JP7407647B2 - Remote cutting method and cutting device - Google Patents

Remote cutting method and cutting device Download PDF

Info

Publication number
JP7407647B2
JP7407647B2 JP2020072014A JP2020072014A JP7407647B2 JP 7407647 B2 JP7407647 B2 JP 7407647B2 JP 2020072014 A JP2020072014 A JP 2020072014A JP 2020072014 A JP2020072014 A JP 2020072014A JP 7407647 B2 JP7407647 B2 JP 7407647B2
Authority
JP
Japan
Prior art keywords
cutting
cut
self
traveling body
end mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072014A
Other languages
Japanese (ja)
Other versions
JP2021169930A (en
Inventor
隆 北原
賢治 木尾
孝雄 峯岸
智規 永瀬
正俊 吉崎
竜一 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Besterra Co Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Besterra Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Besterra Co Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP2020072014A priority Critical patent/JP7407647B2/en
Publication of JP2021169930A publication Critical patent/JP2021169930A/en
Application granted granted Critical
Publication of JP7407647B2 publication Critical patent/JP7407647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling Processes (AREA)

Description

本発明は、作業者が容易に近づけない場所にある鋼製の切断対象物を遠隔切断する遠隔切断方法及び切断装置に関する。 TECHNICAL FIELD The present invention relates to a remote cutting method and a cutting device for remotely cutting a steel object to be cut that is located in a location that is not easily accessible to an operator.

原子力発電所の汚染した大型タンクや復水器等の鋼製の外板、使用済み燃料プールのライニング等を解体撤去する場合、まず現場で取り扱い易い大きさに一次切断し、別の場所に搬送して除染処理や処分に適した大きさに細断(二次切断)する手順となる。このとき高所又は汚染された箇所など作業者が容易に近づけない場所にある切断対象物を一次切断する際に、切断部を備えた走行体で遠隔操作しながら切断する技術がある。
特許文献1に開示の装置は、遠隔操作で金属製プールや大型タンク等の壁面を走行部及び昇降部で所定位置まで移動して、切断部を移動させながら切断している。
When dismantling and removing contaminated steel outer panels of large tanks and condensers, linings of spent fuel pools, etc. at nuclear power plants, they are first cut into easily handleable pieces on site and then transported to another location. This is the procedure for shredding (secondary cutting) into pieces suitable for decontamination treatment and disposal. At this time, when performing primary cutting on an object to be cut that is located at a location that is not easily accessible to a worker, such as a high place or a contaminated location, there is a technique that performs the cutting while being remotely controlled using a traveling body provided with a cutting section.
The apparatus disclosed in Patent Document 1 remotely moves the wall surface of a metal pool, large tank, etc. to a predetermined position using a traveling section and an elevating section, and cuts the wall surface while moving the cutting section.

しかしながら、特許文献1では軌道レールの長手方向に沿うように切断部(カッタ、ガス切断機など)を走行部で移動しながら切断するもので、軌道レールを都度設定する作業が発生する他、高所又は汚染された箇所では作業者の作業負担が大きくなる。
また原子力発電所の汚染した大型タンク等の一次切断において、作業者が直接切断作業を行う場合、足場上での高所作業となるうえ、作業者の被ばく低減をはかる必要がある。切断方法についても、火災防止などの観点からガス切断などの火気の使用が制限される場合もある。
However, in Patent Document 1, the cutting part (cutter, gas cutter, etc.) is moved along the longitudinal direction of the track rail while moving on a traveling part, which requires work to set the track rail each time, and also requires high The work burden on workers increases in contaminated areas or contaminated areas.
In addition, when workers directly perform the primary cutting of contaminated large tanks at nuclear power plants, they must work at heights on scaffolding, and it is necessary to reduce the worker's exposure to radiation. Regarding the cutting method, the use of fire such as gas cutting may be restricted from the viewpoint of fire prevention.

特開平11-352292号公報Japanese Patent Application Publication No. 11-352292

本発明が解決しようとする課題は、上記従来技術の問題点に鑑み、遠隔かつ無火気で切断できる遠隔切断方法及び切断装置を提供することにある。 In view of the problems of the prior art described above, an object of the present invention is to provide a remote cutting method and a cutting device that can cut remotely and without flame.

本発明は、上記課題を解決するための第1の手段として、リニアレールに沿ってエンドミルで切断する直動式切断部及び鋼製の切断対象物に吸着する磁石を備えた自走式走行体を前記切断対象物に吸着させて切断開始位置まで走行する工程と、
前記自走式走行体の停止中に前記直動式切断部で前記切断開始位置から前記リニアレールに沿って直線状に切断して、切断後に前記切断開始位置まで戻る切断工程と、
前記直動式切断部で切断した長さ分だけ前記自走式走行体で移動する移動工程と、
を有し、前記切断工程と前記移動工程を前記切断対象物が切断されるまで繰り返すことを特徴とする遠隔切断方法を提供することにある。
上記第1の手段によれば、切断装置を切断対象の切断面に設置した後は自走して切断作業が行えるため作業用の足場設置が不要となる他、切断作業を遠隔化でき、さらに無火気で切断対象物を直線状に切断できるため作業の安全性を向上できる。
As a first means for solving the above problems, the present invention provides a self-propelled traveling body equipped with a direct-acting cutting section that cuts with an end mill along a linear rail, and a magnet that attracts a steel object to be cut. adsorbing the object to the object to be cut and traveling to a cutting start position;
A cutting step of cutting linearly along the linear rail from the cutting start position with the direct-acting cutting unit while the self-propelled traveling body is stopped, and returning to the cutting start position after cutting;
a moving step of moving with the self-propelled traveling body by the length cut by the direct-acting cutting section;
An object of the present invention is to provide a remote cutting method, characterized in that the cutting step and the moving step are repeated until the object to be cut is cut.
According to the above first means, after the cutting device is installed on the cutting surface to be cut, the cutting work can be carried out by itself, so there is no need to set up a scaffold for the work, and the cutting work can be made remote. Work safety can be improved because the object to be cut can be cut in a straight line without using flames.

本発明は、上記課題を解決するための第2の手段として、シャシーの四隅に車輪と磁石を設けて鋼製の切断対象物に前記磁力で所定間隔を開けて吸着しながら走行する自走式走行体と、
前記シャシーの中心に進退方向に沿ってエンドミルが移動する長孔とリニアレールを設けて、前記切断対象物を前記リニアレールに沿って直線状に切断する直動式切断部と、を備え、
前記自走式走行体が停止中に切断する前記直動式切断部のエンドミルの切断面と平行な面内で生じる切削抵抗は前記エンドミルの送り方向の力F4と送りと直交方向の力F5であり、前記自走式走行体の重量M・g、前記自走式走行体の静止摩擦力F3としたとき、前記エンドミルはF3>F4+F5+M・gを満たす送り速度に設定したことを特徴とする遠隔切断装置を提供することにある。
上記第2の手段によれば、自走式走行体が切断対象物の壁面に吸着した状態であっても、直動式切断部による切削抵抗を抑えて直線状に切断することができる。
As a second means for solving the above problems, the present invention provides a self-propelled type that is equipped with wheels and magnets at the four corners of the chassis and runs while adhering to steel objects to be cut at predetermined intervals using the magnetic force. A running body,
a direct-acting cutting section that is provided with a linear rail and a long hole in which the end mill moves along the advance/retreat direction in the center of the chassis, and that cuts the object to be cut in a straight line along the linear rail;
The cutting resistance generated in a plane parallel to the cutting surface of the end mill of the direct-acting cutting section that cuts while the self-propelled traveling body is stopped is a force F4 in the feed direction of the end mill and a force F5 in a direction perpendicular to the feed. A remote control device characterized in that, when the weight of the self-propelled traveling body is M·g and the static frictional force of the self-propelled traveling body is F3, the end mill is set at a feed rate that satisfies F3>F4+F5+M·g. The purpose of the present invention is to provide a cutting device.
According to the second means, even if the self-propelled traveling body is stuck to the wall surface of the object to be cut, it is possible to cut the object in a straight line while suppressing the cutting resistance caused by the direct-acting cutting section.

本発明によれば、切断作業を遠隔化して、足場作業がなくなり、また被ばく低減など作業者の安全を確保できる。
切断手段としてガス切断の代わりにエンドミルを適用することにより、無火気化でき火災発生のリスクを低減できる。
According to the present invention, cutting work can be done remotely, scaffolding work is no longer required, and worker safety can be ensured by reducing radiation exposure.
By using an end mill instead of gas cutting as the cutting means, flameless vaporization can be achieved and the risk of fire occurrence can be reduced.

本発明の遠隔切断方法の説明図である。FIG. 3 is an explanatory diagram of the remote disconnection method of the present invention. 本発明の遠隔切断装置の平面図である。1 is a plan view of a remote cutting device of the present invention; FIG. 直動式切断部の斜視図である。It is a perspective view of a direct-acting cutting part. 図2中のA-A断面の拡大図である。3 is an enlarged view of the AA cross section in FIG. 2. FIG. 自走式走行体の壁面走行の説明図である。It is an explanatory view of wall surface running of a self-propelled traveling body. 自走式走行体の停止中における切断反力の説明図である。FIG. 3 is an explanatory diagram of cutting reaction force while the self-propelled vehicle is stopped.

本発明の遠隔切断方法及び切断装置の実施形態について、図面を参照しながら、以下詳細に説明する。本発明の遠隔切断方法及び切断装置は、一例として、原子力発電所内の汚染した大型タンク等を遠隔で一時切断する際に適用可能に構成している。 Embodiments of the remote cutting method and cutting device of the present invention will be described in detail below with reference to the drawings. The remote cutting method and cutting device of the present invention are configured to be applicable, for example, when remotely temporarily cutting off a contaminated large tank or the like in a nuclear power plant.

[遠隔切断装置]
遠隔切断装置は、自走式走行体20に直動式切断部30を備えた構成であり、作業者が遠隔で走行又は切断の制御が可能なコントローラ(不図示)を有している。
自走式走行体20は鋼製の大型タンク等の外板に磁力で吸着して四輪で走行する。自走式走行体20の四輪はモータで駆動する二つの駆動輪と、駆動輪とチェーン又はベルトで連結される二つの従動輪で構成されている。このような構成により切断対象上(側面、斜面など)を上昇又は下降の他、90度その場で旋回して横方向に移動することもできる。
直動式切断部30はリニアレールを往復移動するエンドミル方式を採用している。直動式切断部30は、エンドミルが切断面と垂直方向、及び切断面と平行でかつ走行体の上昇(前進)又は下降(後進)方向と平行な方向に移動させる2つの直動機構を備えている。なお自走式走行体のモータ、直動式切断部のエンドミル及び直動機構は電力、圧縮エア、油圧などを駆動源として適用することができる。
[Remote disconnection device]
The remote cutting device has a configuration in which a self-propelled traveling body 20 is equipped with a direct-acting cutting section 30, and has a controller (not shown) that allows an operator to remotely control traveling or cutting.
The self-propelled traveling body 20 is magnetically attracted to the outer plate of a large steel tank or the like and travels on four wheels. The four wheels of the self-propelled vehicle 20 are composed of two driving wheels driven by a motor and two driven wheels connected to the driving wheels by a chain or a belt. With this configuration, in addition to ascending or descending on the object to be cut (side surface, slope, etc.), it is also possible to turn 90 degrees on the spot and move laterally.
The direct-acting cutting section 30 employs an end mill system that reciprocates on a linear rail. The linear-acting cutting section 30 includes two linear-acting mechanisms that move the end mill in a direction perpendicular to the cutting surface and in a direction parallel to the cutting surface and parallel to the upward (forward) or downward (backward) direction of the traveling body. ing. Note that electric power, compressed air, hydraulic pressure, or the like can be used as a driving source for the motor of the self-propelled traveling body, the end mill of the direct-acting cutting section, and the direct-acting mechanism.

(自走式走行体20)
図2は、自走式走行体の平面図である。図示のように自走式走行体20は、所定の強度を有する非磁性体の金属部材(アルミなど)を用い、平面視でほぼ矩形のシャシー21を備え、シャシー21の四隅に4つの車輪を配置している。各車輪はシャフト23の両端を軸受け24で軸支し、シャフト23の軸心をシャシー21の対向する一対の側面と平行に配置している。図2の紙面で上部の2つの車輪を前輪22a,22bとし、紙面で下部の2つの車輪を後輪22c,22dとし、後輪22c,22dにモータ25を取り付けている。モータ25は電動、圧縮エア、油圧などを駆動源に用いることができる。前輪22a,22bは、駆動輪となる後輪22c,22dとチェーン26又は無端ベルトで連結されて従動輪となる。このような車輪は2台のモータ25を同一方向に正又は逆回転させれば走行体が前進又は後進する。また2台のモータ25を互いに逆回転させれば、その場で旋回する。
なお、モータ25又は車輪にはブレーキ(不図示)を内蔵しており、ブレーキ作動中、車輪は完全にロックされて回転しない。またモータ25又は車輪にはエンコーダを内蔵しており、自走式走行体20の移動距離を検出することができる。
図4は図2中のA-A断面の拡大図である。シャシー21は4つの車輪の近傍に磁石27を取り付けている。磁石27は、鋼製の切断対象物と所定間隔、本実施形態では数mm程度の間を設けて、走行時の抵抗とならないようにシャシー21に取り付けている。本実施形態の磁石27は切断対象物に直に接触させずに、所定間隔を開けても吸着力が得られるような磁石、例えばネオジム磁石を用いている。
シャシー21の中央付近には直動式切断部30のエンドミル32が貫通して切断方向に移動可能なスペースを有する長孔状の切断用開口28を設けている。
(Self-propelled traveling body 20)
FIG. 2 is a plan view of the self-propelled vehicle. As shown in the figure, the self-propelled vehicle 20 is made of a non-magnetic metal member (such as aluminum) having a predetermined strength, and includes a chassis 21 that is approximately rectangular in plan view, and has four wheels at the four corners of the chassis 21. It is placed. In each wheel, both ends of a shaft 23 are supported by bearings 24, and the axis of the shaft 23 is arranged parallel to a pair of opposing side surfaces of the chassis 21. The two wheels at the top in the paper of FIG. 2 are front wheels 22a and 22b, the two wheels at the bottom in the paper are rear wheels 22c and 22d, and the motors 25 are attached to the rear wheels 22c and 22d. The motor 25 can use electric power, compressed air, hydraulic pressure, or the like as a driving source. The front wheels 22a, 22b are connected to the rear wheels 22c, 22d, which are driving wheels, by a chain 26 or an endless belt, and become driven wheels. With such wheels, the traveling body moves forward or backward by rotating the two motors 25 in the same direction in the forward or reverse direction. Moreover, if the two motors 25 are rotated in opposite directions, the robot can turn on the spot.
Note that the motor 25 or the wheels have built-in brakes (not shown), and while the brakes are in operation, the wheels are completely locked and do not rotate. Furthermore, the motor 25 or the wheels have built-in encoders, so that the moving distance of the self-propelled vehicle 20 can be detected.
FIG. 4 is an enlarged view of the AA cross section in FIG. The chassis 21 has magnets 27 attached near the four wheels. The magnet 27 is attached to the chassis 21 at a predetermined distance from the steel object to be cut, approximately several mm in this embodiment, so as not to create resistance during running. The magnet 27 of this embodiment uses a magnet, such as a neodymium magnet, that can obtain an attractive force even if it is not brought into direct contact with the object to be cut but is spaced apart by a predetermined distance.
Near the center of the chassis 21 is provided an elongated cutting opening 28 having a space through which the end mill 32 of the direct-acting cutting section 30 can move in the cutting direction.

(直動式切断部30)
図3は直動式切断部の斜視図である。図示のように直動式切断部30は、鋼製の切断対象物を無火気で切断できるエンドミル32と、エンドミル32の刃物を切断対象物の主面に対して直交する方向(切断対象物の厚み方向(図3中の矢印a))に進退移動して切り込める第1直動機構34と、切断対象物の主面上で直線状にエンドミル32の刃物を移動させる(図3中の矢印b)第2直動機構40を備えている。
第1直動機構34及び第2直動機構40は、一方の主面にエンドミル32を備え、他方の主面に第1リニアガイド37aと、この第1リニアレール35aを摺動する第1スライダ39a(図2参照)を備えた平板状の第1フレーム34aと、一方の主面に第1リニアガイド37aが螺合する第1送りねじ36a及び一対の第1リニアレール35aを備え、他方の主面に第2リニアレール35bを摺動する第2スライダ39b(図2参照)を備えた平板上の第2フレーム34bと、第2フレーム34bの上面に接続して第1送りねじ36aの第1駆動モータ38a及び第2送りねじに螺合する第2リニアガイド(不図示)を備えた平板状の第3フレーム34cと、側面に第2リニアレール35bを、上面に第2送りねじ36b及び第2駆動モータ38bを有する角柱状の第4フレーム34dに取り付けている。
第1及び第2フレーム34a,34bの間には一対の第1リニアレール35aを両端に配置し、その間(中心)に第1送りねじ36aを配置し、長手方向がシャシー21の主面に対して直交する方向(図3中の矢印a)に沿って取り付けている。
このような構成により第1直動機構34は、第1駆動モータ38aを正又は逆回転させると第1フレーム34aが第2フレーム34bを起点として上下方向(切断対象物の厚み方向)に進退移動する。これに伴い第1フレーム34aに取り付けたエンドミル32の刃物が切断対象物に切り込める。
また第2直動機構40は、第2駆動モータ38bを正又は逆回転させると第1~第3フレーム34a,34b,34cが第4フレーム34dを起点としてフレームの長手方向に進退移動する。これに伴い第1フレーム34aに取り付けたエンドミル32の刃物が切断対象物をリニアレールに沿って直線状に切断できる。
なお第1及び第2直動機構34,40は、上下左右に移動するエンドミル32がメカエンド又は適正位置で停止するリミットスイッチ(不図示)を内蔵しており、リミットスイッチが作動するとエンドミル32の上下左右いずれかの移動が停止する構成を採用している。
(Direct acting cutting section 30)
FIG. 3 is a perspective view of the direct acting cutting section. As shown in the figure, the direct-acting cutting section 30 includes an end mill 32 that can cut steel objects without flames, and a blade of the end mill 32 in a direction perpendicular to the main surface of the object (the direction of the object to be cut). The first linear motion mechanism 34 moves forward and backward in the thickness direction (arrow a in FIG. 3) to cut, and the blade of the end mill 32 moves linearly on the main surface of the object to be cut (arrow a in FIG. 3). b) A second linear motion mechanism 40 is provided.
The first linear motion mechanism 34 and the second linear motion mechanism 40 include an end mill 32 on one main surface, a first linear guide 37a on the other main surface, and a first slider that slides on the first linear rail 35a. 39a (see FIG. 2), a first feed screw 36a to which a first linear guide 37a is screwed on one main surface, and a pair of first linear rails 35a; A second frame 34b on a flat plate is provided with a second slider 39b (see FIG. 2) that slides a second linear rail 35b on its main surface, and a first feed screw 36a connected to the upper surface of the second frame 34b. A flat third frame 34c equipped with a second linear guide (not shown) screwed into the first drive motor 38a and the second feed screw, a second linear rail 35b on the side surface, and a second feed screw 36b on the top surface. It is attached to a prismatic fourth frame 34d having a second drive motor 38b.
A pair of first linear rails 35a are arranged at both ends between the first and second frames 34a and 34b, and a first feed screw 36a is arranged between them (at the center), so that the longitudinal direction is relative to the main surface of the chassis 21. It is attached along the direction (arrow a in FIG. 3) perpendicular to the direction shown in FIG.
With such a configuration, the first linear motion mechanism 34 allows the first frame 34a to advance and retreat in the vertical direction (thickness direction of the object to be cut) from the second frame 34b as a starting point when the first drive motor 38a is rotated forward or backward. do. Accordingly, the blade of the end mill 32 attached to the first frame 34a can cut into the object to be cut.
Further, in the second linear motion mechanism 40, when the second drive motor 38b is rotated forward or reverse, the first to third frames 34a, 34b, and 34c move forward and backward in the longitudinal direction of the frames with the fourth frame 34d as a starting point. Accordingly, the blade of the end mill 32 attached to the first frame 34a can cut the object in a straight line along the linear rail.
The first and second linear motion mechanisms 34 and 40 have a built-in limit switch (not shown) that stops the end mill 32, which moves vertically and horizontally, at the mechanical end or at an appropriate position, and when the limit switch is activated, the end mill 32 moves vertically and horizontally. A configuration is adopted in which movement on either the left or right side is stopped.

図5は自走式走行体の壁面走行の説明図である。同図(1)に示すように、上記自走式走行体20の駆動力をF1とし、車輪と走行面(切断対象物表面)の間の転がり摩擦抵抗をF2とし、走行体重量をM・g(直動式切断部30を含む総質量M、重力加速度をg)とし、車輪と走行面との間の静止摩擦力(車輪の動き出しを妨げるように働く摩擦力)をF3とする。ここで、自走式走行体20が壁面を上昇するためには、走行体のモータが発生する駆動力F1が走行体の転がり抵抗F2と走行体の重量M・gに打ち勝つ必要がある(駆動力F1>転がり摩擦抵抗F2+走行体重量M・g)。さらに、車輪がスリップせずに駆動力F1を走行面に伝えるためには、静止摩擦力F3は駆動力F1より大きい必要がある(静止摩擦力F3>駆動力F1)。
ここで、駆動力F1=T/r・n・A(T:モータの定格トルク、r:車輪半径、n:機械効率、A:モータ数)、転がり摩擦抵抗F2=μ1・N(μ1:車輪の転がり摩擦係数、N:車輪の受ける垂直抵抗(磁力の反力)、静止摩擦力F3=μ2・N(μ2:車輪の静止摩擦係数)と表すことができる。
一例として、T=75Nm、r=0.05m、n=0.7、A=2台とすると、F1=2100Nとなる。
図5(2)は本実施形態で用いた磁石について、磁石と吸着面との離隔距離(mm)をパラメータとした磁石の吸着力(N)の変化を計算により求めたグラフである。例えば離隔距離が7mmの場合、吸着力は1754Nとなる。本実施形態では磁石を4個用いているので、自走式走行体20の走行面の吸着力は1754N×4=7016Nとなる。よって、この吸着力をすべて車輪で受けたとすると、車輪が吸着面から受ける垂直抗力N=7016Nとなる。従って、転がり摩擦抵抗μ1=0.01とした場合、走行体の転がり摩擦抵抗F2は70Nとなる。
また走行体の質量を70kgとすると、M・g=70×9.8=686Nとなる。
また車輪(車輪(ゴム製)と壁面(鋼材))の静止摩擦係数μ2=0.5とすると、F3=3508Nとなる。
そうするとF1-F2-M・g>0であれば良く、2100N-70N-686N=1344N>0となり、かつF3-F1>0であれ良く、3508N-2100N=1408N>0となるため、自走式走行体は壁面を走行することができる。
FIG. 5 is an explanatory diagram of wall running of the self-propelled vehicle. As shown in FIG. 1 (1), the driving force of the self-propelled traveling body 20 is F1, the rolling friction resistance between the wheels and the running surface (the surface of the object to be cut) is F2, and the running weight is M. Let g be the total mass M including the direct-acting cutter 30, and the gravitational acceleration be g, and let F3 be the static frictional force between the wheel and the running surface (frictional force that acts to prevent the wheel from starting to move). Here, in order for the self-propelled traveling body 20 to ascend the wall surface, it is necessary for the driving force F1 generated by the motor of the traveling body to overcome the rolling resistance F2 of the traveling body and the weight M.g of the traveling body (drive Force F1>Rolling friction resistance F2+Running weight M.g). Furthermore, in order to transmit the driving force F1 to the running surface without causing the wheels to slip, the static frictional force F3 needs to be larger than the driving force F1 (static frictional force F3>driving force F1).
Here, driving force F1=T/r・n・A (T: rated torque of motor, r: wheel radius, n: mechanical efficiency, A: number of motors), rolling friction resistance F2=μ1・N (μ1: wheel can be expressed as rolling friction coefficient, N: vertical resistance (reaction force of magnetic force) received by the wheel, and static friction force F3=μ2·N (μ2: static friction coefficient of the wheel).
As an example, if T=75Nm, r=0.05m, n=0.7, and A=2 units, then F1=2100N.
FIG. 5(2) is a graph obtained by calculating the change in the attraction force (N) of the magnet used in this embodiment, using the separation distance (mm) between the magnet and the attraction surface as a parameter. For example, when the separation distance is 7 mm, the adsorption force is 1754N. Since four magnets are used in this embodiment, the attraction force on the running surface of the self-propelled running body 20 is 1754N×4=7016N. Therefore, if all of this adsorption force is received by the wheels, the vertical reaction force N that the wheels receive from the adsorption surface is 7016N. Therefore, when the rolling friction resistance μ1 is set to 0.01, the rolling friction resistance F2 of the traveling body is 70N.
Further, if the mass of the traveling body is 70 kg, M.g=70×9.8=686N.
Further, assuming that the static friction coefficient μ2 of the wheels (wheels (rubber) and walls (steel)) is 0.5, F3 is 3508N.
Then, F1-F2-M・g>0, 2100N-70N-686N=1344N>0, and F3-F1>0, 3508N-2100N=1408N>0, so self-propelled The running body can run on a wall surface.

図6は自走式走行体の停止中における切削抵抗の説明図である。自走式走行体20が停止中(モータ又は車輪のブレーキでロックされた状態)に直動式切断部30で切断するときの切断面と平行な面内に生じる切削抵抗は、エンドミルの送り方向の力F4と送りと直交方向の力F5となる。これらの切削抵抗F4,F5と装置重量M・gの合力が自走式走行体20の静止摩擦力F3より小さい範囲では、自走式走行体20は停止した位置に留まることができるので切り曲がりが発生しないと考えることができる(F3>F4+F5+M・g)。同図(2)はΦ12mmのラフィングエンドミル(エンドミル回転数750rpm)で22mmの厚鋼板を切断するときに生じる切削抵抗(N)と送り速度(mm/分)の関係の例を示す。また同図(3)は切断作業中に装置に加わる外力の合計(同図(2)に示した切断抵抗F4,F5と装置重量M・gのベクトル和)とエンドミルの送り速度の関係を示したものである。同図に示すように、エンドミルの送り速度約50mm/分で外力の合計値が自走式走行体20の静止摩擦力F3(3508N)とほぼ等しくなる。よって50mm/分より低い送り速度であれば、装置の落下や斫り曲がりを生じずに切断作業ができることとなる。 FIG. 6 is an explanatory diagram of cutting resistance while the self-propelled vehicle is stopped. When the self-propelled traveling body 20 is stopped (locked by the motor or wheel brake) and the direct-acting cutting section 30 cuts, the cutting resistance generated in a plane parallel to the cutting surface is in the feeding direction of the end mill. The force F4 is the force F5, and the force F5 is the force F5 in the direction perpendicular to the feed. In the range where the resultant force of these cutting forces F4 and F5 and the device weight M.g is smaller than the static friction force F3 of the self-propelled traveling body 20, the self-propelled traveling body 20 can remain at the stopped position and will not cut or turn. It can be considered that this does not occur (F3>F4+F5+M.g). Figure (2) shows an example of the relationship between the cutting resistance (N) generated when cutting a 22 mm thick steel plate with a Φ12 mm roughing end mill (end mill rotation speed 750 rpm) and the feed rate (mm/min). In addition, Figure (3) shows the relationship between the total external force applied to the device during cutting work (the vector sum of the cutting resistances F4 and F5 shown in Figure (2) and the device weight M.g) and the end mill feed speed. It is something that As shown in the figure, the total value of the external forces becomes approximately equal to the static friction force F3 (3508 N) of the self-propelled traveling body 20 when the end mill feed rate is approximately 50 mm/min. Therefore, if the feed rate is lower than 50 mm/min, the cutting operation can be performed without causing the device to fall or bend.

[遠隔切断方法]
上記構成による本発明の遠隔切断装置を用いた遠隔切断方法について、以下説明する。図1は本発明の遠隔切断方法の説明図である。
(ステップ1)
自走式走行体20を外板に吸着させて切断開始位置Sまで移動した後、停止させる(図1(a)参照)。
(ステップ2)
第1直動機構34によりエンドミル32の刃物を切断対象物の板厚方向に切り込ませる。適切な位置(深さ)でリミットスイッチが作動して下方向への切り込みが自動停止する(図1(a)参照)。
(ステップ3)
次に第2直動機構40によりエンドミル32を第2リニアレール35bの長手方向にそって直線状に切断ストローク(第2リニアレール35b上の第2リニアガイドの移動長さ)分だけ切断する。第2リニアガイドが第2リニアレール35bのメカエンドまで移動するとリミットスイッチが作動して自動停止する(図1(b)参照)。
(ステップ4)
第2直動機構40を切断開始位置Sまで逆方向に送る(移動する)。同様に第2リニアガイドが第2リニアレール35bのメカエンドまで移動するとリミットスイッチが作動して自動停止する(図1(c)参照)。
(ステップ5)
自走式走行体20を切断ストローク(切断長さ)分だけ直進移動させる。モータ25又は車輪にはエンコーダでストロークに相当する走行体の移動距離を検出して自動停止する。
上記ステップ2~5を切断対象物の切断終了位置まで繰り返す。
[Remote disconnection method]
A remote cutting method using the remote cutting device of the present invention having the above configuration will be described below. FIG. 1 is an explanatory diagram of the remote cutting method of the present invention.
(Step 1)
After the self-propelled traveling body 20 is attracted to the outer plate and moved to the cutting start position S, it is stopped (see FIG. 1(a)).
(Step 2)
The first linear motion mechanism 34 causes the blade of the end mill 32 to cut into the object to be cut in the thickness direction. The limit switch is activated at an appropriate position (depth) and the downward cutting is automatically stopped (see Figure 1(a)).
(Step 3)
Next, the second linear motion mechanism 40 cuts the end mill 32 linearly along the longitudinal direction of the second linear rail 35b by a cutting stroke (the moving length of the second linear guide on the second linear rail 35b). When the second linear guide moves to the mechanical end of the second linear rail 35b, the limit switch is activated and automatically stops (see FIG. 1(b)).
(Step 4)
The second linear motion mechanism 40 is sent (moved) in the opposite direction to the cutting start position S. Similarly, when the second linear guide moves to the mechanical end of the second linear rail 35b, the limit switch is activated and automatically stops (see FIG. 1(c)).
(Step 5)
The self-propelled traveling body 20 is moved straight by a cutting stroke (cutting length). An encoder in the motor 25 or the wheels detects the moving distance of the traveling body corresponding to the stroke and automatically stops the motor 25 or the wheels.
Steps 2 to 5 above are repeated until the cutting end position of the object to be cut is reached.

このように大型タンク類の外板に吸着し、エンドミルを板厚方向に切り込ませた後に、他方の直動機構でエンドミルを送って胴板を切断する。その後、直動機構でエンドミルを一旦、切断開始位置まで戻した後、走行体を切断終点位置まで前進させる。走行体を前進させた後、再びエンドミルを送って切断する。このように切断と走行を交互に繰り返す。切断作業中は自走式走行体が切断対象物の壁面に吸着することで、直動式切断部による切断反力を抑えて切り曲がりせずに直線状に切断することができる。
以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
After adhering to the outer plate of a large tank in this way and cutting the end mill in the thickness direction of the plate, the end mill is sent by the other linear motion mechanism to cut the body plate. Thereafter, the end mill is once returned to the cutting start position by the linear motion mechanism, and then the traveling body is advanced to the cutting end position. After moving the running body forward, the end mill is sent again to cut. In this way, cutting and running are repeated alternately. During the cutting operation, the self-propelled traveling body adheres to the wall surface of the object to be cut, thereby suppressing the cutting reaction force exerted by the direct-acting cutting section and allowing the object to be cut in a straight line without bending.
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
Further, the present invention is not limited to the combinations shown in the embodiments, but can be implemented by various combinations.

20 自走式走行体
21 シャシー
22a,22b 前輪
22c,22d 後輪
23 シャフト
24 軸受け
25 モータ
26 チェーン
27 磁石
28 切断用開口
30 直動式切断部
32 エンドミル
34 第1直動機構
34a,34b,34c,34d 第1~第4フレーム
35a,35b 第1及び第2リニアレール
36a,36b 第1及び第2送りねじ
37a 第1リニアガイド
38a,38b 第1,第2駆動モータ
39a,39b 第1及び第2スライダ
40 第2直動機構
20 Self-propelled traveling body 21 Chassis 22a, 22b Front wheels 22c, 22d Rear wheel 23 Shaft 24 Bearing 25 Motor 26 Chain 27 Magnet 28 Cutting opening 30 Direct-acting cutting section 32 End mill 34 First linear-acting mechanism 34a, 34b, 34c , 34d First to fourth frames 35a, 35b First and second linear rails 36a, 36b First and second feed screws 37a First linear guides 38a, 38b First and second drive motors 39a, 39b First and second 2 slider 40 second linear motion mechanism

Claims (2)

リニアレールに沿ってエンドミルで切断する直動式切断部及び鋼製の切断対象物に吸着する磁石を備えた自走式走行体を前記切断対象物に吸着させて切断開始位置まで走行する工程と、
前記自走式走行体の停止中に前記直動式切断部で前記切断開始位置から前記リニアレールに沿って直線状に切断して、切断後に前記切断開始位置まで戻る切断工程と、
前記直動式切断部で切断した長さ分だけ前記自走式走行体で移動する移動工程と、
を有し、前記切断工程と前記移動工程を前記切断対象物が切断されるまで繰り返すことを特徴とする遠隔切断方法。
A self-propelled traveling body equipped with a direct-acting cutting section that cuts with an end mill along a linear rail and a magnet that attracts the steel object to be cut is adsorbed to the object to be cut and travels to a cutting start position; ,
A cutting step of cutting linearly along the linear rail from the cutting start position with the direct-acting cutting unit while the self-propelled traveling body is stopped, and returning to the cutting start position after cutting;
a moving step of moving with the self-propelled traveling body by the length cut by the direct-acting cutting section;
A remote cutting method comprising: repeating the cutting step and the moving step until the object to be cut is cut.
シャシーの四隅に車輪と磁石を設けて鋼製の切断対象物に前記磁石で所定間隔を開けて吸着しながら走行する自走式走行体と、
前記シャシーの中心に進退方向に沿ってエンドミルが移動する長孔とリニアレールを設けて、前記切断対象物を前記リニアレールに沿って直線状に切断する直動式切断部と、を備え、
前記自走式走行体が停止中に切断する前記直動式切断部のエンドミルの切断面と平行な面内で生じる切削抵抗は前記エンドミルの送り方向の力F4と送りと直交方向の力F5であり、前記自走式走行体の重量M・g、前記自走式走行体の静止摩擦力F3としたとき、前記エンドミルはF3>F4+F5+M・gを満たす送り速度に設定したことを特徴とする遠隔切断装置。
A self-propelled traveling body that has wheels and magnets at the four corners of a chassis and travels while adhering to a steel object to be cut at a predetermined interval with the magnets;
a direct-acting cutting section that includes a linear rail and a long hole in which the end mill moves along the advance/retreat direction in the center of the chassis, and cuts the object to be cut in a straight line along the linear rail;
The cutting resistance generated in a plane parallel to the cutting surface of the end mill of the direct-acting cutting section that cuts while the self-propelled traveling body is stopped is a force F4 in the feed direction of the end mill and a force F5 in a direction perpendicular to the feed. The end mill is set at a feed rate that satisfies F3>F4+F5+M.g, where the weight of the self-propelled traveling body is M.g and the static frictional force of the self-propelled traveling body is F3. Cutting device.
JP2020072014A 2020-04-14 2020-04-14 Remote cutting method and cutting device Active JP7407647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072014A JP7407647B2 (en) 2020-04-14 2020-04-14 Remote cutting method and cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072014A JP7407647B2 (en) 2020-04-14 2020-04-14 Remote cutting method and cutting device

Publications (2)

Publication Number Publication Date
JP2021169930A JP2021169930A (en) 2021-10-28
JP7407647B2 true JP7407647B2 (en) 2024-01-04

Family

ID=78150021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072014A Active JP7407647B2 (en) 2020-04-14 2020-04-14 Remote cutting method and cutting device

Country Status (1)

Country Link
JP (1) JP7407647B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116265B2 (en) 1994-12-19 2000-12-11 三井造船株式会社 Unmanned submersible
JP2004279230A (en) 2003-03-17 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method of dismantling large vessel
JP2012172363A (en) 2011-02-21 2012-09-10 Towani:Kk Demolition machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116265B2 (en) 1994-12-19 2000-12-11 三井造船株式会社 Unmanned submersible
JP2004279230A (en) 2003-03-17 2004-10-07 Hitachi Plant Eng & Constr Co Ltd Method of dismantling large vessel
JP2012172363A (en) 2011-02-21 2012-09-10 Towani:Kk Demolition machine

Also Published As

Publication number Publication date
JP2021169930A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
FI74433C (en) FOER GODSBEFORDRAN AVSEDD ANORDNING.
US10508004B2 (en) Lateral transfer station for elevator having a magnetic screw propulsion system
KR102229196B1 (en) Press material transfer system with turntable
CN107697621A (en) A kind of square tube automatic charging stopping means
US20040231654A1 (en) Method and apparatus for diamond wire cutting of metal structures
DE102014210947B3 (en) Apparatus and method for removing contaminated material
WO1989012019A1 (en) Gantry robot construction and drive mechanism
EP4129753A1 (en) Sliding contact line detection device and sliding contact line detection system
JP5536583B2 (en) Wall structure cutting apparatus and cutting / disassembling method
JP4649307B2 (en) Mechanical cutting device and cutting method using this device
JP7407647B2 (en) Remote cutting method and cutting device
TWI480140B (en) Industrial robot
EP2960014A2 (en) Grinding or milling device for building refurbishment
CN111071720A (en) Plant factory robot stereoscopic operation device
JP2007197213A (en) Sediment selecting separator
CN211687018U (en) Plant factory robot stereoscopic operation device
KR100962180B1 (en) The concrete surface decontamination machine mounted on X-Y table
CN209919150U (en) Welding device capable of moving in all directions
JP6792526B2 (en) Traveling trolley
CN113585768B (en) Workpiece mounting device and workpiece mounting method
CN106624964A (en) Efficient mechanical hand device for lathe
CN102295234A (en) Crane mechanical drive system without power supply in work zone
JPH0911028A (en) Movable cutting device for land slide protection wall made of steel sheet pile and the like
JP3163379U (en) Factory equipment with wheel assemblies
CN114264187B (en) Plastering device for unshaped material on vertical plane of limited space

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7407647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150