JP7408246B2 - Dissipation tangent measurement method and measurement jig - Google Patents

Dissipation tangent measurement method and measurement jig Download PDF

Info

Publication number
JP7408246B2
JP7408246B2 JP2020100191A JP2020100191A JP7408246B2 JP 7408246 B2 JP7408246 B2 JP 7408246B2 JP 2020100191 A JP2020100191 A JP 2020100191A JP 2020100191 A JP2020100191 A JP 2020100191A JP 7408246 B2 JP7408246 B2 JP 7408246B2
Authority
JP
Japan
Prior art keywords
coaxial line
liquid
dielectric loss
loss tangent
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020100191A
Other languages
Japanese (ja)
Other versions
JP2021196173A (en
Inventor
敏夫 新井
恵一郎 加藤
雄太 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Antenna Co Ltd
Original Assignee
Nippon Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Antenna Co Ltd filed Critical Nippon Antenna Co Ltd
Priority to JP2020100191A priority Critical patent/JP7408246B2/en
Publication of JP2021196173A publication Critical patent/JP2021196173A/en
Application granted granted Critical
Publication of JP7408246B2 publication Critical patent/JP7408246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、液状物質の誘電正接を測定する誘電正接測定法および誘電正接測定法に用いる測定治具に関するものである。 The present invention relates to a dielectric loss tangent measurement method for measuring the dielectric loss tangent of a liquid substance, and a measurement jig used in the dielectric loss tangent measurement method.

従来の誘電正接を測定する測定法の構成を図13に示す。図13に示す従来の誘電正接の測定法は平行電極を用いた容量法100であり、容量法100では、平行対向円板とされる電極111および電極112の間に試料となる誘電体120を挟持してコンデンサを形成させる。そして、形成されたコンデンサに電圧源110から所定の周波数の電圧を印加して、コンデンサの電気特性を取得する。次いで、取得した電気的特性を分析して誘電体120の誘電正接を算出している。この容量法100では、電極111および電極112の実効面積および形状が誘電正接の測定に与える影響が大きくなり、高い測定精度を得ることが困難となる。また、電極111および電極112の間に液体を挟持できない構造とされていることから、誘電体120として液状物質を用いることができず液状物質の誘電正接を測定することができなかった。 The configuration of a conventional measurement method for measuring dielectric loss tangent is shown in FIG. The conventional method for measuring dielectric loss tangent shown in FIG. 13 is a capacitance method 100 using parallel electrodes. They are sandwiched to form a capacitor. Then, a voltage of a predetermined frequency is applied from the voltage source 110 to the formed capacitor to obtain the electrical characteristics of the capacitor. Next, the obtained electrical characteristics are analyzed to calculate the dielectric loss tangent of the dielectric 120. In this capacitive method 100, the effective area and shape of the electrodes 111 and 112 have a large influence on the measurement of the dielectric loss tangent, making it difficult to obtain high measurement accuracy. Furthermore, since the structure is such that no liquid can be sandwiched between the electrodes 111 and 112, a liquid substance cannot be used as the dielectric 120, and the dielectric loss tangent of the liquid substance cannot be measured.

液状物質の誘電正接を測定することができる従来の測定法が、非特許文献1に開示されている。非特許文献1に開示されている従来の測定法は、液体充填可能な同軸線路を用いて液晶の複素誘電率を測定する測定法とされている。この従来の測定法における同軸線路の構成を図14(a)(b)に示す。図14(a)は同軸線路200の構成を断面図で示す正面図であり、図14(b)は同軸線路200の構成を断面図で示す側面図である。
これらの図に示す同軸線路200は、金属製とされた円筒状の外導体210と、外導体210における軸方向に形成されている貫通孔の中央に配置された導電性の中心導体211とから構成されている。同軸線路200の一端には同軸構造のコネクタ212が設けられ、他端にも同軸構造のコネクタ213が設けられている。同軸構造とされた貫通孔内が軸方向に3分割されており、コネクタ212側の領域は絶縁性の封止材215で封止され、コネクタ213側の領域も絶縁性の封止材215で封止されている。2つの封止材215の間の領域が、試料である液体220を充填する充填領域とされており、液体220はネジ214を螺着する穴から充填領域に充填されるようになる。充填領域に液体220を充填したら、ネジ214を穴に螺着して充填領域を封止する。
A conventional measuring method capable of measuring the dielectric loss tangent of a liquid substance is disclosed in Non-Patent Document 1. The conventional measurement method disclosed in Non-Patent Document 1 is a measurement method for measuring the complex dielectric constant of liquid crystal using a coaxial line that can be filled with liquid. The configuration of a coaxial line in this conventional measurement method is shown in FIGS. 14(a) and 14(b). FIG. 14(a) is a front view showing the structure of the coaxial line 200 in cross section, and FIG. 14(b) is a side view showing the structure of the coaxial line 200 in cross section.
The coaxial line 200 shown in these figures consists of a cylindrical outer conductor 210 made of metal, and a conductive center conductor 211 disposed at the center of a through hole formed in the axial direction in the outer conductor 210. It is configured. A connector 212 having a coaxial structure is provided at one end of the coaxial line 200, and a connector 213 having a coaxial structure is also provided at the other end. The inside of the through hole, which has a coaxial structure, is divided into three parts in the axial direction, and the area on the connector 212 side is sealed with an insulating sealing material 215, and the area on the connector 213 side is also sealed with an insulating sealing material 215. It is sealed. The area between the two sealants 215 is a filling area in which liquid 220, which is a sample, is filled, and the liquid 220 is filled into the filling area through the hole into which the screw 214 is screwed. Once the filling area is filled with liquid 220, the screw 214 is screwed into the hole to seal the filling area.

充填領域に液体220として液晶を充填しコネクタ212を入力端子、コネクタ213を出力端子として、コネクタ212から所定の周波数の信号を印加して、Sパラメータを測定する。そして、液晶の誘電正接をSパラメータのS21の伝送量と位相量を元に算出することができる。この場合、封止材215の誘電率は既知となっている。 The filling area is filled with liquid crystal as the liquid 220, the connector 212 is used as an input terminal, the connector 213 is used as an output terminal, and a signal of a predetermined frequency is applied from the connector 212 to measure the S parameter. Then, the dielectric loss tangent of the liquid crystal can be calculated based on the transmission amount and phase amount of S21 of the S parameter. In this case, the dielectric constant of the sealant 215 is known.

東北大学電気通信研究所工学研究会 伝送工学研究会 伝送工学研究会資料 Vol.2018,No.601-4,2018年9月 阿部 新司 外5名著「液体充填同軸線路を用いた液晶の複素誘電率測定」P.1-5Tohoku University Telecommunication Research Institute Engineering Research Group Transmission Engineering Research Group Transmission Engineering Research Group Materials Vol. 2018, No. 601-4, September 2018 Shinji Abe and 5 other authors “Measurement of complex dielectric constant of liquid crystal using liquid-filled coaxial line” P. 1-5

従来の測定法では、液状物質の誘電正接を測定することができるものの、周波数が高くなると誘電正接を測定し難くなり、広帯域に渡り誘電正接を測定するのが困難になるという問題点があった。
そこで、本発明は広帯域に渡り液状物質の誘電正接を測定することが可能な誘電正接測定法および誘電正接測定法に用いる測定治具を提供することを目的としている。
With conventional measurement methods, it is possible to measure the dielectric loss tangent of liquid substances, but as the frequency increases, it becomes difficult to measure the dielectric loss tangent, making it difficult to measure the dielectric loss tangent over a wide band. .
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a dielectric loss tangent measurement method capable of measuring the dielectric loss tangent of a liquid substance over a wide band, and a measurement jig used in the dielectric loss tangent measurement method.

上記目的を達成するために、本発明の誘電正接測定法は、外導体と、該外導体の中心に配置された中心導体とからなり、内部に試料となる液体を充填可能な長さLの同軸線路と、前記同軸線路の一端に設けられた入力コネクタと、前記同軸線路の他端に設けられた出力コネクタとを備えた測定治具を用いる誘電正接測定法であって、前記入力コネクタおよび前記出力コネクタのインピーダンスをZoとして、前記入力コネクタに所定の測定周波数の信号を入力した際の、液体を充填しない状態の前記同軸線路の位相量が180°になる周波数をFo、液体を充填した状態の前記同軸線路の位相量が180°になる周波数をFsとした時に、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、nFs(nは1以上の正の整数)における前記液体の少なくとも誘電正接を算出することを最も主要な特徴としている。
上記本発明の誘電正接測定法において、前記入力コネクタと前記同軸線路との間と、前記出力コネクタと前記同軸線路との間とに、前記同軸線路内に前記液体を充填可能な孔部を備えるフランジが設けられており、前記孔部から前記液体を前記同軸線路に充填した後に、前記孔部にネジを螺着して前記孔部を封止している。
また、上記本発明の誘電正接測定法において、nを1以上の正の整数とした時に、nFsにおける前記液体の誘電正接tanδを、
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)
で算出することができる。
さらに、上記本発明の誘電正接測定法において、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、前記液体の誘電正接を算出することに加えて、nFs(nは1以上の正の整数)における前記液体の比誘電率も算出できる。
In order to achieve the above object, the dielectric loss tangent measurement method of the present invention consists of an outer conductor and a center conductor placed at the center of the outer conductor, and has a length L that can fill the inside with a sample liquid. A dielectric loss tangent measurement method using a measurement jig comprising a coaxial line, an input connector provided at one end of the coaxial line, and an output connector provided at the other end of the coaxial line, the method comprising: The impedance of the output connector is Zo, and when a signal of a predetermined measurement frequency is input to the input connector, Fo is the frequency at which the phase amount of the coaxial line without liquid is 180 degrees, and Fo is the frequency when the coaxial line is filled with liquid. When the frequency at which the phase amount of the coaxial line in the state of The most important feature is to calculate at least the dielectric loss tangent of the liquid at an integer of .
In the dielectric loss tangent measuring method of the present invention, a hole portion capable of filling the liquid is provided in the coaxial line between the input connector and the coaxial line and between the output connector and the coaxial line. A flange is provided, and after the coaxial line is filled with the liquid through the hole, a screw is screwed into the hole to seal the hole.
Further, in the dielectric loss tangent measurement method of the present invention, when n is a positive integer of 1 or more, the dielectric loss tangent tan δ of the liquid at nFs is:
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) }
It can be calculated as follows.
Furthermore, in the dielectric loss tangent measurement method of the present invention, in addition to calculating the dielectric loss tangent of the liquid based on the insertion loss IL, Fo, Fs, and the length L of the measurement jig, nFs(n is a positive integer of 1 or more), the dielectric constant of the liquid can also be calculated.

上記目的を達成するために、本発明の測定治具は、外導体と、該外導体の中心に配置された中心導体とからなり、内部に試料となる液体を充填可能な長さLの同軸線路と、前記同軸線路の一端に設けられた入力コネクタと、前記同軸線路の他端に設けられた出力コネクタとを備え、前記入力コネクタおよび前記出力コネクタのインピーダンスをZoとして、前記入力コネクタに所定の測定周波数の信号を入力した際の、液体を充填しない状態の前記同軸線路の位相量が180°になる周波数をFo、液体を充填した状態の前記同軸線路の位相量が180°になる周波数をFsとした時に、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、nFs(nは1以上の正の整数)における前記液体の少なくとも誘電正接を算出できることを最も主要な特徴としている。
上記本発明の測定治具において、前記入力コネクタと前記同軸線路との間と、前記出力コネクタと前記同軸線路との間とに、前記同軸線路内に前記液体を充填可能な孔部を備えるフランジが設けられており、前記孔部からぜんき液体を前記同軸線路に充填した後に、前記孔部にネジを螺着して前記孔部を封止している。
また、上記本発明の測定治具において、nを1以上の正の整数とした時に、nFsにおける前記液体の誘電正接tanδを、
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)
で算出することができる。
さらに、上記本発明の測定治具において、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、前記液体の誘電正接を算出できることに加えて、nFs(nは1以上の正の整数)における前記液体の比誘電率も算出できる。
In order to achieve the above object, the measuring jig of the present invention consists of an outer conductor and a center conductor placed at the center of the outer conductor, and has a coaxial length L that can be filled with a sample liquid. a line, an input connector provided at one end of the coaxial line, and an output connector provided at the other end of the coaxial line, and with the impedance of the input connector and the output connector being Zo, the input connector is provided with a predetermined impedance. Fo is the frequency at which the phase amount of the coaxial line without liquid is 180° when a signal of the measurement frequency is input, and the frequency at which the phase amount of the coaxial line in the liquid-filled state is 180° is Fo. When is Fs, at least the dielectric loss tangent of the liquid at nFs (n is a positive integer of 1 or more) can be calculated based on the insertion loss IL, Fo, Fs, and the length L of the measurement jig. This is the most important feature.
In the measurement jig of the present invention, a flange is provided with a hole that can fill the liquid into the coaxial line between the input connector and the coaxial line and between the output connector and the coaxial line. is provided, and after filling the coaxial line with the asthma liquid through the hole, a screw is screwed into the hole to seal the hole.
Further, in the measurement jig of the present invention, when n is a positive integer of 1 or more, the dielectric loss tangent tan δ of the liquid at nFs is:
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) }
It can be calculated as follows.
Furthermore, in the measuring jig of the present invention, in addition to being able to calculate the dielectric loss tangent of the liquid based on the insertion loss IL, Fo, Fs, and the length L of the measuring jig, nFs (n is 1 The relative dielectric constant of the liquid at the above positive integer) can also be calculated.

本発明の誘電正接測定法は、内部に試料となる液体を充填可能な長さLの同軸線路を備える測定治具を用いて、液体を充填しない状態の前記同軸線路の位相量が180°になる周波数Foと、液体を充填した状態の前記同軸線路の位相量が180°になる周波数Fsとに基づいて、nFsにおける液体の誘電正接tanδを算出できるようになる。これにより、本発明の誘電正接測定法および誘電正接測定法に用いる測定治具では、周波数が高くなっても液状物質の少なくとも誘電正接を測定することができるようになる。 The dielectric loss tangent measurement method of the present invention uses a measurement jig equipped with a coaxial line having a length L that can be filled with a sample liquid, and the phase amount of the coaxial line without being filled with liquid is 180°. The dielectric loss tangent tan δ of the liquid at nFs can be calculated based on the frequency Fo and the frequency Fs at which the phase amount of the coaxial line filled with liquid is 180°. As a result, the dielectric loss tangent measurement method and the measurement jig used for the dielectric loss tangent measurement method of the present invention can measure at least the dielectric loss tangent of the liquid substance even if the frequency becomes high.

本発明の実施例の測定治具の構成を示す正面図および側面図である。1 is a front view and a side view showing the configuration of a measuring jig according to an embodiment of the present invention. FIG. 本発明の実施例の測定治具の構成を一部断面図で示す正面図である。1 is a partially sectional front view showing the configuration of a measuring jig according to an embodiment of the present invention; FIG. 同軸線路の電気的構成を示す回路図である。FIG. 2 is a circuit diagram showing the electrical configuration of a coaxial line. 同軸線路に誘電体損を与える構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration that provides dielectric loss to a coaxial line. 同軸線路に誘電体損を与える等価回路を示す回路図である。FIG. 2 is a circuit diagram showing an equivalent circuit that causes dielectric loss to a coaxial line. 同軸線路の等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit of a coaxial line. 本発明の実施例の測定治具に液体が充填された際の反射減衰量と挿入損失の周波数特性を示す図である。It is a figure which shows the frequency characteristic of return loss and insertion loss when the measuring jig of the Example of this invention is filled with liquid. 本発明の実施例の測定治具を用いて本発明の誘電正接測定法で測定した結果を示す図表である。1 is a chart showing the results of measurement by the dielectric loss tangent measuring method of the present invention using the measurement jig of the example of the present invention. 本発明の実施例の測定治具を用いて本発明の誘電正接測定法で測定した他の結果を示す図表である。It is a chart showing other results measured by the dielectric loss tangent measuring method of the present invention using the measuring jig of the example of the present invention. 本発明の実施例の測定治具を用いて本発明の誘電正接測定法で測定したさらに他の結果を示す図表である。It is a chart showing still other results measured by the dielectric loss tangent measuring method of the present invention using the measuring jig of the example of the present invention. 本発明の実施例の測定治具に他の液体が充填された際の反射減衰量と挿入損失の周波数特性を示す図である。It is a figure which shows the frequency characteristic of return loss and insertion loss when the measuring jig of the Example of this invention is filled with another liquid. 本発明の実施例の測定治具に他の液体が充填された際の誘電正接の周波数特性を示す図である。FIG. 7 is a diagram showing the frequency characteristics of the dielectric loss tangent when the measurement jig according to the embodiment of the present invention is filled with another liquid. 従来の誘電正接の測定法を示す回路図である。FIG. 2 is a circuit diagram showing a conventional method for measuring dielectric loss tangent. 液状物質の誘電正接を測定することができる従来の測定法に用いる同軸線路の構成を断面図で示す正面図および側面図である。FIG. 2 is a front view and a side view showing, in cross-sectional view, the configuration of a coaxial line used in a conventional measurement method capable of measuring the dielectric loss tangent of a liquid substance.

<本発明の測定治具の実施例>
本発明の液状物質の誘電正接を測定する誘電正接測定法は、本発明の実施例の測定治具を用いており、本発明の実施例の測定治具について説明する。本発明の実施例の測定治具1の構成を図1(a)(b)および図2に示す。図1(a)は測定治具1の構成を示す正面図であり、図1(b)は測定治具1の構成を示す側面図であり、図2は測定治具1の構成を一部断面図で示す正面図である。
これらの図に示す本発明の実施例の測定治具1は、金属製等の導電性とされた円筒状の外導体12と、外導体12の軸方向の中心に配置された金属製等の導電性とされた中心導体14とからなる同軸線路を備えており、外導体12の一端に所定の厚さとされた円板状の金属製等の導電性とされた外導体用フランジ12aが固着されており、外導体12の他端に所定の厚さとされた円板状の金属製等の導電性とされた外導体用フランジ12bが固着されている。外導体用フランジ12aと外導体用フランジ12bとは線対称の形状とされており中央には外導体12の内径に等しい径の貫通孔がそれぞれ形成されている。また、外導体用フランジ12aの側周面には試料とされる液体を同軸線路内に注入可能な注入孔12cが形成されており、外導体用フランジ12bの側周面には試料とされる液体を同軸線路内に注入可能な注入孔12dが同様に形成されている。注入孔12cあるいは注入孔12dから注入された液体は、中心導体14と外導体12との間の空間に充填される。注入孔12cおよび注入孔12dには、封止するためのネジ手段を注入孔12cおよび注入孔12dに螺着することができる。
<Example of measurement jig of the present invention>
The dielectric loss tangent measuring method of measuring the dielectric loss tangent of a liquid substance of the present invention uses a measuring jig according to an embodiment of the present invention, and the measuring jig according to an embodiment of the present invention will be described. The configuration of a measuring jig 1 according to an embodiment of the present invention is shown in FIGS. 1(a) and 2(b) and FIG. 1(a) is a front view showing the configuration of the measurement jig 1, FIG. 1(b) is a side view showing the configuration of the measurement jig 1, and FIG. 2 shows a part of the configuration of the measurement jig 1. It is a front view shown in a sectional view.
The measuring jig 1 according to the embodiment of the present invention shown in these figures includes a cylindrical outer conductor 12 made of conductive material such as metal, and a cylindrical outer conductor 12 made of metal or the like placed at the center of the outer conductor 12 in the axial direction. It has a coaxial line consisting of a conductive center conductor 14, and a conductive outer conductor flange 12a made of a disc-shaped metal or the like having a predetermined thickness is fixed to one end of the outer conductor 12. A conductive outer conductor flange 12b made of metal or the like and having a predetermined thickness is fixed to the other end of the outer conductor 12. The outer conductor flange 12a and the outer conductor flange 12b have a line-symmetrical shape, and a through hole having a diameter equal to the inner diameter of the outer conductor 12 is formed in the center. Further, an injection hole 12c is formed on the side circumferential surface of the outer conductor flange 12a, and an injection hole 12c is formed through which a sample liquid can be injected into the coaxial line, and an injection hole 12c is formed on the side circumferential surface of the outer conductor flange 12b. An injection hole 12d through which liquid can be injected into the coaxial line is similarly formed. The liquid injected from the injection hole 12c or 12d fills the space between the center conductor 14 and the outer conductor 12. Screw means for sealing can be screwed into the injection holes 12c and 12d.

外導体用フランジ12aの外側の円形の面に、同軸構造とされた入力コネクタ11が4本のネジにより取り付けられている円板状の金属製等の導電性とされたコネクタ用フランジ11aが、4本の等間隔に配置された4本のネジ11bにより固着されている。そして、外導体用フランジ12aとコネクタ用フランジ11aとが合わさる面を水密構造とするOリング12eが両者の面の間に挟持されており、Oリング12eは外導体用フランジ12aの外側の円形の面に形成された円形の凹部内に係合されている。なお、入力コネクタ11における中心ピンの先端部が中心導体14の一端に形成された孔部内に挿入されて、中心ピンが中心導体14の一端に接続されている。
また、外導体用フランジ12bの外側の円形の面に、同軸構造とされた出力コネクタ13が4本のネジにより取り付けられている円板状の金属製等の導電性とされたコネクタ用フランジ13aが、4本の等間隔に配置された4本のネジ13bにより固着されている。そして、外導体用フランジ12bとコネクタ用フランジ13aとが合わさる面を水密構造とするOリング12fが両者の面の間に挟持されており、Oリング12fは外導体用フランジ12bの外側の円形の面に形成された円形の凹部内に係合されている。なお、出力コネクタ13における中心ピンの先端部が中心導体14の他端に形成された孔部内に挿入されて、中心ピンは中心導体14の他端に接続されている。
An electrically conductive connector flange 11a made of a disc-shaped metal or the like has an input connector 11 having a coaxial structure attached to the outer circular surface of the outer conductor flange 12a with four screws. It is fixed by four screws 11b arranged at equal intervals. An O-ring 12e is sandwiched between the surfaces where the outer conductor flange 12a and the connector flange 11a meet to form a watertight structure. It is engaged within a circular recess formed in the surface. Note that the tip of the center pin of the input connector 11 is inserted into a hole formed in one end of the center conductor 14, and the center pin is connected to one end of the center conductor 14.
Further, an output connector 13 having a coaxial structure is attached to the outer circular surface of the outer conductor flange 12b with four screws, and a connector flange 13a made of conductive metal or the like has a disc shape. are fixed by four screws 13b arranged at equal intervals. An O-ring 12f is sandwiched between the surfaces where the outer conductor flange 12b and the connector flange 13a meet to form a watertight structure. It is engaged within a circular recess formed in the surface. Note that the tip of the center pin in the output connector 13 is inserted into a hole formed at the other end of the center conductor 14, and the center pin is connected to the other end of the center conductor 14.

<本発明の誘電正接測定法>
図1および図2に示す本発明にかかる測定治具1を用いて液状物質の誘電正接を測定する本発明の誘電正接測定法を説明する。
ここでは、入力コネクタ11と出力コネクタ13のインピーダンスはZoとされており、測定治具1に液体を注入していない状態の同軸線路の特性インピーダンスWがZoになるように、中心導体14の外径aと外導体12の内径bの寸法が設定されている。これにより、測定治具1における同軸線路は、全長に亘ってZoに正確に整合しており、接続用コネクタとしての機能も有するようになる。そして、入力コネクタ11をネットワークアナライザの第1ポートに接続し、出力コネクタ13をネットワークアナライザの第2ポートに接続して、キャリブレーション作業を行う。キャリブレーション作業では、信号出力ポートとなる第1ポートと信号入力ポートとなる第2ポートの「オープン,ショート,終端」校正を行って、両ポートをインピーダンスZoに整合させ、反射減衰量RL(S11,S22のSパラメータ)が-∞dBとなるようにする。続いて、両ポート間を直結するスルー校正を液体を充填していない状態の測定治具1を用いて行う。この作業によって挿入損失IL(S21,S12のSパラメータ)には、測定治具1が含まれる挿入損失も加算されて第1ポートと第2ポート間における挿入損失ILが0dBに基準化されることになる。これにより、本発明にかかる測定治具1に液体を注入した後の反射減衰量RLや挿入損失ILの変化は、測定治具1に注入した液体の作用によるものと特定できることになる。
<Dielectric loss tangent measurement method of the present invention>
The dielectric loss tangent measuring method of the present invention will be described in which the dielectric loss tangent of a liquid substance is measured using the measuring jig 1 according to the present invention shown in FIGS. 1 and 2.
Here, the impedance of the input connector 11 and the output connector 13 is set to Zo, and the outer part of the center conductor 14 is The diameter a and the inner diameter b of the outer conductor 12 are set. As a result, the coaxial line in the measurement jig 1 is accurately aligned with Zo over its entire length, and also functions as a connection connector. Then, the input connector 11 is connected to the first port of the network analyzer, the output connector 13 is connected to the second port of the network analyzer, and calibration work is performed. In the calibration work, the first port, which is the signal output port, and the second port, which is the signal input port, are calibrated to open, short, and terminate, and both ports are matched to the impedance Zo, and the return loss RL (S11 , S22) is set to -∞dB. Subsequently, a through calibration in which both ports are directly connected is performed using the measurement jig 1 that is not filled with liquid. Through this work, the insertion loss including the measurement jig 1 is added to the insertion loss IL (S parameters of S21 and S12), and the insertion loss IL between the first port and the second port is standardized to 0 dB. become. As a result, changes in the return loss RL and insertion loss IL after the liquid is injected into the measurement jig 1 according to the present invention can be identified as being due to the action of the liquid injected into the measurement jig 1.

そこで、測定治具1の注入孔12c,12dから試料とされる液体を注入し、注入孔12c,12dをネジ手段により封止する。注入孔,12dから注入された液体は、中心導体14と外導体12からなる同軸線路内に充填され、具体的には中心導体14と外導体12との間の空間に液体が充填される。液体として、例えば液晶を注入孔12cから同軸線路内に充填すると、液晶の誘電正接を測定することができる。次いで、所定の周波数の信号を測定治具1の入力端子11に入力して、ネットワークアナライザにより測定治具1における挿入損失ILの周波数特性および反射減衰量RLの周波数特性を測定する。次に、nを1以上の正の整数とした時に、測定の結果を基に、中心導体14と外導体12からなる同軸線路の位相が180°のn倍となる周波数nFsと、その際の挿入損失ILとを求める。これにより、同軸線路内に充填された液体の誘電正接tanδを次に示す(1)式から求めることができる。
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)} (1)
ただし、(1)式においてLは液体が充填される同軸線路の長さであり、Foは同軸線路内に液体が充填されていない時に、同軸線路で位相が180°となる周波数であり、この場合に、同軸線路の位相が180°のn倍となる周波数がnFoとなる。なお、Lの単位はm(メートル)、ILの単位はdB、Fo,Fsの単位はMHzとされている。
Therefore, a liquid to be used as a sample is injected through the injection holes 12c and 12d of the measurement jig 1, and the injection holes 12c and 12d are sealed by screw means. The liquid injected from the injection hole 12d fills the coaxial line consisting of the center conductor 14 and the outer conductor 12, and specifically, the liquid fills the space between the center conductor 14 and the outer conductor 12. When a liquid such as liquid crystal is filled into the coaxial line through the injection hole 12c, the dielectric loss tangent of the liquid crystal can be measured. Next, a signal of a predetermined frequency is input to the input terminal 11 of the measurement jig 1, and the frequency characteristics of the insertion loss IL and the frequency characteristics of the return loss RL in the measurement jig 1 are measured by a network analyzer. Next, when n is a positive integer of 1 or more, based on the measurement results, determine the frequency nFs at which the phase of the coaxial line consisting of the center conductor 14 and the outer conductor 12 is n times 180°, and the frequency nFs at that time. Find the insertion loss IL. Thereby, the dielectric loss tangent tan δ of the liquid filled in the coaxial line can be determined from the following equation (1).
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) } (1)
However, in equation (1), L is the length of the coaxial line filled with liquid, and Fo is the frequency at which the phase becomes 180° in the coaxial line when the coaxial line is not filled with liquid. In this case, the frequency at which the phase of the coaxial line is n times 180° is nFo. Note that the unit of L is m (meter), the unit of IL is dB, and the unit of Fo and Fs is MHz.

<誘電正接測定法の詳細>
上記(1)式により誘電正接tanδを求められることを以下に説明する。
図3に一般的な同軸線路の回路図を示す。図3において無損失同軸線路20の同軸長はLとされその位相がθとされ、特性インピーダンスをWとする。無損失同軸線路20の外導体をアースし、無損失同軸線路20の中心導体の一端を入力端子Pinに接続し、該中心導体の他端を出力端子Poutに接続し、PinとPoutのインピーダンスをZoとする。
無損失同軸線路20の外導体と中心導体との間の絶縁体が空気とされている場合は、絶縁体の比誘電率εrがほぼ1になって波長はほぼ短縮されない。この際の、無損失同軸線路20の位相が180°となる周波数をFoとして、nを1以上の正の整数とした時のnFoを次に示す(2)式から求めることができる。
nFo=(150×n)/L (2)
また、同軸線路の特性インピーダンスWは、中心導体の外径をa、外導体の内径をbとし、中心導体と外部導体間の絶縁体の比誘電率をεrとすると、次に示す(3)式で求められる。
W=(60/√εr)×ln(b/a) (3)
なお、(3)式においてlnは底をeとする自然対数である。
上記(3)式から寸法比b/aを求めると、
b/a=e(W/60)
となり、無損失同軸線路20の特性インピーダンスWからaの寸法とbの寸法との比率を決定できる。そこで、特性インピーダンスWが、PinとPoutのインピーダンスZoと等しくなるように、中心導体の外径aと外導体の内径bの寸法を設定する。
<Details of dielectric loss tangent measurement method>
It will be explained below that the dielectric loss tangent tan δ can be determined by the above equation (1).
Figure 3 shows a circuit diagram of a typical coaxial line. In FIG. 3, the coaxial length of the lossless coaxial line 20 is L, its phase is θ, and the characteristic impedance is W. The outer conductor of the lossless coaxial line 20 is grounded, one end of the center conductor of the lossless coaxial line 20 is connected to the input terminal Pin, the other end of the center conductor is connected to the output terminal Pout, and the impedance of Pin and Pout is Let's say Zo.
When the insulator between the outer conductor and the center conductor of the lossless coaxial line 20 is air, the dielectric constant εr of the insulator becomes approximately 1, and the wavelength is not shortened substantially. In this case, where Fo is the frequency at which the phase of the lossless coaxial line 20 is 180°, nFo can be obtained from the following equation (2), where n is a positive integer of 1 or more.
nFo=(150×n)/L (2)
Furthermore, the characteristic impedance W of the coaxial line is expressed as follows (3), where the outer diameter of the center conductor is a, the inner diameter of the outer conductor is b, and the relative dielectric constant of the insulator between the center conductor and the outer conductor is εr. It is determined by the formula.
W=(60/√εr)×ln(b/a) (3)
Note that in equation (3), ln is a natural logarithm with base e.
When calculating the dimension ratio b/a from the above equation (3),
b/a=e (W/60)
From the characteristic impedance W of the lossless coaxial line 20, the ratio between the dimension a and the dimension b can be determined. Therefore, the dimensions of the outer diameter a of the center conductor and the inner diameter b of the outer conductor are set so that the characteristic impedance W is equal to the impedance Zo of Pin and Pout.

次に、図1および図2に示す本発明にかかる測定治具1が備える注入孔12cから試料となる液体を注入し、同軸線路内を液体で充填した場合を考えてみる。中心導体14と外導体12との間の絶縁体となる液体の比誘電率εrは通常1より大きいことから、液体が充填される同軸線路の長さLで電気的に180°のn倍となる周波数nFsは、nFs<nFoとなる。すなわち、同軸線路のTEMモードにおける波長は短縮され、波長短縮率は、次の(4)式に示すように中心導体14と外導体12間の絶縁体の比誘電率εrの平方根に反比例する。
nFs=nFo/√εr (4)
上記(4)式から、
εr=(nFo/nFs) (5)
と導かれる。
Next, let us consider a case in which a sample liquid is injected from the injection hole 12c provided in the measurement jig 1 according to the present invention shown in FIGS. 1 and 2, and the inside of the coaxial line is filled with the liquid. Since the dielectric constant εr of the liquid that serves as an insulator between the center conductor 14 and the outer conductor 12 is usually larger than 1, the length L of the coaxial line filled with the liquid is electrically n times 180°. The frequency nFs becomes nFs<nFo. That is, the wavelength of the coaxial line in the TEM mode is shortened, and the wavelength shortening rate is inversely proportional to the square root of the dielectric constant εr of the insulator between the center conductor 14 and the outer conductor 12, as shown in the following equation (4).
nFs=nFo/√εr (4)
From the above equation (4),
εr=(nFo/nFs) 2 (5)
I am guided.

図3に示す回路において、入力端子Pinから見た入力インピーダンスZinを求めると、
Zin={cosθ×Zo+j(W/Zo)sinθ}/
{j(Zo/W)sinθ+cosθ} (6)
となる。この(6)式において、θ=180°,540°,900°・・・の時は、cosθ=-1,sinθ=0になることから、
Zin=Zo (7)
となる。また、(6)式において、θ=360°,720°,1080°・・・の時は、cosθ=+1,sinθ=0になることから、
Zin=Zo (8)
となる。このように、無損失同軸線路20の位相(電気長)が180°の整数倍となる周波数では、無損失同軸線路20の特性インピーダンスWに関係なく入力インピーダンスZinは、PinとPoutのインピーダンスZoに整合するようになる。出力端子Poutから見た出力インピーダンスZoutも同様であり、出力インピーダンスZoutは、PinとPoutのインピーダンスZoに整合するようになる。
In the circuit shown in FIG. 3, when calculating the input impedance Zin seen from the input terminal Pin,
Zin={cosθ×Zo+j(W/Zo)sinθ}/
{j(Zo 2 /W) sin θ+cos θ} (6)
becomes. In this equation (6), when θ=180°, 540°, 900°..., cosθ=-1, sinθ=0, so
Zin=Zo (7)
becomes. Also, in equation (6), when θ=360°, 720°, 1080°..., cos θ=+1, sin θ=0, so
Zin=Zo (8)
becomes. In this way, at a frequency where the phase (electrical length) of the lossless coaxial line 20 is an integral multiple of 180°, the input impedance Zin becomes the impedance Zo of Pin and Pout, regardless of the characteristic impedance W of the lossless coaxial line 20. It becomes consistent. The same applies to the output impedance Zout seen from the output terminal Pout, and the output impedance Zout comes to match the impedance Zo of Pin and Pout.

ここで、図3に示す回路において無損失同軸線路20の外導体と中心導体との間の絶縁体の比誘電率εrが25であるとした場合の反射減衰量RLと挿入損失ILの周波数特性をシミュレーションすると図7に示すようになる。図7では、横軸が0~1000MHzの周波数とされ、縦軸が挿入損失[dB]および反射減衰量[dB]とされている。この場合、L=0.15mとされてFo=1000MHzとされている。比誘電率εr=25の場合の波長短縮率は、上記(4)式に示すように絶縁体の比誘電率εrの平方根に反比例することから、1/√25=1/5に波長が短縮される。すなわち、絶縁体の比誘電率εr=25とすると、Foの1/5の周波数である200MHzの時に無損失同軸線路20の位相が180°となって整合する。この整合する周波数がFsとなり、図7を参照すると、周波数が200MHzの時に整合してFs=200MHzとなり、2Fsの400MHz、3Fsの600MHz・・・と高域側に繰り返し整合周波数が現れていることが分かる。このように、nFsにおいて整合しているが、それ以外の周波数では不整合になっていることが分かる。ただし、図7に示すシミュレーションでは、無損失同軸線路20の絶縁体の誘電体損による挿入損失の増加や反射減衰量の劣化は考慮されていない。 Here, in the circuit shown in FIG. 3, the frequency characteristics of the return loss RL and the insertion loss IL when the relative dielectric constant εr of the insulator between the outer conductor and the center conductor of the lossless coaxial line 20 is 25. A simulation results in the result shown in FIG. In FIG. 7, the horizontal axis represents frequencies from 0 to 1000 MHz, and the vertical axis represents insertion loss [dB] and return loss [dB]. In this case, L=0.15m and Fo=1000MHz. The wavelength shortening rate when the relative permittivity εr=25 is inversely proportional to the square root of the relative permittivity εr of the insulator, as shown in equation (4) above, so the wavelength is shortened to 1/√25=1/5. be done. That is, assuming that the dielectric constant εr of the insulator is 25, the phase of the lossless coaxial line 20 becomes 180° and matches at a frequency of 1/5 of Fo, ie, 200 MHz. This matching frequency is Fs, and referring to Figure 7, when the frequency is 200 MHz, matching becomes Fs = 200 MHz, and matching frequencies repeatedly appear on the high-frequency side, such as 400 MHz for 2 Fs, 600 MHz for 3 Fs, etc. I understand. In this way, it can be seen that although they are matched at nFs, they are mismatched at other frequencies. However, the simulation shown in FIG. 7 does not take into account the increase in insertion loss or the deterioration of return loss due to dielectric loss of the insulator of the lossless coaxial line 20.

そこで、無損失同軸線路20の絶縁体の誘電体損を回路に抵抗を付加することにより置き換えられるかを検討する。図3に示す同軸線路の回路において、入力端子Pinとアース間に抵抗Rを付加すると共に、出力端子Poutとアース間に抵抗Rを付加した回路を図4に示す。
図4に示す回路では、無損失同軸線路20の同軸長はLとされその位相がθとされ、特性インピーダンスがWとされる。無損失同軸線路20の外導体をアースし、無損失同軸線路20の中心導体の一端を入力端子Pinに接続し、該中心導体の他端を出力端子Poutに接続し、PinとPoutのインピーダンスをZoとする。図4に示す回路において、PinとPoutのインピーダンスをZoとして、無損失同軸線路20の特性インピーダンスWをインピーダンスZoと等しくする。ここで、θ=180°,θ=180°+360°=540°,θ=180°+(360°×2)=900°・・・の場合に限定すると、電気的にはθ=180°になるので、cosθ=-1,sinθ=0 となって、SパラメータS21は、
S21=-1/{1+(Zo/R)} (9)
と求められる。また、θ=360°,θ=360°+360°=720°,θ=360°+(360°×2)=1080°・・・の場合に限定すると、電気的にはθ=360°になるので、cosθ=+1,sinθ=0 となって、SパラメータS21は、
S21=1/{1+(Zo/R)} (10)
と求められる。(9)式あるいは(10)式からS21から挿入損失ILを求めると、同様の値となり、
IL=20log|1/{(1+(Zo/R)}| (11)
と求められる。なお、(11)式においてlogは底を10とする常用対数である。これにより、抵抗Rにより無損失同軸線路20の絶縁体の誘電体損を置き換えられることが分かる。
Therefore, we will examine whether the dielectric loss of the insulator of the lossless coaxial line 20 can be replaced by adding a resistance to the circuit. In the coaxial line circuit shown in FIG. 3, a resistor R is added between the input terminal Pin and the ground, and a resistor R is added between the output terminal Pout and the ground, as shown in FIG. 4.
In the circuit shown in FIG. 4, the coaxial length of the lossless coaxial line 20 is L, its phase is θ, and the characteristic impedance is W. The outer conductor of the lossless coaxial line 20 is grounded, one end of the center conductor of the lossless coaxial line 20 is connected to the input terminal Pin, the other end of the center conductor is connected to the output terminal Pout, and the impedance of Pin and Pout is Let's say Zo. In the circuit shown in FIG. 4, the impedance of Pin and Pout is set to Zo, and the characteristic impedance W of the lossless coaxial line 20 is made equal to the impedance Zo. Here, if we limit the case to θ = 180°, θ = 180° + 360° = 540°, θ = 180° + (360° x 2) = 900°... electrically, θ = 180°. Therefore, cos θ=-1, sin θ=0, and the S parameter S21 is
S21=-1/{1+(Zo/R)} (9)
is required. Also, if we limit the case to θ=360°, θ=360°+360°=720°, θ=360°+(360°×2)=1080°... electrically, θ=360°. Therefore, cos θ = +1, sin θ = 0, and the S parameter S21 is
S21=1/{1+(Zo/R)} (10)
is required. If the insertion loss IL is calculated from S21 from equation (9) or equation (10), the same value will be obtained,
IL=20log | 1/{(1+(Zo/R)} | (11)
is required. Note that in equation (11), log is a common logarithm with a base of 10. This shows that the resistance R can replace the dielectric loss of the insulator of the lossless coaxial line 20.

ところで、同軸線路の誘電体損は同軸線路の全長に渡って均等に分布しており、無損失同軸線路20を微小同軸線路CX1,CX2,CX3・・・CXnで表し、微小同軸線路の誘電体損を微小同軸線路CX1~CXnのそれぞれの両側に接続した微小抵抗r1,r2,r3・・・r(2n)で表すと、無損失同軸線路20は図5(a)に示す等価回路で表される。図5(a)に示す等価回路では、微小同軸線路CX1~CXnからなる全体の電気長はLとされその位相がθとされ、特性インピーダンスがWとされている。微小同軸線路CX1~CXnの外導体をアースし、微小同軸線路CX1の中心導体の一端を入力端子Pinに接続し、微小同軸線路CXnの中心導体の他端を出力端子Poutに接続し、PinとPoutのインピーダンスをZoとする。
ここで、図4に示す2個の抵抗Rの合成値を、微小抵抗rを2n個並列接続させた合成抵抗値と等しいとおくと、
r/2n=R/2 (12)
となる。
図5(a)に示す回路において、PinとPoutのインピーダンスをZoとして、微小同軸線路CX1~CXnのそれぞれの特性インピーダンスWをインピーダンスZoと等しくし、θ=180°とする。nの極限値n→∞ではcos(θ/n)=1,sin(θ/n)=0 となって、SパラメータS21は、上記(10)式で表される。従って、挿入損失ILは上記(11)式で表される。
By the way, the dielectric loss of a coaxial line is evenly distributed over the entire length of the coaxial line, and the lossless coaxial line 20 is expressed as microcoaxial lines CX1, CX2, CX3...CXn, If the loss is expressed by microresistances r1, r2, r3...r(2n) connected to both sides of each of the microcoaxial lines CX1 to CXn, the lossless coaxial line 20 can be expressed by the equivalent circuit shown in FIG. 5(a). be done. In the equivalent circuit shown in FIG. 5(a), the overall electrical length of the minute coaxial lines CX1 to CXn is L, its phase is θ, and the characteristic impedance is W. Ground the outer conductors of the micro coaxial lines CX1 to CXn, connect one end of the center conductor of the micro coaxial line CX1 to the input terminal Pin, connect the other end of the center conductor of the micro coaxial line CXn to the output terminal Pout, and connect the pins. Let the impedance of Pout be Zo.
Here, if we assume that the composite value of the two resistors R shown in FIG. 4 is equal to the composite resistance value of 2n micro resistors r connected in parallel,
r/2n=R/2 (12)
becomes.
In the circuit shown in FIG. 5A, the impedance of Pin and Pout is set as Zo, and the characteristic impedance W of each of the micro coaxial lines CX1 to CXn is made equal to the impedance Zo, and θ=180°. At the limit value n→∞ of n, cos(θ/n)=1, sin(θ/n)=0, and the S parameter S21 is expressed by the above equation (10). Therefore, the insertion loss IL is expressed by the above equation (11).

このことから、上記した図5(a)の条件の下では、図5(a)の回路は図5(b)の回路と等価となる。図5(b)の回路では、入力端子Pinと出力端子Poutとを接続する接続線とアースとの間に抵抗Rpが並列に接続されており、PinとPoutのインピーダンスがZoとされている。並列に接続された抵抗Rpを、
Rp=R/2 (13)
とおき、図5(a)に示す回路において、PinとPoutのインピーダンスをZoとすると、SパラメータS21は、上記(10)式で表され、挿入損失ILは上記(11)式で表されるようになる。(11)式に(13)式を代入すると、
IL=20log|1/{(1+(Zo/2Rp)}| (14)
と求められる。(14)式は図5(b)の挿入損失ILを示していることから、同軸線路の全長が180°の整数倍の位相に該当する周波数における同軸線路の誘電体損は、並列に接続された抵抗Rpの1個の回路に変換できることが分かる。
From this, under the conditions of FIG. 5(a) described above, the circuit of FIG. 5(a) becomes equivalent to the circuit of FIG. 5(b). In the circuit of FIG. 5(b), a resistor Rp is connected in parallel between the ground and the connection line connecting the input terminal Pin and the output terminal Pout, and the impedance of Pin and Pout is set to Zo. The resistor Rp connected in parallel is
Rp=R/2 (13)
In the circuit shown in FIG. 5(a), if the impedance of Pin and Pout is Zo, the S parameter S21 is expressed by the above equation (10), and the insertion loss IL is expressed by the above equation (11). It becomes like this. Substituting equation (13) into equation (11), we get
IL=20log | 1/{(1+(Zo/2Rp)} | (14)
is required. Since equation (14) shows the insertion loss IL in Figure 5(b), the dielectric loss of the coaxial line at frequencies where the total length of the coaxial line corresponds to a phase that is an integer multiple of 180° is It can be seen that it can be converted into a single circuit with a resistor Rp.

ところで、本発明にかかる測定治具1の同軸線路は、同心円筒型のコンデンサCpとみなすことができ、このコンデンサCpに寄生した誘電体損となる抵抗RpがコンデンサCpに並列接続された回路と等価と考えられる。そこで、本発明にかかる測定治具1を用いた本発明にかかる誘電正接測定法の等価回路を図6に示す。図6において、コンデンサCpと抵抗Rpの並列回路が測定治具1の等価回路30であり、等価回路30における測定治具1に電圧源31から所定の周波数の信号が印加されている。測定治具1を用いた等価回路30の挿入損失ILは、上記(14)式から求めることができるので、抵抗Rpを(14)式を変形して求めると、
Rp={Zo×10(IL/20)}/[2{1-10(IL/20)}] (15)
と求められる。そして、特性インピーダンスWは比誘電率εr=1の時のインピーダンスZoと等しいことから、この(15)式に上記(3)式でW=Zo,εr=1として求めたZoを代入すると、
Rp={60ln(b/a)×10(IL/20)}/[2{1-10(IL/20)}]
={30ln(b/a)×10(IL/20)}/{1-10(IL/20)} (16)
となる。
等価回路30における誘電正接であるtanδは、次に示す(17)式で定義される。なお、ωnはnFsの角周波数(2π・nFs)である。
tanδ=1/(ωn×Cp×Rp) (17)
By the way, the coaxial line of the measuring jig 1 according to the present invention can be regarded as a concentric cylindrical capacitor Cp, and can be considered as a circuit in which a resistor Rp, which is a parasitic dielectric loss of this capacitor Cp, is connected in parallel to the capacitor Cp. considered equivalent. Therefore, an equivalent circuit of the dielectric loss tangent measuring method according to the present invention using the measuring jig 1 according to the present invention is shown in FIG. In FIG. 6, a parallel circuit of a capacitor Cp and a resistor Rp is an equivalent circuit 30 of the measurement jig 1, and a signal of a predetermined frequency is applied from a voltage source 31 to the measurement jig 1 in the equivalent circuit 30. The insertion loss IL of the equivalent circuit 30 using the measurement jig 1 can be found from the above equation (14), so if the resistance Rp is found by modifying the equation (14),
Rp={Zo×10 (IL/20) }/[2{1-10 (IL/20) }] (15)
is required. Since the characteristic impedance W is equal to the impedance Zo when the dielectric constant εr=1, substituting Zo found in the above equation (3) with W=Zo and εr=1 into this equation (15), we get
Rp={60ln(b/a)×10 (IL/20) }/[2{1-10 (IL/20) }]
= {30ln(b/a)×10 (IL/20) }/{1-10 (IL/20) } (16)
becomes.
The dielectric loss tangent tanδ in the equivalent circuit 30 is defined by the following equation (17). Note that ωn is the angular frequency of nFs (2π·nFs).
tanδ=1/(ωn×Cp×Rp) (17)

同心円筒型のコンデンサCpとみなすことができる測定治具1の長さLの同軸線路の静電容量は、同軸線路における絶縁体の誘電率をεとするとε=εoεrであり、絶縁体の比誘電率をεr、真空の誘電率εoを定数の8.854×10-12 [F/m]、中心導体14の外径aと外導体12の内径bの比をb/aとすると、長さL[m]の同心円筒型のコンデンサCpの静電容量は、次に示す(18)式で表せる。
Cp[F]=L×(2πεoεr)/ln(b/a) (18)
(18)式において、Cpの単位を「F」から「pF」に変更すると、
Cp[pF]=1012×(L×2π×8.854×10-12×εr)/ln(b/a)
=(55.63×εr×L)/ln(b/a) (19)
となる。
上記(17)式に上記(5)式と上記(16)式および(19)式を代入して誘電正接tanδを求めると、
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)} (20)
と求められる。(20)式は上記(1)式と同じ式であり、上記の通り上記(1)が誘導されたことが分かる。なお、(20)式において、Lは液体が充填される測定治具1の中心導体14と外導体12からなる同軸線路の長さであり、nを1以上の正の整数とすると、nFoは同軸線路内に液体が充填されていない時に、同軸線路で位相が180°のn倍となる周波数であり、nFsは液体を同軸線路内に充填した状態における同軸線路の位相が180°のn倍となる周波数であり、ILはnFsにおける測定治具1の挿入損失である。なお、前述したネットワークアナライザのキャリブレーション作業により、同軸線路内に液体が充填されていない時の測定治具1の挿入損失は0dBに基準化されていることから、ILは液体を同軸線路内に充填したことにより増加した挿入損失となる。
上記のとおりであるから、前述したネットワークアナライザの測定の結果を基に、周波数nFsと、その際の挿入損失ILとを求めることにより、測定治具1の同軸線路内に充填された液体の誘電正接tanδを上記(1)式から求めることができるのである。
The capacitance of a coaxial line of length L of the measuring jig 1, which can be regarded as a concentric cylindrical capacitor Cp, is ε=εoεr, where ε is the dielectric constant of the insulator in the coaxial line, and the ratio of the insulator is If the permittivity is εr, the vacuum permittivity εo is a constant of 8.854×10 −12 [F/m], and the ratio of the outer diameter a of the central conductor 14 to the inner diameter b of the outer conductor 12 is b/a, then the length is The capacitance of the concentric cylindrical capacitor Cp with length L [m] can be expressed by the following equation (18).
Cp[F]=L×(2πεoεr)/ln(b/a) (18)
In formula (18), if the unit of Cp is changed from "F" to "pF",
Cp[pF]=10 12 × (L×2π×8.854×10 −12 ×εr)/ln(b/a)
=(55.63×εr×L)/ln(b/a) (19)
becomes.
Substituting the above equation (5), above (16) and (19) into the above equation (17) to find the dielectric loss tangent tan δ,
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) } (20)
is required. Equation (20) is the same as the above equation (1), and it can be seen that the above (1) is derived as described above. In addition, in equation (20), L is the length of the coaxial line consisting of the center conductor 14 and outer conductor 12 of the measuring jig 1 filled with liquid, and when n is a positive integer of 1 or more, nFo is This is the frequency at which the phase of the coaxial line is n times 180° when the coaxial line is not filled with liquid, and nFs is the frequency at which the phase of the coaxial line is n times 180° when the coaxial line is filled with liquid. IL is the insertion loss of the measurement jig 1 in nFs. In addition, due to the network analyzer calibration described above, the insertion loss of the measurement jig 1 when no liquid is filled in the coaxial line is standardized to 0 dB, so the IL Filling results in increased insertion loss.
As mentioned above, by determining the frequency nFs and the insertion loss IL at that time based on the measurement results of the network analyzer described above, the dielectric of the liquid filled in the coaxial line of the measurement jig 1 can be determined. The tangent tan δ can be determined from the above equation (1).

<測定した結果>
本発明にかかる図1および図2に示す測定治具1を用いて本発明の誘電正接測定法で測定した結果を説明する。図8は本発明にかかる測定治具1に液体を充填しない状態として、本発明の誘電正接測定法で測定した結果を示す図表であり、表1としている。
図8に示す表1を参照すると、測定治具1における液体を注入して液体が充填される同軸線路の長さLが0.12mであり、同軸線路を構成する中心導体14の外形寸法aが3.00mm、外導体12の内径寸法bが7.0mmとされて、外導体12と中心導体14の寸法比b/aが約2.33とされていると共に、入力コネクタ11と出力コネクタ13が公称50Ωの同軸コネクタとされて、入出力インピーダンスZoが50Ωとされている。上記寸法およびインピーダンスとされた際には、同軸線路の位相が180°相当(n=1)となる周波数Fo1が1,250MHzと測定され、同軸線路の位相が360°相当(n=2)となる周波数Fo2が2,500MHzと測定され、同軸線路の位相が540°相当(n=3)となる周波数Fo3が3,750MHzと測定され、同軸線路の位相が720°相当(n=4)となる周波数Fo4が5,000MHzと測定されている。
<Measurement results>
The results of measurement by the dielectric loss tangent measurement method of the present invention using the measurement jig 1 shown in FIGS. 1 and 2 according to the present invention will be explained. FIG. 8 is a chart showing the results of measurement by the dielectric loss tangent measurement method of the present invention, with the measuring jig 1 according to the present invention not filled with liquid, and is shown in Table 1.
Referring to Table 1 shown in FIG. 8, the length L of the coaxial line filled with liquid by injecting the liquid in the measuring jig 1 is 0.12 m, and the outer dimension a of the central conductor 14 constituting the coaxial line is 3.00 mm, the inner diameter dimension b of the outer conductor 12 is 7.0 mm, the dimension ratio b/a of the outer conductor 12 and the center conductor 14 is about 2.33, and the input connector 11 and the output connector 13 is a coaxial connector with a nominal value of 50Ω, and the input/output impedance Zo is 50Ω. Given the above dimensions and impedance, the frequency Fo1 at which the phase of the coaxial line corresponds to 180° (n = 1) is measured to be 1,250 MHz, and the phase of the coaxial line corresponds to 360° (n = 2). The frequency Fo2 at which the phase of the coaxial line corresponds to 540° (n = 3) is measured to be 3,750 MHz, and the phase of the coaxial line corresponds to 720° (n = 4). The frequency Fo4 is measured to be 5,000 MHz.

次に、図9は本発明にかかる測定治具1に液体として純水を充填して、+20°の室温環境で本発明の誘電正接測定法で測定した挿入損失ILの周波数特性および反射減衰量RLの周波数特性を示す。
図9を参照すると、横軸が0~1000MHzの周波数とされ、縦軸が挿入損失[dB]および反射減衰量[dB]とされている。そして、同軸線路の位相が180°相当(n=1)となる周波数Fs1が約142MHzと読み取れ、この時の挿入損失ILが約0.74dB、反射減衰量RLが約22.2dBと読み取れる。また、同軸線路の位相が360°相当(n=2)となる周波数Fs2が約290MHzと読み取れ、この時の挿入損失ILが約1.80dB、反射減衰量RLが約14.7dBと読み取れる。さらに、同軸線路の位相が540°相当(n=3)となる周波数Fs3が約435MHzと読み取れ、この時の挿入損失ILが3.20dB、反射減衰量RLが約10.3dBと読み取れる。さらにまた、同軸線路の位相が720°相当(n=4)となる周波数Fs4が約578MHzと読み取れ、この時の挿入損失ILが5.02dB、反射減衰量RLが約7.4dBと読み取れる。
Next, FIG. 9 shows the frequency characteristics and return loss of insertion loss IL measured by the dielectric loss tangent measurement method of the present invention in a room temperature environment of +20° by filling the measurement jig 1 according to the present invention with pure water as a liquid. The frequency characteristics of RL are shown.
Referring to FIG. 9, the horizontal axis represents frequencies from 0 to 1000 MHz, and the vertical axis represents insertion loss [dB] and return loss [dB]. The frequency Fs1 at which the phase of the coaxial line corresponds to 180° (n=1) can be read as approximately 142 MHz, and the insertion loss IL at this time can be read as approximately 0.74 dB and the return loss RL as approximately 22.2 dB. Further, the frequency Fs2 at which the phase of the coaxial line corresponds to 360° (n=2) can be read as approximately 290 MHz, and the insertion loss IL at this time can be read as approximately 1.80 dB and the return loss RL as approximately 14.7 dB. Furthermore, the frequency Fs3 at which the phase of the coaxial line corresponds to 540° (n=3) can be read as approximately 435 MHz, and the insertion loss IL at this time can be read as 3.20 dB and the return loss RL as approximately 10.3 dB. Furthermore, the frequency Fs4 at which the phase of the coaxial line corresponds to 720° (n=4) can be read as approximately 578 MHz, and the insertion loss IL at this time can be read as 5.02 dB and the return loss RL as approximately 7.4 dB.

図9に示す測定結果を基に上記(20)式から誘電正接tanδを算出することができる。この場合、nFoにおいてn=1~4の周波数は表1に示すFo1~Fo4である。算出されたtanδと、nFo、nFs、挿入損失ILとを、入出力インピーダンスZo=50Ωの測定治具1において長さL=0.12mの同軸線路の位相が180°、360°、540°、720°の時の数値の図表を図10に示し、表2としている。
図10に示す表2を参照すると、同軸線路の位相が180°相当(n=1)となる周波数Fs1ではtanδが約0.0064と算出され、同軸線路の位相が360°相当(n=2)となる周波数Fs2ではtanδが約0.0084と算出され、同軸線路の位相が540°相当(n=3)となる周波数Fs3ではtanδが約0.0109と算出され、同軸線路の位相が720°相当(n=4)となる周波数Fs4ではtanδが約0.0144と算出されることが分かる。
The dielectric loss tangent tan δ can be calculated from the above equation (20) based on the measurement results shown in FIG. 9 . In this case, the frequencies of n=1 to 4 in nFo are Fo1 to Fo4 shown in Table 1. The calculated tan δ, nFo, nFs, and insertion loss IL are measured using measurement jig 1 with input/output impedance Zo=50Ω, and the phases of the coaxial line with length L=0.12 m are 180°, 360°, 540°, A chart of numerical values at 720° is shown in FIG. 10, and Table 2 is provided.
Referring to Table 2 shown in FIG. 10, tan δ is calculated to be approximately 0.0064 at frequency Fs1 where the phase of the coaxial line is equivalent to 180° (n = 1), and the phase of the coaxial line is equivalent to 360° (n = 2 ), tan δ is calculated to be approximately 0.0084, and at frequency Fs3, where the phase of the coaxial line is equivalent to 540° (n = 3), tan δ is calculated to be approximately 0.0109, and the phase of the coaxial line is 720°. It can be seen that tan δ is calculated to be about 0.0144 at the frequency Fs4 corresponding to the angle (n=4).

また、本発明の誘電正接測定法では、図9に示すようにnFsにおける反射減衰量RLも得られ、さらに、上記(5)式、(16)式、(19)式により比誘電率εrおよびコンデンサCpの容量と抵抗Rpとの値を求めることができる。求めたεr、Cp、Rpから上記(17)式によりtanδを算出することができる。そこで、図11にnFsにおける反射減衰量RL並びに算出したεr、Cp、Rpおよびtanδからなる図表を示し、表3としている。
図11に示す表3を参照すると、同軸線路の位相が180°相当(n=1)となる周波数Fs1では、反射減衰量RLが約22.2dBとされ、εrが約77.5,Cpが約610.5pF、Rpが約285.8Ωと算出されて、tanδが約0.0064と算出される。また、同軸線路の位相が360°相当(n=2)となる周波数Fs2では、反射減衰量RLが約14.7dBとされ、εrが約75.4、Cpが約593.7pF、Rpが約110.4Ωと算出されて、tanδが約0.0084と算出される。さらに、同軸線路の位相が540°相当(n=3)となる周波数Fs3では、反射減衰量RLが約10.3dBとされ、εrが約74.7,Cpが約588.2pF、Rpが約57.1Ωと算出されて、tanδが約0.0109と算出される。さらにまた、同軸線路の位相が720°相当(n=4)となる周波数Fs4では、反射減衰量RLが約7.4dBとされ、εrが約74.3,Cpが約585.5pF、Rpが約32.5Ωと算出されて、tanδが約0.0144と算出される。
ここで、純水の常温における低周波での比誘電率εrは約80であることが知られており、表2および表3に示すtanδと概ね合致していることが分かる。
In addition, in the dielectric loss tangent measurement method of the present invention, the return loss RL at nFs is also obtained as shown in FIG. 9, and the relative permittivity εr and The values of the capacitance of the capacitor Cp and the resistance Rp can be determined. From the obtained εr, Cp, and Rp, tan δ can be calculated using the above equation (17). Therefore, FIG. 11 shows a chart consisting of the return loss RL at nFs and the calculated εr, Cp, Rp, and tanδ, which is referred to as Table 3.
Referring to Table 3 shown in FIG. 11, at the frequency Fs1 where the phase of the coaxial line corresponds to 180° (n=1), the return loss RL is approximately 22.2 dB, εr is approximately 77.5, and Cp is Approximately 610.5 pF, Rp is calculated to be approximately 285.8Ω, and tan δ is calculated to be approximately 0.0064. Furthermore, at frequency Fs2 where the phase of the coaxial line corresponds to 360° (n=2), the return loss RL is approximately 14.7 dB, εr is approximately 75.4, Cp is approximately 593.7 pF, and Rp is approximately It is calculated to be 110.4Ω, and tan δ is calculated to be about 0.0084. Furthermore, at frequency Fs3 where the phase of the coaxial line corresponds to 540° (n = 3), the return loss RL is approximately 10.3 dB, εr is approximately 74.7, Cp is approximately 588.2 pF, and Rp is approximately It is calculated to be 57.1Ω, and tan δ is calculated to be about 0.0109. Furthermore, at frequency Fs4 where the phase of the coaxial line corresponds to 720° (n = 4), the return loss RL is approximately 7.4 dB, εr is approximately 74.3, Cp is approximately 585.5 pF, and Rp is It is calculated to be about 32.5Ω, and tan δ is calculated to be about 0.0144.
Here, it is known that the relative permittivity εr of pure water at room temperature and low frequency is about 80, which is found to roughly match tan δ shown in Tables 2 and 3.

本発明の誘電正接測定法で測定した結果である図9に示す挿入損失ILの周波数特性および反射減衰量RLの周波数特性に基づく、図10に示す表2および図11に示す表3からtanδの周波数特性および比誘電率εrを求めて図12に示す。
図12に実線で示すtanδの周波数特性を参照すると、横軸が0~1000MHzの周波数とされ、縦軸がtanδとされている。そして、約100MHzの低域から約900MHzの高域になるに従いtanδが増加しているのが分かる。このように、本発明にかかる測定治具1を用いる本発明の誘電正接測定法では、nが1を超える高次周波数の測定結果を得ることができることから、tanδの広帯域な周波数特性を得ることができる。また、測定精度も高精度が得られるようになる。また、図12に破線で示す比誘電率εrの周波数特性を参照すると、低域になるにつれて比誘電率εrが増加し、直流に近い低周波数において約80に近づく様子が分かる。
From Table 2 shown in FIG. 10 and Table 3 shown in FIG. 11, based on the frequency characteristics of insertion loss IL and return loss RL shown in FIG. The frequency characteristics and relative permittivity εr were determined and shown in FIG. 12.
Referring to the frequency characteristics of tan δ shown by the solid line in FIG. 12, the horizontal axis represents the frequency from 0 to 1000 MHz, and the vertical axis represents tan δ. It can be seen that tan δ increases from a low frequency range of about 100 MHz to a high frequency range of about 900 MHz. As described above, in the dielectric loss tangent measurement method of the present invention using the measurement jig 1 according to the present invention, it is possible to obtain measurement results at high-order frequencies where n exceeds 1, and therefore, it is possible to obtain a broadband frequency characteristic of tan δ. Can be done. Furthermore, high measurement accuracy can be obtained. Further, referring to the frequency characteristics of the relative permittivity εr shown by the broken line in FIG. 12, it can be seen that the relative permittivity εr increases as the frequency becomes lower and approaches about 80 at low frequencies close to direct current.

以上説明した本発明にかかる実施例の測定治具を用いる本発明の誘電正接測定法では、本発明にかかる測定治具に充填される液体の比誘電率εrは、同軸線路の波長短縮率から換算されていることから、正確な比誘電率εrを取得することができる。また、本発明にかかる測定治具は、同軸線路の電気長が位相180°の整数倍のときに、誘電損失となる抵抗分以外のリアクタンス成分が消滅する、と言う分布定数線路の伝送姿態であるTEMモードの特性を利用している。
また、本発明にかかる実施例の測定治具を用いる本発明の誘電正接測定法では、ネットワークアナライザ等の測定器により挿入損失を求めていることから、高い測定精度の挿入損失が得られるようになる。また、ネットワークアナライザ等の測定器により正確に反射減衰量を求めていることから、反射減衰量から求められるnFsを高精度で得ることができるようになる。さらに、nFoおよび液体が充填される同軸線路の長さは、寸法測定から得られることから、高精度に得ることができるので、比誘電率εrも正確に得ることができる。そして、これらの精度の高い測定結果をもとに上記(1)式に示した計算式からtanδを求めているので、結果的に得られる誘電正接の精度も高くなる。よって、本発明の誘電正接測定法では、従来の誘電正接の測定法に比べて、高精度にtanδを得ることができるようになる。
さらに、本発明にかかる実施例の測定治具を用いる本発明の誘電正接測定法では、ひとつの測定治具を用いるのみで、同軸線路の長さが180°の整数倍に当たる周波数の測定が可能であるから、それらの測定結果を統合することで、tanδの広帯域特性が必要な場合にも対応できる。この場合、本発明にかかる測定治具の液体が充填される同軸線路の長さは任意の長さを選択できるので、所望の周波数帯域での測定が実行可能となる。
In the dielectric loss tangent measurement method of the present invention using the measurement jig according to the embodiment of the present invention described above, the relative dielectric constant εr of the liquid filled in the measurement jig according to the present invention is determined from the wavelength shortening rate of the coaxial line. Since the conversion is performed, an accurate dielectric constant εr can be obtained. Furthermore, the measurement jig according to the present invention uses a transmission mode of a distributed constant line in which reactance components other than the resistance component, which becomes dielectric loss, disappear when the electrical length of the coaxial line is an integral multiple of the phase of 180°. It utilizes the characteristics of a certain TEM mode.
In addition, in the dielectric loss tangent measurement method of the present invention using the measurement jig of the embodiment of the present invention, the insertion loss is determined using a measuring instrument such as a network analyzer, so that the insertion loss can be obtained with high measurement accuracy. Become. Furthermore, since the return loss is accurately determined using a measuring instrument such as a network analyzer, nFs, which is determined from the return loss, can be obtained with high precision. Furthermore, since the length of the coaxial line filled with nFo and liquid can be obtained from dimensional measurements, it can be obtained with high precision, so that the relative dielectric constant εr can also be obtained accurately. Since tan δ is calculated from the calculation formula shown in equation (1) above based on these highly accurate measurement results, the accuracy of the resulting dielectric loss tangent is also high. Therefore, in the dielectric loss tangent measurement method of the present invention, tan δ can be obtained with higher accuracy than in the conventional dielectric loss tangent measurement method.
Furthermore, in the dielectric loss tangent measurement method of the present invention that uses the measurement jig of the embodiment of the present invention, it is possible to measure frequencies where the length of the coaxial line corresponds to an integral multiple of 180° by using only one measurement jig. Therefore, by integrating these measurement results, it is possible to cope with cases where wideband characteristics of tan δ are required. In this case, the length of the coaxial line filled with the liquid of the measurement jig according to the present invention can be arbitrarily selected, so that measurement can be performed in a desired frequency band.

1 測定治具、11 入力コネクタ、11a コネクタ用フランジ、11b ネジ、12 外導体、12a 外導体用フランジ、12b 外導体用フランジ、12c 注入孔、12d 注入孔、12e Oリング、12f Oリング、13 出力コネクタ、13a コネクタ用フランジ、13b ネジ、14 中心導体、20 無損失同軸線路、30 等価回路、31 電圧源、100 容量法、110 電圧源、111 電極、112 電極、120 誘電体、200 同軸線路、210 外導体、211 中心導体、212 コネクタ、213 コネクタ、214 ネジ、215 封止材、220 液体、CX1~CXn 微小同軸線路、Cp コンデンサ、Pin 入力端子、Pout 出力端子、R 抵抗、Rp 抵抗 1 Measuring jig, 11 Input connector, 11a Connector flange, 11b Screw, 12 Outer conductor, 12a Outer conductor flange, 12b Outer conductor flange, 12c Injection hole, 12d Injection hole, 12e O-ring, 12f O-ring, 13 Output connector, 13a Connector flange, 13b Screw, 14 Center conductor, 20 Lossless coaxial line, 30 Equivalent circuit, 31 Voltage source, 100 Capacitance method, 110 Voltage source, 111 Electrode, 112 Electrode, 120 Dielectric, 200 Coaxial line , 210 outer conductor, 211 center conductor, 212 connector, 213 connector, 214 screw, 215 sealing material, 220 liquid, CX1 to CXn minute coaxial line, Cp capacitor, Pin input terminal, Pout output terminal, R resistance, Rp resistance

Claims (8)

外導体と、該外導体の中心に配置された中心導体とからなり、内部に試料となる液体を充填可能な長さLの同軸線路と、前記同軸線路の一端に設けられた入力コネクタと、前記同軸線路の他端に設けられた出力コネクタとを備えた測定治具を用いる誘電正接測定法であって、
前記入力コネクタおよび前記出力コネクタのインピーダンスをZoとして、前記入力コネクタに所定の測定周波数の信号を入力した際の、液体を充填しない状態の前記同軸線路の位相量が180°になる周波数をFo、液体を充填した状態の前記同軸線路の位相量が180°になる周波数をFsとした時に、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、nFs(nは1以上の正の整数)における前記液体の少なくとも誘電正接を算出することを特徴とする誘電正接測定法。
a coaxial line having a length L, which is made up of an outer conductor and a center conductor placed at the center of the outer conductor, the inside of which can be filled with a sample liquid, and an input connector provided at one end of the coaxial line; A dielectric loss tangent measurement method using a measurement jig comprising an output connector provided at the other end of the coaxial line,
Letting the impedance of the input connector and the output connector be Zo, Fo is the frequency at which the phase amount of the coaxial line in a state where no liquid is filled is 180° when a signal of a predetermined measurement frequency is input to the input connector. When the frequency at which the phase amount of the coaxial line filled with liquid is 180° is Fs, based on the insertion loss IL, Fo, Fs, and the length L of the measurement jig, nFs (n is A dielectric loss tangent measurement method, comprising calculating at least a dielectric loss tangent of the liquid at a positive integer of 1 or more.
前記入力コネクタと前記同軸線路との間と、前記出力コネクタと前記同軸線路との間とに、前記同軸線路内に前記液体を充填可能な孔部を備えるフランジが設けられており、前記孔部から前記液体を前記同軸線路に充填した後に、前記孔部にネジを螺着して前記孔部を封止することを特徴とする請求項1に記載の誘電正接測定法。 A flange having a hole capable of filling the liquid into the coaxial line is provided between the input connector and the coaxial line and between the output connector and the coaxial line, and the hole 2. The dielectric loss tangent measurement method according to claim 1, wherein after filling the coaxial line with the liquid, a screw is screwed into the hole to seal the hole. nを1以上の正の整数とした時に、nFsにおける前記液体の誘電正接tanδを、
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)
で算出できることを特徴とする請求項1または2に記載の誘電正接測定法。
When n is a positive integer of 1 or more, the dielectric loss tangent tan δ of the liquid at nFs is:
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) }
The dielectric loss tangent measuring method according to claim 1 or 2, wherein the dielectric loss tangent can be calculated by:
前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、前記液体の誘電正接を算出することに加えて、nFs(nは1以上の正の整数)における前記液体の比誘電率も算出することを特徴とする請求項1ないし3のいずれかに記載の誘電正接測定法。 In addition to calculating the dielectric loss tangent of the liquid based on the insertion loss IL, Fo, Fs and the length L of the measurement jig, the calculation of the dielectric loss tangent of the liquid at nFs (n is a positive integer of 1 or more) 4. The dielectric loss tangent measurement method according to claim 1, wherein the dielectric constant is also calculated. 外導体と、該外導体の中心に配置された中心導体とからなり、内部に試料となる液体を充填可能な長さLの同軸線路と、前記同軸線路の一端に設けられた入力コネクタと、前記同軸線路の他端に設けられた出力コネクタとを備える測定治具であって
前記入力コネクタおよび前記出力コネクタのインピーダンスをZoとして、前記入力コネクタに所定の測定周波数の信号を入力した際の、液体を充填しない状態の前記同軸線路の位相量が180°になる周波数をFo、液体を充填した状態の前記同軸線路の位相量が180°になる周波数をFsとした時に、前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、nFs(nは1以上の正の整数)における前記液体の少なくとも誘電正接を算出できることを特徴とする測定治具。
a coaxial line having a length L, which is made up of an outer conductor and a center conductor placed at the center of the outer conductor, the inside of which can be filled with a sample liquid, and an input connector provided at one end of the coaxial line; A measurement jig comprising an output connector provided at the other end of the coaxial line,
Letting the impedance of the input connector and the output connector be Zo, Fo is the frequency at which the phase amount of the coaxial line in a state where no liquid is filled is 180° when a signal of a predetermined measurement frequency is input to the input connector. When the frequency at which the phase amount of the coaxial line filled with liquid is 180° is Fs, based on the insertion loss IL, Fo, Fs, and the length L of the measurement jig, nFs (n is A measuring jig, characterized in that it is capable of calculating at least a dielectric loss tangent of the liquid at a positive integer of 1 or more.
前記入力コネクタと前記同軸線路との間と、前記出力コネクタと前記同軸線路との間とに、前記同軸線路内に前記液体を充填可能な孔部を備えるフランジが設けられており、
前記孔部から前記液体を前記同軸線路に充填した後に、前記孔部にネジを螺着して前記孔部を封止することを特徴とする請求項に記載の測定治具。
A flange having a hole capable of filling the liquid into the coaxial line is provided between the input connector and the coaxial line and between the output connector and the coaxial line,
6. The measuring jig according to claim 5 , wherein after filling the coaxial line with the liquid from the hole, a screw is screwed into the hole to seal the hole.
nを1以上の正の整数とした時に、nFsにおける前記液体の誘電正接tanδを、
tanδ=95.365×nFs×{1-10(IL/20)
/{nFo×L×10(IL/20)
で算出できることを特徴とする請求項またはに記載の測定治具。
When n is a positive integer of 1 or more, the dielectric loss tangent tan δ of the liquid at nFs is,
tan δ=95.365×nFs×{1-10 (IL/20) }
/{nFo 2 ×L×10 (IL/20) }
The measuring jig according to claim 5 or 6 , characterized in that the measurement jig can be calculated by:
前記測定治具の挿入損失ILとFoとFsと前記長さLとに基づいて、前記液体の誘電正接を算出できることに加えて、nFs(nは1以上の正の整数)における前記液体の比誘電率も算出できることを特徴とする請求項5ないし7のいずれかに記載の測定治具。 In addition to being able to calculate the dielectric loss tangent of the liquid based on the insertion loss IL, Fo, Fs and the length L of the measurement jig, the ratio of the liquid in nFs (n is a positive integer of 1 or more) The measuring jig according to any one of claims 5 to 7, characterized in that the dielectric constant can also be calculated.
JP2020100191A 2020-06-09 2020-06-09 Dissipation tangent measurement method and measurement jig Active JP7408246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020100191A JP7408246B2 (en) 2020-06-09 2020-06-09 Dissipation tangent measurement method and measurement jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100191A JP7408246B2 (en) 2020-06-09 2020-06-09 Dissipation tangent measurement method and measurement jig

Publications (2)

Publication Number Publication Date
JP2021196173A JP2021196173A (en) 2021-12-27
JP7408246B2 true JP7408246B2 (en) 2024-01-05

Family

ID=79197791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100191A Active JP7408246B2 (en) 2020-06-09 2020-06-09 Dissipation tangent measurement method and measurement jig

Country Status (1)

Country Link
JP (1) JP7408246B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
阿部新司、他,液体充填同軸線路を用いた液晶の複素誘電率測定,伝送工学研究会資料,Vol.2018 No.601-4,東北大学電気通信研究所工学研究会,2018年09月,p.1-p.5

Also Published As

Publication number Publication date
JP2021196173A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
Klopfenstein A transmission line taper of improved design
Khan et al. A brief review of measuring techniques for characterization of dielectric materials
US6472885B1 (en) Method and apparatus for measuring and characterizing the frequency dependent electrical properties of dielectric materials
JP4650487B2 (en) Method for measuring dielectric constant of transmission line material and method for measuring electrical characteristics of electronic component using this dielectric constant measuring method
US7982480B2 (en) Calibrated wideband high frequency passive impedance probe
JP5499379B2 (en) Liquid dielectric constant measuring apparatus and measuring method
Callegaro et al. Four-terminal-pair impedances and scattering parameters
JP7408246B2 (en) Dissipation tangent measurement method and measurement jig
Woods A coaxial connector system for precision RF measuring instruments and standards
Woods Immittance transformation using precision air-dielectric coaxial lines and connectors
Mugala et al. Comparing two measurement techniques for high frequency characterization of power cable semiconducting and insulating materials
JP2001324522A (en) Method for measuring of dielectric constant or magnetic permeability
CN113075460B (en) Method for testing equivalent dielectric constant and equivalent dielectric loss tangent of communication cable
Grzyb et al. An Investigation of the Material and Process Parameters for Thin-film MCM-D & MCM-L Technologies Up to 100GHz
TWI747460B (en) Power divider
US3056925A (en) Radio power density probe
CN115248347A (en) Cable parameter determination method, device and system, storage medium and electronic device
Harris A coaxial film bolometer for the measurement of power in the UHF band
Fiore ESR losses in ceramic capacitors
Lee et al. Amplitude-only measurements of a dual open ended coaxial sensor system for determination of complex permittivity of materials
Jackson et al. A novel microstrip slot antenna for permittivity measurement
Van Beek et al. A measuring device for the determination of the electric permittivity of conducting liquids in the frequency range 1-100 MHz
US20220376372A1 (en) High-frequency coxial attenuator
Keam et al. Permittivity measurements using a coaxial-line conical-tip probe
Suleman et al. Measurement of dielectric properties using reflected group delay of an over-coupled resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7408246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150