JP7412753B2 - Microorganisms with improved α-linolenic acid production ability or their cultures - Google Patents

Microorganisms with improved α-linolenic acid production ability or their cultures Download PDF

Info

Publication number
JP7412753B2
JP7412753B2 JP2020034277A JP2020034277A JP7412753B2 JP 7412753 B2 JP7412753 B2 JP 7412753B2 JP 2020034277 A JP2020034277 A JP 2020034277A JP 2020034277 A JP2020034277 A JP 2020034277A JP 7412753 B2 JP7412753 B2 JP 7412753B2
Authority
JP
Japan
Prior art keywords
microorganism
aspergillus
fatty acid
linolenic acid
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020034277A
Other languages
Japanese (ja)
Other versions
JP2021006020A (en
Inventor
潤一 真野
英一 小竹
和香子 都築
聡 鈴木
憲一 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Publication of JP2021006020A publication Critical patent/JP2021006020A/en
Application granted granted Critical
Publication of JP7412753B2 publication Critical patent/JP7412753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Description

本発明は、α-リノレン酸産生能が向上した微生物またはその培養物に関する。 The present invention relates to microorganisms with improved α-linolenic acid production ability or cultures thereof.

遺伝子組換え技術を利用してヤロウィア属の微生物を改良し、α-リノレン酸を生産する技術が報告されている(特許文献1)。また、アスペルギルス属微生物を用いて食品廃棄物を処理して飼料を生産する方法が報告されている(特許文献2)。 A technique for producing α-linolenic acid by improving microorganisms of the genus Yarrowia using genetic recombination technology has been reported (Patent Document 1). Furthermore, a method for producing feed by treating food waste using Aspergillus microorganisms has been reported (Patent Document 2).

特許第4916886号公報Patent No. 4916886 特許第4671436号公報Patent No. 4671436

Djousse L et al, Hypertension. 45, 368-373, 2005.Djousse L et al, Hypertension. 45, 368-373, 2005. 矢澤一良 食品科学工学会誌、43、1、1231-1237、1996年Kazuyoshi Yazawa Journal of the Society of Food Science and Technology, 43, 1, 1231-1237, 1996 Kirubakaran A et al. Poult. Sci. 90, 1, 147-156, 2011.Kirubakaran A et al. Poult. Sci. 90, 1, 147-156, 2011. Corino C et al. Meat Sci. 98, 4, 679-688, 2014.Corino C et al. Meat Sci. 98, 4, 679-688, 2014.

近年、国際的に環境問題への関心が高まっており、資源循環型社会の実現に期待が寄せられている。日本国内では、食品廃棄物が年間2800万トン発生しているとされ、その有効利用技術の開発が求められている。特に、米飯などのデンプンを含む食品廃棄物の有効活用が必要である。また、オメガ3脂肪酸の健康機能性が注目されており、その一つであるα-リノレン酸を多く含む食品の生産が求められている。 In recent years, interest in environmental issues has increased internationally, and expectations are high for the realization of a resource recycling society. It is estimated that 28 million tons of food waste is generated annually in Japan, and there is a need to develop technology for its effective use. In particular, it is necessary to effectively utilize food waste containing starch, such as cooked rice. In addition, the health functionality of omega-3 fatty acids is attracting attention, and there is a demand for the production of foods containing a large amount of α-linolenic acid, one of them.

本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、食品または飼料として安全に使用することができるアスペルギルス属の微生物が元来もつα-リノレン酸生産能力をセルフクローニングで大幅に高められることを明らかにした。セルフクローニングとは、宿主と同属同種の微生物のDNAをそのまま、もしくは、複数を組み合わせて、宿主の細胞に導入することである。セルフクローニングで改良した微生物は、遺伝子組換えに関する安全性審査を受ける必要はないことから、費用をかけることなく速やかに産業利用することが可能である。このアスペルギルス属微生物のセルフクローニング株を食品廃棄物を用いて培養することで、食品廃棄物を有効活用し、かつ、α-リノレン酸を多く含む微生物菌体またはその培養物を生産することができる。α-リノレン酸を多く含む微生物菌体またはその培養物を飼料として用いることで、α-リノレン酸を多く含む健康機能性の高い畜産物または水産物を生産することができる。また、α-リノレン酸を多く含む微生物菌体またはその培養物を直接、健康機能性の高い食品として利用することもできる。 As a result of intensive studies to solve the above problems, the present inventors have found that by self-cloning, the ability to produce α-linolenic acid, which is originally inherent in Aspergillus microorganisms, can be safely used as food or feed. It was revealed that it can be improved. Self-cloning refers to the introduction of DNA from microorganisms of the same genus and species as the host, either directly or in combination, into the cells of the host. Microorganisms improved through self-cloning do not need to undergo safety screening regarding genetic recombination, so they can be quickly put to industrial use without incurring any costs. By culturing this self-cloning strain of Aspergillus microorganisms using food waste, it is possible to effectively utilize food waste and to produce microorganism cells or their culture containing a large amount of α-linolenic acid. . By using microbial cells or cultures thereof containing a large amount of α-linolenic acid as feed, it is possible to produce livestock or marine products containing a large amount of α-linolenic acid and having high health functionality. Furthermore, microbial cells or cultures thereof containing a large amount of α-linolenic acid can also be used directly as foods with high health functionality.

すなわち、本発明は以下を包含する。
〔1〕糸状菌に属し、糖質代謝経路および脂肪酸不飽和化酵素遺伝子を含む微生物において、宿主と同属同種の微生物由来の核酸が細胞外から少なくとも1つ導入されており、導入された核酸の少なくとも1つにより脂肪酸不飽和化酵素遺伝子を高発現する、α-リノレン酸産生能が向上した微生物またはその培養物。
〔2〕微生物が、食品安全性または飼料安全性を有する微生物である、〔1〕の微生物またはその培養物。
〔3〕微生物が、アスペルギルス属微生物である、〔1〕または〔2〕の微生物またはその培養物。
〔4〕 高発現する脂肪酸不飽和化酵素遺伝子が、配列番号2のアミノ酸配列に対して70%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む、〔1〕~〔3〕のいずれかの微生物またはその培養物。
〔5〕 高発現する脂肪酸不飽和化酵素遺伝子が、配列番号9のアミノ酸配列に対して70%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む、〔1〕~〔3〕のいずれかの微生物またはその培養物。
〔6〕宿主と同属同種の微生物由来の脂肪酸不飽和化酵素遺伝子の発現が、宿主と同属同種の微生物由来のプロモーターで制御されている、〔1〕~〔5〕のいずれかの微生物またはその培養物。
〔7〕プロモーターが、TEF1プロモーターである、〔6〕の微生物またはその培養物。
〔8〕〔1〕~〔7〕のいずれかの微生物またはその培養物を含む、食品または飼料。
〔9〕〔1〕~〔7〕のいずれかの微生物またはその培養物を含む、食用性物質発酵用組成物。
〔10〕以下を含む、α-リノレン酸を高含有量で含む食品または飼料の製造方法:
(i)食用性物質と、〔1〕~〔7〕のいずれかの微生物またはその培養物あるいは〔9〕の組成物とを接触させる工程;および
(ii)食用性物質を発酵させる工程。
〔11〕食用性物質が、食品またはその廃棄物である、〔10〕の方法。
〔12〕食用性物質が、糖質を含む、〔10〕または〔11〕の方法。
〔13〕食用性物質が、デンプンおよびラクトースの少なくともいずれかを含む、〔10〕~〔12〕のいずれかの方法。
〔14〕食用性物質が、米飯を含む、〔10〕~〔12〕のいずれかの方法。
〔15〕食用性物質が、ホエイを含む、〔10〕~〔12〕のいずれかの方法。
〔16〕以下を含む、α-リノレン酸の製造方法:
(i)糖質供給源と、〔1〕~〔7〕のいずれかの微生物またはその培養物あるいは〔9〕の組成物とを接触させる工程;および
(ii)糖質供給源を発酵させる工程。
〔17〕糖質供給源が、デンプンおよびラクトースの少なくともいずれかを含む、〔16〕の方法。
〔18〕〔8〕の飼料を動物(但し、ヒトを除く)に給与して飼育しα-リノレン酸を高含有させることを含む、畜産物または水産物の生産方法。
That is, the present invention includes the following.
[1] In a microorganism that belongs to filamentous fungi and contains carbohydrate metabolic pathway and fatty acid desaturase genes, at least one nucleic acid derived from a microorganism of the same genus and species as the host is introduced from outside the cell, and the introduced nucleic acid is A microorganism or a culture thereof having an improved ability to produce α-linolenic acid, which highly expresses at least one fatty acid desaturase gene.
[2] The microorganism of [1] or a culture thereof, wherein the microorganism is a food-safe or feed-safe microorganism.
[3] The microorganism of [1] or [2] or a culture thereof, wherein the microorganism is a microorganism belonging to the genus Aspergillus.
[4] The highly expressed fatty acid desaturase gene has a polynucleotide sequence that has 70% or more identity to the amino acid sequence of SEQ ID NO: 2 and encodes an amino acid sequence that has fatty acid desaturation activity. The microorganism or culture thereof according to any one of [1] to [3], including:
[5] The highly expressed fatty acid desaturase gene has a polynucleotide sequence that has 70% or more identity to the amino acid sequence of SEQ ID NO: 9 and encodes an amino acid sequence that has fatty acid desaturation activity. The microorganism or culture thereof according to any one of [1] to [3], including:
[6] Any one of the microorganisms [1] to [5], or its microorganism, in which the expression of a fatty acid desaturase gene derived from a microorganism of the same genus and species as the host is controlled by a promoter derived from a microorganism of the same genus and species as the host. Culture.
[7] The microorganism of [6] or a culture thereof, wherein the promoter is the TEF1 promoter.
[8] Food or feed containing the microorganism or culture thereof according to any one of [1] to [7].
[9] A composition for fermenting an edible substance, comprising the microorganism according to any one of [1] to [7] or a culture thereof.
[10] A method for producing food or feed containing a high content of α-linolenic acid, including the following:
(i) the step of contacting the edible substance with the microorganism or its culture according to any one of [1] to [7] or the composition of [9]; and (ii) the step of fermenting the edible substance.
[11] The method of [10], wherein the edible substance is food or its waste.
[12] The method of [10] or [11], wherein the edible substance contains carbohydrates.
[13] The method according to any one of [10] to [12], wherein the edible substance contains at least one of starch and lactose.
[14] The method of any one of [10] to [12], wherein the edible substance includes cooked rice.
[15] The method according to any one of [10] to [12], wherein the edible substance contains whey.
[16] Method for producing α-linolenic acid, including the following:
(i) the step of contacting the carbohydrate source with the microorganism or its culture according to any one of [1] to [7] or the composition of [9]; and (ii) the step of fermenting the carbohydrate source .
[17] The method of [16], wherein the carbohydrate source contains at least one of starch and lactose.
[18] A method for producing livestock or marine products, which comprises feeding and raising animals (excluding humans) with the feed of [8] to increase the content of α-linolenic acid.

本発明によれば、食品または飼料として安全に使用できるα-リノレン酸高含有微生物菌体またはその培養物を製造することができる。デンプンもしくはそれを含む食品廃棄物からα-リノレン酸高含有微生物菌体を生産し、食品や飼料として利用することができる。 According to the present invention, it is possible to produce microbial cells or cultures thereof that contain a high content of α-linolenic acid and can be safely used as food or feed. Microbial cells containing high α-linolenic acid can be produced from starch or food waste containing starch and used as food or feed.

図1は、配列番号1の脂肪酸不飽和化酵素遺伝子の塩基配列と相同性が認められた塩基配列のリストで、上から相同性が高い順にリストアップされている。相同性は、「Query Cover」欄および「Per. Ident」欄に示される。FIG. 1 is a list of nucleotide sequences that have been found to be homologous to the nucleotide sequence of the fatty acid desaturase gene of SEQ ID NO: 1, and are listed in descending order of homology from the top. Homology is indicated in the "Query Cover" and "Per. Ident" columns. 図2は、配列番号2の脂肪酸不飽和化酵素遺伝子のアミノ酸配列と相同性が認められたアミノ酸配列のリストで、上から相同性が高い順にリストアップされている。相同性は、「Query Cover」欄および「Per. Ident」欄に示される。FIG. 2 is a list of amino acid sequences that have been found to be homologous to the amino acid sequence of the fatty acid desaturase gene of SEQ ID NO: 2, and are listed in descending order of homology from the top. Homology is indicated in the "Query Cover" and "Per. Ident" columns. 図3は、アスペルギルス・オリゼRIB40株と脂肪酸不飽和化酵素遺伝子セルフクローニング株の菌体の脂肪酸組成を分析したガスクロマトグラフである。FIG. 3 is a gas chromatograph analyzing the fatty acid composition of the bacterial cells of the Aspergillus oryzae RIB40 strain and the fatty acid desaturase gene self-cloning strain. 図4は、配列番号9の脂肪酸不飽和化酵素のアミノ酸配列と相同性が認められたアミノ酸配列のリストで、上から相同性が高い順にリストアップされている。相同性は、「Query Cover」欄および「Per. Ident」欄に示される。FIG. 4 is a list of amino acid sequences that were found to be homologous to the amino acid sequence of fatty acid desaturase of SEQ ID NO: 9, and are listed in descending order of homology from the top. Homology is indicated in the "Query Cover" and "Per. Ident" columns. 図5は、アスペルギルス・カワチ株とその脂肪酸不飽和化酵素遺伝子導入株の菌体の脂肪酸組成を分析したガスクロマトグラフである。FIG. 5 is a gas chromatograph analyzing the fatty acid composition of the bacterial cells of the Aspergillus kawachi strain and its fatty acid desaturase gene-introduced strain.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明は、α-リノレン酸産生能が向上した、糸状菌に属する微生物またはその培養物に関する。このような微生物を培養すると、α-リノレン酸の含有量が多い微生物菌体を製造することができる。より具体的には、本発明の微生物またはその培養物は、糸状菌に属し、糖質代謝経路および脂肪酸不飽和化酵素遺伝子を含む微生物において、細胞外から少なくとも1つの核酸が導入されており、導入された核酸の少なくとも1つにより脂肪酸不飽和化酵素遺伝子の発現量が導入前(野生株)と比較して高められている微生物またはその培養物である。導入される核酸は、特に限定されないが、例えば、宿主と同属同種の微生物由来の脂肪酸不飽和化酵素遺伝子(例、その微生物のゲノム中に存在する脂肪酸不飽和化酵素遺伝子)、プロモーター、転写因子、微生物のα-リノレン酸の産生、蓄積、分泌に関わるその他の宿主と同属同種の微生物由来の核酸が挙げられる。微生物に導入される、同属同種の微生物由来の核酸は、微生物から直接抽出した核酸でもよいし、他の微生物(例、大腸菌)に、同属同種の微生物由来の核酸を生産させて得られる核酸等の、遺伝子工学の分野で既知の手法により人工的に合成された核酸でもよい。 The present invention relates to a microorganism belonging to filamentous fungi or a culture thereof, which has an improved ability to produce α-linolenic acid. By culturing such microorganisms, microbial cells with a high content of α-linolenic acid can be produced. More specifically, the microorganism of the present invention or a culture thereof belongs to a filamentous fungus and contains a carbohydrate metabolic pathway and a fatty acid desaturase gene, into which at least one nucleic acid has been introduced from outside the cell, A microorganism or a culture thereof in which the expression level of a fatty acid desaturase gene is increased by at least one of the introduced nucleic acids compared to before introduction (wild strain). The introduced nucleic acid is not particularly limited, but includes, for example, a fatty acid desaturase gene derived from a microorganism of the same genus and species as the host (e.g., a fatty acid desaturase gene present in the genome of the microorganism), a promoter, and a transcription factor. , and nucleic acids derived from microorganisms of the same genus and species as other hosts involved in the production, accumulation, and secretion of α-linolenic acid by microorganisms. The nucleic acid derived from a microorganism of the same genus and species that is introduced into a microorganism may be a nucleic acid extracted directly from the microorganism, or a nucleic acid obtained by causing another microorganism (e.g., Escherichia coli) to produce a nucleic acid derived from a microorganism of the same genus and species. Nucleic acids may be artificially synthesized by methods known in the field of genetic engineering.

本発明において、α-リノレン酸を生産するために用いる微生物は、糸状菌に属する微生物である。本発明において、α-リノレン酸を生産するために用いる微生物は、食品安全性または飼料安全性を有する微生物であることが好ましい。食品安全性または飼料安全性を有する微生物としては、例えば、食品製造や飼料として使用された経験がある微生物が挙げられる。このような微生物のうち、アスペルギルス属の微生物として、より具体的には例えば、アスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・リュウキュウエンシス(Aspergillus luchuensis)、アスペルギルス・リュウキュウエンシス・カワチ(Aspergillus luchuensis var kawachii)、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・ソヤ(Aspergillus sojae)、アスペルギルス・タマリ(Aspergillus tamari)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・グラウカス(Aspergillus glaucus)が挙げられる。これらのうち、アスペルギルス・オリゼ(例、アスペルギルス・オリゼ RIB40株)およびアスペルギルス・カワチ(例、アスペルギルス・カワチ NBRC4308株)が好ましい。 In the present invention, the microorganism used to produce α-linolenic acid is a microorganism belonging to filamentous fungi. In the present invention, the microorganism used to produce α-linolenic acid is preferably a food-safe or feed-safe microorganism. Examples of microorganisms that are food safe or feed safe include microorganisms that have been used in food production or feed. Among such microorganisms, microorganisms of the genus Aspergillus include, more specifically, Aspergillus oryzae, Aspergillus niger, Aspergillus luchuensis, and Aspergillus ryukyuensis. Aspergillus luchuensis var kawachii, Aspergillus kawachii, Aspergillus sojae, Aspergillus tamari tamari), Aspergillus awamori, Aspergillus glaucus Can be mentioned. Among these, Aspergillus oryzae (eg, Aspergillus oryzae RIB40 strain) and Aspergillus kawachi (eg, Aspergillus kawachi NBRC4308 strain) are preferred.

糸状菌に属する微生物、特に、アスペルギルス属微生物は、一般的にα-リノレン酸生産能力が高い種類の微生物ではないので、脂肪酸不飽和化酵素遺伝子が存在していても、その発現量は一般的に低い。そこで、導入される核酸の組み合わせとして、好ましくは、宿主と同属同種の微生物に由来する脂肪酸不飽和化酵素遺伝子と共に、斯かる遺伝子の発現が高まるプロモーターが挙げられる。これにより、微生物が元来もつα-リノレン酸生産能力が大幅に高められる。プロモーターとしては、宿主と同属同種の微生物由来のプロモーターを用いることが好ましい。このことにより、改変微生物は、遺伝子組換えに関する安全性審査を受ける必要がなく、食品または飼料の用途に用いることができる。同属同種の微生物由来のゲノム領域(例、プロモーター、コード領域、3’非翻訳領域)での微生物の改変を「セルフクローニング」と呼ぶことがある。 Microorganisms belonging to filamentous fungi, especially microorganisms of the genus Aspergillus, are generally not microorganisms that have a high ability to produce α-linolenic acid, so even if fatty acid desaturase genes are present, their expression levels are generally low. low. Therefore, the combination of nucleic acids to be introduced preferably includes a fatty acid desaturase gene derived from a microorganism of the same genus and species as the host, and a promoter that increases the expression of such a gene. This greatly increases the α-linolenic acid production ability that microorganisms originally have. As the promoter, it is preferable to use a promoter derived from a microorganism of the same genus and species as the host. As a result, the modified microorganisms do not need to undergo safety screening regarding genetic recombination, and can be used for food or feed purposes. Modification of a microorganism using a genomic region (eg, promoter, coding region, 3' untranslated region) derived from a microorganism of the same genus and species is sometimes referred to as "self-cloning."

本発明におけるセルフクローニングとは、宿主(組換えDNA技術において、DNAが移入される生細胞をいう。以下同じ。)と分類学上同一の種に属する微生物のDNAのみを用いて宿主の性質を変化させることである。遺伝子組換え生物の食品や飼料としての利用や環境放出に関する安全性審査のためには、入念かつ大量に実験データを用意する必要があるとともに、審査に長期間を要することから、莫大なコストが必要である。しかし、法令等〔(1)組換えDNA技術応用食品及び添加物の安全性審査の手続(抄)(平成12年厚生省告示第233号)https://www.mhlw.go.jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/1_11.pdf、(2)飼料及び飼料添加物の成分規格等に関する省令http://www.famic.go.jp/ffis/feed/hourei/sub1_seibunkikaku.html、(3)遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律施行規則(平成15年財務省、文部科学省、厚生労働省、農林水産省、経済産業省、環境省令第1号)http://www.env.go.jp/press/files/jp/108458.pdf〕に示されているように、セルフクローニングで改良された微生物は、遺伝子組換え生物の安全性審査を受けることなく、産業利用することが可能であり、安全性審査のためのコストを必要としない。また、遺伝子組換え微生物を産業利用する場合には、培養後に入念に滅菌処理を行う必要があり、そのために多大なコストを要する。一方、セルフクローニングで改良された微生物は、非遺伝子組換えの微生物として扱うことができるため、滅菌処理のコストを必要としない。 Self-cloning in the present invention refers to the characteristics of a host (in recombinant DNA technology, a living cell into which DNA is transferred; the same applies hereinafter) using only the DNA of a microorganism that belongs to the same taxonomic species as the host. It is about changing. Safety reviews regarding the use of genetically modified organisms as food and feed, and their release into the environment require careful preparation of large amounts of experimental data, and the lengthy review process requires enormous costs. is necessary. However, laws and regulations [(1) Procedures for safety review of recombinant DNA technology applied foods and additives (excerpt) (Ministry of Health and Welfare Notification No. 233 of 2000) https://www. mhlw. go. jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/1_11. pdf, (2) Ministerial Ordinance on Ingredient Standards for Feed and Feed Additives http://www. famic. go. jp/ffis/feed/hourei/sub1_seibunkikaku. html, (3) Enforcement Regulations of the Act on Securing Biological Diversity through Regulations on the Use of Genetically Modified Organisms (2003 Ministry of Finance, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Health, Labor and Welfare, Ministry of Agriculture, Forestry and Fisheries, Ministry of Economy, Trade and Industry, Ministry of the Environment Ordinance) No. 1) http://www. env. go. jp/press/files/jp/108458. As shown in [PDF], microorganisms improved through self-cloning can be used industrially without undergoing a safety review for genetically modified organisms, and there is no need to incur the cost of a safety review. I don't. Furthermore, when genetically modified microorganisms are used industrially, it is necessary to carefully sterilize them after culturing, which requires a great deal of cost. On the other hand, microorganisms improved through self-cloning can be treated as non-genetically modified microorganisms, so they do not require the cost of sterilization.

セルフクローニングとしては、例えば、微生物ゲノム上の脂肪酸不飽和化酵素遺伝子のプロモーター領域の、宿主と同属同種の微生物に由来するプロモーターでの置換または挿入、微生物ゲノム上のプロモーター下流領域への、宿主と同属同種の微生物に由来する脂肪酸不飽和化酵素遺伝子の置換または挿入、宿主と同属同種の微生物に由来するプロモーターと宿主と同属同種の微生物に由来する脂肪酸不飽和化酵素遺伝子を組み合わせた遺伝子発現カセット(選抜マーカー遺伝子が結合されていてもよい)の微生物への導入が挙げられる。セルフクローニングの手段としては、例えば、相同組換え、ゲノム編集(例、CRISPR-Cas9、TALEN)、ベクター導入が挙げられる。 Self-cloning includes, for example, replacing or inserting the promoter region of the fatty acid desaturase gene on the microbial genome with a promoter derived from a microorganism of the same genus and species as the host, or inserting a promoter region downstream of the promoter on the microbial genome into the host. Replacement or insertion of a fatty acid desaturase gene derived from a microorganism of the same genus and species as the host, or a gene expression cassette that combines a promoter derived from a microorganism of the same genus and species as the host and a fatty acid desaturase gene derived from a microorganism of the same genus and species as the host. (optionally to which a selectable marker gene may be attached) is introduced into microorganisms. Examples of self-cloning methods include homologous recombination, genome editing (eg, CRISPR-Cas9, TALEN), and vector introduction.

高発現する脂肪酸不飽和化酵素遺伝子としては、例えば、FAD3、D15D等のω-3デサチュラーゼ等をコードする遺伝子が挙げられる。脂肪酸不飽和化酵素遺伝子としては、例えば、配列番号2のアミノ酸配列をコードするポリヌクレオチド配列、または、配列番号2のアミノ酸配列に対して70%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む遺伝子が挙げられる。また、配列番号9のアミノ酸配列をコードするポリヌクレオチド配列、または、配列番号9のアミノ酸配列に対して70%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む遺伝子が挙げられる。このような同一性は、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上、99.5%以上が挙げられる。脂肪酸不飽和化酵素遺伝子は、用いる微生物の種に対応する脂肪酸不飽和化酵素(例、FAD3タンパク質)をコードする遺伝子であってもよい。脂肪酸不飽和化活性としては、例えば、ω-3デサチュラーゼ活性が挙げられ、具体的には例えば、リノール酸(C18:2)をα-リノレン酸(C18:3)に変換する活性が挙げられる。 Examples of highly expressed fatty acid desaturase genes include genes encoding ω-3 desaturases such as FAD3 and D15D. Examples of the fatty acid desaturase gene include a polynucleotide sequence that encodes the amino acid sequence of SEQ ID NO: 2, or a polynucleotide sequence that has 70% or more identity to the amino acid sequence of SEQ ID NO: 2 and that encodes the amino acid sequence of SEQ ID NO: 2. Examples include genes that include polynucleotide sequences that encode amino acid sequences that have activity. Furthermore, a polynucleotide sequence encoding the amino acid sequence of SEQ ID NO: 9, or a polynucleotide sequence encoding an amino acid sequence having 70% or more identity to the amino acid sequence of SEQ ID NO: 9 and having fatty acid desaturation activity. Examples include genes containing nucleotide sequences. Such identity is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more. % or more, 97% or more, 98% or more, 99% or more, and 99.5% or more. The fatty acid desaturase gene may be a gene encoding a fatty acid desaturase (eg, FAD3 protein) corresponding to the species of microorganism used. Examples of fatty acid desaturation activity include ω-3 desaturase activity, and specifically, for example, activity to convert linoleic acid (C18:2) to α-linolenic acid (C18:3).

脂肪酸不飽和化酵素遺伝子の導入においては、既知の遺伝子工学的手法を用いてα-リノレン酸のより効率的な生産のための改変を行ってもよい。例えば、ヤロウィア属酵母にエイコサペンタエン酸を生産させる際の複数コピーの導入によって高い生産量を得ている(Xue Z et al、Nature Biotechnology、31、8、734-740、2013)。 In introducing the fatty acid desaturase gene, modifications may be made for more efficient production of α-linolenic acid using known genetic engineering techniques. For example, a high production amount has been obtained by introducing multiple copies when Yarrowia yeast produces eicosapentaenoic acid (Xue Z et al, Nature Biotechnology, 31, 8, 734-740, 2013).

プロモーターは、目的に応じて選択すればよく、例えば、高発現プロモーター、すなわち発現量の多いプロモーターを選択できる。高発現プロモーターを用いることにより、脂肪酸不飽和化酵素遺伝子の発現量を向上させることができる。プロモーターの他の例としては、特定の条件下で特異的に発現するプロモーターも挙げられる。これにより、α-リノレン酸を生産するタイミングや条件を厳密に制御することができる。プロモーターとしては、具体的には例えば、以下を挙げることができるが、これらに限定されない:TEF1プロモーター;α-アミラーゼ遺伝子やグルコアミラーゼ遺伝子のプロモーター(秦洋二ら、醸協、93、12、922-931、1998年、峰時俊貴、化学と生物、38、12、831-838、2000年);スーパーオキシドデスムターゼ遺伝子、チトクロームP-450遺伝子、カタラーゼ遺伝子、ATPase遺伝子、又はヒストン遺伝子のプロモーター(特許第3792467号公報);麹菌が本来有しているregionIIIと呼ばれる塩基配列を重複させた人工プロモーター(峰時俊貴、化学と生物、38、12、831-838、2000年)。 The promoter may be selected depending on the purpose; for example, a high expression promoter, that is, a promoter with a large expression amount can be selected. By using a high expression promoter, the expression level of the fatty acid desaturase gene can be improved. Other examples of promoters include promoters that are specifically expressed under specific conditions. This makes it possible to strictly control the timing and conditions for producing α-linolenic acid. Specific examples of promoters include, but are not limited to, the following: TEF1 promoter; α-amylase gene and glucoamylase gene promoters (Yoji Hata et al., Jokyo, 93, 12, 922-931 , 1998, Toshiki Minetoki, Chemistry and Biology, 38, 12, 831-838, 2000); promoters of superoxide desmutase gene, cytochrome P-450 gene, catalase gene, ATPase gene, or histone gene (patent no. 3792467); an artificial promoter that overlaps the base sequence called region III that Aspergillus oryzae originally has (Toshiki Minetoki, Chemistry and Biology, 38, 12, 831-838, 2000).

本発明におけるセルフクローニングによる改良は、例えば、宿主と同属同種の微生物に由来するプロモーターと脂肪酸不飽和化酵素遺伝子とを組み合わせた遺伝子発現カセットを細胞内に存在させることで達成することができる。例えば、発現プロモーターは、アスペルギルス属の場合、TEF1プロモーターを使用してもよい。発現カセットが細胞内に導入された株を選抜するために、高発現プロモーターと脂肪酸不飽和化酵素遺伝子の発現カセットとともに宿主と同属同種の生物に由来するマーカー遺伝子を接続して、宿主に導入してもよい。例えば、マーカー遺伝子には、ピリチアミン耐性遺伝子やオロチジン5’-リン酸デカルボキシラーゼ遺伝子(URA3遺伝子)を用いてもよい。また、アスペルギルス属以外に由来するマーカー遺伝子を用いる場合には、高発現プロモーターと脂肪酸不飽和化酵素遺伝子の発現カセットとともに宿主に導入したのちに、相同組換えやCreリコンビナーゼによって導入したマーカー遺伝子をゲノムから除去してもよい。 Improvements by self-cloning in the present invention can be achieved, for example, by providing in cells a gene expression cassette that combines a promoter derived from a microorganism of the same genus and species as the host and a fatty acid desaturase gene. For example, in the case of Aspergillus, the TEF1 promoter may be used as the expression promoter. In order to select strains in which the expression cassette has been introduced into the cells, a marker gene derived from an organism of the same genus and species as the host is connected to a high-expression promoter and the expression cassette for the fatty acid desaturase gene, and then introduced into the host. It's okay. For example, a pyrithiamine resistance gene or orotidine 5'-phosphate decarboxylase gene (URA3 gene) may be used as the marker gene. In addition, when using a marker gene derived from a species other than Aspergillus, it should be introduced into the host together with a high expression promoter and a fatty acid desaturase gene expression cassette, and then the marker gene introduced by homologous recombination or Cre recombinase should be inserted into the genome. It may be removed from

本発明においては、例えば以下のように脂肪族不飽和化酵素遺伝子以外の核酸を導入する等の既知の遺伝子工学的手法により微生物のα-リノレン酸産生能をより向上させてもよい。
糖質から脂肪酸に至る生合成経路上の遺伝子の発現量を高めることで、脂質の生産量が増加することが知られている。ヤロウィア属酵母の場合、アセチルCoAアシルトランスフェラーゼ遺伝子とジアシルグリセロールアシルトランスフェラーゼ遺伝子の発現量を高めることで脂質生産量が高まることが報告されている(Tai M et al、Metabolic Engineering、15、1-9、2013)。アスペルギルス属菌の場合でも、アセチルCoAアシルトランスフェラーゼ遺伝子、パルミトイルACPチオエステラーゼ、アセチルCoAクエン酸リアーゼ、脂肪酸合成酵素遺伝子の発現量を高めることで、脂質の生合成が高まることが報告されている(Tamano K et al、Applied Microbiology and Biotechnology、97、269-281、2013)。こうした遺伝子の発現強化を組み合わせることで、α-リノレン酸の生産量をより高めることができる。
In the present invention, the α-linolenic acid producing ability of microorganisms may be further improved by known genetic engineering techniques such as introducing a nucleic acid other than the aliphatic desaturase gene as described below.
It is known that lipid production can be increased by increasing the expression level of genes on the biosynthetic pathway from carbohydrates to fatty acids. In the case of Yarrowia yeast, it has been reported that lipid production increases by increasing the expression levels of the acetyl-CoA acyltransferase gene and the diacylglycerol acyltransferase gene (Tai M et al, Metabolic Engineering, 15, 1-9, 2013). In the case of Aspergillus bacteria, it has been reported that lipid biosynthesis is increased by increasing the expression levels of acetyl-CoA acyltransferase gene, palmitoyl ACP thioesterase, acetyl-CoA citrate lyase, and fatty acid synthase genes (Tamano K et al, Applied Microbiology and Biotechnology, 97, 269-281, 2013). By combining enhancement of expression of these genes, the production amount of α-linolenic acid can be further increased.

脂肪酸の生合成には、大量のNADPHが必要である。このため、NADPHを供給するペントースリン酸回路の遺伝子の発現量を高めることで、脂質の生産量が高まることが報告されている(Tamano K et al、Bioscience Biotechnology and Biochemistry、80、9、1829-1835、2016)。 Fatty acid biosynthesis requires large amounts of NADPH. Therefore, it has been reported that lipid production can be increased by increasing the expression level of genes in the pentose phosphate cycle that supply NADPH (Tamano K et al, Bioscience Biotechnology and Biochemistry, 80, 9, 1829-1835 , 2016).

脂肪酸は、一般的に、パルミチン酸が脂肪酸合成酵素によって合成された後、それが鎖長延長酵素によってステアリン酸に変換される。ステアリン酸はΔ9不飽和化酵素による反応を受け、オレイン酸によって変換される。オレイン酸は、Δ12不飽和化酵素による反応を受け、リノール酸に変換される。リノール酸は、Δ15(もしくはオメガ3)不飽和化酵素による反応を受け、α-リノレン酸に変換される。例えば、Xue Z et al、Nature Biotechnology、31、8、734-741、2013では、エイコサペンタエン酸を合成する経路にある鎖長延長酵素と不飽和化酵素の発現量を高めることで、エイコサペンタエン酸を大量に合成できることが報告されている。このように、α-リノレン酸の生合成に必要な鎖長延長酵素、Δ9不飽和化酵素、Δ12不飽和化酵素の遺伝子の発現量を高めることによっても、α-リノレン酸の生産量をより高めることができる。 Generally, palmitic acid is synthesized by fatty acid synthase, and then converted to stearic acid by chain elongation enzyme. Stearic acid undergoes a reaction by Δ9 desaturase and is converted by oleic acid. Oleic acid undergoes a reaction by Δ12 desaturase and is converted to linoleic acid. Linoleic acid undergoes a reaction by Δ15 (or omega-3) desaturase and is converted to α-linolenic acid. For example, in Xue Z et al, Nature Biotechnology, 31, 8, 734-741, 2013, eicosapentaenoic acid It has been reported that it can be synthesized in large quantities. In this way, the amount of α-linolenic acid produced can be increased by increasing the expression levels of the chain elongase, Δ9 desaturase, and Δ12 desaturase genes necessary for the biosynthesis of α-linolenic acid. can be increased.

生合成された脂肪酸は、一般的にトリアシルグリセロールとして菌体内に蓄積されるが、特定の遺伝子の破壊によって菌体外に分泌生産させることができる。アスペルギルス属菌の場合、アシルCoA合成酵素遺伝子の破壊によって菌体外に脂肪酸が分泌されることが報告されている(Tamano K et al、Bioscience Biotechnology and Biochemistry、80、9、1829-1835、2016)。こうした遺伝子破壊を組み合わせることで、α-リノレン酸を菌体外に分泌生産させ、生産量をより高めることができる。 Biosynthesized fatty acids are generally accumulated within the bacterial cells as triacylglycerols, but they can be secreted and produced outside the bacterial cells by disrupting specific genes. In the case of Aspergillus bacteria, it has been reported that fatty acids are secreted outside the bacterial body by disruption of the acyl-CoA synthase gene (Tamano K et al, Bioscience Biotechnology and Biochemistry, 80, 9, 1829-1835, 2016) . By combining these gene disruptions, it is possible to secrete and produce α-linolenic acid outside the bacterial cell, further increasing the production amount.

生体内に蓄積された脂肪酸は、β-酸化と呼ばれる代謝経路によってアセチルCoAまで分解されることが知られている。ヤロウィア属酵母の場合、脂肪酸の分解に関与するアシルCoA酸化酵素の遺伝子やβ-酸化の場となるペルオキシソームの制御に関与するPEX10遺伝子などの破壊によって、脂肪酸の分解が抑制され、より多くの脂質を生産可能になることが報告されている(Ledesma-Amaro R et al、Progress in Lipid Research、61、40-50、2016)。このため、脂肪酸の分解に関与する遺伝子の破壊、もしくは、発現量の低減によって、α-リノレン酸の生産量をより高めることができる。 It is known that fatty acids accumulated in living organisms are broken down into acetyl-CoA through a metabolic pathway called β-oxidation. In the case of yeast of the Yarrowia genus, fatty acid degradation is suppressed by disrupting the acyl-CoA oxidase gene involved in fatty acid degradation and the PEX10 gene involved in controlling peroxisomes, which are the site of β-oxidation. It has been reported that it becomes possible to produce (Ledesma-Amaro R et al, Progress in Lipid Research, 61, 40-50, 2016). Therefore, the production amount of α-linolenic acid can be further increased by destroying or reducing the expression level of genes involved in fatty acid decomposition.

アスペルギルス属菌が食用性物質を栄養源として生育する場合、アミラーゼ、グルコアミラーゼ、β-ガラクトシダーゼ、プロテアーゼなどをはじめとする様々な分解酵素を菌体外に分泌して、食用性物質を分解する。このため、こうした分解酵素の遺伝子の発現量を高めることで、栄養源の分解が早く進み、所定の時間で生産されるα-リノレン酸の生産量をより高めることができる。 When Aspergillus bacteria grow using edible substances as a nutritional source, they secrete various degrading enzymes such as amylase, glucoamylase, β-galactosidase, and protease to the outside of the bacteria to degrade the edible substances. Therefore, by increasing the expression level of the genes for these degrading enzymes, the decomposition of the nutrient source will proceed quickly, and the amount of α-linolenic acid produced in a predetermined period of time can be further increased.

本発明におけるα-リノレン酸とは、9,12,15-オクタデカトリエン酸のことであり、細胞内に含まれる形態は、トリアシルグリセロールやリン脂質に含まれるエステル体、もしくは、遊離脂肪酸であってもよい。 In the present invention, α-linolenic acid refers to 9,12,15-octadecatrienoic acid, and the form contained in cells is an ester form contained in triacylglycerol or phospholipid, or a free fatty acid. There may be.

本発明の微生物は、糖質代謝経路および脂肪酸合成経路を含むので、デンプン、ラクトース等の糖質を含む物質の存在下で培養することにより、デンプン、ラクトース等の糖質を代謝して、α-リノレン酸の前駆物質であるC18脂肪酸(例、リノール酸(C18:2))を産生する。そして、セルフクローニングにより強化された脂肪酸不飽和化酵素の作用により、リノール酸(C18:2)がα-リノレン酸(C18:3)に変換され、α‐リノレン酸が微生物またはその培養物中に高含有量で蓄積される。
本明細書において糖質とは、微生物が資化できる糖であればよく、その分子量は特に限定されない。三糖以上の場合直鎖でも分岐鎖でもよい。例えば、単糖(例、キシロース、アラビノース、グルコース、ガラクトース)、二糖(例、ラクトース、スクロース、マルトース、トレハロース、セロビオース)、オリゴ糖(例、マルトオリゴ糖、イソマルトオリゴ糖)、多糖(例、デンプン、セルロース、アガロース、カラギーナン、ペクチン、グルコマンナン、アミロース、アミロペクチン、グリコーゲン)、糖アルコール(例、エリスリトール、ラクチトール、マルチトール、マンニトール、ソルビトール、キシリトール)、プロテオグリカン(例、グリコサミノグルカン、ガラクトサミノグリカン)、糖タンパク質、糖脂質が挙げられる。これらのうち、デンプン、ラクトースが好ましい。
Since the microorganism of the present invention includes a carbohydrate metabolic pathway and a fatty acid synthesis pathway, by culturing it in the presence of carbohydrate-containing substances such as starch and lactose, it can metabolize carbohydrates such as starch and lactose and produce α - Produces C18 fatty acids (eg linoleic acid (C18:2)) which are precursors of linolenic acid. Then, linoleic acid (C18:2) is converted to α-linolenic acid (C18:3) by the action of fatty acid desaturase enhanced by self-cloning, and α-linolenic acid is added to the microorganism or its culture. Accumulates in high content.
In this specification, carbohydrates may be any sugars that can be assimilated by microorganisms, and their molecular weight is not particularly limited. In the case of trisaccharide or more, it may be a straight chain or a branched chain. For example, monosaccharides (e.g., xylose, arabinose, glucose, galactose), disaccharides (e.g., lactose, sucrose, maltose, trehalose, cellobiose), oligosaccharides (e.g., maltooligosaccharides, isomaltooligosaccharides), polysaccharides (e.g., starch) , cellulose, agarose, carrageenan, pectin, glucomannan, amylose, amylopectin, glycogen), sugar alcohols (e.g., erythritol, lactitol, maltitol, mannitol, sorbitol, xylitol), proteoglycans (e.g., glycosaminoglucan, galactosamino) glycans), glycoproteins, and glycolipids. Among these, starch and lactose are preferred.

本発明の微生物を培養することで、α-リノレン酸の含量が高い微生物菌体を調製することができる。特に、食品廃棄物、より好ましくは、デンプン、ラクトース等の糖質を含む食品廃棄物からα-リノレン酸の含量が多い微生物菌体を調製することができる。 By culturing the microorganism of the present invention, microbial cells with a high content of α-linolenic acid can be prepared. In particular, microbial cells with a high content of α-linolenic acid can be prepared from food waste, more preferably food waste containing carbohydrates such as starch and lactose.

本発明においてセルフクローニングで改良されたアスペルギルス属微生物は、好ましくは、菌体に含まれる総脂肪酸のうちα-リノレン酸が10%以上を占めることができる。より好ましくは、菌体に含まれる総脂肪酸のうちα-リノレン酸が15%以上を占めることができる。さらに好ましくは、菌体に含まれる総脂肪酸のうちα-リノレン酸が20%以上を占めることができる。 In the Aspergillus microorganism improved by self-cloning in the present invention, α-linolenic acid can preferably account for 10% or more of the total fatty acids contained in the microorganism. More preferably, α-linolenic acid can account for 15% or more of the total fatty acids contained in the bacterial cells. More preferably, α-linolenic acid can account for 20% or more of the total fatty acids contained in the bacterial cells.

本発明の微生物が、アスペルギルス属微生物である場合、アスペルギルス属微生物の菌株は、アスペルギルス属微生物の公知の培養条件に従って培養することができる。また、栄養源として、糖質を含む廃棄物を用いることができる。例えば、米飯(残飯)などのデンプンを含む食品廃棄物を栄養源として培養することができる。また、ラクトースを含むホエイなどの、ラクトースを含む食品廃棄物も栄養源として培養することができる。培養にあたり、培地は液体であっても固体であってもよい。 When the microorganism of the present invention is a microorganism of the genus Aspergillus, the strain of the microorganism of the genus Aspergillus can be cultured according to known culture conditions for microorganisms of the genus Aspergillus. Furthermore, waste containing carbohydrates can be used as a nutrient source. For example, food waste containing starch such as cooked rice (leftover rice) can be used as a nutrient source for cultivation. Food waste containing lactose, such as whey containing lactose, can also be cultured as a nutrient source. During culture, the medium may be liquid or solid.

α-リノレン酸を生産する目的でアスペルギルス属微生物を培養するために用いる培地は、炭素源を含む。炭素源としては、以下に限定されないが、上段で定義した糖質(例、デンプン、グルコース、スクロース、ラクトース、セロビオース、アラビノース、マルトース、グリセロール、トリアシルグリセロール)、遊離脂肪酸が挙げられる。また、デンプン、ラクトース等の糖質もしくはそれを含む食品廃棄物を、直接、もしくは、ほかの物質と混合することで培地として利用することができる。 The medium used for culturing Aspergillus microorganisms for the purpose of producing α-linolenic acid contains a carbon source. Carbon sources include, but are not limited to, the carbohydrates defined above (eg, starch, glucose, sucrose, lactose, cellobiose, arabinose, maltose, glycerol, triacylglycerol) and free fatty acids. Furthermore, carbohydrates such as starch and lactose, or food waste containing them, can be used as a culture medium either directly or by mixing them with other substances.

上記培地は、炭素源に加えて、通常は窒素源及び無機塩類を含み、さらに必要に応じてビタミン類、アミノ酸、微量元素等を含んでもよい。無機塩類としては、例えば、ナトリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等を使用することができる。好ましい一実施形態では、上記培地は、可溶性デンプン、硝酸ナトリウム、塩化カリウム、リン酸二水素カリウム、硫酸マグネシウム7水和物を少なくとも含む。但し培地組成は、微生物の培養に適切なものであれば特に限定されない。 In addition to the carbon source, the medium usually contains a nitrogen source and inorganic salts, and may further contain vitamins, amino acids, trace elements, etc. as necessary. As the inorganic salts, for example, sodium salts, phosphates, magnesium salts, calcium salts, iron salts, manganese salts, etc. can be used. In one preferred embodiment, the medium contains at least soluble starch, sodium nitrate, potassium chloride, potassium dihydrogen phosphate, and magnesium sulfate heptahydrate. However, the medium composition is not particularly limited as long as it is suitable for culturing microorganisms.

培養は、本発明の微生物で通常用いられる培養条件で行うことができる。例えば、アスペルギルス属微生物は、4℃~40℃、好ましくは20℃~37℃で培養することができる。アスペルギルス属微生物を培養する培地のpHは3~10が好ましい。 Cultivation can be carried out under culture conditions commonly used for the microorganism of the present invention. For example, Aspergillus microorganisms can be cultured at 4°C to 40°C, preferably 20°C to 37°C. The pH of the medium for culturing Aspergillus microorganisms is preferably 3 to 10.

α-リノレン酸の生産のためには、本発明の微生物の培養は、糖質(例、デンプン、ラクトース)を含む培地で通気攪拌しながら培養することが好ましく、典型的には数時間~10日、好ましくは24時間以上である。 In order to produce α-linolenic acid, the microorganism of the present invention is preferably cultured in a medium containing carbohydrates (e.g., starch, lactose) with aeration and stirring, typically for several hours to 10 hours. days, preferably 24 hours or more.

上記のようにして本発明の微生物を培養することにより、上記α-リノレン酸が生成され菌体中に蓄積される。また、本発明の微生物を培養することにより、微生物が分泌したα-リノレン酸を含む培養物を得ることもできる。 By culturing the microorganism of the present invention as described above, the above-mentioned α-linolenic acid is produced and accumulated in the microbial cells. Furthermore, by culturing the microorganism of the present invention, a culture containing α-linolenic acid secreted by the microorganism can also be obtained.

本発明はまた、上述した微生物またはその培養物を含む、食品または飼料を提供する。本発明の食品または飼料の種類は、特に限定されず、α-リノレン酸の高含有化による付加価値を付与したい食品または飼料を広く対象とすることができる。 The present invention also provides a food or feed containing the above-mentioned microorganism or a culture thereof. The type of food or feed of the present invention is not particularly limited, and can be applied to a wide range of foods or feeds to which it is desired to add value by increasing the content of α-linolenic acid.

本発明はまた、上述した微生物またはその培養物を含む、食用性物質発酵用組成物を提供する。本発明の食用性物質発酵用組成物を食用性物質に適用させて発酵することにより、α-リノレン酸を多く含む食品または飼料を製造することができる。
食用性物質発酵用組成物は、いわゆる麹であり、上述した微生物またはその培養物を含めばよく、任意成分(例えば、保存剤、発酵促進剤等)をさらに含んでもよい。食用性物質発酵用組成物の製造方法は、特に限定されないが、従来の麹の製造方法によればよい。
食用性物質は、微生物の発酵原料となり得るものであればよく、例えば、食品または飼料、それらの原料(いわゆる食材)、廃棄物であり、特に限定されない。食用性物質は、糖質を含むことが好ましい。中でも、デンプン系食品(例えば、米飯類、パン類、麺類、豆類、その他のデンプンを含む食材の加工品)、デンプン系飼料、それらの原料、廃棄物(例、残飯、製造時の副産物)がより好ましい。ラクトース系食品(例えば、牛乳、スキムミルク、ホエイ、チーズ、ヨーグルト、バター、その他の乳製品等、ラクトースを含む加工食品)、ラクトース系飼料、それらの原料、廃棄物(例、残飯、製造時の副産物)もより好ましい。飼料を製造する場合、食用性物質は食品又はその原料の廃棄物でもよく、澱粉系食品の廃棄物、ラクトース系食品の廃棄物が好ましい。
The present invention also provides a composition for fermenting an edible substance, comprising the above-mentioned microorganism or a culture thereof. By applying the composition for fermenting an edible substance of the present invention to an edible substance and fermenting it, a food or feed containing a large amount of α-linolenic acid can be produced.
The composition for fermenting edible substances is so-called koji, and may contain the above-mentioned microorganisms or cultures thereof, and may further contain optional components (for example, preservatives, fermentation accelerators, etc.). The method for producing the composition for fermenting edible substances is not particularly limited, but may be a conventional method for producing koji.
The edible substance may be anything that can serve as a fermentation raw material for microorganisms, and is not particularly limited, and may be, for example, food or feed, raw materials thereof (so-called food materials), and waste. Preferably, the edible substance contains carbohydrates. Among these, starch-based foods (e.g., cooked rice, bread, noodles, beans, and other processed foods containing starch), starch-based feed, their raw materials, and waste (e.g., leftovers, byproducts from manufacturing) are More preferred. Lactose-based foods (e.g., processed foods containing lactose, such as milk, skim milk, whey, cheese, yogurt, butter, and other dairy products), lactose-based feeds, their raw materials, and waste (e.g., leftovers, manufacturing byproducts) ) is also more preferable. When producing feed, the edible substance may be waste of food or its raw materials, preferably starch-based food waste or lactose-based food waste.

本発明はまた、α-リノレン酸を高含有量で含む食品または飼料の製造方法を提供する。このような方法は、以下を含む:
(i)食用性物質と、上述した微生物またはその培養物とを接触させる工程;および
(ii)食用性物質を発酵させる工程。
The present invention also provides a method for producing food or feed containing a high content of α-linolenic acid. Such methods include:
(i) contacting the edible substance with the above-mentioned microorganism or culture thereof; and (ii) fermenting the edible substance.

工程(i)は、工程(ii)で行う発酵を行うための環境を準備する工程である。食用性物質と、上述した微生物またはその培養物とを接触させる方法としては、例えば、食用性物質と微生物またはその培養物とを容器に同時に又は順次添加し、必要に応じて撹拌、混合する方法が挙げられるが、特に限定されない。食用性物質については上述のとおりである。食用性物質と微生物またはその培養物のそれぞれの使用量は、発酵が可能な量であればよく、特に限定されない。食用性物質は、1種類の食用性物質でもよいし、2種以上の食用性物質の組み合わせでもよい。 Step (i) is a step of preparing an environment for fermentation to be carried out in step (ii). As a method for bringing the edible substance into contact with the above-mentioned microorganism or its culture, for example, a method of adding the edible substance and the microorganism or its culture to a container simultaneously or sequentially, and stirring and mixing as necessary. Examples include, but are not particularly limited to. The edible substances are as described above. The amounts of the edible substance and the microorganism or culture thereof to be used are not particularly limited, as long as they can be fermented. The edible substance may be one type of edible substance or a combination of two or more types of edible substances.

工程(ii)は、工程(i)で準備した発酵環境の下、発酵を行う工程である。発酵条件は、特に限定されないが、使用する微生物が発酵を行いα-リノレン酸を生産できる条件が好ましい。工程(ii)における発酵後、発酵産物にはα-リノレン酸が含まれているので、必要に応じて精製、その他最終製品として必要な加工を施し、所望のα-リノレン酸を含む食品または飼料を得ることができる。 Step (ii) is a step of performing fermentation under the fermentation environment prepared in step (i). Fermentation conditions are not particularly limited, but conditions are preferred that allow the microorganisms used to carry out fermentation and produce α-linolenic acid. After fermentation in step (ii), the fermented product contains α-linolenic acid, so it is purified as necessary and subjected to other necessary processing as a final product to produce the desired α-linolenic acid-containing food or feed. can be obtained.

本発明はまた、α-リノレン酸の製造方法を提供する。このような方法は、以下を含む:
(i)糖質供給源(例、デンプン供給源もしくはラクトース供給源)と、上述した微生物またはその培養物とを接触させる工程;および
(ii)糖質供給源(例、デンプン供給源もしくはラクトース供給源)を発酵させる工程。
The present invention also provides a method for producing α-linolenic acid. Such methods include:
(i) contacting a carbohydrate source (e.g., a starch source or a lactose source) with a microorganism or culture thereof as described above; and (ii) a carbohydrate source (e.g., a starch source or a lactose source); The process of fermenting (source).

(i)、(ii)とも、食用性物質の代わりに糖質供給源(例、デンプン供給源もしくはラクトース供給源)を用いること、生産物がα-リノレン酸であることのほかは、上述の食品または飼料の製造方法と同様である。糖質供給源とは、糖質を含む物質であればよく、好ましくはデンプンおよびラクトースの少なくともいずれかを含む。糖質供給源としては、上述した食用性物質が好ましい。工程(ii)における発酵後、発酵産物にはα-リノレン酸が含まれているので、必要に応じて精製、その他最終製品として必要な加工を施し、所望の純度のα-リノレン酸を得ることができる。 Both (i) and (ii) are as described above, except that a carbohydrate source (e.g., starch source or lactose source) is used instead of the edible substance, and the product is α-linolenic acid. It is similar to the manufacturing method of food or feed. The carbohydrate source may be any substance containing carbohydrates, and preferably contains at least one of starch and lactose. As the carbohydrate source, the above-mentioned edible substances are preferred. After the fermentation in step (ii), the fermented product contains α-linolenic acid, so it is purified as necessary and subjected to other necessary processing as a final product to obtain α-linolenic acid of desired purity. I can do it.

本発明の方法では、好ましくは、このようにして生成されたアスペルギルスの菌体を遠心分離やろ過によって回収し、それを食品や飼料として利用することができる。例えば、アスペルギルス・オリゼは、日本酒やみそ、しょうゆの製造に利用されており、食品として利用できる安全な微生物である。上記のセルフクローニングで改良されたアスペルギルス属微生物もこのように食品の一部として利用することができる。また、アスペルギルス・リュウキュウエンシスは泡盛の製造に利用されており、食品廃棄物を分解して飼料を生産するためにも利用されている(特許文献2)。さらに、アスペルギルス・カワチは、焼酎の製造に利用されており、食品として利用できる安全な微生物である。上記のセルフクローニングで改良されたアスペルギルス属微生物も、このように飼料として利用することができる。 In the method of the present invention, the Aspergillus cells thus produced are preferably recovered by centrifugation or filtration, and can be used as food or feed. For example, Aspergillus oryzae is used in the production of sake, miso, and soy sauce, and is a safe microorganism that can be used as food. Aspergillus microorganisms improved through the above self-cloning can also be used as part of foods in this way. Furthermore, Aspergillus ryukyuensis is used in the production of awamori, and is also used to produce feed by decomposing food waste (Patent Document 2). Furthermore, Aspergillus kawachi is used in the production of shochu and is a safe microorganism that can be used as food. Aspergillus microorganisms improved through the above self-cloning can also be used as feed in this way.

アスペルギルス属菌体内のα-リノレン酸は菌体から抽出して使用してもよい。また、培養物(例、培養液)から菌体を分離することなく、培養物全体を食品や飼料として利用することもできる。 α-linolenic acid in the cells of Aspergillus genus may be extracted from the cells and used. Furthermore, the entire culture can be used as food or feed without separating the bacterial cells from the culture (eg, culture solution).

α-リノレン酸を含む食品を摂取することで、高血圧の抑制効果が期待できる(非特許文献1)。また、α-リノレン酸を人が食品として摂取した場合、エイコサペンタエン酸やドコサヘキサエン酸の前駆体として働くことから、これらの脂肪酸の健康効果として知られている血中の中性脂肪の低減効果なども期待できる(非特許文献2)。また、α-リノレン酸を多く含む飼料を動物に与えることで、畜産物にα-リノレン酸が蓄積されることが明らかとなっている(非特許文献3、4)。すでに、α-リノレン酸を飼料として用いて動物を生育させることで、α-リノレン酸高含有畜産物が実際に生産され販売されている。これと同様に、上記のセルフクローニングで改良されたアスペルギルス属微生物を飼料として利用することで、α-リノレン酸が動物の組織内に移行し、健康機能性が高い畜産物、水産物(畜産・水産利用品(加工肉、乳製品)を含む)を生産することができる。 Ingestion of foods containing α-linolenic acid can be expected to suppress hypertension (Non-Patent Document 1). In addition, when humans ingest α-linolenic acid as food, it acts as a precursor to eicosapentaenoic acid and docosahexaenoic acid, so it has the effect of reducing neutral fat in the blood, which is known as the health effect of these fatty acids. can also be expected (Non-Patent Document 2). Furthermore, it has been revealed that α-linolenic acid is accumulated in livestock products by feeding animals with feed containing a large amount of α-linolenic acid (Non-patent Documents 3 and 4). Livestock products high in α-linolenic acid have already been produced and sold by growing animals using α-linolenic acid as feed. Similarly, by using the Aspergillus microorganisms improved through self-cloning as feed, α-linolenic acid is transferred into the animal's tissues, resulting in livestock and fisheries products with high health functionality. (including processed meat and dairy products).

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail using Examples. However, the technical scope of the present invention is not limited to these Examples.

[実施例1]α-リノレン酸の生産に関与する脂肪酸不飽和化酵素遺伝子の選定
アスペルギルス属微生物としてAspergillus oryzae RIB40株(NBRC100959株)を使用した。RIB40株のゲノムはGenbankに多数登録されている。この情報の中には、複数の脂肪酸不飽和化酵素遺伝子が登録されていたが、α-リノレン酸の生合成に直接関与することを意味する「delta-15 desaturase」等として登録されているものは存在しなかった。そこで、RIB40株のゲノム内に存在する複数の脂肪酸不飽和化酵素遺伝子のうち、「SC010」のLocus tag AO090010000714として登録されている遺伝子(配列番号1の脂肪酸不飽和化酵素遺伝子)をα-リノレン酸の生産に関与するものであると仮定し研究を行うこととした。
[Example 1] Selection of fatty acid desaturase gene involved in the production of α-linolenic acid Aspergillus oryzae RIB40 strain (NBRC100959 strain) was used as a microorganism belonging to the genus Aspergillus. Many genomes of the RIB40 strain have been registered in Genbank. In this information, multiple fatty acid desaturase genes were registered, and some were registered as "delta-15 desaturase", which means that it is directly involved in the biosynthesis of α-linolenic acid. did not exist. Therefore, among the multiple fatty acid desaturase genes present in the genome of the RIB40 strain, the gene registered as Locus tag AO090010000714 of "SC010" (fatty acid desaturase gene of SEQ ID NO: 1) was injected into α-linolene. We decided to conduct research on the assumption that it is involved in acid production.

National Center for Biotechnology Informationが提供するBasic Local Alignment Search Tool(BLAST)を用いて、配列番号1をGenbankのnrデータベースに登録されているアミノ酸配列と相同性検索を行ったところ、配列番号1と高い相同性を示した登録配列は図1のリストに示したとおりとなった。Query coverおよびPer. Identがともに100%で配列番号1と完全に一致する配列はRIB40株の配列そのもののみであった。また、RIB40株の配列そのもの以外で配列番号1と最も高い相同性を示した塩基配列は、α-リノレン酸の生産に関与しない「delta-12 desaturase」として登録されているものであったことから、配列番号1の遺伝子がα-リノレン酸の生産に関与することを容易に推定することはできなかった。 Using the Basic Local Alignment Search Tool (BLAST) provided by the National Center for Biotechnology Information, we performed a homology search for SEQ ID NO: 1 with the amino acid sequence registered in the Genbank nr database. Highly homologous to SEQ ID NO: 1 The registered sequences that showed sex are as shown in the list in Figure 1. Query cover and Per. The only sequence that completely matched SEQ ID NO: 1 with both Idents being 100% was the sequence of the RIB40 strain itself. In addition, the base sequence that showed the highest homology with SEQ ID NO: 1 other than the RIB40 strain sequence itself was registered as "delta-12 desaturase", which is not involved in the production of α-linolenic acid. However, it could not be easily inferred that the gene of SEQ ID NO: 1 is involved in the production of α-linolenic acid.

配列番号1の遺伝子がコードするアミノ酸配列が配列番号2である。配列番号2をGenebankのnrデータベースとBLAST検索を行ったが、図2に示すとおり、Query coverおよびPer. Identがともに100%で完全に一致する配列はRIB40株の配列そのもののみであった。また、α-リノレン酸の生産に寄与しない「delta-12 desaturase」として登録されている配列と90%以上のアミノ酸配列の一致(Query cover 100%かつPer.Ident 90%以上)が確認され、α-リノレン酸の生産に関与する「delta-15 desaturase」として登録されている配列との相同性は見られなかった。このことから、配列番号2のタンパク質がα-リノレン酸の生産に関与することを容易に推定することはできなかった。 The amino acid sequence encoded by the gene of SEQ ID NO: 1 is SEQ ID NO: 2. A BLAST search was performed on SEQ ID NO: 2 against Genebank's nr database, but as shown in Figure 2, Query cover and Per. The only sequence that completely matched with both Idents at 100% was the sequence of the RIB40 strain itself. In addition, it was confirmed that the amino acid sequence matches 90% or more (Query cover 100% and Per.Ident 90% or more) with the sequence registered as "delta-12 desaturase" which does not contribute to the production of α-linolenic acid. -No homology with the sequence registered as "delta-15 desaturase" involved in the production of linolenic acid was found. From this, it could not be easily inferred that the protein of SEQ ID NO: 2 is involved in the production of α-linolenic acid.

[実施例2]脂肪酸不飽和化酵素遺伝子発現カセットを含むDNA断片の調製
(アスペルギルス属微生物培養用培地の組成)
酵母エキス(粉末;Difco Laboratories)1%、ペプトン(Difco Laboratories)2%、D-グルコース(和光純薬工業)2%を純水に溶かしたものをYPD培地(YPD液体培地)とし、以降の実施例で用いた。
[Example 2] Preparation of DNA fragment containing fatty acid desaturase gene expression cassette (composition of medium for culturing Aspergillus microorganisms)
A YPD medium (YPD liquid medium) was prepared by dissolving 1% yeast extract (powder; Difco Laboratories), 2% peptone (Difco Laboratories), and 2% D-glucose (Wako Pure Chemical Industries) in pure water, and used it for subsequent implementation. Used in the example.

(アスペルギルス属微生物由来プロモーターおよび脂肪酸不飽和化酵素遺伝子ゲノムDNA断片の調製)
YPD液体培地をプラスチックチューブに添加し、RIB40株を培養し、得られた菌体からゲノムDNAを抽出した。ゲノムDNAの抽出には、ISOPLANT(株式会社ニッポンジーン)を使用した。得られたゲノムDNAを鋳型として配列番号4および5のヌクレオチド配列からなるプライマーでPCRを行い、アスペルギルス・オリゼの高発現プロモーターとして報告されているTEF1プロモーター領域を増幅してPCR断片を得た(Kitamoto N et al. Appl. Microbiol. Biotechnol 50, 85-92 (1998))。
(Preparation of Aspergillus microorganism-derived promoter and fatty acid desaturase gene genomic DNA fragment)
YPD liquid medium was added to a plastic tube, RIB40 strain was cultured, and genomic DNA was extracted from the resulting bacterial cells. ISOPLANT (Nippon Gene Co., Ltd.) was used to extract genomic DNA. Using the obtained genomic DNA as a template, PCR was performed with primers consisting of the nucleotide sequences of SEQ ID NOs: 4 and 5, and the TEF1 promoter region, which has been reported as a high expression promoter of Aspergillus oryzae, was amplified to obtain a PCR fragment (Kitamoto N et al. Appl. Microbiol. Biotechnol 50, 85-92 (1998)).

同様に、ゲノムDNAを鋳型として配列番号6および7のヌクレオチド配列からなるプライマーでPCRを行い、配列番号1の脂肪酸不飽和化酵素遺伝子とその3’非翻訳領域を増幅してPCR断片を得た。 Similarly, PCR was performed using genomic DNA as a template and primers consisting of the nucleotide sequences of SEQ ID NO: 6 and 7, and the fatty acid desaturase gene of SEQ ID NO: 1 and its 3' untranslated region were amplified to obtain a PCR fragment. .

これらのPCR断片をアガロースゲルで電気泳動後、DNA断片をゲルから切り出して、QIAEX II Gel extraction kit(株式会社キアゲン)を用いてDNA断片を精製した。これらの精製DNA断片を、それぞれ「TEF1プロモーター精製断片」および「脂肪酸不飽和化酵素遺伝子/3’非翻訳領域精製断片」とした。 After electrophoresing these PCR fragments on agarose gel, the DNA fragments were excised from the gel and purified using QIAEX II Gel extraction kit (Qiagen Corporation). These purified DNA fragments were designated as "TEF1 promoter purified fragment" and "fatty acid desaturase gene/3' untranslated region purified fragment", respectively.

(ベクター断片の調製)
また、アスペルギルス属用形質転換ベクターにはpPTRI(タカラバイオ株式会社)を用いた。pPTRIを制限酵素NdeI(株式会社ニッポンジーン)で切断した。この切断断片をアガロースゲルで電気泳動後、DNA断片をゲルから切り出して、QIAEX II Gel extraction kitを用いてDNA断片を精製した。これを、pPTRIベクター精製断片とした。
(Preparation of vector fragment)
Furthermore, pPTRI (Takara Bio Inc.) was used as a transformation vector for Aspergillus. pPTRI was cut with the restriction enzyme NdeI (Nippon Gene Co., Ltd.). After electrophoresing this cut fragment on an agarose gel, the DNA fragment was excised from the gel and purified using a QIAEX II Gel extraction kit. This was used as a pPTRI vector purified fragment.

(発現カセット作成用培地の組成)
トリプトン1%、酵母エキス0.5%、塩化ナトリウム1%含む培地をLB液体培地とし、これに寒天を培地1リットルあたり15gとアンピシリンナトリウムを加え、アンピシリンナトリウムを100μg/mLで含むアンピシリン入りLB寒天培地を調製し、それぞれ、以降の実施例で用いた。
(Composition of medium for expression cassette creation)
A medium containing 1% tryptone, 0.5% yeast extract, and 1% sodium chloride is used as an LB liquid medium, and to this is added 15 g of agar per liter of medium and ampicillin sodium, and LB agar with ampicillin containing ampicillin sodium at 100 μg/mL. Culture media were prepared and used in the following examples, respectively.

(発現カセットを含むDNA断片の作成)
TEF1プロモーター精製断片、脂肪酸不飽和化酵素遺伝子/3’非翻訳領域精製断片、pPTRIベクター精製断片の3つをGibson Assembly Master mix(ニュー・イングランド・バイオラボ・ジャパン株式会社)と混合し、50℃で30分間反応させた。この反応液を形質転換用大腸菌(NEB 5-alpha Competent E. coli (High Efficiency);ニュー・イングランド・バイオラボ・ジャパン株式会社)と混合し、マニュアルに従い、形質転換処理を行った。
(Creation of DNA fragment containing expression cassette)
The three purified fragments of TEF1 promoter, fatty acid desaturase gene/3' untranslated region, and pPTRI vector were mixed with Gibson Assembly Master mix (New England Biolab Japan Co., Ltd.) and incubated at 50°C. The reaction was allowed to proceed for 30 minutes. This reaction solution was mixed with E. coli for transformation (NEB 5-alpha Competent E. coli (High Efficiency); New England Biolab Japan Co., Ltd.), and transformation treatment was performed according to the manual.

形質転換処理された大腸菌を、アンピシリン入りLB寒天培地で約18時間培養して、生育したコロニーを得た。このコロニーから抽出したDNAをPCRの鋳型として用い、TEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットがpPTRIベクターの中に挿入されていることを確認した。このコロニーをLB液体培地で培養し、得られた大腸菌菌体からQIAprep Spin Miniprep Kit(株式会社キアゲン)を用いてベクターDNAを精製した。このベクターDNAに導入したTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットの配列が所望の配列になっていることを塩基配列解析及びPCRにより確認した。さらに、制限酵素MfeI(ニュー・イングランド・バイオラボ・ジャパン株式会社)を用いて、TEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットとベクター上にもともと存在するピリチアミン耐性マーカー遺伝子とを含むDNA断片を切断した。この試料をアガロースゲルで電気泳動し、DNA断片をゲルから切り出して、QIAEX II Gel extraction kitを用いてDNA断片を精製し、発現カセットを含む精製DNA断片を得た。発現カセットを含むDNA断片の塩基配列は配列番号3である。 The transformed E. coli was cultured on an LB agar medium containing ampicillin for about 18 hours to obtain grown colonies. Using DNA extracted from this colony as a template for PCR, it was confirmed that an expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region had been inserted into the pPTRI vector. This colony was cultured in LB liquid medium, and vector DNA was purified from the obtained E. coli cells using QIAprep Spin Miniprep Kit (Qiagen Co., Ltd.). It was confirmed by base sequence analysis and PCR that the sequence of the expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region introduced into this vector DNA was the desired sequence. Furthermore, using the restriction enzyme MfeI (New England Biolab Japan Co., Ltd.), we extracted the expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region, and the pyrithiamine resistance marker gene originally present on the vector. A DNA fragment containing the following was cut. This sample was electrophoresed on an agarose gel, the DNA fragment was cut out from the gel, and the DNA fragment was purified using a QIAEX II Gel extraction kit to obtain a purified DNA fragment containing the expression cassette. The base sequence of the DNA fragment containing the expression cassette is SEQ ID NO:3.

配列番号3に含まれるTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域をそれぞれ、BLASTを用いてアスペルギルス・オリゼのゲノムDNAと相同性検索を行った。その結果、各構成要素はすべてアスペルギルス・オリゼ由来の登録塩基配列と完全に一致し、いずれもアスペルギルス・オリゼ由来であることが確認された。なお、配列番号3に含まれるピリチアミン耐性遺伝子は、アスペルギルス・オリゼのピリチアミン耐性突然変異株から取得されたものであり(特開2000-308491)、アスペルギルス・オリゼ由来の塩基配列であることが確認された。 The TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region contained in SEQ ID NO: 3 were each searched for homology with Aspergillus oryzae genomic DNA using BLAST. As a result, all of the constituent elements completely matched the registered base sequence derived from Aspergillus oryzae, and it was confirmed that all of them were derived from Aspergillus oryzae. The pyrithiamine-resistant gene contained in SEQ ID NO: 3 was obtained from a pyrithiamine-resistant mutant strain of Aspergillus oryzae (Japanese Patent Application Laid-Open No. 2000-308491), and it has been confirmed that the nucleotide sequence is derived from Aspergillus oryzae. Ta.

[実施例3]アスペルギルス属微生物ゲノムへの発現カセットの導入
(アスペルギルス属微生物用培地の組成)
純水1リットルあたり、硝酸ナトリウム6.0g、塩化カリウム0.52g、リン酸二水素カリウム1.52g、グルコース10g、硫酸マグネシウム7水和物0.49g、硫酸鉄七水和物0.001g、硫酸亜鉛七水和物0.0088g、硫酸銅五水和物0.0004g、四ほう酸ナトリウム十水和物0.0001g、七モリブデン酸六アンモニウム四水和物0.00005gを含むpH6.5の培地をCzapek-Dox(CD)培地とし、CD培地1リットルあたりに寒天20gを加えて調製したものをCD寒天培地とし、それぞれ以降の実施例で用いた。
[Example 3] Introduction of an expression cassette into the genome of a microorganism belonging to the Aspergillus genus (composition of a medium for a microorganism belonging to the Aspergillus genus)
Per 1 liter of pure water, 6.0 g of sodium nitrate, 0.52 g of potassium chloride, 1.52 g of potassium dihydrogen phosphate, 10 g of glucose, 0.49 g of magnesium sulfate heptahydrate, 0.001 g of iron sulfate heptahydrate, A pH 6.5 medium containing 0.0088 g of zinc sulfate heptahydrate, 0.0004 g of copper sulfate pentahydrate, 0.0001 g of sodium tetraborate decahydrate, and 0.00005 g of hexaammonium heptamolybdate tetrahydrate. A Czapek-Dox (CD) medium was prepared, and a CD agar medium prepared by adding 20 g of agar per liter of CD medium was used in the following examples.

(アスペルギルス属微生物の脂肪酸不飽和化酵素遺伝子セルフクローニング株の作成)
pPTRI(タカラバイオ株式会社)のマニュアルに従い、宿主となるRIB40株のプロトプラストを調製し、実施例2に記載した発現カセットを含む精製DNA断片をRIB40株に導入した。DNA断片導入処理されたRIB40株を、ピリチアミンを0.1μg/mlの終濃度で含有するCD寒天培地で培養した。このピリチアミン含有CD寒天培地で生育が見られたコロニーをYPD培地で培養した。続いて、培養菌体を遠心分離で回収し、ISOPLANTでゲノムDNAを抽出して、ピリチアミン耐性遺伝子とTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域を含む発現カセットがゲノム内に導入されていることをPCRで確認した。導入したDNAを構成する塩基配列は、すべて宿主と同じアスペルギルス・オリゼ由来のものであることから、この遺伝的改変はセルフクローニングとみなすことができる。得られたRIB40株を、「脂肪酸不飽和化酵素遺伝子セルフクローニング株」(以下「セルフクローニング株」)と呼ぶ。
(Creation of self-cloning strain of fatty acid desaturase gene of Aspergillus microorganism)
Protoplasts of the host RIB40 strain were prepared according to the manual of pPTRI (Takara Bio Inc.), and the purified DNA fragment containing the expression cassette described in Example 2 was introduced into the RIB40 strain. The RIB40 strain into which the DNA fragment had been introduced was cultured on a CD agar medium containing pyrithiamine at a final concentration of 0.1 μg/ml. Colonies that were observed to grow on this pyrithiamine-containing CD agar medium were cultured on YPD medium. Next, the cultured cells were collected by centrifugation, genomic DNA was extracted using ISOPLANT, and an expression cassette containing the pyrithiamine resistance gene, TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region was introduced into the genome. This was confirmed by PCR. Since the base sequences constituting the introduced DNA are all derived from the same Aspergillus oryzae as the host, this genetic modification can be considered as self-cloning. The obtained RIB40 strain is referred to as a "fatty acid desaturase gene self-cloning strain" (hereinafter referred to as a "self-cloning strain").

[実施例4]脂肪酸不飽和化酵素遺伝子セルフクローニング株のデンプンからの培養
上記CD培地のグルコース10gの代わりに可溶性デンプン30gを加えた培地を、デンプンCD培地とし、以降の実施例で用いた。CD寒天培地でRIB40株を培養し、滅菌綿棒で胞子を回収して、胞子懸濁液を調製した。また、ピリチアミン含有CD寒天培地でセルフクローニング株を培養し、同様に滅菌綿棒で胞子を回収し、胞子懸濁液を回収した。デンプンCD培地50mLを300mL容の羽根つきフラスコに調製した。上記の胞子懸濁液のOD600を測定し、吸光度が0.05になるようにデンプンCD培地に接種した。30℃、120r.p.mで4日間振とう培養し、十分量の菌体を回収した。
[Example 4] Cultivation of fatty acid desaturase gene self-cloning strain from starch A medium to which 30 g of soluble starch was added instead of 10 g of glucose in the above CD medium was used as a starch CD medium in the following examples. RIB40 strain was cultured on a CD agar medium, and spores were collected with a sterile cotton swab to prepare a spore suspension. In addition, the self-cloning strain was cultured on a CD agar medium containing pyrithiamine, and spores were similarly collected using a sterile cotton swab to collect a spore suspension. 50 mL of starch CD medium was prepared in a 300 mL bladed flask. The OD600 of the above spore suspension was measured, and it was inoculated into a starch CD medium so that the absorbance was 0.05. 30℃, 120r. p. The cells were cultured with shaking for 4 days at M, and a sufficient amount of bacterial cells were collected.

[実施例5]デンプンで培養した脂肪酸不飽和化酵素遺伝子セルフクローニング株の脂質含量の測定
実施例4に記載の菌体から脂質を抽出した。菌体を水で洗浄後、乳鉢と乳棒で摩砕した。摩砕物を凍結乾燥して、乾燥重量を測定した。この乾燥物に、水2ml、クロロホルム2.5mL、メタノール5mLを添加して、2時間振とうした。さらに、クロロホルムを2.5mL、水を1mL添加して、遠心してクロロホルム・メタノール層を回収した。このクロロホルム・メタノール層から溶媒を留去し、残った脂質の重量を測定した。その結果、脂質含量は、表1に示すとおり、RIB40株とセルフクローニング株でほぼ同等であった。
[Example 5] Measurement of lipid content of fatty acid desaturase gene self-cloning strain cultured on starch Lipids were extracted from the bacterial cells described in Example 4. After washing the bacterial cells with water, they were ground with a mortar and pestle. The ground product was freeze-dried and the dry weight was measured. To this dried product were added 2 ml of water, 2.5 ml of chloroform, and 5 ml of methanol, and the mixture was shaken for 2 hours. Furthermore, 2.5 mL of chloroform and 1 mL of water were added, and the mixture was centrifuged to collect a chloroform/methanol layer. The solvent was distilled off from this chloroform/methanol layer, and the weight of the remaining lipid was measured. As a result, as shown in Table 1, the lipid content was almost the same between the RIB40 strain and the self-cloning strain.

Figure 0007412753000001
Figure 0007412753000001

[実施例6]デンプンで培養した脂肪酸不飽和化酵素遺伝子セルフクローニング株の脂肪酸組成
実施例4で残った菌体をビーズとともにプラスチックチューブに入れ、ビーズ破砕装置FastPrep(Thermo Electron社)で処理を行い、破砕した。遠心エバポレーターを用いて60℃で1時間処理し、水分を除去し、脂肪酸組成分析試料とした。これに、ヘプタデカン酸メチルエステルのヘキサン溶液(2g/L)を内部標準として50μL添加し、その後、直ちに、0.5Nの水酸化ナトリウムメタノール溶液を500μL添加して、均一に混合後、1200r.p.mで1時間攪拌した。さらに、硫酸を40μL添加してpHを調整した後、ヘキサンを500μL添加して、30分間攪拌した。ヘキサン層を回収し、ガスクロマトグラフ分析装置で分析を行った。ガスクロマトグラフ分析装置には、水素炎イオン化検出器を備えた株式会社島津製作所製GC-2010 plusを用いた。サンプルは、スプリットレスモードで1μLを注入した。気化室は60℃で分析を開始し、100℃/分で温度を上げ、240℃で保持した。カラムにはDB-225(30m、0.25mm、0.25μm、アジレント・テクノロジー株式会社)を使用し、カラムオーブンは50℃で開始し、30℃/分で上昇させ、200℃で保持した。ヘリウムをキャリアガスとして線速度33cm/分で流し、20分間で分析を完了した。検出器は、240℃、25Hzで使用した。水素は40ml/分、空気は400mL/分で流し、メイクアップガスはヘリウムを30mL/分で使用した。
[Example 6] Fatty acid composition of fatty acid desaturase gene self-cloning strain cultured on starch The bacterial cells remaining from Example 4 were placed in a plastic tube together with beads, and treated with a bead crusher FastPrep (Thermo Electron). , crushed. The sample was treated at 60° C. for 1 hour using a centrifugal evaporator to remove moisture, and a sample for fatty acid composition analysis was obtained. To this was added 50 μL of a hexane solution (2 g/L) of heptadecanoic acid methyl ester as an internal standard, and then immediately added 500 μL of 0.5N sodium hydroxide methanol solution, mixed uniformly, and heated at 1200 r.p.m. p. The mixture was stirred for 1 hour at m. Furthermore, after adjusting the pH by adding 40 μL of sulfuric acid, 500 μL of hexane was added and stirred for 30 minutes. The hexane layer was collected and analyzed using a gas chromatograph analyzer. The gas chromatograph analyzer used was GC-2010 plus, manufactured by Shimadzu Corporation, equipped with a hydrogen flame ionization detector. 1 μL of the sample was injected in splitless mode. The analysis was started at 60°C in the vaporization chamber, the temperature was raised at 100°C/min, and the temperature was maintained at 240°C. The column used was DB-225 (30 m, 0.25 mm, 0.25 μm, Agilent Technologies), and the column oven was started at 50°C, ramped up at 30°C/min, and held at 200°C. Helium was flowed as a carrier gas at a linear velocity of 33 cm/min, and the analysis was completed in 20 minutes. The detector was used at 240°C and 25Hz. Hydrogen was flowed at 40 ml/min, air was flowed at 400 ml/min, and helium was used as the makeup gas at 30 ml/min.

RIB40株菌体とセルフクローニング株のガスクロマトグラフは図4に示したとおりとなった。標品との比較から、いずれも主要な脂肪酸はパルミチン酸(C16:0)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、α‐リノレン酸(C18:3)であることが確認された。各脂肪酸のピーク面積を、AOCS Official Method Ce 1j-07に記載の補正係数であるtheoretical correction factorsを用いて補正し、RIB40株菌体と脂肪酸不飽和化酵素遺伝子高発現株のα‐リノレン酸の含有比率が表2に示されるとおりであることが確認された。この結果から、セルフクローニング株は、総脂肪酸に対するα‐リノレン酸の比率が、RIB40株に比べて約11倍増加していることが分かった。また、セルフクローニング株の乾燥菌体重量のうち、α-リノレン酸が占める割合はRIB40株の約10倍に増加していることが明らかとなった(表3)。 Gas chromatographs of the RIB40 strain and the self-cloning strain were as shown in FIG. Comparison with standard products revealed that the main fatty acids in each case were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and α-linolenic acid ( C18:3). The peak area of each fatty acid was corrected using the theoretical correction factors described in AOCS Official Method Ce 1j-07, and the α-linolenic acid of RIB40 strain and a strain with high fatty acid desaturase gene expression were It was confirmed that the content ratio was as shown in Table 2. From this result, it was found that the ratio of α-linolenic acid to total fatty acids in the self-cloning strain was increased about 11 times compared to the RIB40 strain. Furthermore, it was revealed that the proportion of α-linolenic acid in the dry bacterial weight of the self-cloning strain was approximately 10 times greater than that of the RIB40 strain (Table 3).

Figure 0007412753000002
Figure 0007412753000002

Figure 0007412753000003
Figure 0007412753000003

[実施例7]脂肪酸不飽和化酵素遺伝子セルフクローニング株のラクトースからの培養
上記CD培地のグルコース10gの代わりにラクトース30gを加えた培地を、ラクトースCD培地とし、以降の実施例で用いた。CD寒天培地でRIB40株を培養し、滅菌綿棒で胞子を回収して、胞子懸濁液を調製した。また、ピリチアミン含有CD寒天培地でセルフクローニング株を培養し、同様に滅菌綿棒で胞子を回収し、胞子懸濁液を回収した。ラクトースCD培地50mLを300mL容の羽根つきフラスコに調製した。上記の胞子懸濁液のOD600を測定し、吸光度が0.05になるようにラクトースCD培地に接種した。30℃、90r.p.mで4日間振とう培養し、十分量の菌体を回収した。
[Example 7] Cultivation of fatty acid desaturase gene self-cloning strain from lactose A medium to which 30 g of lactose was added instead of 10 g of glucose in the above CD medium was used as a lactose CD medium and used in the following examples. RIB40 strain was cultured on a CD agar medium, and spores were collected with a sterile cotton swab to prepare a spore suspension. In addition, the self-cloning strain was cultured on a CD agar medium containing pyrithiamine, and spores were similarly collected using a sterile cotton swab to collect a spore suspension. 50 mL of lactose CD medium was prepared in a 300 mL bladed flask. The OD600 of the above spore suspension was measured, and the spore suspension was inoculated into a lactose CD medium so that the absorbance was 0.05. 30℃, 90r. p. The cells were cultured with shaking for 4 days at M, and a sufficient amount of bacterial cells were collected.

[実施例8]ラクトースで培養した脂肪酸不飽和化酵素遺伝子セルフクローニング株の脂肪酸組成
実施例7で得た菌体をビーズとともにプラスチックチューブに入れ、ビーズ破砕装置FastPrep(Thermo Electron社)で処理を行い、破砕した。遠心エバポレーターを用いて60℃で1時間処理し、水分を除去し、脂肪酸組成分析試料とした。これに、ヘプタデカン酸メチルエステルのヘキサン溶液(2g/L)を内部標準として50μL添加し、その後、直ちに、0.5Nの水酸化ナトリウムメタノール溶液を500μL添加して、均一に混合後、1200r.p.mで1時間攪拌した。さらに、硫酸を40μL添加してpHを調整した後、ヘキサンを500μL添加して、30分間攪拌した。ヘキサン層を回収し、ガスクロマトグラフ分析装置で分析を行った。ガスクロマトグラフ分析装置には、水素炎イオン化検出器を備えた株式会社島津製作所製GC-2010 plusを用いた。サンプルは、スプリットレスモードで1μLを注入した。気化室は60℃で分析を開始し、100℃/分で温度を上げ、240℃で保持した。カラムにはDB-225(30m、0.25mm、0.25μm、アジレント・テクノロジー株式会社)を使用し、カラムオーブンは50℃で開始し、30℃/分で上昇させ、200℃で保持した。ヘリウムをキャリアガスとして線速度33cm/分で流し、20分間で分析を完了した。検出器は、240℃、25Hzで使用した。水素は40ml/分、空気は400mL/分で流し、メイクアップガスはヘリウムを30mL/分で使用した。
[Example 8] Fatty acid composition of fatty acid desaturase gene self-cloning strain cultured in lactose The bacterial cells obtained in Example 7 were placed in a plastic tube together with beads, and treated with a bead crusher FastPrep (Thermo Electron). , crushed. The sample was treated at 60° C. for 1 hour using a centrifugal evaporator to remove moisture, and a sample for fatty acid composition analysis was obtained. To this was added 50 μL of a hexane solution (2 g/L) of heptadecanoic acid methyl ester as an internal standard, and then immediately added 500 μL of 0.5N sodium hydroxide methanol solution, mixed uniformly, and heated at 1200 r.p.m. p. The mixture was stirred for 1 hour at m. Furthermore, after adjusting the pH by adding 40 μL of sulfuric acid, 500 μL of hexane was added and stirred for 30 minutes. The hexane layer was collected and analyzed using a gas chromatograph analyzer. The gas chromatograph analyzer used was GC-2010 plus, manufactured by Shimadzu Corporation, equipped with a hydrogen flame ionization detector. 1 μL of the sample was injected in splitless mode. The analysis was started at 60°C in the vaporization chamber, the temperature was raised at 100°C/min, and the temperature was maintained at 240°C. The column used was DB-225 (30 m, 0.25 mm, 0.25 μm, Agilent Technologies), and the column oven was started at 50°C, ramped up at 30°C/min, and held at 200°C. Helium was flowed as a carrier gas at a linear velocity of 33 cm/min, and the analysis was completed in 20 minutes. The detector was used at 240°C and 25Hz. Hydrogen was flowed at 40 ml/min, air was flowed at 400 ml/min, and helium was used as the makeup gas at 30 ml/min.

ガスクロマトグラフの結果から、いずれも主要な脂肪酸はパルミチン酸(C16:0)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、α‐リノレン酸(C18:3)であることが確認された。各脂肪酸のピーク面積を、AOCS Official Method Ce 1j-07に記載の補正係数であるtheoretical correction factorsを用いて補正し、RIB40株菌体と脂肪酸不飽和化酵素遺伝子高発現株のα-リノレン酸の含有比率が表4に示されるとおりであることが確認された。この結果から、セルフクローニング株は、総脂肪酸に対するα-リノレン酸の比率が、RIB40株に比べて約58倍に増加していることが分かった。 According to the results of gas chromatography, the major fatty acids are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and α-linolenic acid (C18). :3) was confirmed. The peak area of each fatty acid was corrected using the theoretical correction factors described in AOCS Official Method Ce 1j-07, and the α-linolenic acid of RIB40 strain and a strain with high fatty acid desaturase gene expression were It was confirmed that the content ratio was as shown in Table 4. From this result, it was found that the ratio of α-linolenic acid to total fatty acids in the self-cloning strain was increased approximately 58 times compared to the RIB40 strain.

Figure 0007412753000004
Figure 0007412753000004

[実施例9]アスペルギルス・カワチ株においてα-リノレン酸の生産に関与する脂肪酸不飽和化酵素遺伝子の選定
アスペルギルス属微生物としてAspergillus kawachii NBRC4308株(Aspergillus luchuensis mut. kawachiiと呼ばれることもある。以下カワチ株とする)を使用した。カワチ株のゲノムはGenbankに多数登録されている。この情報の中には、複数の脂肪酸不飽和化酵素遺伝子が登録されていたが、α-リノレン酸の生合成に直接関与することを意味する「delta-15 desaturase」等として登録されているものは存在しなかった。そこで、カワチ株のゲノム内に存在する複数の脂肪酸不飽和化酵素遺伝子のうちGenbank Accession No. DF126480 「Aspergillus kawachii IFO 4308 DNA, contig: scaffold00034, whole genome shotgun sequence」のLocus Tag AKAW_09486として登録されている遺伝子(配列番号8の脂肪酸不飽和化酵素遺伝子)をα-リノレン酸の生産に関与するものであると仮定し研究を行うこととした。
[Example 9] Selection of fatty acid desaturase gene involved in the production of α-linolenic acid in Aspergillus kawachi strain Aspergillus kawachii NBRC4308 strain (sometimes referred to as Aspergillus luchuensis mut. kawachii) as a microorganism of the genus Aspergillus (hereinafter Kawachi strain) ) was used. Many Kawachi strain genomes have been registered in Genbank. In this information, multiple fatty acid desaturase genes were registered, and some were registered as "delta-15 desaturase", which means that it is directly involved in the biosynthesis of α-linolenic acid. did not exist. Therefore, among the multiple fatty acid desaturase genes present in the genome of the Kawachi strain, Genbank Accession No. DF126480 Registered as Locus Tag AKAW_09486 of "Aspergillus kawachii IFO 4308 DNA, contig: scaffold00034, whole genome shotgun sequence" The gene (fatty acid desaturase gene of SEQ ID NO: 8) involved in the production of α-linolenic acid We decided to conduct our research assuming that.

配列番号8の遺伝子がコードするアミノ酸配列(配列番号9)はGenbank Accession No. GAA91372「oleate delta-12 desaturase」としてデータベースに登録されていた。また、National Center for Biotechnology Informationが提供するBasic Local Alignment Search Tool(BLAST)を用いて、配列番号9をGenbankのnrデータベースに登録されているアミノ酸配列と相同性検索を行ったところ、配列番号9と高い相同性を示した登録配列は図4のリストに示したとおりとなった。機能が推定されているアミノ酸配列はいずれもα-リノレン酸の生産に直接関与しない「delta-12 desaturase」として登録されているものであった。このことから、配列番号8の遺伝子、配列番号9のアミノ酸配列がα‐リノレン酸の生産に直接関与することを容易に推定することはできなかった。 The amino acid sequence (SEQ ID NO: 9) encoded by the gene of SEQ ID NO: 8 is given in Genbank Accession No. It was registered in the database as GAA91372 "oleate delta-12 desaturase". In addition, using the Basic Local Alignment Search Tool (BLAST) provided by the National Center for Biotechnology Information, we performed a homology search for SEQ ID NO: 9 with the amino acid sequence registered in the Genbank nr database. , SEQ ID NO: 9 and The registered sequences that showed high homology were as shown in the list in Figure 4. All of the amino acid sequences with presumed functions were registered as "delta-12 desaturases" that are not directly involved in the production of α-linolenic acid. From this, it could not be easily inferred that the gene of SEQ ID NO: 8 and the amino acid sequence of SEQ ID NO: 9 are directly involved in the production of α-linolenic acid.

[実施例10]脂肪酸不飽和化酵素遺伝子発現カセットを含むDNA断片の調製
(アスペルギルス属微生物由来プロモーターおよび脂肪酸不飽和化酵素遺伝子ゲノムDNA断片の調製)
YPD液体培地をプラスチックチューブに添加し、カワチ株を培養し、得られた菌体からゲノムDNAを抽出した。ゲノムDNAの抽出には、ISOPLANT(株式会社ニッポンジーン)を使用した。得られたゲノムDNAを鋳型として配列番号10および11のヌクレオチド配列からなるプライマーでPCRを行い、アスペルギルス・カワチの高発現プロモーターとして配列番号12のTEF1プロモーター領域を増幅してPCR断片を得た。
[Example 10] Preparation of DNA fragment containing fatty acid desaturase gene expression cassette (preparation of Aspergillus microorganism-derived promoter and fatty acid desaturase gene genomic DNA fragment)
A YPD liquid medium was added to a plastic tube, the Kawachi strain was cultured, and genomic DNA was extracted from the resulting bacterial cells. ISOPLANT (Nippon Gene Co., Ltd.) was used to extract genomic DNA. PCR was performed using the obtained genomic DNA as a template and primers consisting of the nucleotide sequences of SEQ ID NOs: 10 and 11, and the TEF1 promoter region of SEQ ID NO: 12 was amplified as a high expression promoter of Aspergillus kawachi to obtain a PCR fragment.

同様に、ゲノムDNAを鋳型として配列番号13および14のヌクレオチド配列からなるプライマーでPCRを行い、配列番号8の脂肪酸不飽和化酵素遺伝子とその3’非翻訳領域を増幅してPCR断片を得た。 Similarly, PCR was performed using genomic DNA as a template and primers consisting of the nucleotide sequences of SEQ ID NO: 13 and 14, and the fatty acid desaturase gene of SEQ ID NO: 8 and its 3' untranslated region were amplified to obtain a PCR fragment. .

これらのPCR断片をアガロースゲルで電気泳動後、DNA断片をゲルから切り出して、QIAEX II Gel extraction kit(株式会社キアゲン)を用いてDNA断片を精製した。これらの精製DNA断片を、それぞれ「TEF1プロモーター精製断片」および「脂肪酸不飽和化酵素遺伝子/3’非翻訳領域精製断片」とした。 After electrophoresing these PCR fragments on agarose gel, the DNA fragments were excised from the gel and purified using QIAEX II Gel extraction kit (Qiagen Corporation). These purified DNA fragments were designated as "TEF1 promoter purified fragment" and "fatty acid desaturase gene/3' untranslated region purified fragment", respectively.

(ベクター断片の調製)
また、アスペルギルス属用形質転換ベクターにはpPTRI(タカラバイオ株式会社)を用いた。pPTRIを制限酵素NdeI(株式会社ニッポンジーン)で切断した。この切断断片をアガロースゲルで電気泳動後、DNA断片をゲルから切り出して、QIAEX II Gel extraction kitを用いてDNA断片を精製した。これを、pPTRIベクター精製断片とした。
(Preparation of vector fragment)
Furthermore, pPTRI (Takara Bio Inc.) was used as a transformation vector for Aspergillus. pPTRI was cut with the restriction enzyme NdeI (Nippon Gene Co., Ltd.). After electrophoresing this cut fragment on an agarose gel, the DNA fragment was excised from the gel and purified using a QIAEX II Gel extraction kit. This was used as a pPTRI vector purified fragment.

(発現カセットを含むDNA断片の作成)
TEF1プロモーター精製断片、脂肪酸不飽和化酵素遺伝子/3’非翻訳領域精製断片、pPTRIベクター精製断片の3つをGibson Assembly Master mix(ニュー・イングランド・バイオラボ・ジャパン株式会社)と混合し、50℃で30分間反応させた。この反応液を形質転換用大腸菌(NEB 5-alpha Competent E. coli (High Efficiency);ニュー・イングランド・バイオラボ・ジャパン株式会社)と混合し、マニュアルに従い、形質転換処理を行った。
(Creation of DNA fragment containing expression cassette)
The three purified fragments of TEF1 promoter, fatty acid desaturase gene/3' untranslated region, and pPTRI vector were mixed with Gibson Assembly Master mix (New England Biolab Japan Co., Ltd.) and incubated at 50°C. The reaction was allowed to proceed for 30 minutes. This reaction solution was mixed with E. coli for transformation (NEB 5-alpha Competent E. coli (High Efficiency); New England Biolab Japan Co., Ltd.), and transformation treatment was performed according to the manual.

形質転換処理された大腸菌を、アンピシリン入りLB寒天培地で約18時間培養して、生育したコロニーを得た。このコロニーから抽出したDNAをPCRの鋳型として用い、TEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットがpPTRIベクターの中に挿入されていることを確認した。このコロニーをLB液体培地で培養し、得られた大腸菌菌体からQIAprep Spin Miniprep Kit(株式会社キアゲン)を用いてベクターDNAを精製した。このベクターDNAに導入したTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットの配列が所望の配列になっていることを塩基配列解析及びPCRにより確認した。さらに、制限酵素MfeI(ニュー・イングランド・バイオラボ・ジャパン株式会社)を用いて、TEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域からなる発現カセットとベクター上にもともと存在するピリチアミン耐性マーカー遺伝子とを含むDNA断片を切断した。この試料をアガロースゲルで電気泳動し、DNA断片をゲルから切り出して、QIAEX II Gel extraction kitを用いてDNA断片を精製し、発現カセットを含む精製DNA断片を得た。発現カセットを含むDNA断片の塩基配列は配列番号15である。 The transformed E. coli was cultured on an LB agar medium containing ampicillin for about 18 hours to obtain grown colonies. Using DNA extracted from this colony as a template for PCR, it was confirmed that an expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region had been inserted into the pPTRI vector. This colony was cultured in LB liquid medium, and vector DNA was purified from the obtained E. coli cells using QIAprep Spin Miniprep Kit (Qiagen Co., Ltd.). It was confirmed by base sequence analysis and PCR that the sequence of the expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region introduced into this vector DNA was the desired sequence. Furthermore, using the restriction enzyme MfeI (New England Biolab Japan Co., Ltd.), we extracted the expression cassette consisting of the TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region, and the pyrithiamine resistance marker gene originally present on the vector. A DNA fragment containing the following was cut. This sample was electrophoresed on an agarose gel, the DNA fragment was cut out from the gel, and the DNA fragment was purified using a QIAEX II Gel extraction kit to obtain a purified DNA fragment containing the expression cassette. The base sequence of the DNA fragment containing the expression cassette is SEQ ID NO: 15.

[実施例11]アスペルギルス・カワチ株のゲノムへの発現カセットの導入
(アスペルギルス・カワチ株の脂肪酸不飽和化酵素遺伝子導入株の作成)
宿主となるカワチ株のプロトプラストを調製し、実施例10に記載した発現カセットを含む精製DNA断片をカワチ株に導入した。DNA断片導入処理されたカワチ株を、ピリチアミンを0.2μg/mlの終濃度で含有するCD寒天培地で培養した。このピリチアミン含有CD寒天培地で生育が見られたコロニーをYPD培地で培養した。続いて、培養菌体を遠心分離で回収し、ISOPLANTでゲノムDNAを抽出して、ピリチアミン耐性遺伝子とTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、3’非翻訳領域を含む発現カセットがゲノム内に導入されていることをPCRで確認した。得られたカワチ株を、「遺伝子導入カワチ株」と呼ぶ。
[Example 11] Introduction of an expression cassette into the genome of Aspergillus kawachi strain (Creation of a fatty acid desaturase gene-introduced strain of Aspergillus kawachi strain)
Protoplasts of the Kawachi strain as a host were prepared, and the purified DNA fragment containing the expression cassette described in Example 10 was introduced into the Kawachi strain. The Kawachi strain introduced with the DNA fragment was cultured on a CD agar medium containing pyrithiamine at a final concentration of 0.2 μg/ml. Colonies that were observed to grow on this pyrithiamine-containing CD agar medium were cultured on YPD medium. Next, the cultured cells were collected by centrifugation, genomic DNA was extracted using ISOPLANT, and an expression cassette containing the pyrithiamine resistance gene, TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region was introduced into the genome. This was confirmed by PCR. The obtained Kawachi strain is called the "gene-transferred Kawachi strain."

[実施例12]脂肪酸不飽和化酵素遺伝子導入カワチ株のデンプンからの培養
CD寒天培地で通常のカワチ株を培養し、滅菌綿棒で胞子を回収して、胞子懸濁液を調製した。また、ピリチアミン含有CD寒天培地で遺伝子導入カワチ株を培養し、同様に滅菌綿棒で胞子を回収し、胞子懸濁液を回収した。デンプンCD培地100mLを500mL容の羽根つきフラスコに調製した。上記の胞子懸濁液のOD600を測定し、吸光度が0.05になるようにデンプンCD培地に接種した。30℃、90r.p.mで4日間振とう培養し、十分量の菌体を回収した。
[Example 12] Cultivation of Kawachi strain carrying a fatty acid desaturase gene from starch A normal Kawachi strain was cultured on a CD agar medium, and spores were collected with a sterile cotton swab to prepare a spore suspension. In addition, the transgenic Kawachi strain was cultured on a CD agar medium containing pyrithiamine, and spores were similarly collected using a sterile cotton swab to collect a spore suspension. 100 mL of starch CD medium was prepared in a 500 mL bladed flask. The OD600 of the above spore suspension was measured, and it was inoculated into a starch CD medium so that the absorbance was 0.05. 30℃, 90r. p. The cells were cultured with shaking for 4 days at M, and a sufficient amount of bacterial cells were collected.

[実施例13]デンプンで培養した脂肪酸不飽和化酵素遺伝子導入株の脂肪酸組成
実施例12で残った菌体をビーズとともにプラスチックチューブに入れ、ビーズ破砕装置FastPrep(Thermo Electron社)で処理を行い、破砕した。遠心エバポレーターを用いて60℃で1時間処理し、水分を除去し、脂肪酸組成分析試料とした。これに、ヘプタデカン酸メチルエステルのヘキサン溶液(2g/L)を内部標準として50μL添加し、その後、直ちに、0.5Nの水酸化ナトリウムメタノール溶液を500μL添加して、均一に混合後、1200r.p.mで1時間攪拌した。さらに、硫酸を40μL添加してpHを調整した後、ヘキサンを500μL添加して、30分間攪拌した。ヘキサン層を回収し、ガスクロマトグラフ分析装置で分析を行った。ガスクロマトグラフ分析装置には、水素炎イオン化検出器を備えた株式会社島津製作所製GC-2010 plusを用いた。サンプルは、スプリットレスモードで1μLを注入した。気化室は60℃で分析を開始し、100℃/分で温度を上げ、240℃で保持した。カラムにはDB-225(30m、0.25mm、0.25μm、アジレント・テクノロジー株式会社)を使用し、カラムオーブンは50℃で開始し、30℃/分で上昇させ、200℃で保持した。ヘリウムをキャリアガスとして線速度33cm/分で流し、20分間で分析を完了した。検出器は、240℃、25Hzで使用した。水素は40ml/分、空気は400mL/分で流し、メイクアップガスはヘリウムを30mL/分で使用した。
[Example 13] Fatty acid composition of a fatty acid desaturase gene-introduced strain cultured on starch The bacterial cells remaining in Example 12 were placed in a plastic tube together with beads, and treated with a bead crusher FastPrep (Thermo Electron). It was crushed. The sample was treated at 60° C. for 1 hour using a centrifugal evaporator to remove moisture, and a sample for fatty acid composition analysis was obtained. To this was added 50 μL of a hexane solution (2 g/L) of heptadecanoic acid methyl ester as an internal standard, and then immediately added 500 μL of 0.5N sodium hydroxide methanol solution, mixed uniformly, and heated at 1200 r.p.m. p. The mixture was stirred for 1 hour at m. Furthermore, after adjusting the pH by adding 40 μL of sulfuric acid, 500 μL of hexane was added and stirred for 30 minutes. The hexane layer was collected and analyzed using a gas chromatograph analyzer. The gas chromatograph analyzer used was GC-2010 plus, manufactured by Shimadzu Corporation, equipped with a hydrogen flame ionization detector. 1 μL of the sample was injected in splitless mode. The analysis was started at 60°C in the vaporization chamber, the temperature was raised at 100°C/min, and the temperature was maintained at 240°C. The column used was DB-225 (30 m, 0.25 mm, 0.25 μm, Agilent Technologies), and the column oven was started at 50°C, ramped up at 30°C/min, and held at 200°C. Helium was flowed as a carrier gas at a linear velocity of 33 cm/min, and the analysis was completed in 20 minutes. The detector was used at 240°C and 25Hz. Hydrogen was flowed at 40 ml/min, air was flowed at 400 ml/min, and helium was used as the makeup gas at 30 ml/min.

カワチ株菌体と遺伝子導入カワチ株のガスクロマトグラフは図5に示したとおりとなった。標品との比較から、いずれも主要な脂肪酸はパルミチン酸(C16:0)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、α‐リノレン酸(C18:3)であることが確認された。各脂肪酸のピーク面積を、AOCS Official Method Ce 1j-07に記載の補正係数であるtheoretical correction factorsを用いて補正し、カワチ株菌体と遺伝子導入株のα-リノレン酸の含有比率が表5に示されるとおりであることが確認された。この結果から、遺伝子導入カワチ株は、総脂肪酸に対するα-リノレン酸の比率が、カワチ株に比べて約5倍増加していることが分かった。また、遺伝子導入カワチ株の乾燥菌体重量のうち、α-リノレン酸が占める割合はカワチ株の約5倍に増加していることが明らかとなった(表5)。 The gas chromatographs of the Kawachi strain cells and the transgenic Kawachi strain were as shown in FIG. Comparison with standard products revealed that the major fatty acids in each case were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and α-linolenic acid ( C18:3). The peak area of each fatty acid was corrected using the theoretical correction factors described in AOCS Official Method Ce 1j-07, and the content ratio of α-linolenic acid between Kawachi strain cells and the transgenic strain is shown in Table 5. It was confirmed that it was as shown. From this result, it was found that the ratio of α-linolenic acid to total fatty acids in the transgenic Kawachi strain was increased by about 5 times compared to the Kawachi strain. It was also revealed that the proportion of α-linolenic acid in the dry bacterial weight of the transgenic Kawachi strain was approximately five times greater than that of the Kawachi strain (Table 5).

Figure 0007412753000005
Figure 0007412753000005

[実施例14]脂肪酸不飽和化酵素遺伝子導入カワチ株のラクトースからの培養
CD寒天培地でカワチ株を培養し、滅菌綿棒で胞子を回収して、胞子懸濁液を調製した。また、ピリチアミン含有CD寒天培地で遺伝子導入株を培養し、同様に滅菌綿棒で胞子を回収し、胞子懸濁液を回収した。ラクトースCD培地100mLを500mL容の羽根つきフラスコに調製した。上記の胞子懸濁液のOD600を測定し、吸光度が0.05になるようにラクトースCD培地に接種した。30℃、90r.p.mで4日間振とう培養し、十分量の菌体を回収した。
[Example 14] Cultivation of the Kawachi strain carrying the fatty acid desaturase gene from lactose The Kawachi strain was cultured on a CD agar medium, and spores were collected with a sterile cotton swab to prepare a spore suspension. In addition, the transgenic strain was cultured on a CD agar medium containing pyrithiamine, and spores were similarly collected using a sterile cotton swab to collect a spore suspension. 100 mL of lactose CD medium was prepared in a 500 mL bladed flask. The OD600 of the above spore suspension was measured, and the spore suspension was inoculated into a lactose CD medium so that the absorbance was 0.05. 30℃, 90r. p. The cells were cultured with shaking for 4 days at M, and a sufficient amount of bacterial cells were collected.

[実施例15]ラクトースで培養した脂肪酸不飽和化酵素遺伝子導入カワチ株の脂肪酸組成
実施例14で得た菌体をビーズとともにプラスチックチューブに入れ、ビーズ破砕装置FastPrep(Thermo Electron社)で処理を行い、破砕した。遠心エバポレーターを用いて60℃で1時間処理し、水分を除去し、脂肪酸組成分析試料とした。これに、ヘプタデカン酸メチルエステルのヘキサン溶液(2g/L)を内部標準として50μL添加し、その後、直ちに、0.5Nの水酸化ナトリウムメタノール溶液を500μL添加して、均一に混合後、1200r.p.mで1時間攪拌した。さらに、硫酸を40μL添加してpHを調整した後、ヘキサンを500μL添加して、30分間攪拌した。ヘキサン層を回収し、ガスクロマトグラフ分析装置で分析を行った。ガスクロマトグラフ分析装置には、水素炎イオン化検出器を備えた株式会社島津製作所製GC-2010 plusを用いた。サンプルは、スプリットレスモードで1μLを注入した。気化室は60℃で分析を開始し、100℃/分で温度を上げ、240℃で保持した。カラムにはDB-225(30m、0.25mm、0.25μm、アジレント・テクノロジー株式会社)を使用し、カラムオーブンは50℃で開始し、30℃/分で上昇させ、200℃で保持した。ヘリウムをキャリアガスとして線速度33cm/分で流し、20分間で分析を完了した。検出器は、240℃、25Hzで使用した。水素は40ml/分、空気は400mL/分で流し、メイクアップガスはヘリウムを30mL/分で使用した。
[Example 15] Fatty acid composition of Kawachi strain with fatty acid desaturase gene introduced and cultured in lactose The bacterial cells obtained in Example 14 were placed in a plastic tube together with beads, and treated with a bead crusher FastPrep (Thermo Electron). , crushed. The sample was treated at 60° C. for 1 hour using a centrifugal evaporator to remove moisture, and a sample for fatty acid composition analysis was obtained. To this was added 50 μL of a hexane solution (2 g/L) of heptadecanoic acid methyl ester as an internal standard, and then immediately added 500 μL of 0.5N sodium hydroxide methanol solution, mixed uniformly, and heated at 1200 r.p.m. p. The mixture was stirred for 1 hour at m. Furthermore, after adjusting the pH by adding 40 μL of sulfuric acid, 500 μL of hexane was added and stirred for 30 minutes. The hexane layer was collected and analyzed using a gas chromatograph analyzer. The gas chromatograph analyzer used was GC-2010 plus, manufactured by Shimadzu Corporation, equipped with a hydrogen flame ionization detector. 1 μL of the sample was injected in splitless mode. The analysis was started at 60°C in the vaporization chamber, the temperature was raised at 100°C/min, and the temperature was maintained at 240°C. The column used was DB-225 (30 m, 0.25 mm, 0.25 μm, Agilent Technologies), and the column oven was started at 50°C, ramped up at 30°C/min, and held at 200°C. Helium was flowed as a carrier gas at a linear velocity of 33 cm/min, and the analysis was completed in 20 minutes. The detector was used at 240°C and 25Hz. Hydrogen was flowed at 40 ml/min, air was flowed at 400 ml/min, and helium was used as the makeup gas at 30 ml/min.

カワチ株と遺伝子導入カワチ株のガスクロマトグラフの結果から、いずれも主要な脂肪酸はパルミチン酸(C16:0)、ステアリン酸(C18:0)、オレイン酸(C18:1)、リノール酸(C18:2)、α-リノレン酸(C18:3)であることが確認された。各脂肪酸のピーク面積を、AOCS Official Method Ce 1j-07に記載の補正係数であるtheoretical correction factorsを用いて補正し、カワチ株菌体と遺伝子導入カワチ株のα-リノレン酸の含有比率が表6に示されるとおりであることが確認された。この結果から、遺伝子導入カワチ株は、総脂肪酸に対するα-リノレン酸の比率が、通常のカワチ株に比べて約23倍に増加していることが分かった。 From the results of gas chromatography of the Kawachi strain and the transgenic Kawachi strain, the major fatty acids in both cases are palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2). ), α-linolenic acid (C18:3). The peak area of each fatty acid was corrected using the theoretical correction factors described in AOCS Official Method Ce 1j-07, and the content ratio of α-linolenic acid in Kawachi strain bacterial cells and transgenic Kawachi strain was determined in Table 6. It was confirmed that the results were as shown in . From this result, it was found that the ratio of α-linolenic acid to total fatty acids in the gene-transferred Kawachi strain was increased approximately 23 times compared to the normal Kawachi strain.

Figure 0007412753000006
Figure 0007412753000006

[実施例16]アミノ酸配列の同一性の評価
実施例1~8において、Aspergillus oryzae RIB40株の配列番号2の酵素がα-リノレン酸の生産に寄与する酵素であることが確認された。この配列番号2の酵素と同株のもつ類似酵素のアミノ酸配列を比較した。評価には、アライメント作成プログラムのCrustal omegaを用いた。比較する2つの配列のアライメントを作成し、完全に一致するアミノ酸残基の数を算出し、それをアライメント全体の長さで除して求められる百分率をアミノ酸の同一性とした。まず、Genbankに登録されているRIB40株の情報からBLAST検索を行い、配列番号2の酵素とアミノ酸配列の相同性が高いRIB40株の5つのタンパク質を見出した。続いて、これらのタンパク質と配列番号2の酵素とのアミノ酸の同一性を算出した(表7)。
[Example 16] Evaluation of amino acid sequence identity In Examples 1 to 8, it was confirmed that the enzyme of SEQ ID NO: 2 of Aspergillus oryzae RIB40 strain is an enzyme that contributes to the production of α-linolenic acid. The amino acid sequences of this enzyme of SEQ ID NO: 2 and a similar enzyme possessed by the same strain were compared. For the evaluation, the alignment creation program Crustal omega was used. An alignment of two sequences to be compared was created, the number of completely matching amino acid residues was calculated, and the percentage obtained by dividing this by the length of the entire alignment was taken as the amino acid identity. First, a BLAST search was performed from information on the RIB40 strain registered in Genbank, and five proteins of the RIB40 strain that had high amino acid sequence homology with the enzyme of SEQ ID NO: 2 were found. Subsequently, the amino acid identity between these proteins and the enzyme of SEQ ID NO: 2 was calculated (Table 7).

Figure 0007412753000007
Figure 0007412753000007

また、実施例9~15において、Aspergillus kawachii株の配列番号9の酵素α-リノレン酸の生産に寄与する酵素であることが確認された。この配列番号9の酵素と同株のもつ類似酵素のアミノ酸配列を比較した。まず、Genbankに登録されているカワチ株の情報からBLAST検索を行い、配列番号9の酵素と相同性の高いカワチ株の4つのタンパク質を見出した。次に、これらのタンパク質とのアミノ酸の同一性を評価した(表8)。 Furthermore, in Examples 9 to 15, it was confirmed that the enzyme of SEQ ID NO: 9 of Aspergillus kawachii strain contributes to the production of α-linolenic acid. The amino acid sequences of this enzyme of SEQ ID NO: 9 and a similar enzyme possessed by the same strain were compared. First, a BLAST search was performed from information on the Kawachi strain registered in Genbank, and four proteins of the Kawachi strain that were highly homologous to the enzyme of SEQ ID NO: 9 were found. Next, amino acid identity with these proteins was evaluated (Table 8).

Figure 0007412753000008
Figure 0007412753000008

今回α-リノレン酸の生産に寄与することが確認されたAspergillus oryzae RIB40株の酵素(配列番号2)とAspergillus kawachii株の酵素(配列番号9)は、各菌株内の他の酵素とアミノ酸の同一性は40%未満であった。他方で、配列番号2と配列番号9のアミノ酸配列は、同一性が78%であった。このことから、配列番号2もしくは配列番号9とアミノ酸配列の同一性が例えば70%を超えるアスペルギルス属のタンパク質は、α-リノレン酸の生産に寄与する酵素であると推定することができる。Genbankなどのデータベースを用いて配列番号2もしくは配列番号9とアミノ酸配列の相同性が高い酵素の遺伝子を検索し、高発現させることで、アスペルギルス属の様々な菌株においてα-リノレン酸の生産量を高めることができる。 The enzyme of Aspergillus oryzae RIB40 strain (SEQ ID NO. 2) and the enzyme of Aspergillus kawachii strain (SEQ ID NO. 9), which were confirmed to contribute to the production of α-linolenic acid, have the same amino acid content as other enzymes in each strain. The gender was less than 40%. On the other hand, the amino acid sequences of SEQ ID NO: 2 and SEQ ID NO: 9 had 78% identity. From this, it can be inferred that Aspergillus proteins having, for example, more than 70% amino acid sequence identity with SEQ ID NO: 2 or SEQ ID NO: 9 are enzymes that contribute to the production of α-linolenic acid. By searching for enzyme genes with high amino acid sequence homology to SEQ ID NO: 2 or SEQ ID NO: 9 using databases such as Genbank and highly expressing them, we can increase the production amount of α-linolenic acid in various strains of Aspergillus. can be increased.

本発明は、食品や飼料として安全に利用できるα-リノレン酸高含有微生物菌体の生産に用いることができる。 The present invention can be used to produce microbial cells containing high α-linolenic acid content that can be safely used as food or feed.

配列番号1:アスペルギルス・オリゼRIB40株の脂肪酸不飽和化酵素遺伝子のヌクレオチド配列。
配列番号2:アスペルギルス・オリゼRIB40株の脂肪酸不飽和化酵素遺伝子がコードするアミノ酸配列。
配列番号3:ピリチアミン耐性遺伝子及びTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、および3’非翻訳領域を含む遺伝子発現カセット。
配列番号4および5:アスペルギルス・オリゼTEF1プロモーター領域を増幅するためのプライマー。
配列番号6および7:アスペルギルス・オリゼ脂肪酸不飽和化酵素遺伝子とその3’非翻訳領域を増幅するためのプライマー。
配列番号8:アスペルギルス・カワチ株の脂肪酸不飽和化酵素遺伝子のヌクレオチド配列。
配列番号9:アスペルギルス・カワチ株の脂肪酸不飽和化酵素遺伝子がコードするアミノ酸配列。
配列番号10および11:アスペルギルス・カワチ株TEF1プロモーター領域を増幅するためのプライマー。
配列番号12:アスペルギルス・カワチ株TEF1プロモーター領域。
配列番号13および14:アスペルギルス・カワチ株脂肪酸不飽和化酵素遺伝子とその3’非翻訳領域を増幅するためのプライマー。
配列番号15:アスペルギルス・カワチ株に導入したピリチアミン耐性遺伝子及びTEF1プロモーター、脂肪酸不飽和化酵素遺伝子、および3’非翻訳領域を含む遺伝子発現カセット。
SEQ ID NO: 1: Nucleotide sequence of fatty acid desaturase gene of Aspergillus oryzae RIB40 strain.
SEQ ID NO: 2: Amino acid sequence encoded by the fatty acid desaturase gene of Aspergillus oryzae RIB40 strain.
SEQ ID NO: 3: Gene expression cassette containing pyrithiamine resistance gene and TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region.
SEQ ID NOs: 4 and 5: Primers for amplifying the Aspergillus oryzae TEF1 promoter region.
SEQ ID NOs: 6 and 7: Primers for amplifying the Aspergillus oryzae fatty acid desaturase gene and its 3' untranslated region.
SEQ ID NO: 8: Nucleotide sequence of fatty acid desaturase gene of Aspergillus kawachi strain.
SEQ ID NO: 9: Amino acid sequence encoded by the fatty acid desaturase gene of Aspergillus kawachi strain.
SEQ ID NOs: 10 and 11: Primers for amplifying the Aspergillus kawachi strain TEF1 promoter region.
SEQ ID NO: 12: Aspergillus kawachi strain TEF1 promoter region.
SEQ ID NOs: 13 and 14: Primers for amplifying the Aspergillus kawachi strain fatty acid desaturase gene and its 3' untranslated region.
SEQ ID NO: 15: Gene expression cassette containing the pyrithiamine resistance gene, TEF1 promoter, fatty acid desaturase gene, and 3' untranslated region introduced into Aspergillus kawachi strain.

Claims (18)

糸状菌に属し、糖質代謝経路および脂肪酸不飽和化酵素遺伝子を含む微生物において、宿主と同属同種の微生物由来の核酸が細胞外から少なくとも1つ導入されており、導入された核酸の少なくとも1つにより脂肪酸不飽和化酵素遺伝子を高発現
微生物が、アスペルギルス属微生物であり、
高発現する脂肪酸不飽和化酵素遺伝子が、配列番号2又は9のアミノ酸配列に対して90%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む、
α-リノレン酸産生能が向上した微生物
A microorganism that belongs to filamentous fungi and contains a carbohydrate metabolic pathway and a fatty acid desaturase gene, into which at least one nucleic acid derived from a microorganism of the same genus and species as the host is introduced from outside the cell, and at least one of the introduced nucleic acids Highly expresses the fatty acid desaturase gene,
The microorganism is a microorganism of the genus Aspergillus,
The highly expressed fatty acid desaturase gene contains a polynucleotide sequence that has 90% or more identity to the amino acid sequence of SEQ ID NO: 2 or 9 and encodes an amino acid sequence that has fatty acid desaturation activity. ,
A microorganism with improved α-linolenic acid production ability.
微生物が、食品安全性または飼料安全性を有するアスペルギルス属微生物である、請求項1記載の微生物The microorganism according to claim 1, wherein the microorganism is an Aspergillus microorganism that is food safe or feed safe. アスペルギルス属微生物が、アスペルギルス・オリゼ、アスペルギルス・ニガー、アスペルギルス・リュウキュウエンシス、アスペルギルス・リュウキュウエンシス・カワチ、アスペルギルス・カワチ、アスペルギルス・ソヤ、アスペルギルス・タマリ、又はアスペルギルス・アワモリである、請求項1または2記載の微生物Claim 1 or 2, wherein the Aspergillus microorganism is Aspergillus oryzae, Aspergillus niger, Aspergillus ryukyuensis, Aspergillus ryukyuensis kawachi, Aspergillus kawachi, Aspergillus soya, Aspergillus tamari, or Aspergillus awamori. Microorganism according to 2. 宿主と同属同種の微生物由来の脂肪酸不飽和化酵素遺伝子の発現が、宿主と同属同種の微生物由来のプロモーターで制御されている、請求項1~のいずれか一項記載の微生物 The microorganism according to any one of claims 1 to 3 , wherein expression of the fatty acid desaturase gene derived from a microorganism of the same genus and species as the host is controlled by a promoter derived from a microorganism of the same genus and species as the host. プロモーターが、TEF1プロモーターである、請求項記載の微生物 The microorganism according to claim 4 , wherein the promoter is the TEF1 promoter. 糸状菌に属し、糖質代謝経路および脂肪酸不飽和化酵素遺伝子を含む微生物において、宿主と同属同種の微生物由来の核酸が細胞外から少なくとも1つ導入されており、導入された核酸の少なくとも1つにより脂肪酸不飽和化酵素遺伝子を高発現し、 A microorganism that belongs to filamentous fungi and contains a carbohydrate metabolic pathway and a fatty acid desaturase gene, into which at least one nucleic acid derived from a microorganism of the same genus and species as the host is introduced from outside the cell, and at least one of the introduced nucleic acids Highly expresses the fatty acid desaturase gene,
微生物が、アスペルギルス属微生物であり、 The microorganism is a microorganism of the genus Aspergillus,
高発現する脂肪酸不飽和化酵素遺伝子が、配列番号2又は9のアミノ酸配列に対して90%以上の同一性を有し、かつ脂肪酸不飽和化活性を有するアミノ酸配列をコードするポリヌクレオチド配列を含む、 The highly expressed fatty acid desaturase gene contains a polynucleotide sequence that has 90% or more identity to the amino acid sequence of SEQ ID NO: 2 or 9 and encodes an amino acid sequence that has fatty acid desaturation activity. ,
α-リノレン酸産生能が向上した微生物またはその培養物の生産方法。A method for producing a microorganism or a culture thereof having an improved ability to produce α-linolenic acid.
アスペルギルス属微生物が、アスペルギルス・オリゼ、アスペルギルス・ニガー、アスペルギルス・リュウキュウエンシス、アスペルギルス・リュウキュウエンシス・カワチ、アスペルギルス・カワチ、アスペルギルス・ソヤ、アスペルギルス・タマリ、又はアスペルギルス・アワモリである、請求項6に記載の方法。Claim 6, wherein the Aspergillus microorganism is Aspergillus oryzae, Aspergillus niger, Aspergillus ryukyuensis, Aspergillus ryukyuensis kawachi, Aspergillus kawachi, Aspergillus soya, Aspergillus tamari, or Aspergillus awamori. Method described. 請求項1~のいずれか一項記載の微生物を含む、食品または飼料。 A food or feed comprising the microorganism according to any one of claims 1 to 5 . 請求項1~のいずれか一項記載の微生物、またはその培養物を含む、食用性物質発酵用組成物。 A composition for fermenting an edible substance, comprising the microorganism according to any one of claims 1 to 5 , or a culture thereof. 以下を含む、α-リノレン酸を高含有量で含む食品または飼料の製造方法:
(i)食用性物質と、請求項1~のいずれか一項記載の微生物、またはその培養物あるいは請求項9記載の組成物とを接触させる工程;および
(ii)食用性物質を発酵させる工程。
Process for producing food or feed containing high amounts of alpha-linolenic acid, including:
(i) contacting the edible substance with the microorganism according to any one of claims 1 to 5 or a culture thereof or the composition according to claim 9; and (ii) fermenting the edible substance. Process.
食用性物質が、食品またはその廃棄物である、請求項10記載の方法。 11. The method according to claim 10, wherein the edible material is food or its waste. 食用性物質が、糖質を含む、請求項10または11記載の方法。 12. The method according to claim 10 or 11, wherein the edible substance comprises a carbohydrate. 食用性物質が、デンプンおよびラクトースの少なくともいずれかを含む、請求項10~12のいずれか一項記載の方法。 A method according to any one of claims 10 to 12, wherein the edible material comprises at least one of starch and lactose. 食用性物質が、米飯を含む、請求項10~12のいずれか一項記載の方法。 A method according to any one of claims 10 to 12, wherein the edible substance comprises cooked rice. 食用性物質が、ホエイを含む、請求項10~12のいずれか一項記載の方法。 A method according to any one of claims 10 to 12, wherein the edible substance comprises whey. 以下を含む、α-リノレン酸の製造方法:
(i)糖質供給源と、請求項1~のいずれか一項記載の微生物またはその培養物あるいは請求項9記載の組成物とを接触させる工程;および
(ii)糖質供給源を発酵させる工程。
Method for producing alpha-linolenic acid, including:
(i) contacting the carbohydrate source with the microorganism according to any one of claims 1 to 5 , or a culture thereof , or the composition according to claim 9; and (ii) bringing the carbohydrate source into contact with The process of fermentation.
糖質供給源が、デンプンおよびラクトースの少なくともいずれかを含む、請求項16に記載の方法。 17. The method of claim 16, wherein the carbohydrate source comprises at least one of starch and lactose. 請求項8記載の飼料を動物(但し、ヒトを除く)に給与して飼育しα-リノレン酸を高含有させることを含む、畜産物または水産物の生産方法。 A method for producing livestock or aquatic products, which comprises feeding animals (excluding humans) with the feed according to claim 8 and raising them to increase the content of α-linolenic acid.
JP2020034277A 2019-06-27 2020-02-28 Microorganisms with improved α-linolenic acid production ability or their cultures Active JP7412753B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019120570 2019-06-27
JP2019120570 2019-06-27

Publications (2)

Publication Number Publication Date
JP2021006020A JP2021006020A (en) 2021-01-21
JP7412753B2 true JP7412753B2 (en) 2024-01-15

Family

ID=74165085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020034277A Active JP7412753B2 (en) 2019-06-27 2020-02-28 Microorganisms with improved α-linolenic acid production ability or their cultures

Country Status (1)

Country Link
JP (1) JP7412753B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166547A (en) 1998-12-07 2000-06-20 Aichi Prefecture Novel glutaminase, and its production
JP2007515951A (en) 2003-11-12 2007-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ15 desaturase suitable for altering polyunsaturated fatty acid levels in oily plants and yeast
WO2010101129A1 (en) 2009-03-04 2010-09-10 財団法人野田産業科学研究所 Transcription regulatory factors for mannanases or cellulases, and genes for the transcription regulatory factors
JP2010246532A (en) 2009-03-23 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for improving amount of produced kojic acid by utilizing gene essential for production of kojic acid
JP2013158289A (en) 2012-02-03 2013-08-19 Kanazawa Inst Of Technology Acrylamide-degrading self-cloning aspergillus oryzae

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166547A (en) 1998-12-07 2000-06-20 Aichi Prefecture Novel glutaminase, and its production
JP2007515951A (en) 2003-11-12 2007-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ15 desaturase suitable for altering polyunsaturated fatty acid levels in oily plants and yeast
WO2010101129A1 (en) 2009-03-04 2010-09-10 財団法人野田産業科学研究所 Transcription regulatory factors for mannanases or cellulases, and genes for the transcription regulatory factors
JP2010246532A (en) 2009-03-23 2010-11-04 National Institute Of Advanced Industrial Science & Technology Method for improving amount of produced kojic acid by utilizing gene essential for production of kojic acid
JP2013158289A (en) 2012-02-03 2013-08-19 Kanazawa Inst Of Technology Acrylamide-degrading self-cloning aspergillus oryzae

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Damude, H. G. et al.,"Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants",Proc. Natl. Acad. Sci. U. S. A.,2006年,Vol. 103,pp. 9446-9451
Database: GenPept, [online],GAA91372.1,oleate delta-12 desaturase [Aspergillus luchuensis IFO 4308],2015年10月02日,Internet, [retrieved on 2023.09.11], <URL: https://www.ncbi.nlm.nih.gov/protein/GAA91372>
Database: GenPept, [online],XP_001818769,unnamed protein product [Aspergillus oryzae RIB40],2018年04月04日,Internet, [retrieved on 2023.09.11], <URL: https://www.ncbi.nlm.nih.gov/protein/XP_001818769>

Also Published As

Publication number Publication date
JP2021006020A (en) 2021-01-21

Similar Documents

Publication Publication Date Title
Xie et al. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production
Mojsov New and future developments in microbial biotechnology and bioengineering
CN108064268A (en) Increase lipid and generate and optimize lipid composition
EP2169055A1 (en) Novel lysophosphatidate acyltransferase gene
US8551744B2 (en) Method of preparing a fatty acid composition
Cheng et al. Establishment of a transgene expression system for the marine microalga Schizochytrium by 18S rDNA-targeted homologous recombination
JP2024509175A (en) Production of phospholipids and their use in microorganisms
RU2485179C2 (en) Homologues of glycerol-3- phosphate acyltransferase (gpat) and their use
Gajdoš et al. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica
US20170137792A1 (en) Recombinant polynucleotide sequence for producing astaxanthin and uses thereof
CN102595917A (en) High eicosapentaenoic acid oils from improved optimized strains of yarrowia lipolytica
JP7412753B2 (en) Microorganisms with improved α-linolenic acid production ability or their cultures
WO2024051249A1 (en) Lysophosphatidylcholine acyltransferase for significantly improving epa content, nucleic acid molecule, and use thereof
CN102803289A (en) Improved optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
JP5451398B2 (en) Novel ATP: citrate lyase gene
JP7372647B2 (en) Yeast with improved α-linolenic acid production ability or its culture
JP7066593B2 (en) Food and drink, feed, or feed containing algae variants
JP5576986B2 (en) Phosphatidic acid phosphatase gene
US10941385B2 (en) Modified microorganisms as sustainable sources of omega-3 polyunsaturated fatty acid production
JP5180960B2 (en) Phosphatidate phosphatase homolog and its use
EP2532744A1 (en) Glycerol-3-phosphate acyltransferase homologue and use thereof
EP2116136A1 (en) Novel phytases
CN117355229A (en) Production of phospholipids in microorganisms and use thereof
BR112020023803A2 (en) modified sterol acyltransferases

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231220

R150 Certificate of patent or registration of utility model

Ref document number: 7412753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150