JP7412261B2 - Transmittance variable element and its manufacturing method - Google Patents

Transmittance variable element and its manufacturing method Download PDF

Info

Publication number
JP7412261B2
JP7412261B2 JP2020076290A JP2020076290A JP7412261B2 JP 7412261 B2 JP7412261 B2 JP 7412261B2 JP 2020076290 A JP2020076290 A JP 2020076290A JP 2020076290 A JP2020076290 A JP 2020076290A JP 7412261 B2 JP7412261 B2 JP 7412261B2
Authority
JP
Japan
Prior art keywords
transmittance
transparent conductive
substrates
light
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076290A
Other languages
Japanese (ja)
Other versions
JP2021173824A (en
Inventor
和典 宮川
節 久保田
泰士 岩崎
正巳 守山
和也 北村
多久男 持塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Corp
Japan Broadcasting Corp
Original Assignee
Murakami Corp
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Corp, Japan Broadcasting Corp filed Critical Murakami Corp
Priority to JP2020076290A priority Critical patent/JP7412261B2/en
Publication of JP2021173824A publication Critical patent/JP2021173824A/en
Application granted granted Critical
Publication of JP7412261B2 publication Critical patent/JP7412261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

本発明は、透過率可変素子及びその製造方法に関する。 The present invention relates to a variable transmittance element and a method for manufacturing the same.

外部から入射する光の光量又は色調を調整するためのフィルターは、カメラ用フィルター、防眩ミラー、照明用の調光用フィルター、窓材等の種々の用途で用いられている。 Filters for adjusting the amount or color tone of light incident from the outside are used in various applications such as camera filters, anti-glare mirrors, lighting control filters, and window materials.

こうしたフィルターの具体例として、図1を参照し、テレビ放送用のビデオカメラにおけるフィルターの使用例を説明する。ビデオカメラ1において、撮像素子5の撮像面に入射する光6の光量を調整する際は、レンズ2の絞り3の開口径(F値)を変化させて、撮像素子5における出力画像の明るさ(信号量)を調整する。ここで、レンズ2の絞り3の値を変化させると、明るさが変わるのはもちろんのこと、ピントの合う深さ方向の距離(被写界深度)や、解像度までもが変化してしまう。特に、昨今の4K、8Kの高精細テレビシステムでは、レンズ2の絞り3の径を一定よりも小さくしてしまうと、光の回折現象由来の画像ボケ(「小絞りボケ」と呼ばれる)が生じ、取得した画像の解像度が著しく低下しかねない。そこで、光6の光量を調整するために、レンズ2のF値調整による光量調整に加えて、光量をさらに減衰するために透過率が異なるND(Neutral Density)フィルター4を数枚程度で複数併用し、その光量の状況において適正な透過率のNDフィルターを1つ選択して使用する。 As a specific example of such a filter, an example of its use in a video camera for television broadcasting will be described with reference to FIG. In the video camera 1, when adjusting the amount of light 6 that enters the imaging surface of the image sensor 5, the aperture diameter (F number) of the aperture 3 of the lens 2 is changed to adjust the brightness of the output image on the image sensor 5. (signal amount). Here, if the value of the aperture 3 of the lens 2 is changed, not only will the brightness change, but also the distance in the depth direction of focus (depth of field) and resolution will also change. In particular, in recent 4K and 8K high-definition television systems, if the diameter of the aperture 3 of the lens 2 is made smaller than a certain value, image blur (called "small aperture blur") due to light diffraction occurs. , the resolution of the acquired images may be significantly reduced. Therefore, in order to adjust the light intensity of the light 6, in addition to adjusting the light intensity by adjusting the F value of the lens 2, multiple ND (Neutral Density) filters 4 with different transmittances are used in order to further attenuate the light intensity. Then, select and use one ND filter with appropriate transmittance for the light amount situation.

ところで近年、電圧印加することにより分光透過特性を無段階で連続的に変化させることのできる透過率可変素子が開発されている。例えば特許文献1は、ガラス基板に透光性導電膜が形成された透光性導電膜付き基板を透光性導電膜側同士で対向させて電極対を設け、この電極対間の空隙に、金属塩となる銀及び銅をメタノールで溶解させた電解液を充填させた構造の反射率可変素子を開示する。この素子において、電極対間での電場を変化させることにより、透光性導電膜の表面へ銀イオンを析出又は溶解することを可逆的に繰り返すことができるため、光の透過率を無段階で変化させることができる。 Incidentally, in recent years, variable transmittance elements have been developed that can change the spectral transmission characteristics steplessly and continuously by applying a voltage. For example, Patent Document 1 discloses that a substrate with a transparent conductive film, which is a glass substrate with a transparent conductive film formed thereon, is provided with an electrode pair with the transparent conductive film sides facing each other, and in the gap between the electrode pair, A variable reflectance element is disclosed that is filled with an electrolytic solution in which silver and copper, which serve as metal salts, are dissolved in methanol. In this device, by changing the electric field between the electrode pair, it is possible to reversibly repeat the deposition or dissolution of silver ions on the surface of the transparent conductive film, so the light transmittance can be adjusted steplessly. It can be changed.

国際公開第2015/093298号International Publication No. 2015/093298

例えばテレビ放送用のビデオカメラを考えると、上述した従来型のNDフィルター4を透過率可変素子に置き換えることができれば、前述の「光の回折現象」への有効な対策になると期待できる。レンズの解像度が優れた絞りの大きさ(F値)に設定しつつ、透過率可変素子の光透過率を無段階で任意に調整すればよいからである。晴天時の屋外のような高照度下と、室内のような低照度下とが混在する状況を1台のビデオカメラで連続撮影する際にも、透過率可変素子の使用を期待できる。このような場合、高解像度を保つためにレンズのF値を調整するのみであれば高照度下の明るさを充分に減衰することはできずに過度な光量を撮像面に入れてしまうことになるが、透過率変換素子を用いれば透過率を無段階で素早く変更できるため、撮影面に入る光の光量調整は容易である。また、従来型のNDフィルター4では、複数の中から適切な透過率のものを選択して切替える際に、枠(ターレット部)が出力映像に映り込んでしまうが、透過率可変素子では無段階調整ができるため、その切替えが不要な利点もある。 For example, considering a video camera for television broadcasting, if the conventional ND filter 4 described above can be replaced with a variable transmittance element, it can be expected to be an effective countermeasure against the "light diffraction phenomenon" described above. This is because the light transmittance of the variable transmittance element can be arbitrarily adjusted steplessly while setting the aperture size (F value) that provides excellent resolution of the lens. The use of variable transmittance elements can also be expected when a single video camera is used to continuously capture a mixture of high illumination, such as outdoors on a clear day, and low illumination, such as indoors. In such cases, if you only adjust the F value of the lens to maintain high resolution, you will not be able to sufficiently attenuate the brightness under high illumination, and an excessive amount of light will enter the imaging surface. However, if a transmittance conversion element is used, the transmittance can be changed steplessly and quickly, so it is easy to adjust the amount of light that enters the photographing surface. In addition, with the conventional ND filter 4, when selecting and switching between multiple transmittance filters, the frame (turret part) is reflected in the output image, but with the transmittance variable element, the frame (turret part) is reflected in the output image. Since it can be adjusted, it also has the advantage of not requiring switching.

しかしながら、特許文献1に記載の素子では、光の反射と透過が複合的に作用するため、光透過率を変化させると光反射成分も影響するため色調に変化を及ぼしかねず、改良の余地がある。 However, in the element described in Patent Document 1, since reflection and transmission of light act in a complex manner, changing the light transmittance also affects the light reflection component, which may change the color tone, and there is still room for improvement. be.

そこで本発明は、特に太陽光(色温度5600K~7200K相当)下で使用しても、色調変化への影響を抑制可能な透過率可変素子及びその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a variable transmittance element that can suppress the influence on color tone change even when used under sunlight (corresponding to a color temperature of 5600K to 7200K), and a method for manufacturing the same.

上記課題を解決すべく、本発明者らは鋭意検討し、透過率可変素子における入射光波長に対する透過率特性を規定した。本発明の要旨構成は以下のとおりである。 In order to solve the above problems, the present inventors conducted extensive studies and defined the transmittance characteristics of the variable transmittance element with respect to the wavelength of incident light. The gist of the present invention is as follows.

本発明による透過率可変素子は、間隙を隔てて一対に配置した第1及び第2の透光性導電膜付き基板により構成される電極対と、前記間隙に充填され、銀イオンを組成に含む電解液と、を備え、前記電極対間の電場の変化に応じて前記電解液中の前記銀イオンを、前記第1の透光性導電膜付き基板の表面に析出させて光透過率を変化させた場合に、可視光領域内における分光透過特性が、太陽光下5600K~7200K相当の補正特性に合致した状態を保ったまま無段階に変化する。 The variable transmittance element according to the present invention includes an electrode pair composed of a first and a second transparent conductive film-coated substrate arranged in a pair with a gap therebetween, and a composition of which is filled in the gap and contains silver ions. an electrolytic solution, and the silver ions in the electrolytic solution are deposited on the surface of the first light-transmitting conductive film-coated substrate to change the light transmittance according to changes in the electric field between the electrode pair. In this case, the spectral transmission characteristics in the visible light region change steplessly while maintaining a state that matches the correction characteristics corresponding to 5600K to 7200K under sunlight.

この透過率可変素子において、波長635nmにおける透過率をTR、波長520nmにおける透過率をTG、波長430nmにおける透過率をTBとそれぞれ表し、前記電場の変化に応じて前記光透過率を変化させた場合の各透過率の比が、TR:TG:TB=1:1~0.65:0.80~0.45の範囲であることが好ましい。 In this variable transmittance element, the transmittance at a wavelength of 635 nm is expressed as T R , the transmittance at a wavelength of 520 nm is expressed as T G , and the transmittance at a wavelength of 430 nm is expressed as T B , and the light transmittance is changed according to the change in the electric field. It is preferable that the ratio of the respective transmittances is in the range of T R :T G :T B =1:1 to 0.65:0.80 to 0.45.

また、本発明による透過率可変素子において、前記第1及び第2の透光性導電膜付き基板における透光性導電膜の表面抵抗率がともに5Ω/□~30Ω/□であることが好ましい。 Further, in the variable transmittance element according to the present invention, it is preferable that the surface resistivity of the light-transmitting conductive film in the first and second substrates with the light-transmitting conductive film are both 5Ω/□ to 30Ω/□.

さらにまた、本発明による透過率可変素子において、前記第1及び第2の透光性導電膜付き基板における透光性導電膜の膜厚がともに100nm~250nmであることが好ましい。 Furthermore, in the variable transmittance element according to the present invention, it is preferable that the thicknesses of the transparent conductive films in the first and second substrates with transparent conductive films are both 100 nm to 250 nm.

また、本発明による透過率可変素子の製造方法は、第1及び第2の透光性導電膜付き基板を形成する工程と、間隙を隔てて前記第1及び第2の透光性導電膜付き基板を配置し、前記第1及び第2の透光性導電膜付き基板により構成される一対の電極対を設ける工程と、前記間隙に、銀イオン及び前記銀イオンよりも含有量が少ない銅イオンを組成に含む電解液を充填する工程と、を含む透過率可変素子の製造方法であって、前記第1及び第2の透光性導電膜付き基板を形成する工程において、酸素導入量を0.4sccm~0.7sccmとするスパッタ法により第1及び第2の基板上に前記第1及び第2の透光性導電膜をそれぞれ成膜する。 Further, the method for manufacturing a variable transmittance element according to the present invention includes a step of forming substrates with first and second transparent conductive films, and a step of forming substrates with the first and second transparent conductive films with a gap therebetween. a step of arranging a substrate and providing a pair of electrodes constituted by the first and second transparent conductive film-coated substrates; and silver ions and copper ions whose content is smaller than the silver ions in the gap. A method for manufacturing a variable transmittance element, comprising: filling an electrolytic solution having a composition thereof, the method comprising: filling an electrolytic solution with a composition of The first and second transparent conductive films are formed on the first and second substrates by sputtering at a rate of .4 sccm to 0.7 sccm, respectively.

なお、本明細書において数値範囲を表記するための記号「~」は、その範囲の両端点の数値を含むものとする。例えば数値範囲「1~10」の表記は、1以上10以下と言い換えることができる。 In this specification, the symbol "~" used to indicate a numerical range includes the numerical values at both end points of the range. For example, the notation of the numerical range "1 to 10" can be rephrased as 1 or more and 10 or less.

本発明によれば、特に太陽光(色温度5600K~7200K相当)下で使用しても、色調変化への影響を抑制可能な透過率可変素子及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a variable transmittance element that can suppress the influence on color tone change even when used under sunlight (equivalent to a color temperature of 5600K to 7200K), and a method for manufacturing the same.

従来技術に従うビデオカメラの模式図である。1 is a schematic diagram of a video camera according to the prior art; FIG. 本発明の一実施形態に従う透過率可変素子の模式断面図である。FIG. 1 is a schematic cross-sectional view of a variable transmittance element according to an embodiment of the present invention. 実施例1において作製した透光性導電膜付き基板の分光透過特性を示すグラフである。2 is a graph showing the spectral transmission characteristics of the substrate with a transparent conductive film produced in Example 1. 実施例1において作製した透過率可変素子の透過率を変化させたときの透過率特性を示すグラフであり、(A)は縦軸を線形スケールにしたものであり、(B)は縦軸を対数スケールにしたものである。2 is a graph showing the transmittance characteristics when changing the transmittance of the variable transmittance element produced in Example 1, (A) is a graph in which the vertical axis is a linear scale, and (B) is a graph in which the vertical axis is a linear scale. It is on a logarithmic scale. 比較例1において作製した透過率可変素子の透過率を変化させたときの透過率特性を示すグラフであり、(A)は縦軸を線形スケールにしたものであり、(B)は縦軸を対数スケールにしたものである。2 is a graph showing the transmittance characteristics when changing the transmittance of the variable transmittance element produced in Comparative Example 1, (A) is a graph in which the vertical axis is a linear scale, and (B) is a graph in which the vertical axis is a linear scale. It is on a logarithmic scale.

(透過率可変素子)
以下、図2を参照して本発明に従う透過率可変素子の実施形態を説明する。本発明の一実施形態に従う透過率可変素子100は、間隙を隔てて一対に配置した第1及び第2の透光性導電膜付き基板110、120により構成される電極対と、この間隙に充填され、銀イオンを組成に含む電解液140と、を少なくとも備え、さらに必要に応じて他の構成を備えてもよい。そして、透過率可変素子100において、この電極対間の電場の変化に応じて電解液140中の銀イオンを、第1の透光性導電膜付き基板110の表面に析出させて光透過率を変化させた場合に、第1の透光性導電膜付き基板110の可視光領域内における分光透過特性が、太陽光下5600K~7200K相当の補正特性に合致した状態を保ったまま無段階に変化する。なお、説明の便宜状、入射光310側の透光性導電膜付き基板を「第1の透光性導電膜付き基板110」と称し、透過光320側の透光性導電膜付き基板を「第2の透光性導電膜付き基板120」と称する。以下、各構成の詳細を順次説明する。
(Transmittance variable element)
Hereinafter, an embodiment of a variable transmittance element according to the present invention will be described with reference to FIG. 2. A variable transmittance element 100 according to an embodiment of the present invention includes an electrode pair constituted by a pair of first and second transparent conductive film-coated substrates 110 and 120 arranged with a gap in between, and a pair of electrodes that are filled in the gap. and an electrolytic solution 140 containing silver ions in its composition, and may further include other configurations as necessary. Then, in the variable transmittance element 100, silver ions in the electrolytic solution 140 are deposited on the surface of the first transparent conductive film-coated substrate 110 in response to changes in the electric field between the electrode pair, thereby changing the light transmittance. When the change is made, the spectral transmission characteristics in the visible light region of the first substrate 110 with a transparent conductive film change steplessly while maintaining a state that matches the correction characteristics equivalent to 5600K to 7200K under sunlight. do. For convenience of explanation, the substrate with a transparent conductive film on the incident light 310 side will be referred to as the "first substrate with a transparent conductive film 110", and the substrate with a transparent conductive film on the side of the transmitted light 320 will be referred to as "the first substrate with a transparent conductive film on the side of the transmitted light 320". "Second transparent conductive film-coated substrate 120". The details of each configuration will be sequentially explained below.

<電極対>
第1の透光性導電膜付き基板110及び第2の透光性導電膜付き基板120を、所定の間隙を隔てて一対に配置することにより電極対を構成する。第1及び第2の透光性導電膜付き基板110、120は、それぞれ第1及び第2の基板111、121並びに各基板上に設けたれた第1及び第2の透光性導電膜112、122を有する。そして、第1及び第2の透光性導電膜112、122を互いに対向させて配置する。
<Electrode pair>
An electrode pair is formed by arranging the first substrate 110 with a transparent conductive film and the second substrate 120 with a transparent conductive film in a pair with a predetermined gap in between. The first and second transparent conductive film-coated substrates 110 and 120 are first and second substrates 111 and 121, respectively, and first and second transparent conductive films 112 provided on each substrate, It has 122. Then, the first and second transparent conductive films 112 and 122 are arranged to face each other.

<<基板>>
第1及び第2の基板111、121のそれぞれは、ガラス基板であってもよいし、樹脂基板であってもよい。両者は同種の材料であってもよいし、異種の材料であってもよい。各基板の表面に透光性導電膜を成膜可能であれば、材料の制限はない。
<<Substrate>>
Each of the first and second substrates 111 and 121 may be a glass substrate or a resin substrate. Both may be of the same type of material or may be of different types of materials. There are no limitations on the material as long as a transparent conductive film can be formed on the surface of each substrate.

<<透光性導電膜>>
第1及び第2の透光性導電膜112、122のそれぞれは特に制限されないが、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)、酸化スズ、酸化亜鉛等の透光性導電膜であることが好ましい。透光性導電膜のなかでも、ITOを用いることがより好ましい。なお、各透光性導電膜は同種の材料であってもよいし、異種の材料であってもよい。各透光性導電膜の表面に銀を析出可能であれば、材料の制限はない。
<<Transparent conductive film>>
Each of the first and second transparent conductive films 112 and 122 is a transparent conductive film made of, but not limited to, ITO (indium tin oxide), IZO (indium zinc oxide), tin oxide, zinc oxide, or the like. It is preferable. Among the light-transmitting conductive films, it is more preferable to use ITO. Note that each light-transmitting conductive film may be made of the same kind of material or may be made of different kinds of materials. There are no limitations on the material as long as silver can be deposited on the surface of each light-transmitting conductive film.

--表面抵抗率--
第1及び第2の透光性導電膜112、122のそれぞれの表面抵抗率は低いほど望ましく、実際に成膜可能な5Ω/□~30Ω/□とすることが望ましい。中でも30Ω/□以下とすることが好ましい。表面抵抗率は電極対の間に電場を加えて透過率を変更する際の応答性に影響を及ぼすところ、表面抵抗率が30Ω/□以下であれば、透過率の可変速度を十分なものとすることができ、表面抵抗率が100Ω/□以上では銀イオンの析出が不可能となる。両透光性導電膜の表面抵抗率は同じであってもよいし、異なってもよい。
--Surface resistivity--
It is desirable that the surface resistivity of each of the first and second transparent conductive films 112 and 122 is as low as possible, and it is desirable that the surface resistivity is 5Ω/□ to 30Ω/□, which can be practically formed. Among these, it is preferable to set it to 30Ω/□ or less. Surface resistivity affects the response when changing the transmittance by applying an electric field between the electrode pair, and if the surface resistivity is 30Ω/□ or less, the speed of changing the transmittance is sufficient. If the surface resistivity is 100Ω/□ or more, silver ions cannot be deposited. The surface resistivities of both transparent conductive films may be the same or different.

--膜厚--
第1及び第2の透光性導電膜112、122のそれぞれの膜厚は特に制限されず、用途に応じて適宜の膜厚とすればよいが、例示的に100nm~250nmとすることができる。各透光性導電膜の膜厚は上述した表面抵抗率及び透過率に影響するので、所望の分光透過率特性及び透過率の可変速度を考慮して適宜設計すればよい。両透光性導電膜の膜厚は同じであってもよいし、異なってもよい。但し、厚膜化すると最大透過率が低くなるおそれがあるため、透過率の可変範囲と応答速度(抵抗値)を考慮して設計することが好ましい。
--Film thickness--
The thickness of each of the first and second light-transmitting conductive films 112 and 122 is not particularly limited, and may be set to an appropriate thickness depending on the application, but may be 100 nm to 250 nm, for example. . Since the film thickness of each light-transmitting conductive film affects the above-mentioned surface resistivity and transmittance, it may be appropriately designed in consideration of desired spectral transmittance characteristics and transmittance variable speed. The film thicknesses of both transparent conductive films may be the same or different. However, if the film is made thicker, the maximum transmittance may become lower, so it is preferable to take into account the variable range of transmittance and response speed (resistance value) when designing.

<電解液>
電解液140は、銀イオンを組成に含み、必要に応じて銀イオンよりも含有重量が少ない銅イオンを組成に含むことも好ましい。このような電解液140は、例えば、炭酸プロピレン等のエステル系溶剤及びメタノール等のアルコールを含む非水溶媒に、硝酸銀(AgNO3)等の銀塩及び塩化第二銅(CuCl2)等の銅塩を溶解させることにより得られる。上記非水溶媒に、必要に応じて、臭化リチウム(LiBr)等の支持電解質をさらに溶解させてもよい。電解液140は、必要に応じて増粘剤をさらに含んでもよい。こうした増粘剤の例は、ポリプロピレン、ポリビニルブチラール、ポリメチルメタアクリレート等のポリマーである。電解液140は第1及び第2の透光性導電膜付き基板110、120により構成される電極対の間の間隙に充填される。
<Electrolyte>
It is also preferable that the electrolytic solution 140 contains silver ions in its composition and, if necessary, contains copper ions whose content is less than silver ions. Such an electrolytic solution 140 is, for example, a non-aqueous solvent containing an ester solvent such as propylene carbonate and an alcohol such as methanol, a silver salt such as silver nitrate (AgNO 3 ), and a copper such as cupric chloride (CuCl 2 ). Obtained by dissolving salt. A supporting electrolyte such as lithium bromide (LiBr) may be further dissolved in the non-aqueous solvent, if necessary. The electrolytic solution 140 may further contain a thickener as necessary. Examples of such thickeners are polymers such as polypropylene, polyvinyl butyral, polymethyl methacrylate. The electrolytic solution 140 is filled in the gap between the electrode pair formed by the first and second transparent conductive film coated substrates 110 and 120.

<その他の構成>
電解液140を電極対の間隙に充填させるため、透過率可変素子100は電解液140を封止するシール材171、172を備えてもよい。また、透過率可変素子100は、第1及び第2の透光性導電膜付き基板110、120に電気的に接続する駆動電源200を備えてもよい。シール材171、172には、第1及び第2の基板111、121と同じ材質(ガラスまたは樹脂基板等)を用いた上で、接着効果を有する物質で透光性導電膜付き基板110、120と密閉空間を形成すればよい。更に、駆動電源200には一般的な直流電源を用いれば動作するが、より応答性の向上と指定透過率の長時間維持には別途、透過率を検出可能な負帰還回路などを備えてもよい。
<Other configurations>
In order to fill the gap between the electrode pair with the electrolytic solution 140, the variable transmittance element 100 may include sealants 171 and 172 that seal the electrolytic solution 140. Further, the variable transmittance element 100 may include a drive power source 200 electrically connected to the first and second substrates 110 and 120 with transparent conductive films. The sealing materials 171 and 172 are made of the same material as the first and second substrates 111 and 121 (glass or resin substrates, etc.), and the substrates 110 and 120 are made of a substance with an adhesive effect and have a transparent conductive film. All you have to do is form a closed space. Furthermore, the drive power supply 200 can be operated using a general DC power supply, but in order to further improve the response and maintain the specified transmittance for a long time, it is also possible to separately provide a negative feedback circuit that can detect the transmittance. good.

ここで、透過率可変素子100における析出層150の形成に伴う透過率の変化について説明する。入射光310側の第1の透光性導電膜付き基板110側を陰極(-)に、それとは反対側の第2の透光性導電膜付き基板120側を陽極(+)として2.5V程度の電圧を駆動電源200により印加すると、入射光310側の透光性導電膜112の表面全域に、電解液140中に溶け込んで無色透明状態であった銀イオンが、透光性導電膜から電子を受けて還元作用を生じ、銀(金属)となって析出して析出層150を形成することができる。透過率可変素子100は、析出層150を形成し、その膜厚を増大させるほど透過率可変素子100を透過する光の透過率を任意に無段階で減衰することができる。また、駆動電源200に供給する電位極性を反転させれば、析出層150に析出した銀の結晶粒が電解液140に溶出して透過率が上昇する。具体的には、入射光310側の第1の透光性導電膜付き基板110側を陽極(+)に、それとは反対側の第2の透光性導電膜付き基板120側を陰極(-)として0.5V程度の電圧を印加すれば、析出層150に析出した銀の結晶粒は酸化し、電解液140に銀イオンとなり透明な状態に戻る。透過率可変素子100においてこの析出及び溶出を繰り返すことによって、自由自在に透過率可変素子100の透過率を変更することができる。 Here, a change in transmittance due to the formation of the precipitated layer 150 in the variable transmittance element 100 will be explained. The first substrate 110 with a transparent conductive film on the incident light 310 side is used as a cathode (-), and the opposite side of the substrate 120 with a second transparent conductive film is used as an anode (+) at 2.5V. When a certain voltage is applied by the drive power supply 200, the silver ions that have dissolved in the electrolytic solution 140 and are colorless and transparent are transferred from the transparent conductive film to the entire surface of the transparent conductive film 112 on the side of the incident light 310. Upon receiving electrons, a reduction action occurs, and silver (metal) is precipitated to form the deposited layer 150. The variable transmittance element 100 has a precipitated layer 150 formed thereon, and as the thickness of the precipitated layer 150 increases, the transmittance of light passing through the variable transmittance element 100 can be arbitrarily and steplessly attenuated. Furthermore, if the polarity of the potential supplied to the drive power source 200 is reversed, the silver crystal grains deposited in the deposited layer 150 will be eluted into the electrolytic solution 140, increasing the transmittance. Specifically, the side of the first substrate 110 with a transparent conductive film on the incident light 310 side is used as an anode (+), and the side of the second substrate 120 with a transparent conductive film on the opposite side is used as a cathode (- ), when a voltage of about 0.5 V is applied, the silver crystal grains deposited in the deposited layer 150 are oxidized and become silver ions in the electrolytic solution 140, returning to a transparent state. By repeating this precipitation and elution in the variable transmittance element 100, the transmittance of the variable transmittance element 100 can be changed at will.

<分光透過率>
さて、本発明による透過率可変素子100は、電極対間の電場の変化に応じて電解液140中の銀イオンを、第1の透光性導電膜付き基板110の表面(特に第1の透光性導電膜112)に析出させて光透過率を変化させた場合に、可視光領域内における分光透過特性を、太陽光下5600K~7200K相当の補正特性に合致した状態を保ったまま無段階に変化させる。ここでいう「太陽光下5600K~7200K相当の補正特性」とは、可視光領域(概ね波長範囲380nm~750nm)において太陽光成分の発光波長は、波長が増加するにつれて発光成分が減少する(青色領域>緑色領域>赤色領域)ため、スタジオ照明(タングステン光源)3200Kの発光波長の発光成分(青色領域<緑色領域<赤色領域)へ補正した分光透過特性のバランスをいう。すなわち、透過率が青色光領域<緑色光成分≦赤色領域となることをいう。分光透過特性がこの傾向を満足すれば、例えば透過率可変素子100をテレビ放送用のビデオカメラに使用して撮影した際、太陽光下で使用しても、色調に変化を抑制することができる。そのため、透過率可変素子100を可視光全域に渡り色バランスを整えつつ、透過率を減衰させるフィルターとして使用することができる。
<Spectral transmittance>
Now, the variable transmittance element 100 according to the present invention transfers silver ions in the electrolytic solution 140 to the surface of the first transparent conductive film-coated substrate 110 (in particular, the first transparent When depositing on the photoconductive film 112) to change the light transmittance, the spectral transmission characteristics in the visible light region can be changed steplessly while maintaining the correction characteristics equivalent to 5600K to 7200K under sunlight. change to Here, the "correction characteristics equivalent to 5600K to 7200K under sunlight" means that in the visible light region (approximately wavelength range 380nm to 750nm), the emission wavelength of the sunlight component decreases as the wavelength increases (blue area>green area>red area), it refers to the balance of spectral transmission characteristics corrected to the emission component of the emission wavelength of studio lighting (tungsten light source) 3200K (blue area<green area<red area). That is, it means that the transmittance satisfies the blue light region<green light component≦red region. If the spectral transmission characteristics satisfy this tendency, for example, when the variable transmittance element 100 is used in a video camera for television broadcasting to take pictures, even if it is used under sunlight, changes in color tone can be suppressed. . Therefore, the variable transmittance element 100 can be used as a filter that attenuates transmittance while adjusting the color balance over the entire visible light range.

-透過率の比-
上述した補正特性を満足させるため、波長635nmにおける透過率をTR、波長520nmにおける透過率をTG、波長430nmにおける透過率をTBとそれぞれ表し、前記電場の変化に応じて前記光透過率を変化させた場合の各透過率の比が、TR:TG:TB=1:1~0.65:0.80~0.45の範囲であることが好ましい。透過率可変素子100の透過率を増減させても、各透過率が上記比の範囲内であれば、太陽光下での使用を考慮する場合、光量調整を行いつつ、目的の色調への影響を十分に抑制することができる。また、緑色光成分の光量を減衰させすぎると銀の析出現象がまったく生じていないときでも透過率の減衰が大きく、光量の調整範囲(最大透過時から最大減衰時)を狭くさせてしまう可能性があるため、より好ましい各透過率の比は、TR:TG:TB=1:1~0.70:0.6~0.5の範囲である。また、上述した補正特性を満足させるため、TR>TG>TBであることが好ましい。さらに、本発明による透過率可変素子100は、その透過率を調整可能な全範囲で上記透過率の比を満足することがもっとも好ましいが、少なくとも透過率を10%(析出大)~60%(析出小)の範囲の範囲で増減させるときに上記透過率の比を満足すればよい。なお、上記の透過率を増減させる際の比率は、無析出状態での波長520nmにおける透過率を基準とする。
-Transmittance ratio-
In order to satisfy the above-mentioned correction characteristics, the transmittance at a wavelength of 635 nm is expressed as T R , the transmittance at a wavelength of 520 nm is expressed as T G , and the transmittance at a wavelength of 430 nm is expressed as T B , and the light transmittance is adjusted according to the change in the electric field. It is preferable that the ratio of each transmittance when changing is in the range of T R :T G :T B =1:1 to 0.65:0.80 to 0.45. Even if the transmittance of the variable transmittance element 100 is increased or decreased, as long as each transmittance is within the range of the above ratio, when considering use under sunlight, the effect on the desired color tone can be adjusted while adjusting the light amount. can be sufficiently suppressed. In addition, if the light intensity of the green light component is attenuated too much, the transmittance will be greatly attenuated even when no silver precipitation phenomenon occurs, which may narrow the light intensity adjustment range (from maximum transmission to maximum attenuation). Therefore, a more preferable ratio of each transmittance is T R :T G :T B =1:1 to 0.70:0.6 to 0.5. Further, in order to satisfy the above-mentioned correction characteristics, it is preferable that T R > T G > T B. Further, it is most preferable that the transmittance variable element 100 according to the present invention satisfies the above transmittance ratio over the entire range in which the transmittance can be adjusted. The above transmittance ratio may be satisfied when the transmittance is increased or decreased within the range of (low precipitation). Note that the ratio at which the transmittance is increased or decreased is based on the transmittance at a wavelength of 520 nm in a non-precipitated state.

以上のとおり、本発明に従う透過率可変素子100において、入射光波長に対する透過率特性を規定した。この透過率可変素子は、特に太陽光(色温度5600K~7200K相当)下で使用しても、色調変化への影響を抑制することができる。特に、この透過率可変素子100をテレビ放送用のビデオカメラに用いれば、太陽光下のカメラ撮影において透過率を変化させても、常に色調バランスへの影響を抑止しながら透過率の可変動作を実現することができる。ビデオカメラが本発明に従う透過率可変素子を備えることは好ましいが、これは本発明による透過率可変素子の用途の一例にすぎない。本発明による透過率可変素子は、ビデオカメラ用のフィルターの他、カメラ全般用のフィルター、防眩ミラー、照明用の調光用フィルター、窓材等の種々の用途に適用可能である。なお、本発明に従う透過率可変素子100の大きさ及び形状(丸型、矩形等)は何ら問わるものではないが、素子面積が大きくなるにつれて応答性能が低下するため、応答性能を考慮して素子の大きさ及び形状を設計することが好ましい。 As described above, in the variable transmittance element 100 according to the present invention, the transmittance characteristics with respect to the wavelength of incident light are defined. This variable transmittance element can suppress the influence on color tone change, especially when used under sunlight (equivalent to a color temperature of 5600K to 7200K). In particular, if this variable transmittance element 100 is used in a video camera for television broadcasting, even if the transmittance is changed during camera shooting under sunlight, the variable transmittance can be controlled while always suppressing the effect on the color balance. It can be realized. Although it is preferred that a video camera is equipped with a variable transmittance element according to the invention, this is only one example of the use of the variable transmittance element according to the invention. The variable transmittance element according to the present invention can be applied to various uses such as filters for video cameras, filters for general cameras, anti-glare mirrors, dimming filters for lighting, and window materials. Note that the size and shape (round, rectangular, etc.) of the variable transmittance element 100 according to the present invention are not limited in any way, but as the element area increases, the response performance decreases. It is preferable to design the size and shape of the element.

(透過率変換素子の製造方法)
次に、上述した本発明に従う透過率可変素子100を製造する方法の一実施形態を説明する。引き続き図2を参照する。透過率可変素子100の製造方法は、第1及び第2の透光性導電膜付き基板110、120を形成する工程と、間隙を隔てて第1及び第2の透光性導電膜付き基板110、120を配置し、第1及び第2の透光性導電膜付き基板110、120により構成される一対の電極対を設ける工程と、この電極対の間隙に、銀イオンを組成に含む電解液140を充填する工程と、を少なくとも含む。必要に応じて、他の工程を含んでもよい。なお、透過率可変素子100の実施形態において既述の構成には同一の参照符号を付し、重複する説明を省略する。
(Method for manufacturing transmittance conversion element)
Next, an embodiment of a method for manufacturing the variable transmittance element 100 according to the present invention described above will be described. Continuing to refer to FIG. The method for manufacturing the variable transmittance element 100 includes the steps of forming first and second substrates 110 and 120 with transparent conductive films, and forming the first and second substrates 110 with transparent conductive films with a gap in between. , 120, and providing a pair of electrodes constituted by the first and second substrates 110 and 120 with transparent conductive films, and applying an electrolytic solution containing silver ions in the gap between the electrode pairs. 140. Other steps may be included as necessary. In addition, in the embodiment of the variable transmittance element 100, the structures already described are given the same reference numerals, and redundant explanations will be omitted.

<透光性導電膜付き基板を形成する工程>
まず、第1及び第2の透光性導電膜付き基板110、120をそれぞれ形成する。両基板を同時に形成してもよいし、別々に形成してもよい。ここで、この工程において、酸素導入量を0.4sccm~0.7sccmとするスパッタ法により第1及び第2の基板111、121上に第1及び第2の透光性導電膜112、122をそれぞれ成膜する。用いるスパタリングターゲットは成膜する透光性導電膜の材料に応じて適切なものを採用すればよい。
<Step of forming a substrate with a transparent conductive film>
First, first and second substrates 110 and 120 with transparent conductive films are formed, respectively. Both substrates may be formed simultaneously or separately. Here, in this step, the first and second transparent conductive films 112 and 122 are formed on the first and second substrates 111 and 121 by sputtering with an oxygen introduction amount of 0.4 sccm to 0.7 sccm. Each film is formed. An appropriate sputtering target may be selected depending on the material of the transparent conductive film to be formed.

<<スパッタリング条件>>
上記のとおり、スパッタ法において酸素導入量を0.4sccm~0.7sccmとする。酸素流量は可視光領域のうちでも青色光領域の透過特性に特に大きな影響を及ぼす。酸素流量をこの範囲よりも少なくすると青色領域の透過率が著しく減衰し、さらには可視光領域全体の透過率が減衰する。また酸素流量をこの範囲よりも多くすると、0.7sccmを超える辺りから青色光領域の透過性のみが向上するために、透過率の高い領域で透過率可変素子を動作させると色調のバランスを失う。さらに、酸素の量を0.4sccmよりも減らすと透光性導電膜の表面に白濁が生じ、テレビ放送用のビデオカメラの画質としては不適用となってしまう。
<<Sputtering conditions>>
As mentioned above, the amount of oxygen introduced in the sputtering method is set to 0.4 sccm to 0.7 sccm. The oxygen flow rate has a particularly large effect on the transmission characteristics in the blue light region among the visible light regions. When the oxygen flow rate is lower than this range, the transmittance in the blue region is significantly attenuated, and furthermore, the transmittance in the entire visible light region is attenuated. Furthermore, if the oxygen flow rate is increased beyond this range, only the transmittance in the blue light region will improve from around 0.7 sccm, so if the variable transmittance element is operated in a region with high transmittance, the color tone will be unbalanced. . Furthermore, if the amount of oxygen is reduced below 0.4 sccm, cloudiness will occur on the surface of the transparent conductive film, making it unsuitable for image quality in video cameras for television broadcasting.

スパッタ法におけるその他のスパッタリング条件は、上記酸素導入量の範囲で行う以外は一般的な条件で行うことができ、酸素以外にアルゴンなどの不活性ガスを10~150sccm程度で導入してもよい。またこの場合、不活性ガス流量に対する酸素流量(導入量)の比(すなわち酸素流量/不活性ガス流量)を0.00267~0.07程度とすることが好ましく、0.008~0.014程度とすることがより好ましい。また、真空度は0.1Pa~1.0Pa程度の中真空下とすることが好ましい。DCスパッタリング法を用いることが好ましいが、RFスパッタリング法等を用いてもよい。成膜時間を調整すれば、透光性導電膜の膜厚、その表面抵抗率及びその無析出状態での透過率を調整可能である。 Other sputtering conditions in the sputtering method can be carried out under general conditions other than the above-mentioned oxygen introduction amount range, and in addition to oxygen, an inert gas such as argon may be introduced at about 10 to 150 sccm. In this case, the ratio of the oxygen flow rate (introduced amount) to the inert gas flow rate (ie, oxygen flow rate/inert gas flow rate) is preferably about 0.00267 to 0.07, and about 0.008 to 0.014. It is more preferable that Further, the degree of vacuum is preferably a medium vacuum of about 0.1 Pa to 1.0 Pa. Although it is preferable to use a DC sputtering method, an RF sputtering method or the like may also be used. By adjusting the film formation time, it is possible to adjust the thickness of the transparent conductive film, its surface resistivity, and its transmittance in a non-precipitated state.

次に、第1及び第2の透光性導電膜付き基板110、120を用いて電極対を設ける。そして、電極対の間隙に電解液140を充填すればよい。電解液140を間隙に充填するため、シール材171、172を用いてもよい。電解液140の充填に先立ち、電解液140を調製する工程を行ってもよい。 Next, an electrode pair is provided using the first and second substrates 110 and 120 with transparent conductive films. Then, the gap between the electrode pairs may be filled with the electrolytic solution 140. Sealing materials 171 and 172 may be used to fill the gap with electrolyte 140. Prior to filling the electrolytic solution 140, a step of preparing the electrolytic solution 140 may be performed.

以上の任意工程を含む各工程を経ることにより、本発明に従う透過率可変素子を製造することができる。こうして得られた透過率可変素子は、特に太陽光(色温度5600K~7200K相当)下で使用しても、色調変化への影響を抑制することができる。 The variable transmittance element according to the present invention can be manufactured by going through each step including the above-described optional steps. The thus obtained variable transmittance element can suppress the influence on color tone change even when used especially under sunlight (equivalent to a color temperature of 5600K to 7200K).

以下、実施例を用いて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail using Examples, but the present invention is not limited to the following Examples.

(実施例1)
説明の便宜状、図2の参照符号を参照する。ガラス基板111、121上にそれぞれITOからなる透光性導電膜112、122を成膜した。成膜にあたり、DCスパッタ法を用い、ITO(錫5重量%)のターゲットを採用した。また、スパッタリング条件は、酸素流量0.4sccm、アルゴン流量50sccmとし、真空度0.6Paの状態とした。そして、DC260Wで10分間の成膜によって各透光性導電膜112、122を得た。得られた各透光性導電膜の表面抵抗率(4端子4深針法(定電流印加)で、日東精工アナリテック社製:MCP-T370測定)は28.3Ω/□、膜厚(反射分光式測定器で測定)は160nmであった。なお、本実施例に使用したスパッタ装置では、酸素導入量を0.8sccmに変えた場合、かつ本実施例と同様に膜厚160nmでITOを成膜した場合、膜の表面抵抗率は15Ω/□となる。また、第1の基板111及び第2の基板121の大きさは、ともに34mm×50mmである。
(Example 1)
For convenience of explanation, reference is made to the reference numerals in FIG. Transparent conductive films 112 and 122 made of ITO were formed on glass substrates 111 and 121, respectively. For film formation, a DC sputtering method was used and an ITO (tin 5% by weight) target was used. The sputtering conditions were an oxygen flow rate of 0.4 sccm, an argon flow rate of 50 sccm, and a vacuum degree of 0.6 Pa. Then, each light-transmitting conductive film 112, 122 was obtained by film formation at DC 260W for 10 minutes. The surface resistivity of each of the obtained translucent conductive films (measured using the 4-terminal 4-deep needle method (constant current application) with MCP-T370 manufactured by Nitto Seiko Analytech) was 28.3Ω/□, and the film thickness (reflection) was 28.3Ω/□. (measured with a spectrometer) was 160 nm. In addition, in the sputtering apparatus used in this example, when the amount of oxygen introduced was changed to 0.8 sccm, and when ITO was formed with a film thickness of 160 nm as in this example, the surface resistivity of the film was 15 Ω/ It becomes □. Further, the sizes of the first substrate 111 and the second substrate 121 are both 34 mm x 50 mm.

これら透光性導電膜付き基板110、120を、間隙を隔てて一対に配置して電極対を設けた。次いで、電極対の間隙の内部に、銀イオンおよび該銀イオンよりも含有重量が少ない銅イオンを含む組成を有した電解液140を充填した。電解液140が漏れないよう、入射光310側のガラス基板111及び透過光320側のガラス基板121と、0.3mm厚のシール材171、172とで密閉された構造とした。透光性導電膜112、122が対向しており、両者の表面は電解液140と接する。こうして、実施例1に係る透過率可変素子100を作製した。 These transparent conductive film-coated substrates 110 and 120 were arranged in a pair with a gap therebetween to provide an electrode pair. Next, the inside of the gap between the electrode pairs was filled with an electrolytic solution 140 having a composition containing silver ions and copper ions containing less weight than the silver ions. In order to prevent the electrolytic solution 140 from leaking, the glass substrate 111 on the incident light 310 side, the glass substrate 121 on the transmitted light 320 side, and sealing materials 171 and 172 with a thickness of 0.3 mm were used to seal the structure. Transparent conductive films 112 and 122 are facing each other, and their surfaces are in contact with electrolyte 140. In this way, the variable transmittance element 100 according to Example 1 was manufactured.

実施例1において作製したITOからなる透光性導電膜付き基板の1枚単独での透過率特性を図3に示す。透過率測定の際には透過率測定器(大塚電子社製:MCPD-3700 )を用いた。以下の評価においても同様である。また、電極対としたときの透光性導電膜付き基板の総体での透過率バランスを下記表1に示す。 FIG. 3 shows the transmittance characteristics of a single substrate with a light-transmitting conductive film made of ITO produced in Example 1. A transmittance meter (manufactured by Otsuka Electronics Co., Ltd.: MCPD-3700) was used for transmittance measurement. The same applies to the following evaluations. Table 1 below shows the overall transmittance balance of the substrate with a transparent conductive film when used as an electrode pair.

Figure 0007412261000001
Figure 0007412261000001

透過率可変素子全体の透過率は、ガラス基板等を含む素子全体での分光透過特性のバランスが影響する。そこで、実施例1に係る透過率可変素子を駆動させて析出層を形成したときの、波長550nmの透過率を60~10%の範囲で10%ごとに可変させたときの分光透過特性を図4に示す。図4(A)は縦軸をリニアスケール表示したものであり、図4(B)は縦軸を対数スケール表示したものである。実施例1に係る透過率可変素子を駆動して波長550nm基準の透過率を変動させても、分光透過特性のバランスが同等を維持し、しかも太陽光の色温度(5600K~7200K)を補正したバランス(透過率が赤、緑、青の順で低減)で同じ傾向で動作することが確認できる。したがって、この透過率可変素子をビデオカメラに用いれば、可視光全域に渡り色バランスを整えつつ、透過率を減衰させるフィルターとして使用することができる。 The transmittance of the entire variable transmittance element is affected by the balance of spectral transmission characteristics of the entire element including the glass substrate and the like. Therefore, when the variable transmittance element according to Example 1 is driven to form a deposited layer, the spectral transmittance characteristics are shown when the transmittance at a wavelength of 550 nm is varied in steps of 10% in the range of 60 to 10%. 4. 4(A) shows the vertical axis on a linear scale, and FIG. 4(B) shows the vertical axis on a logarithmic scale. Even when the variable transmittance element according to Example 1 was driven to vary the transmittance based on a wavelength of 550 nm, the balance of spectral transmittance characteristics remained the same, and the color temperature of sunlight (5600K to 7200K) was corrected. It can be confirmed that the same trend is observed in balance (transmittance decreases in the order of red, green, and blue). Therefore, if this variable transmittance element is used in a video camera, it can be used as a filter that attenuates the transmittance while adjusting the color balance over the entire visible light range.

(比較例1)
実施例1ではITOからなる透光性導電膜を酸素流量0.4sccmで成膜したところ、酸素流量を0.8sccmに変えた以外は実施例1と同様にして、比較例1に係る透過率可変素子を作製した。なお、比較例1における透光性導電膜の表面抵抗率は14.9Ω/□、膜厚は160nmであった。
(Comparative example 1)
In Example 1, a transparent conductive film made of ITO was formed at an oxygen flow rate of 0.4 sccm, and the transmittance according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the oxygen flow rate was changed to 0.8 sccm. A variable element was fabricated. The surface resistivity of the transparent conductive film in Comparative Example 1 was 14.9Ω/□, and the film thickness was 160 nm.

比較例1に係る透過率可変素子を駆動させたときの、波長550nmの透過率を60%、40%、10%に可変させたときの分光透過特性を図5に示す。図5(A)は縦軸をリニアスケール表示したものであり、図5(B)は縦軸を対数スケール表示したものである。比較例1では、特に透過率(550nmの透過率基準)を40%から10%へ変化させると、10%の分光透過率では透過光ではなく反射光成分の要因と考えられる影響を強く受けるために分光透過特性にウネリが生じていた。これをビデオカメラに使用すると、透過率を可変すると同時に色調までもが変化してしまう。つまり、分光透過特性のバランスが崩れてしまい色再現性に悪影響を及ぼしてしまう。 FIG. 5 shows the spectral transmission characteristics when the transmittance variable element according to Comparative Example 1 is driven and the transmittance at a wavelength of 550 nm is varied to 60%, 40%, and 10%. 5(A) shows the vertical axis on a linear scale, and FIG. 5(B) shows the vertical axis on a logarithmic scale. In Comparative Example 1, especially when the transmittance (550 nm transmittance standard) is changed from 40% to 10%, the spectral transmittance of 10% is strongly influenced by the reflected light component rather than the transmitted light. There was a swell in the spectral transmission characteristics. If this is used in a video camera, the color tone will change as well as the transmittance. In other words, the balance of spectral transmission characteristics is disrupted and color reproducibility is adversely affected.

実施例1と比較例1とを対比すると、比較例1において色調のバランスが不均一になってしまう要因は、透光性導電膜の青色透過が他の色に比べて極端に高透過の特性を有していたからだと考えられる。実施例1ではITO成膜時の酸素流量を低減したため、この問題は生じていないと考えられる。更に、銀がより多く析出しても反射光成分が抑制される効果により、実施例1の構造は比較例1に比べて赤色透過が、より減衰する傾向が得られることも特徴的であった。透明導電膜の青色成分透過率のバランスが整うことで、赤色成分の反射光成分にも影響を与えたと考えられる。 Comparing Example 1 and Comparative Example 1, the reason why the color balance becomes uneven in Comparative Example 1 is that the blue transmission of the transparent conductive film is extremely high transmission compared to other colors. This is thought to be because it had It is considered that this problem does not occur in Example 1 because the oxygen flow rate during ITO film formation was reduced. Furthermore, due to the effect of suppressing the reflected light component even if more silver was precipitated, the structure of Example 1 was also characterized in that red transmission tended to be more attenuated than in Comparative Example 1. . It is thought that by adjusting the balance of the blue component transmittance of the transparent conductive film, it also affected the red component of reflected light.

本発明によれば、特に太陽光(色温度5600K~7200K相当)下で使用しても、色調変化への影響を抑制可能な透過率可変素子及びその製造方法を提供することができ、色調制御が必要な種々のフィルター用途において特に有用である。 According to the present invention, it is possible to provide a variable transmittance element and a method for manufacturing the same, which can suppress the influence on color tone change even when used under sunlight (equivalent to a color temperature of 5600K to 7200K), and a method for manufacturing the same. It is particularly useful in a variety of filter applications where

透過率可変素子 100
第1の透光性導電膜付き基板 110
第1の基板 111
第1の透光性導電膜 112
第2の透光性導電膜付き基板 120
第2の基板 121
第2の透光性導電膜 122
電解液 140
析出層 150
シール材 171、172
電源 200
入射光 310
透過光 320
Transmittance variable element 100
First substrate with transparent conductive film 110
First substrate 111
First transparent conductive film 112
Second substrate with transparent conductive film 120
Second board 121
Second transparent conductive film 122
Electrolyte 140
Precipitated layer 150
Sealing material 171, 172
Power supply 200
Incident light 310
Transmitted light 320

Claims (5)

間隙を隔てて一対に配置した第1及び第2の透光性導電膜付き基板により構成される電極対と、
前記間隙に充填され、銀イオンを組成に含む電解液と、
を備える透過率可変素子であって、
前記電極対間の電場の変化に応じて前記電解液中の前記銀イオンを、前記第1の透光性導電膜付き基板の表面に析出させて光透過率を変化させた場合に、可視光領域内における分光透過特性が、前記透過分光透過特性において、青色光領域における透過率が緑色領域における透過率よりも小さく、かつ、前記緑色領域における透過率が赤色領域における透過率以下である状態を保ったまま無段階に変化することを特徴とする透過率可変素子。
an electrode pair constituted by first and second transparent conductive film-coated substrates arranged in a pair with a gap therebetween;
an electrolytic solution filled in the gap and containing silver ions in its composition;
A variable transmittance element comprising:
When the silver ions in the electrolytic solution are deposited on the surface of the first transparent conductive film-coated substrate in response to a change in the electric field between the electrode pair and the light transmittance is changed, visible light Spectral transmission characteristics within the region include a state in which, in the transmission spectral transmission characteristics, the transmittance in the blue light region is smaller than the transmittance in the green region, and the transmittance in the green region is less than or equal to the transmittance in the red region. A variable transmittance element that is characterized by changing steplessly while maintaining the same level of transmittance.
波長635nmにおける透過率をT、波長520nmにおける透過率をT、波長430nmにおける透過率をTとそれぞれ表し、前記電場の変化に応じて前記光透過率を変化させた場合の各透過率の比が、T:T:T=1:1~0.65:0.80~0.45範囲である、請求項1に記載の透過率可変素子。 The transmittance at a wavelength of 635 nm is represented by T R , the transmittance at a wavelength of 520 nm is represented by T G , and the transmittance at a wavelength of 430 nm is represented by T B , and each transmittance when the light transmittance is changed according to the change in the electric field. The variable transmittance element according to claim 1, wherein the ratio of T R :T G :T B is in the range of 1:1 to 0.65:0.80 to 0.45. 前記第1及び第2の透光性導電膜付き基板における透光性導電膜の表面抵抗率がともに5Ω/□~30Ω/□である、請求項1又は2に記載の透過率可変素子。 3. The variable transmittance element according to claim 1, wherein the light-transmitting conductive films in the first and second substrates with light-transmitting conductive films both have a surface resistivity of 5Ω/□ to 30Ω/□. 前記第1及び第2の透光性導電膜付き基板における透光性導電膜の膜厚がともに100nm~250nmである、請求項1~3のいずれか1項に記載の透過率可変素子。 The variable transmittance element according to claim 1, wherein the transparent conductive films in the first and second substrates with transparent conductive films both have a thickness of 100 nm to 250 nm. 第1及び第2の透光性導電膜付き基板を形成する工程と、
間隙を隔てて前記第1及び第2の透光性導電膜付き基板を配置し、前記第1及び第2の透光性導電膜付き基板により構成される一対の電極対を設ける工程と、
前記間隙に、銀イオン及び前記銀イオンよりも含有量が少ない銅イオンを組成に含む電解液を充填する工程と、
を含む透過率可変素子の製造方法であって、
前記第1及び第2の透光性導電膜付き基板を形成する工程において、酸素導入量を0.4sccm~0.7sccmとするスパッタ法により第1及び第2の基板上に前記第1及び第2の透光性導電膜をそれぞれ成膜することを特徴とする透過率可変素子の製造方法。
forming first and second substrates with transparent conductive films;
arranging the first and second transparent conductive film-coated substrates with a gap between them, and providing a pair of electrodes constituted by the first and second transparent conductive film-coated substrates;
filling the gap with an electrolytic solution containing silver ions and copper ions whose content is lower than the silver ions;
A method for manufacturing a variable transmittance element comprising:
In the step of forming the first and second substrates with transparent conductive films, the first and second substrates are coated on the first and second substrates by sputtering with an oxygen introduction amount of 0.4 sccm to 0.7 sccm. 1. A method for manufacturing a variable transmittance element, comprising forming two transparent conductive films.
JP2020076290A 2020-04-22 2020-04-22 Transmittance variable element and its manufacturing method Active JP7412261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076290A JP7412261B2 (en) 2020-04-22 2020-04-22 Transmittance variable element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076290A JP7412261B2 (en) 2020-04-22 2020-04-22 Transmittance variable element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021173824A JP2021173824A (en) 2021-11-01
JP7412261B2 true JP7412261B2 (en) 2024-01-12

Family

ID=78281623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076290A Active JP7412261B2 (en) 2020-04-22 2020-04-22 Transmittance variable element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7412261B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089188A (en) 1998-09-11 2000-03-31 Nippon Hoso Kyokai <Nhk> Color temperature correction filter and image pickup device
JP2004355812A (en) 2003-05-26 2004-12-16 Tadahiro Omi Display element
WO2015093298A1 (en) 2013-12-19 2015-06-25 株式会社 村上開明堂 Variable reflectance element and production method for said element
US20180011384A1 (en) 2016-07-11 2018-01-11 Electronics And Telecommunications Research Institute Optical modulators
JP2019056763A (en) 2017-09-20 2019-04-11 パナソニックIpマネジメント株式会社 Optical device and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145288A (en) * 1982-02-22 1983-08-30 Toshiba Corp Color image pickup device
JP3178773B2 (en) * 1994-02-23 2001-06-25 シャープ株式会社 Liquid crystal display device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089188A (en) 1998-09-11 2000-03-31 Nippon Hoso Kyokai <Nhk> Color temperature correction filter and image pickup device
JP2004355812A (en) 2003-05-26 2004-12-16 Tadahiro Omi Display element
WO2015093298A1 (en) 2013-12-19 2015-06-25 株式会社 村上開明堂 Variable reflectance element and production method for said element
US20180011384A1 (en) 2016-07-11 2018-01-11 Electronics And Telecommunications Research Institute Optical modulators
JP2019056763A (en) 2017-09-20 2019-04-11 パナソニックIpマネジメント株式会社 Optical device and manufacturing method therefor

Also Published As

Publication number Publication date
JP2021173824A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR100424254B1 (en) Optical filter for plasma display device
KR100709985B1 (en) Filter for display apparatus and display apparatus having the same
KR101043692B1 (en) Filter for display apparatus and display apparatus having the same
US20120263872A1 (en) Optical multilayer thin-film filters and methods for manufacturing same
JP2004205628A (en) Electrochromic element
CA2150081A1 (en) Electrically-conductive, contrast-selectable, contrast-improving filter
US10831078B2 (en) Electrochemical optical device
JP7412262B2 (en) Transmittance variable element and its manufacturing method
WO2021050793A1 (en) Anti-reflective electrodes
JP7412261B2 (en) Transmittance variable element and its manufacturing method
JP2005091788A (en) Electrochromic element
KR101770908B1 (en) Method and apparatus for backlight compensation using electrochromic device
CN101604039A (en) Optical filter and have the display device of optical filter
JP3102995B2 (en) LCD light valve
JP2016200675A (en) Electrochromic device, lens unit, imaging apparatus and window material
JP7541468B2 (en) Light control element
KR101049460B1 (en) Filter for display apparatus and display apparatus having the same
JPH06160876A (en) Transparent electrode plate and its production
CN210038406U (en) Medium grey density mirror
US11886054B2 (en) Light transmissive element
EP1582912A1 (en) Liquid crystal display unit
WO2021220583A1 (en) Variable nd filter
JPH0256892A (en) Electroluminescence panel
CN112470065A (en) Electrochemical device and method of forming the same
JP2004219668A (en) Optical filter for liquid crystal display device, surface light source device using the same and liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150