JP7409373B2 - 接合ストランド、及びその製造方法 - Google Patents

接合ストランド、及びその製造方法 Download PDF

Info

Publication number
JP7409373B2
JP7409373B2 JP2021514640A JP2021514640A JP7409373B2 JP 7409373 B2 JP7409373 B2 JP 7409373B2 JP 2021514640 A JP2021514640 A JP 2021514640A JP 2021514640 A JP2021514640 A JP 2021514640A JP 7409373 B2 JP7409373 B2 JP 7409373B2
Authority
JP
Japan
Prior art keywords
strand
bonded
fibers
strands
fiber orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021514640A
Other languages
English (en)
Other versions
JPWO2021200065A1 (ja
Inventor
雄介 山中
貴史 橋本
泰和 大野
惟史 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2021200065A1 publication Critical patent/JPWO2021200065A1/ja
Application granted granted Critical
Publication of JP7409373B2 publication Critical patent/JP7409373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H69/00Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device
    • B65H69/06Methods of, or devices for, interconnecting successive lengths of material; Knot-tying devices ;Control of the correct working of the interconnecting device by splicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/312Fibreglass strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/38Thread sheet, e.g. sheet of parallel yarns or wires

Landscapes

  • Nonwoven Fabrics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、モノフィラメントを複数本束ねて構成されるストランドを接合した接合ストランドおよびその製造方法に関する。
従来、炭素繊維やガラス繊維のモノフィラメントを複数本束ねて構成される、炭素繊維ストランドやガラス繊維ストランド(以下、単にストランドとも呼ぶ)の使用形態の1つとして、ストランドを短くカットしたチョップドストランドがある。チョップドストランドの使用形態としては、これをランダムに散布することでチョップドストランドマットを形成し、これに熱硬化性樹脂や熱可塑性樹脂を含浸させてシートモールディングコンパウンド(以下、SMC)やスタンパブルシートなどの中間基材として、これらを加熱・加圧して成形品とする製造・成形プロセスが知られている。
SMCやスタンパブルシートの製造にあたっては製造装置を連続的に運転し、生産性を向上させることが要求される。一般に原料のストランドはボビンに巻き取られた状態から引き出されて使用されるため、連続運転のためには、異なるボビンに巻き取られたストランド端部同士を接合し、連続的にストランドを供給することが必要である。
異なるボビンに巻き取られたストランドの端部同士を接合する一般的な方法として、結び目を作製し糸をつなぐ方法や、ストランドを撚り合わせて接合する方法、エアースプライサーなどによりモノフィラメント同士を交絡させて接合する方法が知られている。
このうち、結び目を作製し、ストランドを接合する場合、作業者の熟練度に依存して結び目の強度がばらつき、ストランドが切れる可能性や、結び目がカット工程にて切断されない可能性があり、繊維長の長いチョップドストランドが製品に混入する可能性がある。また、結び目がカット工程を通過した場合においても、SMCやスタンパブルシート内に結び目が残り、加熱・加圧成形した際に欠陥となる場合がある。
また、ストランドを撚り合わせにより接合した場合においても、撚り合わせにより接合部が強固になる。そのため、カット工程にて切断されない可能性があり、カット工程後のチョップドストランドが撚り合わさった状態で1つのチョップドストランド塊として散布され、目付むらを生じる可能性がある。
さらに、エアースプライサーによりストランドをつなぐ場合においても、糸を重ね合わせてモノフィラメントが交絡することより、ストランド接合部に存在するモノフィラメント数が増加する。その影響から、カット性が低下し、大きなチョップドストランド塊として散布されることや、カット工程を通過した場合においても、モノフィラメント数の多いチョップドストランドが、SMC、スタンパブルシート内に混入し、加熱・加圧成形した際に欠陥となる可能性がある。
上記のような課題に対して、特許文献1では、複数本の扁平なストランドを扁平形状に保ったまま接合する方法が開示されている。特許文献2では、エアースプライスを繊維方向に複数個所実施することにより、1つ1つのスプライス強度が弱い場合にも、ストランド接合強度が担保されることを示している。また、特許文献3では、ストランドを複数本に分割した後に撚り合わせることで、カット後のチョップドストランドにモノフィラメント数の多いチョップドストランドが形成されにくくして、目付むらを改善している。
特開2001-151418号公報 特開2016-222431号公報 特開平6-10260号公報
特許文献1では、扁平なストランド形状を保持して取り扱うために、接合部が剛になる。そのため、ストランドを切断してチョップドストランドとする場合カット性に問題があり、該接合部をカットできたとしてもチョップドストランドを構成するモノフィラメントの本数が他の部分のチョップドストランドよりも増加する。また、チョップドストランドの束幅減少を狙って部分分繊処理を施したストランドの特性が十分に発揮されないおそれがある。
特許文献2では、接合部全体としてのストランド接合強度を担保した状態で、1つ1つのスプライス強度を低下させ、モノフィラメントの絡合を少なくし、カット性を向上させることが可能である。しかしながら、かかる接合部をチョップドストランドとした場合には、チョップドストランドを構成するモノフィラメントの本数が増加する。また、チョップドストランドの束厚み減少を狙って事前に開繊処理を施した扁平ストランドの特性や、チョップドストランドの束幅減少を狙って部分分繊処理を施したストランドの特性が、十分に発揮されないおそれがある。
特許文献3では、ストランドを撚り合わせることにより、接合部が剛になりカット性が低下するほか、撚り合わせ部が巻き締まることで肉厚となり扁平ストランドなどの特性が失われやすい。また、ストランド端部の重ね合わせ部全体を撚り合わせて接合するために、撚り合わせによる影響領域が大きく、チョップドストランドとした場合に多くのチョップドストランドが撚り合わせの影響を受けることがあった。
本発明は、かかる背景技術に鑑み、ストランドの接合状態を最適化することで、チョップドストランドとする場合に良好なカット性を示すとともに、カット後には良好な分散性を示し、チョップドストランドの束幅を制御することができる接合ストランド、及びその製造方法を提供することにある。
本発明は、かかる課題を解決するために、主に次のいずれかの手段を採用するものである。
[1] 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせた重ね合わせ部を有し、前記重ね合わせ部において前記第1のストランドと前記第2のストランドの繊維を絡合させた接合部を有する接合ストランドであって、
前記接合部は、1ヶ所または繊維の配向方向と直交方向に並んだ複数ヶ所に、繊維配向方向に伸びるスリットを有するとともに、前記スリットと隣り合う接合部位を有し、
前記接合部位においては、前記第1のストランドと前記第2のストランドのモノフィラメントが絡合している接合ストランド。
[2] 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、前記重ね合わせ部において分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、前記スリットに隣り合う接合部位を形成し、次いで、前記接合部位における前記第1のストランドと前記第2のストランドを、モノフィラメントを絡み合わせることにより接合し、前記スリットと前記接合部位からなる接合部を形成する接合ストランドの製造方法。
[3] 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、前記重ね合わせ部において前記第1のストランドと前記第2のストランドのモノフィラメントを絡み合わせることにより接合部を形成し、前記接合部に分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、前記スリットに隣り合う接合部位を形成することを特徴とする接合ストランドの製造方法。
本発明によれば、良好なカット性を示す接合ストランドが得られる。また、得られた接合ストランドの接合部を切断してチョップドストランドとする場合には、チョップドストランドを構成するモノフィラメント本数ムラやチョップドストランドの束幅ムラを低減することができる。そのため、それを用いて作製されるチョップドストランドマットなどにおいては、目付むらを改善し、力学物性の向上を図ることができる。
本発明に係る接合ストランドの概略図である。 本発明に係る接合ストランドの他の概略図である。 本発明に係る接合ストランドにスリットを設けるための分割手段(a)~(d)の概略図であって、(i)が正面図、(ii)が側面図である。 本発明に係る接合ストランドに分割手段を突き刺してスリットを設ける状態を示す概略図であって、(i)が正面図、(ii)が側面図である。 本発明に係る接合ストランドに設けられたスリットおよび接合部位を示す上面図である。 分繊手段の一実施態様を示す図である。
本発明は、一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせた重ね合わせ部を有し、前記重ね合わせ部において前記第1のストランドと前記第2のストランドの繊維を絡合させた接合部を有する接合ストランドである。前記接合部は、1ヶ所または繊維の配向方向と直交方向に並んだ複数ヶ所に繊維配向方向に伸びるスリットを有するとともに、前記スリットと隣り合う接合部位を有し、前記接合部位においては、モノフィラメントが絡み合うことにより第1のストランドと第2のストランドの繊維が絡合している。なお、本発明において「接合部位」と「接合部」とは区別して用いられる用語であり、モノフィラメントが絡合している「接合部位」と、それに隣接する1または複数のスリットとを合わせた部分を指して、「接合部」としている。
本発明で用いられるストランドとは、一方向に配列された多数本のモノフィラメントが収束して構成されるもので、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などをモノフィラメントとして用いたストランドが挙げられる。これらは、繊維と樹脂を含浸せしめて形状を作る繊維強化複合材料の強化材として使用することができる。その中でも炭素繊維(特にPAN系炭素繊維)は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、繊維強化複合材料とするに好適である。
本発明において、接合とは、第1のストランドと第2のストランドを構成するモノフィラメントが絡み合い(交絡)、摩擦力によって容易に解離しない程度にまで繊維が絡合している状態を表す。接合する手法としては、例えばエアーを吹き付けることや突き刺し手段を繰り返し突き刺すことによってモノフィラメントを絡み合わせ接合する手法がある。交絡接合することによって結び目を作製し接合する場合と比較して、チョップドストランドとする場合にカット不良が生じにくくなる。
本発明に係る接合ストランドの上面図を図1に示す。接合ストランドの重ね合わせ部106においては、繊維を絡合させた部位を含む接合部105が存在する。1つの接合部105には、スリット103と接合部位104とが、繊維配向方向と直交方向に交互に並んでいる。各接合部位104は、第1のストランド101を構成するモノフィラメントと第2のストランド102を構成するモノフィラメントとが互いに交絡している。このとき、仮に撚り合わせによって第1のストランドと第2のストランドが接合されるとすると、モノフィラメントが略一方向に配向しないため、スリットを形成できない。スリットを形成できた場合であっても、多数のフィラメントを損傷し、接合強度を維持できない恐れがある。また、撚り合わせによって接合されている場合は、撚り合わせ部が肉厚になりカット性が低下する。かかる点から、本発明ではモノフィラメントを絡合させ接合する。
スリット103は、重ね合わせた第1のストランド101と第2のストランド102を重ね合わせ方向に貫く裂け目であり、繊維配向方向に一定の長さを有するものである。したがって、スリット103によって、第1のストランド101と第2のストランド102の重ね合わせ部106は、繊維配向方向と直交方向に分割されることになる。1つの接合部に対して、スリット103は1ヶ所設けてもよく、複数設ける場合には繊維の配向方向と直交方向に複数並べて設けてもよい。
このように、接合部105を、重ね合わせたストランドのモノフィラメントを絡合させるとともにスリットを設けた構成とすることで、接合部105の柔軟性が増加し、カット性が向上する。また、接合部105をカットすることで得られるチョップドストランドの束幅を減少することができ、チョップドストランドを構成するモノフィラメント数を減少させることができる。さらに、スリットが存在することにより絡合部のモノフィラメントの交絡が抑制されストランド厚みが薄くなり、チョップド繊維束の束厚みを抑制可能である。その結果、チョップドストランドが均一に分散することによりチョップドストランドマットなどの目付むらを改善し、力学物性の向上を図ることができる。
スリット103の間隔に特に制限はないが、均質性の高いチョップドストランドを得るために、繊維配向方向に直交方向に等間隔とすることが好ましい。
また、モノフィラメントが絡合している接合部位104、204は、図1に示すように繊維配向方向D1に直交方向に並んだ状態で設けられていてもよく、図2に示すようにわずかに繊維配向方向D1にずらした状態で設けられていても良い。接合部位104を繊維配向方向D1に直交方向に並んだ状態で設けた場合、接合部を効率よく作製することができ、また、接合部位204をわずかに繊維配向方向D1にずらした状態で設けた場合、接合部の柔軟性が増しカット性がさらに向上する。
また本発明では、1つの重ね合わせ部に、接合部が繊維配向方向に1~10ヶ所設けられていることが好ましい。1つの重ね合わせ部に対して接合部を1ヶ所設ける場合、接合に要する時間を短縮することができる。一方、ストランドの繊維配向方向に張力を付与させながら引き出す場合には、接合部位104に過大な張力が作用する結果、ストランドが切断するおそれもある。このような場合には、図5(d)に示すように、繊維配向方向D1に複数ヶ所の接合部505を設けることにより、接合部1ヶ所あたりに作用する張力を分散させることができ、ストランドを切断させることなく連続供給することができる。さらに、接合部1ヶ所あたりにおけるモノフィラメントの交絡を低度に抑えて良好なカット性を発現することができ、また、重ね合わせ部全体としては接合強度を担保して、モノフィラメントの破断を減らすことができる。一方で、接合部を過剰に設けた場合、接合に時間を要するほか、重ね合わせ部を長く設けなければならず、材料歩留まりの悪化や目付ばらつきの増加につながりやすい。したがって、接合部は1つの重ね合わせ部に対して繊維配向方向に1ヶ所以上10ヶ所以内とすることが好ましく、2ヶ所以上5ヶ所以内とすることがさらに好ましい。
繊維配向方向に複数存在する接合部の間隔について、特に制限はないが、次工程で接合ストランドをカットしチョップドストランドとする場合、チョップドストランドのカット長さに対して長くすることが好ましく、各接合部間の間隔が等しいほうが取り扱い性がよい。
また、本発明では、1つの接合部に、該接合部を複数に分割するスリットが1~30ヶ所設けられていることが好ましい。スリットは1つの接合部に対して1か所でもよいが、繊維の配向方向と直交方向に複数カ所設けることにより、接合部の柔軟性が向上し、カット性がより向上する。さらに、カット後のチョップドストランドの束幅が小さくなり、チョップドストランドを構成するモノフィラメント本数が減少するため、チョップドストランドがより均一に分散しやすくなる。よって、チョップドストランドマットなどの目付むらを改善し、力学物性の向上を図ることができる。一方でスリットを過剰に設けた場合、接合部位1ヶ所あたりのモノフィラメント本数が減少し、モノフィラメントを絡合させた後であってもストランドに作用する張力に耐えられず、接合ストランドが破断するおそれがある。したがって、スリットは、破断に耐え得る接合部位としてのモノフィラメント本数を確保するためにも、1つの接合部あたり繊維の配向方向と直交方向に1~30ヶ所設けることが好ましく、3~20ヶ所設けることがより好ましい。
また、本発明では、接合部位の繊維配向方向の長さが0.2mm以上20mm未満であることが好ましい。接合部位の繊維配向方向長さが長い場合、カット性が低下し、繊維長の長いチョップドストランドが作製される。そのため、チョップドストランドが均一に分散せずチョップドストランドマットなどにおいて目付むらが発生しやすくなる。したがって、接合部位の繊維配向方向長さが、0.2mm以上20mm未満であることが好ましく、0.2mm以上、10mm未満であるとさらに好ましい。
また、本発明では、繊維配向方向における重ね合わせ部の長さが10~500mmであることが好ましい。重ね合わせ部が長い場合、製造装置に供給されるストランド量が増加し、また、一部の重ね合わせ部が他の部分の重ね合わせ部に比べて長いと、チョップドストランドマットの目付むらを生じる要因になるほか、材料歩留まりの悪化につながる。一方で重ね合わせ部が短い場合には、重ね合わせ部に十分な長さの接合部位を設けることができず、接合強度が低下する恐れがある。したがって繊維配向方向における重ね合わせ部の長さは10~500mmであることが好ましい。
また、本発明では、スリットの長さが10~200mmであることが好ましい。スリットの長さが短い場合、接合部位の繊維配向方向長さも結果的に短くなり、十分な接合強度を得られない恐れがある。一方で、スリットの長さが長い場合、モノフィラメントの破断が多くなる恐れがある。また、重ね合わせ部の繊維配向方向長さが長くなり、製造装置に供給されるストランド量が増加し、また、一部の重ね合わせ部が他の部分の重ね合わせ部に比べて長いと、チョップドストランドマットの目付むらを生じる要因になるほか、材料歩留まりの悪化につながる。したがって、スリットの長さは、重ね合わせ部の繊維配向方向長さより短く、接合部位の繊維配向方向長さよりも長い、10~200mmであることが
また、本発明では、ストランドが炭素繊維からなることが好ましい。炭素繊維はモノフィラメントが細いため、交絡により接合した場合、モノフィラメントがよく絡み合い接合部が強固になる。
炭素繊維ストランドについて、特に制限はないが、ストランドを構成するモノフィラメントの本数が、12000本以上60000本以下である炭素繊維ストランドを用いることが好ましい。この範囲のモノフィラメント本数であれば、前述したスリットを設けても、1つ1つの接合部位を構成するに必要なモノフィラメント本数を確保でき、接合部位の破断を防止することができる。
また、本発明は、ストランドが、部分分繊処理を施されたストランドである場合について特に好適に適用できることを見出した。ここで部分分繊処理とは、ストランドを構成するモノフィラメントの配向方向に沿って断続的に分繊処理を実施する処理(すなわち、ストランドに断続的に繰り返しスリットを入れる処理)である。部分分繊処理を施したストランドの端部同士を接合した接合ストランドの重ね合わせ部をチョップドストランドとする場合、接合部においてもチョップドストランドの特性が大きく変化せず、部分分繊効果が阻害されない。
次に、接合ストランドの製造方法について説明する。
また、本発明では、一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、重ね合わせ部において第1のストランドと第2のストランドの繊維を絡合させて接合部を形成し、接合部に分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、スリットに隣り合う接合部位を形成することを特徴とする接合ストランドの製造方法を提供する。
第1のストランドと第2のストランドの繊維を絡合し、接合する手段としては特に制限されないが、気体を噴出することで前記第1のストランドと第2のストランドのモノフィラメントを絡ませる手段であれば、繊維の破断を少なくしながら接合できるので好ましい。このとき、次工程を通過できる範囲でストランドの接合部強度を設定すればよく、接合を過剰に強固にした場合カット性の低下を生じる。したがって、第1のストランドと第2のストランドに引張荷重を加えてもストランドが接合部で分断されないようにするため、ストランド接合部強度としては、1N以上500N以下であることが好ましく、5N以上250N以下であるとさらに好ましい。気体を噴出して接合する場合、ストランドの接合強度を変化させる手段としては、気体の噴出量、噴出圧力、噴出時間を変更させる手段がある。
また、接合部の繊維配向方向長さは重ね合わせ部の長さ以下であり、重ね合わせ部の繊維配向方向長さの1~90%であれば、十分な接合部強度を得られ、かつ、スリットを容易に設けることができ、繊維配向方向に直交方向につながった、スリット含まない接合部が設けられることを避けることができる。この際例えば、気体の噴出口の繊維配向方向長さを制御することにより、接合部長さを制御することができる。
第1のストランドと第2のストランドの繊維を重ね合わせて、絡合により接合部を形成した後に、接合部にスリットを設ける手法としては、ストランドを板で突き刺す方法がある。このとき繊維直交方向と板の厚み方向とが同じ方向になるようにする。具体的には、例えば、繊維直交方向に任意の間隔で板を複数並べて突き刺して、ストランドを分割しても良い。図3にスリットを設ける際に突き刺す分割手段の形状例を示す。分割手段の繊維直交方向厚みは特に制限がないが、分割手段の剛性が保たれる範囲で薄いほうが好ましく、0.1~2.0mmが好ましい。分割手段のエッジには刃が形成されていてもよく、打ち抜かれた状態のままでもよく、面取り処理がなされていても良い。また、素材についても制限はなく、例えば金属製でも良くプラスチック製でも良い。また、その他にもトムソン刃や、丸刃などの刃物を突き刺してストランドを分割しても良く、その際に例えば、繊維直交方向に任意の間隔で刃物を複数並べた治具を突き刺して、ストランドを分割しても良い。
また、分割手段の繊維配向方向長さは、繊維が交絡している接合部位の長さに対して長いことが好ましい。繊維配向方向に複数の接合部を作製する場合、繰り返し(順々に)接合部を作製しても良いし、複数の接合部を一度に作成する手段を使用しても良い。
図4に分割手段を突き刺してスリットを設ける概念図を示す。このように、分割手段401をストランドの繊維配向方向D1に沿うように、ストランド厚み方向に突き刺して繊維直交方向に分割すれば、モノフィラメントの破断を抑えてスリットを設けることができる。
また、ストランドを接合する前にストランドに対して拡幅処理を施しても良く、拡幅処理を施すことにより、ストランド接合後分割手段を突き刺すことができる領域が広くなり、所望の分割割合に精度よく分割することが可能になる。
また、分割手段を突き刺す際には、重ね合わせたストランドがずれないようにストランド端部を固定しておくと精度よくストランドにスリットを設けることができる。
本発明では、以上のような方法のほか、次のような方法によっても接合ストランドを製造することができる。すなわち、一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、前記重ね合わせ部において分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、スリットに隣り合う接合部位を形成し、次いで、接合部位における第1のストランドと第2のストランドの繊維を絡合させ、スリットと接合部位とからなる接合部を形成する。
第1のストランドと第2のストランドの繊維を絡合し、接合する手段としては特に制限されないが、気体を噴出することで第1のストランドと第2のストランドのモノフィラメントを絡ませる手段であれば、繊維の破断を少なくしながら接合できるので好ましい。このとき、次工程を通過できる範囲でストランドの接合部強度を設定すればよく、接合部を過剰に強固にした場合カット性の低下を生じる。したがって、第1のストランドと第2のストランドに引張荷重を加えストランドが接合部分で分断されないようにするため、ストランド接合部強度としては、1N以上500N以下であることが好ましく、5N以上250N以下であるとさらに好ましい。
また、接合部の繊維配向方向長さはスリットの長さ以下であり、スリットの繊維配向方向長さの1~90%であれば、十分な接合部強度を得られ、かつ、繊維配向方向に直交方向につながった、スリット含まない接合部が設けられることを避けることができる。この際例えば、気体の噴出口の繊維配向方向長さを制御することにより、接合部長さを制御することができる。
第1のストランドと第2のストランドの繊維を重ね合わせて、スリットを設けた後に、接合部位をそれぞれ絡合により接合することで、モノフィラメントの破断を少なくすることができる。スリットを設ける手法としては、ストランドを板で突き刺す方法がある。このとき繊維直交方向と板の厚み方向とが同じ方向になるようにする。具体的には、例えば繊維直交方向に任意の間隔で板を複数並べて突き刺して、ストランドを分割しても良い。
図3にスリットを設ける際に突き刺す分割手段の形状例を示す。分割手段の繊維直交方向厚みは特に制限がないが、分割手段の剛性が保たれる範囲で薄いほうが好ましく、0.1~2.0mmが好ましい。分割手段のエッジには刃が形成されていてもよく、うち抜かれた状態のままでもよく、面取り処理がなされていても良い。また、素材について、制限はなく例えば金属製でも良くプラスチック製でも良い。また、その他にもトムソン刃や、丸刃などの刃物を突き刺してストランドを分割しても良く、その際に例えば、繊維直交方向に任意の間隔で刃物を複数並べた治具を突き刺して、ストランドを分割しても良い。
また、分割手段の繊維配向方向長さは、繊維が交絡している接合部位の長さに対して長いことが好ましい。繊維配向方向に複数の接合部を作製する場合、繰り返し接合部を作製しても良いし、複数の接合部を一度に作成する手段を使用しても良い。
図4に分割手段を突き刺してスリットを設ける概念図を示す。このように、分割手段401をストランドの繊維配向方向D1に沿うように、ストランド厚み方向に突き刺して繊維直交方向に分割すれば、モノフィラメントの破断を抑えてスリットを設けることができる。
また、ストランドを接合する前にストランドに対して拡幅処理を施しても良く、拡幅処理を施すことにより、ストランド接合後分割手段を突き刺すことができる領域が広くなり、所望の分割割合に精度よく分割することが可能になる。
そして、本発明の製造方法においては、第1のストランドと第2のストランドの少なくとも一方のストランドが部分分繊処理されたストランドであることも好ましい。事前に部分分繊処理されたストランドを用いることで、チョップドストランドとした場合に、接合部においてもチョップドストランドの特性が大きく変化せず、部分分繊効果が阻害されない。
以下、実施例により本発明をさらに具体的に説明する。
<接合ストランドの評価>
・カット性:カット後のチョップドストランドが所望の繊維長になっているかを目視で確認した。
・分散性:SMC製造装置を用いて散布した後のチョップドストランドが1か所に集中して落下していないかを目視にて確認した。
・目付むら:大きな束が散布され、かさ高さが局所的に変化していないかを目視にて確認した。
・分割幅:繊維配向方向に引き揃えたストランド接合部をアクリル板で400Paの圧力で押し付けた後に、ノギスにて各スリット間の長さを測定した。
・フィラメント数:チョップドストランドのフィラメント数は以下の式を用いて断続的に算出した。
フィラメント数=チョップドストランド重量÷チョップドストランド長さ÷フィラメント繊度
<SMC・成形品の評価>
・目付:長手方向に300mmとなるように、SMCを幅方向に切断した後、測定した重量からキャリアシート重量を除いた重量を、SMCの幅と長手方向長さ300mmから計算される面積で除して求めた。
・繊維重量含有率:長手方向に300mmとなるように、SMCを幅方向に切断した後、測定した重量からフィルム重量を除いた重量Wsを算出した。また、切り出したSMCに含まれるマトリクス樹脂を溶剤で溶融させたのちに電気炉中で550℃2時間半保持することにより溶剤を揮発させ、残った繊維重量Wfを測定した。そして、Wsに対するWfの割合を算出した。
・外観・欠陥有無:成形品に膨れやクラックがないかを目視にて確認した。
(実施例1)
ストランドとして、フィラメント数50000本の連続した炭素繊維ストランド(ZOLTEK社製、製品名:“ZOLTEK(登録商標)”PX35-50K)を用いた。
ストランドを2本用意し、繊維配向方向に該2本のストランドの端部を重ね合わせて50mmの重ね合わせ部を設けた。該重ね合わせ部に対して、板厚0.2mm長さ100mmのステンレス平板を平板の長さ方向とストランドの繊維配向方向が同じになるように突き刺すことで、長さ45mmのスリットを5つ設けるとともに、スリットで区画された重ね合わせ部に、エアースプライサー(MESDAN社製エアースプライサー( 製品名:JOINTAIR (登録商標)、型式:116 ))を用いてモノフィラメントを交絡させた接合部位を形成し、接合ストランドを得た。前記接合部位の繊維配向方向の長さは8mmであった。
接合ストランドをSMC製造装置にセットし、ストランド裁断機を使用してチョップドストランド長さが25.4mmとなるようにカットしたところ、1つの接合部が6分割されたチョップドストランドとなっており、良好なカット性、分散性を示していることを目視にて確認した。チョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においても、大きなチョップドストランドが混入したことによる目付むらは発生しなかった。また、チョップドストランドの束幅はストランドを分割した際の幅となっており、束幅を制御できていることを確認した。チョップドストランドを構成するフィラメント数についても、10000本~20000本程度になっており、制御できていることを確認した。なお、前記SMC製造装置は、水平に搬送される第1キャリアシートの上方1300mmにストランド裁断機を有し、裁断されたチョップドストランドが、前記ストランド裁断機の700mm下方に存在するディストリビュータで叩かれて散布される装置となっている。前記ディストリビュータは、回転軸と、その周囲に配置されたワイヤーからなり、軸方向にみて円形となるように等間隔に12本のワイヤーが取り付けられ、回転軸が第一キャリアシートの搬送方向に対して直交方向かつ、水平になるように取り付けられており、裁断されて落下したチョップドストランドが前記ワイヤーに衝突し前方に飛ばされ自由落下により散布されるように、前記ワイヤーが4m/secの速度となるようにディストリビュータを回転する。
その後、第1の原反ロールからポリプロピレン製の第1キャリアシートを引き出して第1コンベヤへと供給し、該第1キャリアシート上にマトリックス樹脂[A]ペーストをドクターブレードを用いて所定の厚みで塗布して第1樹脂シートを形成した。
接合ストランドをSMC製造装置のストランド裁断機を使用して、チョップドストランドとし、チョップドストランド長さが25.4mmとなるようにカットした。次にチョップドストランドを、第1樹脂シート上に落下させて散布し、チョップドストランドがランダムに配向したシート状チョップドストランドを連続的に形成した。
次に第2の原反ロールからポリプロピレン製の第2キャリアシートを引き出して第2コンベヤへと供給し、該第2キャリアシート上にマトリックス樹脂[A]ペーストをドクターブレードを用いて所定の厚みで塗工して第2樹脂シートを形成した。
その後、前記シート状チョップドストランド上に第2樹脂シートを貼り合わせて積層し、両面から加圧して、マトリックス樹脂[A]をシート状チョップドストランドに含浸させ、SMCを作製した。得られたSMCの目付は2000g/mで繊維重量含有率は57%であった。
その後、製造したSMCを製造後から1週間、25±5℃の温度で養生した後、SMCを265×265mmに切り出し、SMC製造装置でのSMCの搬送方向(MD方向)を揃えるようにして3枚重ね、300×300mmのキャビティを有する平板金型上の中央部に配置(チャージ率にして80%相当)した後、加熱型プレス成形機により、10MPaの加圧のもと、約140℃×5分間の条件により硬化させ、300mm×300mm×3mmの平板状の成形品を得た。成形品は良好な外観を示し、ストランド接合部が混入したことによる欠陥がないことを目視にて確認した。
<使用原料>
マトリックス樹脂[A]:
ビニルエステル樹脂(VE)樹脂(ダウ・ケミカル(株)製、“デラケン790”(登録商標))100重量部、tert-ブチルパーオキシベンゾエート(日本油脂(株)製、“パーブチルZ”(登録商標))1重量部、ステアリン酸亜鉛(堺化学工業(株)製、SZ-2000)2重量部、酸化マグネシウム(協和化学工業(株)製、MgO#40)4重量部を混合した樹脂を用いた。
(実施例2)
ストランドとして、フィラメント数50000本の連続した炭素ストランド(ZOLTEK社製、製品名:“ZOLTEK(登録商標)”PX35-50K)を用意し、あらかじめ拡幅した。厚み0.3mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートをストランドの幅方向に対して5mmの等間隔に並行にセットした分繊処理手段を準備し、拡幅したストランドに対して、図6に示す様に間欠式に抜き挿しし、部分分繊繊維束(ストランド)を作成した。
この部分分繊繊維束(ストランド)を2本用意し、それぞれのストランド端部を引き揃えて80mmの重ね合わせ部を設けた。該重ね合わせ部において繊維配向方向に3ヶ所の接合部を設けるために、それぞれ繊維直交方向に5ヶ所に長さ70mmのスリットを設けた後、図5に示す装置にて、エアーにて交絡させる処理を実施し、2本のストランドを3ヶ所の接合部で接合した接合ストランドを得た。なお、図5において、(a)はエアー噴出部501を有するエアー吹付装置500の概略図、(b)は該エアー吹付装置500の上で2本のストランドの端部を重ね合わせた状態を示す図、(c)は重ね合わせ部にストランド分割刃504(分割手段)を突き刺した状態でエアーを噴出している状態を示す図、(d)は得られた接合ストランドの概略図である。図5(a)に示すそれぞれのエアー噴出部501の繊維配向方向長さは5mmであり、前記接合部位507の繊維配向方向の長さは7mmであった。
接合ストランドをSMC製造装置にセットし、実施例1と同様にストランド裁断機を使用してカットしたところ、接合部は6分割されたチョップドストランドとなっており、良好なカット性、分散性を示すことを目視にて確認した。チョップドストランドのフィラメント数は10000~20000本程度となっていた。チョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においても、大きなチョップドストランドが混入したことによる目付むらは発生しなかった。また、チョップドストランドの束幅についてもストランド接合部の分割幅となっており、束幅を制御できていることを確認した。
その後、実施例1と同様にSMCを作製し、2000g/m目付で繊維重量含有率が57%のSMCを得た。製造したSMCを製造後から1週間、25±5℃の温度で養生した後、実施例1と同様に平板状の成形品を作製したところ、成形品は良好な外観を示し、ストランド接合部が混入したことによる欠陥がないことを目視にて確認した。
(実施例3)
重ね合わせ部において繊維配向方向に5ヶ所の接合部を設けるためにエアー噴出部を5か所とするとともに、エアー噴出部の繊維配向方向長さを4mmにして前記接合部位の繊維配向方向の長さを5mmにしたこと以外は、実施例2と同様に接合ストランドを作製した。
接合ストランドをSMC製造装置にセットし、実施例1と同様にストランド裁断機を使用してカットしたところ、接合部は6分割されたチョップドストランドとなっており、良好なカット性、分散性を示すことを目視にて確認した、また、チョップドストランドのフィラメント数は10000~20000本程度となっていた。チョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においても、大きなチョップドストランドが混入したことによる目付むらは発生しなかった。また、チョップドストランドの束幅についてもストランド接合部の分割幅となっており、束幅を制御できていることを確認した。
その後、実施例1と同様にSMCを作製し、2000g/m目付で繊維重量含有率が57%のSMCを得た。製造したSMCを製造後から1週間、25±5℃の温度で養生した後、実施例1と同様に平板状の成形品を作製したところ、成形品は良好な外観を示し、ストランド接合部が混入したことによる欠陥がないことを目視にて確認した。
(比較例1)
ストランドとして、フィラメント数50000本の連続した炭素ストランド(ZOLTEK社製、製品名:“ZOLTEK(登録商標)”PX35-50K)を用いた。
ストランドを2本用意し、それぞれのストランドを引きそろえて30mmの重ね合わせ部を設け、エアースプライサー(MESDAN 社製エアースプライサー( 製品名:JOINTAIR(登録商標)、型式:116))を用いてモノフィラメントを交絡させて接合した。モノフィラメントが交絡している接合部位の繊維配向方向の長さは8mmであった。接合部(本比較例の場合は接合部位と同範囲)は、モノフィラメントの交絡により、ストランドを2つ重ね合わせただけの状態よりも厚くなっており、実施例と比較しても厚くなっていた。
接合したストランドをSMC製造装置にセットし、ストランド裁断機を使用してチョップドストランド長さが25.4mmとなるようにカットしたところ、接合部のモノフィラメント数は99000~101000本であり、モノフィラメント数が49000~51000本である非接合部対比、モノフィラメント本数の多い大きなチョップドストランドとなっていた。また、カッターが接合部をカットしようとしても、ストランドがカットされず、チョップドストランド長さが25.4mmよりも長くなり、50.8mmとなる場合や、一部つながった状態でカットされている場合があり、カット性が悪く、分散性も悪いことを確認した。またチョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においては、大きなチョップドストランドが混入したことにより、局所的に目付が悪化した。さらにチョップドストランドの束幅がストランドの束幅になっていることを確認した。
その後、実施例1と同様にSMCを作製し、2000g/m目付で繊維重量含有率が57%のSMCを得た。製造したSMCを製造後から1週間、25±5℃の温度で養生した後、実施例1と同様に平板状の成形品を作製したところ、成形品表面に接合部由来の大きなチョップドストランドが確認され、ストランド接合部が混入したことにより成形品に膨れが発生した。
(比較例2)
ストランドとして、フィラメント数50000本の連続した炭素ストランド(ZOLTEK社製、製品名:“ZOLTEK(登録商標)”PX35-50K)を用意し、あらかじめ拡幅した。厚み0.3mm、幅3mm、高さ20mmの突出形状を具備する分繊処理用鉄製プレートをストランドの幅方向に対して5mmの等間隔に並行にセットした分繊処理手段を準備し、拡幅したストランドに対して、図6に示す様に間欠式に抜き挿しし、部分分繊繊維束(ストランド)を作成した。
ストランドを2本用意し、それぞれのストランドを引きそろえて30mmの重ね合わせ部を設け、エアースプライサー(MESDAN 社製エアースプライサー( 製品名:JOINTAIR(登録商標)、型式:116))を用いてモノフィラメントを交絡させて接合した。モノフィラメントが交絡している接合部位の繊維配向方向の長さは8mmであった。本比較例においては、部分分繊繊維束を用いたものの、接合部全体としては、モノフィラメントの交絡により、ストランドを2つ重ね合わせただけの状態よりも厚くなっており、実施例2と比較しても厚くなっていた。
接合したストランドをSMC製造装置にセットし、ストランド裁断機を使用してチョップドストランド長さが25.4mmとなるようにカットしたところ、接合部のモノフィラメント数は、99000~101000本であり、モノフィラメント数が2000~4000本である非接合部対比、モノフィラメント本数の多い、大きなチョップドストランドとなっていた。また、カッターが接合部をカットしようとしても、ストランドがカットされず、チョップドストランド長さが25.4mmよりも長くなり、50.8mmとなる場合や、一部つながった状態でカットされている場合があり、カット性が悪く、分散性も悪いことを確認した。またチョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においては、大きなチョップドストランドが混入したことにより、局所的に目付が悪化した。さらに、接合部を含まないチョップドストランドの束幅は、分繊処理幅の5mmであったのに対し、接合部を含むチョップドストランドの束幅は、ストランドの束幅になっていた。
その後、実施例1と同様にSMCを作製し、2000g/m目付で繊維重量含有率が57%のSMCを得た。製造したSMCを製造後から1週間、25±5℃の温度で養生した後、実施例1と同様に平板状の成形品を作製したところ、成形品表面に接合部由来の大きなチョップドストランドが確認され、ストランド接合部が混入したことにより成形品に膨れが発生した。
(比較例3)
ストランドとして、フィラメント数50000本の連続した炭素ストランド(ZOLTEK社製、製品名:“ZOLTEK(登録商標)”PX35-50K)を用いた。
ストランドを2本用意し、それぞれのストランドを引きそろえて、ストランド束端をそれぞれ5つの群(A1,A2,…A5),(B1,B2,…B5)に夫々分割し、(A1とB1),(A2とB2),…(A5とB5)をそれぞれ引き揃えて30mmの重ね合わせ部を設け、各引揃え部を管状通路に挿入し、0.6MPaの圧縮空気を該通路に噴出させて撚り合わせた。この時、該通路内でストランド端が自由に回転し撚り合わさるように、ストランド端は固定せずに圧縮空気を噴出した。撚り合わせ部の繊維配向方向の長さは30mmであった。また、撚り合わせ部は、撚り合わされたことにより巻き締まり、肉厚になっており、ストランドを2つ重ね合わせ厚さよりも厚くなっており、実施例1、2と比較しても厚くなっていた。さらに、撚り合わせ部においてストランド間のモノフィラメントの交絡は見られなかった。
接合したストランドをSMC製造装置にセットし、ストランド裁断機を使用してチョップドストランド長さが25.4mmとなるようにカットしたところ、接合部のモノフィラメント数は、99000~101000本であり、モノフィラメント数が49000~51000本である非接合部対比、モノフィラメント本数の多い、大きなチョップドストランドとなっていた。また、カッターが接合部をカットしようとしても、ストランドがカットされず、チョップドストランド長さが25.4mmよりも長くなり、50.8mmとなる場合や、一部つながった状態でカットされている場合があり、カット性が悪く、分散性も悪いことを確認した。さらにチョップドストランドが散布された状態、すなわちチョップドストランドマットの形態においては、大きなチョップドストランドが混入したことにより、局所的に目付が悪化した。
その後、実施例1と同様にSMCを作製し、2000g/m目付で繊維重量含有率が57%のSMCを得た。製造したSMCを製造後から1週間、25±5℃の温度で養生した後、実施例1と同様に平板状の成形品を作製したところ、成形品表面に接合部由来の大きなチョップドストランドが確認され、ストランド接合部が混入したことにより成形品に膨れが発生した。
本発明にかかる接合ストランド、及び接合ストランドの製造方法は、連続的にストランドをカットしチョップドストランドとする工程を含む、SMCやスタンパブルシートといった短繊維強化複合材料の製造に好ましく適用できる。
101: 第1のストランド
102: 第2のストランド
103: スリット
104: 接合部位
105: 接合部
106: 重ね合わせ部
201: 第1のストランド
202: 第2のストランド
203: スリット
204: 接合部位
205: 接合部
206: 重ね合わせ部
401: 分割手段
500: エアー吹付装置
501: エアー噴出部
502: ストランド
502a: 第1のストランド
502b: 第2のストランド
503: 重ね合わせ部
504: ストランド分割刃
505: ストランド接合部
506: スリット
507: 接合部位
601: ストランド
602: 分繊処理用鉄製プレート
603: 接触部
604: 突出部
605: 絡合部
D1: 繊維配向方向
D2: 突き刺し方向
D3: ストランド走行方向

Claims (12)

  1. 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせた重ね合わせ部を有し、前記重ね合わせ部において前記第1のストランドと前記第2のストランドの繊維を絡合させた接合部を有する接合ストランドであって、
    前記接合部は、1ヶ所または繊維の配向方向と直交方向に並んだ複数ヶ所に、繊維配向方向に伸びるスリットを有するとともに、前記スリットと隣り合う接合部位を有し、
    前記接合部位においては、前記第1のストランドと前記第2のストランドのモノフィラメントが絡合している接合ストランド。
  2. 1つの前記重ね合わせ部に、前記接合部が繊維配向方向に1~10ヶ所設けられている、請求項1に記載の接合ストランド。
  3. 1つの前記接合部に、前記スリットが1~30ヶ所設けられている、請求項1または2に記載の接合ストランド。
  4. 前記接合部位の繊維配向方向の長さが0.2mm以上20mm未満である、請求項1~3のいずれかに記載の接合ストランド。
  5. 繊維配向方向における前記重ね合わせ部の長さが10~500mmである、請求項1~4のいずれかに記載の接合ストランド。
  6. 前記スリットの長さが10~200mmである、請求項1~5のいずれかに記載の接合ストランド。
  7. 前記繊維が炭素繊維である、請求項1~6のいずれかに記載の接合ストランド。
  8. 前記接合ストランドは部分分繊処理が施されている、請求項1~7のいずれかに記載の接合ストランド。
  9. 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、前記重ね合わせ部において分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、前記スリットに隣り合う接合部位を形成し、次いで、前記接合部位における前記第1のストランドと前記第2のストランドを、モノフィラメントを絡み合わせることにより接合し、前記スリットと前記接合部位からなる接合部を形成する接合ストランドの製造方法。
  10. 一方向に繊維を配向させた第1のストランド端部と、一方向に繊維を配向させた第2のストランド端部とを重ね合わせて重ね合わせ部を設け、前記重ね合わせ部において前記第1のストランドと前記第2のストランドのモノフィラメントを絡み合わせることにより接合部を形成し、前記接合部に分割手段を突き刺すことで、1ヶ所または繊維の配向方向と直交方向に並んだ複数カ所に、繊維配向方向に伸びるスリットを設けるとともに、前記スリットに隣り合う接合部位を形成することを特徴とする接合ストランドの製造方法。
  11. 気体を噴出させて前記第1のストランドと前記第2のストランドのモノフィラメントを絡ませる、請求項9または10に記載の接合ストランドの製造方法。
  12. 前記第1のストランドと前記第2のストランドの少なくとも一方のストランドが部分分繊処理されたストランドである、請求項9~11のいずれかに記載の接合ストランドの製造方法。
JP2021514640A 2020-03-31 2021-03-15 接合ストランド、及びその製造方法 Active JP7409373B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020062655 2020-03-31
JP2020062655 2020-03-31
PCT/JP2021/010318 WO2021200065A1 (ja) 2020-03-31 2021-03-15 接合ストランド、及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2021200065A1 JPWO2021200065A1 (ja) 2021-10-07
JP7409373B2 true JP7409373B2 (ja) 2024-01-09

Family

ID=77929472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514640A Active JP7409373B2 (ja) 2020-03-31 2021-03-15 接合ストランド、及びその製造方法

Country Status (5)

Country Link
US (1) US20230091427A1 (ja)
EP (1) EP4129878A4 (ja)
JP (1) JP7409373B2 (ja)
MX (1) MX2022011135A (ja)
WO (1) WO2021200065A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151418A (ja) 1999-11-26 2001-06-05 Toyota Autom Loom Works Ltd 繊維束及び繊維束の製造方法、繊維束の接合方法並びに繊維束接合装置
JP2003292247A (ja) 2002-03-29 2003-10-15 Toyota Industries Corp 繊維束、繊維束の接合端部処理方法及び接合端部処理装置並びにプロペラシャフト
WO2016104154A1 (ja) 2014-12-26 2016-06-30 東レ株式会社 部分分繊繊維束の製造方法および製造装置、部分分繊繊維束
JP2016222431A (ja) 2015-06-01 2016-12-28 日本電気硝子株式会社 ガラス繊維集束体およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536803B2 (ja) 1991-11-22 1996-09-25 旭ファイバーグラス株式会社 ストランド束の接合方法
JP5097377B2 (ja) * 2006-10-11 2012-12-12 三菱レイヨン株式会社 糸条支持装置及び糸条支持方法
KR101564801B1 (ko) * 2008-11-10 2015-10-30 도레이 카부시키가이샤 실 연결 접합부를 갖는 섬유 다발, 및 그의 제조 방법, 및 탄소 섬유의 제조 방법
JP7003990B2 (ja) * 2018-02-01 2022-01-21 東レ株式会社 部分分繊繊維束、中間基材、成形品およびそれらの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151418A (ja) 1999-11-26 2001-06-05 Toyota Autom Loom Works Ltd 繊維束及び繊維束の製造方法、繊維束の接合方法並びに繊維束接合装置
JP2003292247A (ja) 2002-03-29 2003-10-15 Toyota Industries Corp 繊維束、繊維束の接合端部処理方法及び接合端部処理装置並びにプロペラシャフト
WO2016104154A1 (ja) 2014-12-26 2016-06-30 東レ株式会社 部分分繊繊維束の製造方法および製造装置、部分分繊繊維束
JP2016222431A (ja) 2015-06-01 2016-12-28 日本電気硝子株式会社 ガラス繊維集束体およびその製造方法

Also Published As

Publication number Publication date
MX2022011135A (es) 2022-10-13
JPWO2021200065A1 (ja) 2021-10-07
US20230091427A1 (en) 2023-03-23
WO2021200065A1 (ja) 2021-10-07
EP4129878A1 (en) 2023-02-08
EP4129878A4 (en) 2024-04-17

Similar Documents

Publication Publication Date Title
TWI720150B (zh) 纖維強化樹脂成形材料及其製造方法
KR102253933B1 (ko) 부분 분섬 섬유 다발과 그의 제조 방법, 및 부분 분섬 섬유 다발을 사용한 섬유 강화 수지 성형 재료와 그의 제조 방법
US11001012B2 (en) Molded article of fiber-reinforced resin and compression molding method therefor
JP6083377B2 (ja) 炭素繊維複合材料
US11168190B2 (en) Random mat and production method therefor, and fiber-reinforced resin molding material using random mat
CN109312502A (zh) 部分分纤纤维束及其制造方法、以及使用了部分分纤纤维束的纤维增强树脂成型材料及其制造方法
JP7400807B2 (ja) 繊維強化樹脂成形材料成形品およびその製造方法
CN109312504A (zh) 部分分纤纤维束及其制造方法、以及使用了部分分纤纤维束的纤维增强树脂成型材料及其制造方法
KR20120094903A (ko) 연속 유리 섬유를 갖는 텍스타일 코어
JP7409373B2 (ja) 接合ストランド、及びその製造方法
CN105073847A (zh) 可冲压片材
CN115461204A (zh) Smc的制造方法
CN112243449B (zh) 超薄预浸料片材及其复合材料
JP6876267B2 (ja) 繊維束の分割方法、長尺の繊維束、及び繊維強化樹脂材料の製造方法
JP2023124032A (ja) 複合材料の製造方法
EP1232035A1 (en) Production of fibres for use as reinforcing in concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231204

R151 Written notification of patent or utility model registration

Ref document number: 7409373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151