-up/down section 12, is higher than the output voltage V Byp, which is the output voltage from the bypass section 20.

ステップS6において、制御部30は、バイパス電圧追従制御を行う。ステップS7において、制御部30は、バイパス部20からの出力電流の電流値である電流値IBypおよびバイパス部20からの出力電圧である出力電圧VBypを取得している。そして、制御部30は、取得した電流値IBypおよび出力電圧VBypに基づいて、バイパス入力電圧(交流電源202からの出力電圧)を参照し、出力電圧VDCを所定値に合わせるバイパス電圧追従制御を行う。 In step S6, the control unit 30 performs bypass voltage follow-up control. In step S7, the control unit 30 obtains a current value I Byp , which is the current value of the output current from the bypass unit 20, and an output voltage V Byp , which is the output voltage from the bypass unit 20. Then, the control unit 30 refers to the bypass input voltage (output voltage from the AC power supply 202) based on the acquired current value I Byp and output voltage V Byp , and performs bypass voltage tracking to adjust the output voltage V DC to a predetermined value. Take control.

ステップS7において、制御部30は、電流分担制御を行う。制御部30は、昇降圧部12を制御して、出力電圧VDCを徐々に減少させていき、バイパス部20からの電流量を増加させていく。ステップS7において、制御部30は、電流値IBypおよび出力電圧VBypを取得し続けており、取得した電流値IBypおよび出力電圧VBypに基づいて、昇降圧部12からの出力電圧である出力電圧VDCを変化させている。 In step S7, the control unit 30 performs current sharing control. The control section 30 controls the step-up/down section 12 to gradually decrease the output voltage V DC and increase the amount of current from the bypass section 20 . In step S7, the control section 30 continues to obtain the current value I Byp and the output voltage V Byp , and the output voltage from the buck-boost section 12 is determined based on the obtained current value I Byp and output voltage V Byp . The output voltage V DC is changed.

ステップS8において、制御部30は、電流値IDCが所定の電流値以下であるか否かの判定を行う。制御部30により、電流値IDCが所定の電流値以下であると判定された場合には、処理ステップは、ステップS9へ移行する。なお、所定の電流値は、負荷変動を十分に抑制することができる値である。所定の電流値は、たとえば、電流値IBypの1割から2割程度である。制御部30により、電流値IDCが所定の電流値以下でないと判定された場合には、ステップS8を繰り返す。 In step S8, the control unit 30 determines whether the current value I DC is less than or equal to a predetermined current value. If the control unit 30 determines that the current value I DC is less than or equal to the predetermined current value, the process proceeds to step S9. Note that the predetermined current value is a value that can sufficiently suppress load fluctuations. The predetermined current value is, for example, about 10% to 20% of the current value I Byp . If the control unit 30 determines that the current value I DC is not equal to or less than the predetermined current value, step S8 is repeated.

ステップS9において、制御部30は、UPS出力スイッチ53をOFF状態にする制御を行う。 In step S9, the control unit 30 performs control to turn off the UPS output switch 53.

ステップS10において、制御部30は、交流入力スイッチ51をON状態にする制御を行い、PWMコンバータ11の運転を開始させる(再始動させる)制御を行う。PWMコンバータ11の運転の開始させる(再始動させる)ことによりバッテリ40の充電が開始される。 In step S10, the control unit 30 performs control to turn on the AC input switch 51, and performs control to start (restart) the operation of the PWM converter 11. Charging of the battery 40 is started by starting (restarting) the operation of the PWM converter 11.

(電力変換部給電切換動作時の処理)
次に、図5および図6を参照して、本実施形態の制御部30による電力変換部給電切換動作時の制御の処理の一例をフローチャートに基づいて説明する。なお、一連の電力変換部給電切換動作時における制御部30による制御は、電力変換部給電切換動作を開始するための操作に基づいて開始される。
(Processing during power conversion section power supply switching operation)
Next, with reference to FIGS. 5 and 6, an example of control processing performed by the control section 30 of the present embodiment during the power conversion section power feeding switching operation will be described based on a flowchart. Note that the control by the control unit 30 during a series of power conversion section power supply switching operations is started based on an operation for starting the power conversion section power supply switching operation.

なお、電力変換部給電切換動作の開始において、交流入力スイッチ51、バッテリ入力スイッチ52、および、バイパススイッチ22は、ON状態である。また、UPS出力スイッチ53は、OFF状態である。そして、PWMコンバータ11および昇降圧部12が運転状態であり、バッテリ40は充電中または放電中である。 Note that at the start of the power conversion section power supply switching operation, the AC input switch 51, the battery input switch 52, and the bypass switch 22 are in the ON state. Further, the UPS output switch 53 is in an OFF state. The PWM converter 11 and the step-up/down section 12 are in operation, and the battery 40 is being charged or discharged.

ステップS101において、制御部30は、装置外部の交流電源201からの交流入力電圧が定格範囲内であるか否かの判定を行う。制御部30により、交流入力電圧が定格範囲内でないと判定された場合には、処理ステップは、ステップS102へ移行する。制御部30により、交流入力電圧が定格範囲内であると判定された場合には、処理ステップは、ステップS103へ移行する。 In step S101, the control unit 30 determines whether the AC input voltage from the AC power supply 201 external to the device is within the rated range. If the control unit 30 determines that the AC input voltage is not within the rated range, the process proceeds to step S102. If the control unit 30 determines that the AC input voltage is within the rated range, the process proceeds to step S103.

ステップS102において、制御部30は、電力変換部給電切換動作を開始するための操作の受付を拒否する。ステップS102の完了後、処理ステップは、ステップS101に戻る。 In step S102, the control unit 30 refuses to accept the operation for starting the power conversion unit power feeding switching operation. After completion of step S102, the processing step returns to step S101.

ステップS103において、制御部30は、電力変換部給電切換動作を開始するための操作を受け付ける。操作受付後、処理ステップは、ステップS4へ移行する。 In step S103, the control unit 30 receives an operation for starting the power conversion unit power feeding switching operation. After receiving the operation, the processing step moves to step S4.

ステップS104において、制御部30は、交流入力スイッチ51をOFF状態にする制御を行い、PWMコンバータ11を停止させ、バッテリ運転モードに切り換える制御を行う。そして、制御部30は、バッテリ40からの出力電力を昇降圧部12により昇圧する制御を行う。 In step S104, the control unit 30 performs control to turn off the AC input switch 51, stop the PWM converter 11, and perform control to switch to the battery operation mode. Then, the control unit 30 controls the output power from the battery 40 to be boosted by the voltage step-up/down unit 12 .

ステップS105において、制御部30は、バイパス電圧追従制御を行う。ステップS105において、制御部30は、バイパス部20からの出力電流の電流値である電流値IBypおよびバイパス部20からの出力電圧である出力電圧VBypを取得している。そして、制御部30は、取得した電流値IBypおよび出力電圧VBypに基づいて、バイパス入力電圧(交流電源202からの出力電圧)を参照し、出力電圧VDCを所定値に合わせるバイパス電圧追従制御を行う。そして、処理ステップは、ステップS106へ移行する。 In step S105, the control unit 30 performs bypass voltage follow-up control. In step S105, the control unit 30 obtains a current value I Byp that is the current value of the output current from the bypass unit 20 and an output voltage V Byp that is the output voltage from the bypass unit 20. Then, the control unit 30 refers to the bypass input voltage (output voltage from the AC power supply 202) based on the acquired current value I Byp and output voltage V Byp , and performs bypass voltage tracking to adjust the output voltage V DC to a predetermined value. Take control. The processing step then moves to step S106.

ステップS106において、制御部30は、UPS出力スイッチ53をON状態にする。UPS出力スイッチ53をON状態にすることにより、電力変換部10(昇降圧部12)からの出力とバイパス部20からの出力とが突き合わせされる(合流させられる)。この時、昇降圧部12から出力電圧である出力電圧VDCがバイパス部20からの出力電圧である出力電圧VBypよりも低い状態である。 In step S106, the control unit 30 turns on the UPS output switch 53. By turning on the UPS output switch 53, the output from the power conversion section 10 (step-up/down section 12) and the output from the bypass section 20 are matched (merged). At this time, the output voltage V DC , which is the output voltage from the step-up/down section 12, is lower than the output voltage V Byp, which is the output voltage from the bypass section 20.

ステップS107において、制御部30は、電流分担制御を行う。制御部30は、昇降圧部12を制御して、出力電圧VDCを徐々に増加させていき、バイパス部20からの電流量を減少させていく。ステップS107において、制御部30は、電流値IBypおよび出力電圧VBypを取得し続けており、取得した電流値IBypおよび出力電圧VBypに基づいて、昇降圧部12からの出力電圧である出力電圧VDCを変化させている。 In step S107, the control unit 30 performs current sharing control. The control section 30 controls the step-up/down section 12 to gradually increase the output voltage V DC and decrease the amount of current from the bypass section 20 . In step S107, the control unit 30 continues to acquire the current value I Byp and the output voltage V Byp , and the output voltage from the buck-boost unit 12 is determined based on the acquired current value I Byp and output voltage V Byp . The output voltage V DC is changed.

ステップS108において、制御部30は、電流値IOUTと電流値IDCとの差分が所定の電流値以下であるか否かの判定を行う。すなわち、電流値IBypが所定の電流値以下であるか否かの判定を行う。制御部30により、電流値IOUTと電流値IDCとの差分(電流値IByp)が所定の電流値以下であると判定された場合には、処理ステップは、ステップS109へ移行する。なお、所定の電流値は、負荷変動を十分に抑制することができる値である。所定の電流値は、たとえば、電流値IDCの1割から2割程度である。制御部30により、電流値IOUTと電流値IDCとの差分(電流値IByp)が所定の電流値以下でないと判定された場合には、ステップS108を繰り返す。 In step S108, the control unit 30 determines whether the difference between the current value I OUT and the current value I DC is less than or equal to a predetermined current value. That is, it is determined whether the current value I Byp is less than or equal to a predetermined current value. If the control unit 30 determines that the difference between the current value I OUT and the current value I DC (current value I Byp ) is less than or equal to the predetermined current value, the processing step moves to step S109. Note that the predetermined current value is a value that can sufficiently suppress load fluctuations. The predetermined current value is, for example, about 10% to 20% of the current value I DC . If the control unit 30 determines that the difference between the current value I OUT and the current value I DC (current value I Byp ) is not equal to or less than the predetermined current value, step S108 is repeated.

ステップS109において、制御部30は、バイパススイッチ22をOFF状態にする制御を行う。 In step S109, the control unit 30 performs control to turn off the bypass switch 22.

ステップS110において、制御部30は、交流入力スイッチ51をON状態にする制御を行い、PWMコンバータ11の運転を開始させる(再始動させる)制御を行う。そして、制御部30が、PWMコンバータ11の運転を開始させる(再始動させる)ことにより、PWMコンバータ11が装置外部の交流電源201からの電力を変換して、装置外部の負荷200への出力およびバッテリ40への出力(充電)を開始する。 In step S110, the control unit 30 performs control to turn on the AC input switch 51, and performs control to start (restart) the operation of the PWM converter 11. Then, the control unit 30 starts (restarts) the operation of the PWM converter 11, so that the PWM converter 11 converts the power from the AC power supply 201 outside the device, and outputs it to the load 200 outside the device. Output (charging) to the battery 40 is started.

(本実施形態の効果)
本実施形態では、以下のような効果を得ることができる。
(Effects of this embodiment)
In this embodiment, the following effects can be obtained.

本実施形態では、制御部30は、バイパス給電切換動作および電力変換部給電切換動作の切換動作時において、バイパス部20からの出力電流の電流値である電流値IBypおよびバイパス部20からの出力電圧である出力電圧VBypに基づいて、昇降圧部12からの出力電圧である出力電圧VDCを変化させる制御を行う。これにより、バッテリ40から出力された直流電力を昇圧または降圧して出力する昇降圧部12を電力変換部10からの出力電圧の調整に用いることによって、出力させる電圧が低い場合に装置外部の交流電力から入力可能な交流入力の上限値が低下するPWMコンバータ11を用いる場合と異なり、電力変換部10からの出力電圧をバイパス部20からの出力電圧である出力電圧VBypに容易に追従させることができる。したがって、バイパス部20からの出力電流の電流値である電流値IBypまたはバイパス部20からの出力電圧である出力電圧VBypに基づいて、昇降圧部12からの出力電圧である出力電圧VDCを変化(昇圧または降圧)させることにより、電力変換部10から電流が出力されている状態からバイパス部20から電流が出力されている状態へ電流分担を徐々に移動させることができる。その結果、交流電力をPWMコンバータ11により直流電力に変換するとともに、バイパス切換動作時における装置外部の負荷200に対する負荷変動を抑制可能な直流無停電電源装置100および直流無停電電源装置100の制御方法を提供することができる。 In the present embodiment, the control unit 30 controls the current value I Byp , which is the current value of the output current from the bypass unit 20, and the output from the bypass unit 20 during the switching operation of the bypass power supply switching operation and the power conversion unit power supply switching operation. Control is performed to change the output voltage V DC , which is the output voltage from the step-up/down section 12, based on the output voltage V Byp , which is the voltage. As a result, by using the step-up/down section 12, which steps up or steps down the DC power output from the battery 40 and outputs it, to adjust the output voltage from the power conversion section 10, when the output voltage is low, the Unlike when using a PWM converter 11 in which the upper limit value of AC input that can be inputted from electric power is lowered, the output voltage from the power converter 10 can be easily made to follow the output voltage V Byp that is the output voltage from the bypass unit 20. I can do it. Therefore, based on the current value I Byp that is the current value of the output current from the bypass section 20 or the output voltage V Byp that is the output voltage from the bypass section 20, the output voltage V DC that is the output voltage from the buck-boost section 12 is determined. By changing the voltage (stepping up or stepping down), it is possible to gradually shift the current share from a state where current is being output from the power converter 10 to a state where current is being output from the bypass section 20. As a result, the DC uninterruptible power supply 100 and the control method for the DC uninterruptible power supply 100 are capable of converting AC power into DC power by the PWM converter 11 and suppressing load fluctuations to the external load 200 during bypass switching operation. can be provided.

また、本実施形態では、上記のように、制御部30は、バイパス給電切換動作時に、昇降圧部12を制御して、出力電圧VBypの電圧よりも出力電圧VDCの電圧を降圧する制御を行う。これにより、バイパス給電切換動作時において、制御部30による昇降圧部12の制御によって、昇降圧部12からの出力電圧である出力電圧VDCをバイパス部20からの出力電圧である出力電圧VBypよりも低くすることができる。その結果、バイパス給電切換動作時において、昇降圧部12からの出力電流の電流値IDCを減少させることができるとともに、バイパス部20からの出力電流の電流値IBypを増加させることができる。 Furthermore, in the present embodiment, as described above, the control unit 30 controls the buck-boost unit 12 to lower the voltage of the output voltage V DC than the voltage of the output voltage V Byp during the bypass power supply switching operation. I do. As a result, during the bypass power supply switching operation, the control unit 30 controls the buck-boost unit 12 to change the output voltage V DC , which is the output voltage from the buck-boost unit 12, to the output voltage V Byp , which is the output voltage from the bypass unit 20. can be lower than. As a result, during the bypass power supply switching operation, the current value I DC of the output current from the buck-boost section 12 can be decreased, and the current value I Byp of the output current from the bypass section 20 can be increased.

また、本実施形態では、上記のように、制御部30は、バイパス給電切換動作時に、昇降圧部12からの出力電流の電流値である電流値IDCと、電流値IOUTとの差分(電流値IByp)に基づいて、昇降圧部12により出力電圧VDCを降圧することによって、電流値IBypおよび電流値IDCを変化させる制御を行う。これにより、バイパス給電切換動作時において、電流値IDCと、電流値IOUTとの差分からバイパス部20からの出力電流の電流値である電流値IBypを取得することができる。その結果、電流値IBypと、電流値IDCとに基づいて、昇降圧部12からの出力電圧である出力電圧VDCを降圧させることにより、容易に電力変換部10(昇降圧部12)の出力からバイパス部20の出力へ電流量の分担を徐々に移動させることができる。 Further, in the present embodiment, as described above, during the bypass power supply switching operation, the control unit 30 calculates the difference ( Control is performed to change the current value I Byp and the current value I DC by lowering the output voltage V DC by the step-up/down unit 12 based on the current value I Byp ). Thereby, during the bypass power supply switching operation, the current value I Byp, which is the current value of the output current from the bypass section 20, can be obtained from the difference between the current value I DC and the current value I OUT . As a result, by lowering the output voltage V DC , which is the output voltage from the buck-boost section 12, based on the current value I Byp and the current value I DC , the power converter 10 (buck-boost section 12) can easily It is possible to gradually shift the share of the current amount from the output of the bypass section 20 to the output of the bypass section 20.

また、本実施形態では、上記のように、直流無停電電源装置100は、バイパス給電切換動作時に、電流値IDCが所定の電流値以下になった場合に、昇降圧部12とバイパス部20との電気的な接続を切り離すように構成されている。これにより、バイパス給電切換動作時において、昇降圧部12からの出力電流の電流値である電流値IDCが十分に低下して、装置外部の負荷200に対する電流量の分担が昇降圧部12の出力からバイパス部20の出力に十分に移った状態において、装置外部の負荷200への出力を昇降圧部12の出力からバイパス部20の出力へ切り換えることができる。その結果、バイパス給電切換動作時における装置外部の負荷200に対する負荷変動をより抑制することができる。 Furthermore, in the present embodiment, as described above, the DC uninterruptible power supply 100 is configured to operate the buck-boost section 12 and the bypass section 20 when the current value I DC becomes equal to or less than a predetermined current value during the bypass power supply switching operation. It is configured to disconnect electrically from the As a result, during the bypass power supply switching operation, the current value I DC , which is the current value of the output current from the buck-boost section 12, is sufficiently reduced, and the current amount to be shared by the load 200 outside the device is shared by the buck-boost section 12. In a state where the output has sufficiently shifted to the output of the bypass section 20, the output to the load 200 outside the device can be switched from the output of the step-up/down section 12 to the output of the bypass section 20. As a result, load fluctuations in the load 200 outside the device during the bypass power supply switching operation can be further suppressed.

また、本実施形態では、上記のように、直流無停電電源装置100は、バイパス給電切換動作後に、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に接続してバッテリ40への充電を開始するように構成されている。これにより、バッテリ40から電力が放電されるバイパス給電切換動作後に、バッテリ40への充電が開始されるので、バイパス給電切換動作後に、装置外部の負荷200への出力をバイパス部20の出力から電力変換部10の出力に切り換える電力変換部給電切換動作を行う際に、バッテリ40に充電された電力が不足することを防止することができる。 Further, in this embodiment, as described above, after the bypass power supply switching operation, the DC uninterruptible power supply 100 electrically connects the current path between the PWM converter 11 and the AC power supply 201 external to the device to 40. As a result, after the bypass power supply switching operation in which power is discharged from the battery 40, charging of the battery 40 is started, so that after the bypass power supply switching operation, the output to the load 200 outside the device is changed from the output of the bypass section 20 to the power supply. When performing the power conversion section power supply switching operation of switching to the output of the conversion section 10, it is possible to prevent the power charged in the battery 40 from running out.

また、本実施形態では、上記のように、制御部30は、電力変換部給電切換動作時に、昇降圧部12を制御して、出力電圧VBypの電圧よりも出力電圧VDCの電圧を昇圧する制御を行う。これにより、電力変換部給電切換動作時において、制御部30による昇降圧部12の制御によって、昇降圧部12からの出力電圧である出力電圧VDCをバイパス部20からの出力電圧である出力電圧VBypよりも高くすることができる。その結果、バイパス給電切換動作時において、昇降圧部12からの出力電流の電流値IDCを増加させることができるとともに、バイパス部20からの出力電流の電流値IBypを減少させることができる。 Further, in the present embodiment, as described above, the control unit 30 controls the buck-boost unit 12 to boost the voltage of the output voltage V DC more than the voltage of the output voltage V Byp during the power conversion unit feeding switching operation. control. As a result, during the power conversion unit power supply switching operation, the control unit 30 controls the buck-boost unit 12 to change the output voltage V DC , which is the output voltage from the buck-boost unit 12, to the output voltage, which is the output voltage from the bypass unit 20. It can be higher than V Byp . As a result, during the bypass power supply switching operation, the current value I DC of the output current from the buck-boost section 12 can be increased, and the current value I Byp of the output current from the bypass section 20 can be decreased.

また、本実施形態では、上記のように、制御部30は、電力変換部給電切換動作時に、電流値IDCと、電流値IOUTとの差分(電流値IByp)に基づいて、昇降圧部12により出力電圧VDCを昇圧することによって、電流値IBypおよび電流値IDCを変化させる制御を行う。これにより、電力変換部給電切換動作時において、電流値IDCと、電流値IOUTとの差分からバイパス部20からの出力電流の電流値である電流値IBypを取得することができる。その結果、電流値IBypと、電流値IDCとに基づいて、昇降圧部12からの出力電圧である出力電圧IDCを昇圧させることにより、容易にバイパス部20の出力から電力変換部10(昇降圧部12)の出力へ電流量の分担を徐々に移動させる(電力変換部10からの出力の電流分担を上げる)ことができる。 Furthermore, in the present embodiment, as described above, the control unit 30 controls the step-up/down step based on the difference between the current value I DC and the current value I OUT (current value I Byp ) during the power conversion section power supply switching operation. By boosting the output voltage V DC by the unit 12, control is performed to change the current value I Byp and the current value I DC . As a result, during the power conversion unit feeding switching operation, the current value I Byp, which is the current value of the output current from the bypass unit 20, can be obtained from the difference between the current value I DC and the current value I OUT . As a result, by boosting the output voltage I DC, which is the output voltage from the buck-boost section 12, based on the current value I Byp and the current value I DC , it is possible to easily convert the output of the bypass section 20 to the power conversion section 10. It is possible to gradually shift the share of the current amount to the output of the step-up/boost unit 12 (increase the share of the current amount of the output from the power conversion unit 10).

また、本実施形態では、上記のように、直流無停電電源装置100は、電力変換部給電切換動作時に、電流値IBypが所定の電流値以下になった場合に、昇降圧部12とバイパス部20との電気的な接続を切り離すように構成されている。これにより、電力変換部給電切換動作時において、バイパス部20からの出力電流の電流値である電流値IBypが十分に低下して、装置外部の負荷200に対する電流量の分担がバイパス部20の出力から昇降圧部12の出力へ十分に移った状態において、装置外部の負荷200への出力をバイパス部20の出力から昇降圧部12の出力へ切り換えることができる。その結果、電力変換部給電切換動作時における装置外部の負荷200に対する負荷変動をより抑制することができる。 In addition, in this embodiment, as described above, the DC uninterruptible power supply 100 connects the buck-boost section 12 and the bypass when the current value I Byp becomes equal to or less than a predetermined current value during the power conversion section power supply switching operation. The electrical connection with the section 20 is disconnected. As a result, during the power conversion section power supply switching operation, the current value I Byp , which is the current value of the output current from the bypass section 20, is sufficiently reduced, and the current amount to be shared by the load 200 outside the device is shared by the bypass section 20. In a state where the output has sufficiently shifted to the output of the step-up/down section 12, the output to the load 200 outside the device can be switched from the output of the bypass section 20 to the output of the step-up/down section 12. As a result, it is possible to further suppress load fluctuations to the load 200 external to the device during the power converter feeding switching operation.

また、本実施形態では、上記のように、昇降圧部12は、バッテリ40から出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータであり、制御部30は、切換動作時に、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に切り離した状態において、昇降圧部12(チョッパ方式コンバータ)を制御して、昇降圧部12からの出力電圧である出力電圧VDCを変化させる制御を行う。これにより、フライバック方式などにより、バッテリ40からの電力を絶縁形直流電圧変換する場合に比べて、バッテリ40からの電力を効率よく、昇圧または降圧することができる。 Further, in this embodiment, as described above, the buck-boost section 12 is a chopper type converter that boosts or steps down the DC power output from the battery 40 and outputs the voltage, and the control section 30 controls the PWM converter during the switching operation. In a state where the current path between the converter 11 and the AC power supply 201 outside the device is electrically separated, the buck-boost section 12 (chopper type converter) is controlled to increase the output voltage, which is the output voltage from the buck-boost section 12. Performs control to change V DC . This allows the power from the battery 40 to be stepped up or down more efficiently than when the power from the battery 40 is converted into an isolated DC voltage using a flyback method or the like.

[変形例]
今回開示された実施形態は、全ての点で例示であり制限的なものではないと考えられるべきである。本発明の範囲は上記実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
[Modified example]
The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the description of the above embodiments, and further includes all changes (modifications) within the meaning and scope equivalent to the claims.

たとえば、上記実施形態では、制御部30は、バイパス部20からの出力電流の電流値である電流値IByp(第1電流値)およびバイパス部20からの出力電圧である出力電圧VByp(第1出力電圧)に基づいて、出力電圧VDC(第2出力電圧)を変化させる制御を行う例を示したが、本発明はこれに限られない。たとえば、制御部は、第1出力電圧または第1出力電流の一方のみに基づいて、第2出力電圧を変化させる制御を行うようにしてもよい。 For example, in the above embodiment, the control unit 30 controls the current value I Byp (first current value) that is the current value of the output current from the bypass unit 20 and the output voltage V Byp (first current value) that is the output voltage from the bypass unit 20. Although an example has been shown in which control is performed to change the output voltage V DC (second output voltage) based on the second output voltage), the present invention is not limited to this. For example, the control unit may perform control to change the second output voltage based only on either the first output voltage or the first output current.

また、上記実施形態では、制御部30は、切換動作時に、バイパス部20からの出力電流の電流値である電流値IByp(第1電流値)およびバイパス部20からの出力電圧である出力電圧VByp(第1出力電圧)を取得する例を示したが、本発明はこれに限られない。本発明では、制御部は、第1電流値または第1出力電圧の一方のみを取得するようにしてもよい。 In the above embodiment, the control unit 30 also controls the current value I Byp (first current value) which is the current value of the output current from the bypass unit 20 and the output voltage which is the output voltage from the bypass unit 20 during the switching operation. Although an example of acquiring V Byp (first output voltage) has been shown, the present invention is not limited to this. In the present invention, the control unit may acquire only one of the first current value and the first output voltage.

また、上記実施形態では、制御部30は、バイパス給電切換動作時に、昇降圧部12からの出力電流の電流値である電流値IDC(第2電流値)と、電流値IOUT(第3電流値)との差分に基づいて、昇降圧部12により出力電圧VDCを降圧することによって、電流値IByp(第1電流値)および電流値IDC(第2電流値)を変化させる制御を行う例を示したが、本発明はこれに限られない。本発明では、制御部は、バイパス給電切換動作時において、第1出力電圧に基づいて、昇降圧部12により第2出力電圧を降圧することによって、第1電流値および第2電流値を変化させる制御を行うようにしてもよい。 In the above embodiment, the control unit 30 controls the current value I DC (second current value), which is the current value of the output current from the buck-boost unit 12, and the current value I OUT (third current value) during the bypass power supply switching operation. control to change the current value I Byp (first current value) and the current value I DC (second current value) by lowering the output voltage V DC by the buck-boost unit 12 based on the difference between the current value and the current value) Although an example is shown in which this is performed, the present invention is not limited to this. In the present invention, the control section changes the first current value and the second current value by stepping down the second output voltage using the buck-boost section 12 based on the first output voltage during the bypass power supply switching operation. Control may also be performed.

また、上記実施形態では、直流無停電電源装置100は、バイパス給電切換動作後に、PWMコンバータ11と装置外部の交流電源201との間の電流経路を電気的に接続してバッテリ40への充電を開始するように構成されている例を示したが、本発明はこれに限られない。本発明では、直流無停電電源装置は、電力変換部給電切換動作前にバッテリ40への充電を開始するように構成してもよい。 Further, in the embodiment described above, after the bypass power supply switching operation, the DC uninterruptible power supply 100 electrically connects the current path between the PWM converter 11 and the AC power supply 201 external to the device to charge the battery 40. Although an example is shown in which the system is configured to start, the present invention is not limited thereto. In the present invention, the DC uninterruptible power supply device may be configured to start charging the battery 40 before the power conversion section power supply switching operation.

また、上記実施形態では、制御部30は、電力変換部給電切換動作時に、電流値IDC(第2電流値)と、電流値IOUT(第3電流値)との差分に基づいて、昇降圧部12により出力電圧VDC(第2出力電圧)を昇圧することによって、電流値IByp(第1電流値)および電流値IDC(第2電流値)を変化させる制御を行う例を示したが、本発明はこれに限られない。本発明では、制御部は、電力変換部給電切換動作時において、第1出力電圧に基づいて、昇降圧部12により第2出力電圧を昇圧することによって、第1電流値および第2電流値を変化させる制御を行うようにしてもよい。 Further, in the embodiment described above, the control unit 30 performs the lifting/lowering operation based on the difference between the current value I DC (second current value) and the current value I OUT (third current value) during the power conversion unit power feeding switching operation. An example is shown in which control is performed to change the current value I Byp (first current value) and the current value I DC (second current value) by boosting the output voltage V DC (second output voltage) by the pressure section 12. However, the present invention is not limited to this. In the present invention, the control section increases the first current value and the second current value by boosting the second output voltage using the buck-boost section 12 based on the first output voltage during the power conversion section feeding switching operation. You may perform control to change it.

また、上記実施形態では、昇降圧部12は、チョッパ方式コンバータである例を示したが、本発明はこれに限られない。本発明では、昇降圧部は、フライバック方式などにより、バッテリからの電力を絶縁形直流電圧変換するように構成されてもよい。 Furthermore, in the embodiment described above, the buck-boost section 12 is a chopper type converter, but the present invention is not limited to this. In the present invention, the step-up/down section may be configured to convert power from a battery into an isolated DC voltage using a flyback method or the like.

また、上記実施形態では、一台の直流無停電電源装置100が装置外部の負荷に対して、電力を出力(供給)する例を示したが、本発明はこれに限られない。本発明では、装置外部の負荷に対して、電気的に並列に配列される複数台の直流無停電電源装置に本発明を適用してもよい。 Further, in the above embodiment, an example was shown in which one DC uninterruptible power supply 100 outputs (supplies) power to a load outside the device, but the present invention is not limited to this. The present invention may be applied to a plurality of DC uninterruptible power supplies that are electrically arranged in parallel with respect to a load outside the device.

また、上記実施形態では、説明の便宜上、本発明の制御部30のバイパス給電切換動作時および電力変換部給電切換動作時の制御の処理を処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明したが、本発明はこれに限られない。本発明では、制御部による処理動作を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 In addition, in the above embodiment, for convenience of explanation, the control processing at the time of the bypass power supply switching operation of the control unit 30 of the present invention and the power conversion section power supply switching operation is performed in order according to the processing flow. Although the description has been made using a flowchart, the present invention is not limited thereto. In the present invention, the processing operation by the control unit may be performed by event-driven processing that executes processing on an event-by-event basis. In this case, it may be completely event-driven, or it may be a combination of event-driven and flow-driven.

10 電力変換部
11 PWMコンバータ
12 昇降圧部
20 バイパス部
21 バイパス整流器
30 制御部
40 バッテリ
100 直流無停電電源装置
Byp 電流値(第1電流値)
DC 電流値(第2電流値)
OUT 電流値(第3電流値)
Byp 出力電圧(第1出力電圧)
DC 出力電圧(第2出力電圧)
10 Power conversion unit 11 PWM converter 12 Buck-boost unit 20 Bypass unit 21 Bypass rectifier 30 Control unit 40 Battery 100 DC uninterruptible power supply I Byp current value (first current value)
I DC current value (second current value)
I OUT current value (third current value)
V Byp output voltage (1st output voltage)
V DC output voltage (second output voltage)

Claims (11)

PWM制御により装置外部から入力された交流電力を直流電力に変換して出力するPWMコンバータと、バッテリから出力された直流電力を昇圧または降圧して出力するとともに、出力側が前記PWMコンバータの出力側に接続される昇降圧部とを含む電力変換部と、
前記電力変換部の出力側に接続され、装置外部から入力された交流電力を直流電力に変換して出力するバイパス整流器を含むバイパス部と、
装置外部の負荷への出力を前記電力変換部の出力から前記バイパス部の出力に切り換えるバイパス給電切換動作または装置外部の負荷への出力を前記バイパス部の出力から前記電力変換部の出力に切り換える電力変換部給電切換動作の少なくともいずれかの切換動作時において、前記バイパス部からの出力電流の電流値である第1電流値または前記バイパス部からの出力電圧である第1出力電圧の少なくともいずれか一方に基づいて、前記昇降圧部からの出力電圧である第2出力電圧を変化させる制御を行うように構成されている制御部と、を備える直流無停電電源装置。
A PWM converter that converts AC power input from outside the device into DC power by PWM control and outputs the DC power, and a PWM converter that steps up or steps down the DC power output from the battery and outputs it, and the output side is connected to the output side of the PWM converter. a power conversion section including a buck-boost section connected;
a bypass section that is connected to the output side of the power conversion section and includes a bypass rectifier that converts AC power input from outside the device into DC power and outputs the DC power;
Bypass power supply switching operation of switching the output to a load external to the device from the output of the power conversion section to the output of the bypass section, or the power switching operation of switching the output to the load external to the device from the output of the bypass section to the output of the power conversion section At least one of a first current value that is the current value of the output current from the bypass section or a first output voltage that is the output voltage from the bypass section during at least one of the switching operations of the converter power supply switching operation. a control section configured to perform control to change a second output voltage, which is the output voltage from the step-up/down section, based on the step-up/down section.
前記制御部は、前記バイパス給電切換動作時に、前記昇降圧部を制御して、前記第1出力電圧の電圧よりも前記第2出力電圧の電圧を降圧する制御を行うように構成されている、請求項1に記載の直流無停電電源装置。 The control unit is configured to control the step-up/down unit to lower the voltage of the second output voltage than the voltage of the first output voltage during the bypass power supply switching operation. The DC uninterruptible power supply according to claim 1. 前記制御部は、前記バイパス給電切換動作時に、前記昇降圧部からの出力電流の電流値である第2電流値と、前記第1電流値と前記第2電流値との合計値である第3電流値との差分に基づいて、前記昇降圧部により前記第2出力電圧を降圧することによって、前記第1電流値および前記第2電流値を変化させる制御を行うように構成されている、請求項2に記載の直流無停電電源装置。 The control section is configured to control, during the bypass power supply switching operation, a second current value that is a current value of an output current from the buck-boost section, and a third current value that is a total value of the first current value and the second current value. The step-up/down section is configured to perform control to change the first current value and the second current value by stepping down the second output voltage by the step-up/down section based on a difference between the first current value and the second current value. The DC uninterruptible power supply device according to item 2. 前記バイパス給電切換動作時に、前記第2電流値が所定の電流値以下になった場合に、前記昇降圧部と前記バイパス部との電気的な接続を切り離すように構成されている、請求項3に記載の直流無停電電源装置。 3 . The step-up/down section and the bypass section are electrically disconnected from each other when the second current value becomes equal to or less than a predetermined current value during the bypass power supply switching operation. DC uninterruptible power supply described in . 前記バイパス給電切換動作後に、前記PWMコンバータと装置外部の交流電源との間の電流経路を電気的に接続して前記バッテリへの充電を開始するように構成されている、請求項4に記載の直流無停電電源装置。 5. The device according to claim 4, wherein the device is configured to electrically connect a current path between the PWM converter and an AC power source external to the device to start charging the battery after the bypass power supply switching operation. DC uninterruptible power supply. 前記制御部は、前記電力変換部給電切換動作時に、前記昇降圧部を制御して、前記第1出力電圧の電圧よりも前記第2出力電圧の電圧を昇圧する制御を行うように構成されている、請求項5に記載の直流無停電電源装置。 The control unit is configured to control the step-up/down unit to increase the voltage of the second output voltage more than the voltage of the first output voltage when switching the power supply to the power conversion unit. The DC uninterruptible power supply according to claim 5. 前記制御部は、前記電力変換部給電切換動作時に、前記第2電流値と、前記第3電流値との差分に基づいて、前記昇降圧部により前記第2出力電圧を昇圧することによって、前記第1電流値および前記第2電流値を変化させる制御を行うように構成されている、請求項6に記載の直流無停電電源装置。 The control section is configured to increase the second output voltage by the step-up/down section based on the difference between the second current value and the third current value during the power conversion section power supply switching operation. The DC uninterruptible power supply according to claim 6, configured to perform control to change the first current value and the second current value. 前記電力変換部給電切換動作時に、前記第1電流値が所定の電流値以下になった場合に、前記昇降圧部と前記バイパス部との電気的な接続を切り離すように構成されている、請求項7に記載の直流無停電電源装置。 The present invention is configured to disconnect electrical connection between the step-up/down section and the bypass section when the first current value becomes equal to or less than a predetermined current value during the power conversion section power supply switching operation. The DC uninterruptible power supply device according to item 7. 前記昇降圧部は、バッテリから出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータであり、
前記制御部は、前記切換動作時に、前記PWMコンバータと装置外部の交流電源との間の電流経路を電気的に切り離した状態において、前記チョッパ方式コンバータを制御して、前記チョッパ方式コンバータからの出力電圧である第2出力電圧を変化させる制御を行うように構成されている、請求項1~8のいずれか1項に記載の直流無停電電源装置。
The buck-boost section is a chopper converter that boosts or steps down the DC power output from the battery and outputs the voltage.
During the switching operation, the control unit controls the chopper type converter in a state in which a current path between the PWM converter and an AC power source external to the device is electrically disconnected, and outputs an output from the chopper type converter. The DC uninterruptible power supply device according to claim 1, wherein the DC uninterruptible power supply device is configured to perform control to change the second output voltage.
バッテリから出力された直流電力を昇圧または降圧して出力する昇降圧部と、前記昇降圧部の出力側に接続され、装置外部の交流電源からの交流電力を直流電力に変換して出力するバイパス部とを含み、直流電力を装置外部に出力する直流無停電電源装置の制御方法であって、
前記バイパス部からの出力電流の電流値である第1電流値または前記バイパス部の出力電圧である第1出力電圧を取得するステップと、
取得した前記第1電流値または前記第1出力電圧の少なくともいずれか一方に基づいて、前記昇降圧部からの出力電圧である第2出力電圧を変化させるステップと、を備える、直流無停電電源装置の制御方法。
A buck-boost unit that steps up or steps down the DC power output from the battery and outputs the voltage; and a bypass that is connected to the output side of the buck-boost unit and converts the AC power from the AC power source outside the device into DC power and outputs the DC power. A control method for a DC uninterruptible power supply device that outputs DC power to the outside of the device, the method comprising:
acquiring a first current value that is the current value of the output current from the bypass section or a first output voltage that is the output voltage of the bypass section;
a step of changing a second output voltage that is an output voltage from the buck-boost section based on at least one of the acquired first current value or first output voltage; control method.
前記昇降圧部は、バッテリから出力された直流電力を昇圧または降圧して出力するチョッパ方式コンバータであり、
前記第2出力電圧を変化させるステップは、前記チョッパ方式コンバータからの出力電圧である前記第2出力電圧を変化させるステップである、請求項10に記載の直流無停電電源装置の制御方法。
The buck-boost section is a chopper converter that boosts or steps down the DC power output from the battery and outputs the voltage.
11. The method for controlling a DC uninterruptible power supply according to claim 10, wherein the step of changing the second output voltage is a step of changing the second output voltage that is the output voltage from the chopper type converter.
JP2020048017A 2020-03-18 2020-03-18 DC uninterruptible power supply and control method for DC uninterruptible power supply Active JP7415703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048017A JP7415703B2 (en) 2020-03-18 2020-03-18 DC uninterruptible power supply and control method for DC uninterruptible power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048017A JP7415703B2 (en) 2020-03-18 2020-03-18 DC uninterruptible power supply and control method for DC uninterruptible power supply

Publications (2)

Publication Number Publication Date
JP2021151062A JP2021151062A (en) 2021-09-27
JP7415703B2 true JP7415703B2 (en) 2024-01-17

Family

ID=77849694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048017A Active JP7415703B2 (en) 2020-03-18 2020-03-18 DC uninterruptible power supply and control method for DC uninterruptible power supply

Country Status (1)

Country Link
JP (1) JP7415703B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069482A1 (en) 2013-09-11 2015-03-12 Micron Technology, Inc. DRAM Arrays, Semiconductor Constructions and DRAM Array Layouts
US20170117734A1 (en) 2015-10-23 2017-04-27 Lite-On Electronics (Guangzhou) Limited Uninterruptible power supply system and method for supplying backup power
WO2018142579A1 (en) 2017-02-03 2018-08-09 東芝三菱電機産業システム株式会社 Uninterruptible power supply device
WO2020008549A1 (en) 2018-07-04 2020-01-09 東芝三菱電機産業システム株式会社 Uninterruptable power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150069482A1 (en) 2013-09-11 2015-03-12 Micron Technology, Inc. DRAM Arrays, Semiconductor Constructions and DRAM Array Layouts
US20170117734A1 (en) 2015-10-23 2017-04-27 Lite-On Electronics (Guangzhou) Limited Uninterruptible power supply system and method for supplying backup power
WO2018142579A1 (en) 2017-02-03 2018-08-09 東芝三菱電機産業システム株式会社 Uninterruptible power supply device
WO2020008549A1 (en) 2018-07-04 2020-01-09 東芝三菱電機産業システム株式会社 Uninterruptable power supply device

Also Published As

Publication number Publication date
JP2021151062A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US8134849B2 (en) AC to DC power converter using an energy-storage capacitor for providing hold-up time function
JP5089359B2 (en) Power converter
US8913406B2 (en) Paralleled power converters with auto-stagger start-up
WO2012115098A1 (en) Electricity storage system
JP6849076B2 (en) Photovoltaic system, power conditioner
EP1511152B1 (en) Uninterruptible power supply
JP2003052134A (en) Control method for uninterruptible power supply apparatus, and the uninterruptible power supply apparatus employing the method
JP5347362B2 (en) Emergency power circuit
US20220239144A1 (en) Controlled power transitions between electrical power supplies
JP2009207234A (en) Linkage system of hybrid system
CN111106601A (en) Control of DC voltage distribution system
JP7415703B2 (en) DC uninterruptible power supply and control method for DC uninterruptible power supply
CN112117920B (en) Power supply device, control method thereof and power supply system
JP2008061469A (en) Energy storage device using electric double-layer capacitor
JP6902719B2 (en) Converter system
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
JP5667915B2 (en) DC power supply
JP6922784B2 (en) Power converter and power conversion system
JP3397046B2 (en) Control method of buck-boost chopper
JP4474141B2 (en) Inverter control device
WO2023079972A1 (en) Isolated dc-dc conversion device, control method therefor, and power conversion system
JP4190795B2 (en) Power circuit
JP5169865B2 (en) Power converter
JP2002010528A (en) Momentary voltage drop compensating device and initial charging method thereof
JP7312088B2 (en) Power conversion device and power conversion control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7415703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150