JP7406443B2 - Hard metal member manufacturing method and hard metal member - Google Patents

Hard metal member manufacturing method and hard metal member Download PDF

Info

Publication number
JP7406443B2
JP7406443B2 JP2020072628A JP2020072628A JP7406443B2 JP 7406443 B2 JP7406443 B2 JP 7406443B2 JP 2020072628 A JP2020072628 A JP 2020072628A JP 2020072628 A JP2020072628 A JP 2020072628A JP 7406443 B2 JP7406443 B2 JP 7406443B2
Authority
JP
Japan
Prior art keywords
layer
hard metal
hard
build
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072628A
Other languages
Japanese (ja)
Other versions
JP2021169108A (en
Inventor
毅 石川
智一 阿部
英治 富田
拓海 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Himatex Co Ltd
Original Assignee
Sumitomo Heavy Industries Himatex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Himatex Co Ltd filed Critical Sumitomo Heavy Industries Himatex Co Ltd
Priority to JP2020072628A priority Critical patent/JP7406443B2/en
Publication of JP2021169108A publication Critical patent/JP2021169108A/en
Application granted granted Critical
Publication of JP7406443B2 publication Critical patent/JP7406443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、金属基材の表面に金属肉盛層を有する硬質金属部材の製造方法及び当該製造方法によって得られる硬質金属部材に関する。 The present invention relates to a method for manufacturing a hard metal member having a metal build-up layer on the surface of a metal base material, and a hard metal member obtained by the manufacturing method.

従来、表面処理技術の一つとして、金属基材の表面に当該金属基材とは異なる高硬度材料を肉盛りすることにより、最表面の耐摩耗性等を向上させる技術が知られている。当該技術を用いた場合、高硬度材料を用いて形成した表面の肉盛層が摩耗しても、基材は元の形状を保持できるため、当該基材に対して再度同様の肉盛りを行うことで、繰り返し使用することが可能である。例えば、特許文献1(特開2013-176778号公報)には、肉盛りを行う手法として、レーザを用いて金属基材表面に高硬度の肉盛層を形成するレーザクラッディング法が開示されている。 BACKGROUND ART Conventionally, as one of surface treatment techniques, a technique is known in which the wear resistance of the outermost surface is improved by overlaying a high hardness material different from that of the metal base material on the surface of the metal base material. When using this technology, even if the surface overlay formed using a high-hardness material wears out, the base material can maintain its original shape, so the same overlay is applied to the base material again. This allows it to be used repeatedly. For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-176778) discloses a laser cladding method in which a laser is used to form a hard overlay layer on the surface of a metal base material as a method for overlaying. There is.

また、特許文献2(特開平4-371390号公報)においては、鉄系母材上へ非酸化性雰囲気でシールドして所望成分のマトリックスを形成するワイヤを溶着肉盛しつつ、当該マトリックス溶融プール中へ粒径0.5~3.0mmの超硬合金粒体を定率で添加し、肉盛層の30~70重量%を占める超硬合金粒体をマトリックス中へ均等に分散した複合組織を形成することを特徴とする耐摩耗性肉盛層の溶接方法、が開示されている。 Furthermore, in Patent Document 2 (Japanese Unexamined Patent Publication No. 4-371390), while shielding in a non-oxidizing atmosphere a wire forming a matrix of desired components is deposited on the iron base material, the matrix molten pool is Cemented carbide particles with a grain size of 0.5 to 3.0 mm are added at a fixed rate to create a composite structure in which the cemented carbide particles, which account for 30 to 70% by weight of the overlay layer, are evenly dispersed in the matrix. A method of welding a wear-resistant build-up layer is disclosed.

上記特許文献2の肉盛溶接に使用する溶接機は、非酸化性雰囲気すなわち中性(又は還元性)のガスでシールドされたトーチ先端からアークを発して溶着部を母材上に作っていく型式のもので、いわゆるメタルイナートガスアーク溶接機と呼ばれるものであり、この型式の溶接機は、既に各工場で広く普及しており、ワイヤの材質を任意に選んで任意のマトリックスを自由に採択でき、必要とあれば山間の砕石現場へ出張して現地で肉盛再生を施工できるなど汎用性と作業性に優れている、とされている。 The welding machine used for overlay welding in Patent Document 2 generates an arc from the tip of a torch shielded with a non-oxidizing atmosphere, that is, neutral (or reducing) gas, to create a weld on the base material. This type of welding machine is called a metal inert gas arc welding machine, and this type of welding machine is already widely used in various factories, and it is possible to freely select the wire material and adopt any matrix. It is said to have excellent versatility and workability, as it can travel to crushed stone sites in the mountains and perform overlay regeneration on site if necessary.

特開2013-176778号公報Japanese Patent Application Publication No. 2013-176778 特開平4-371390号公報Japanese Patent Application Publication No. 4-371390

上記特許文献1に記載のレーザクラッディング法や上記特許文献2に記載の耐摩耗性肉盛層の溶接方法を用いることで、基材の表面に種々の金属肉盛層を効率的かつ簡便に形成することができる。また、例えば、従来一般的な超硬合金材は焼結によって製造されるために大きさが限定され、工具等として使用する場合は基材へのロウ付けや機械的接合が必要であったが、金属基材の表面に金属肉盛層を形成させることで、大型製品の製造が容易となり、別工程での基材への接合が不要になる。しかしながら、製品の最終形状とするためには、当該金属肉盛層に切削加工等を施す必要がある。 By using the laser cladding method described in Patent Document 1 and the welding method for wear-resistant build-up layers described in Patent Document 2, various metal build-up layers can be efficiently and easily applied to the surface of a base material. can be formed. In addition, for example, conventional cemented carbide materials are manufactured by sintering, so their size is limited, and when used as tools, they require brazing or mechanical bonding to the base material. By forming a metal build-up layer on the surface of a metal base material, manufacturing of large-sized products becomes easier and bonding to the base material in a separate process becomes unnecessary. However, in order to obtain the final shape of the product, it is necessary to perform cutting or the like on the metal overlay layer.

ここで、金属肉盛層は一般的に高硬度であり、特に、金属肉盛層に硬質セラミックス粒子が含まれている場合は仕上げ加工の難易度は極めて高く、特殊で高価な切削工具を使用しないと加工ができない。より具体的には、例えば、CBN製の切削工具で極端に加工速度を低下させるか、ダイヤモンド焼結体製の切削工具等を使用しないと加工ができない。そのため、製造コスト及び加工時間が増加することが大きな問題となっていた。 Here, the metal build-up layer generally has high hardness, and especially if the metal build-up layer contains hard ceramic particles, the difficulty of finishing is extremely high, and special and expensive cutting tools are required. Otherwise, processing will not be possible. More specifically, for example, machining cannot be performed unless the machining speed is extremely reduced using a cutting tool made of CBN, or a cutting tool made of a diamond sintered body or the like is used. As a result, increased manufacturing costs and processing time have become major problems.

以上のような従来技術における問題点に鑑み、本発明の目的は、優れた耐摩耗性と良好な仕上げ面を有する硬質金属肉盛層を簡便かつ効率的に得る方法、及び当該によって製造される硬質金属部材を提供することにある。 In view of the problems in the prior art as described above, an object of the present invention is to provide a method for easily and efficiently obtaining a hard metal build-up layer having excellent wear resistance and a good surface finish, and a method for producing a hard metal build-up layer by the method. An object of the present invention is to provide a hard metal member.

本発明者らは、上記目的を達成すべく、硬質金属肉盛層の形成方法及び加工方法について鋭意研究を重ねた結果、自溶性合金粉末と硬質粒子を含む混合粉末を原料として形成させた硬質金属肉盛層の表面に、当該自溶性合金粉末のみを原料として金属肉盛層を形成させ、当該金属肉盛層に対して切削加工を施すこと等が極めて有効であることを見出し、本発明に到達した。 In order to achieve the above object, the present inventors have conducted extensive research into the formation and processing methods of hard metal build-up layers, and as a result, we have developed a hard metal build-up layer formed from a mixed powder containing a self-fusing alloy powder and hard particles. It has been discovered that it is extremely effective to form a metal build-up layer on the surface of the metal build-up layer using only the self-fusing alloy powder as a raw material, and to perform cutting on the metal build-up layer, and has developed the present invention. reached.

即ち、本発明は、
自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程と、
前記自溶性合金粉末のみを原料とし、前記レーザ粉体肉盛溶接によって前記硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程と、
前記金属肉盛層に切削加工を施す第三工程と、を含むこと、
を特徴とする硬質金属部材の製造方法、を提供する。
That is, the present invention
A first step of forming a hard metal overlay layer on the surface of a metal base material by laser powder overlay welding using a mixed powder containing self-fusing alloy powder and hard particles as raw materials;
a second step of forming a metal build-up layer on the surface of the hard metal build-up layer by the laser powder build-up welding using only the self-fusing alloy powder as a raw material;
a third step of cutting the metal overlay layer;
A method for manufacturing a hard metal member is provided.

本発明の硬質金属部材の製造方法においては、硬質粒子を含む硬質金属肉盛層よりも軟質な金属肉盛層が切削加工の主な対象となるため、良好な仕上げ面を容易に形成させることができる。また、金属肉盛層の形成プロセスにおいて、硬質金属肉盛層の表面近傍が僅かに軟化等するため、当該領域の切削加工も容易となる。 In the method for manufacturing a hard metal member of the present invention, since the metal build-up layer, which is softer than the hard metal build-up layer containing hard particles, is the main object of cutting, a good finished surface can be easily formed. I can do it. Further, in the process of forming the metal build-up layer, the vicinity of the surface of the hard metal build-up layer is slightly softened, so that cutting of the area becomes easy.

ここで、金属肉盛層の原料である自溶性合金粉末は、硬質金属肉盛層の原料でもあることから、当該硬質金属肉盛層に不純物元素等が混入することがなく、硬質金属肉盛層への影響を最小限に留めることができる。なお、自溶性合金とは、ニッケル基やコバルト基からなる合金に、ボロンやシリコンなどのフラックス成分を含有させたものである。 Here, since the self-fusing alloy powder that is the raw material for the metal build-up layer is also the raw material for the hard metal build-up layer, impurity elements etc. will not be mixed into the hard metal build-up layer, and the hard metal build-up layer will not be contaminated with impurity elements. The effect on the layer can be kept to a minimum. Note that the self-fusing alloy is a nickel-based or cobalt-based alloy containing a flux component such as boron or silicon.

本発明の効果を損なわない限りにおいて、硬質粒子の種類、形状及び大きさは特に限定されず、従来公知の種々のセラミックス粒子を用いることができる。また、硬質粒子の添加量は、硬質金属肉盛層に対する所望の硬度及び耐摩耗性等に応じて、適宜設定すればよいが、欠陥のない良好な硬質金属肉盛層を得る観点から、60vol.%以下とすることが好ましい。 The type, shape and size of the hard particles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known ceramic particles can be used. The amount of hard particles added may be appropriately set depending on the desired hardness and wear resistance of the hard metal build-up layer, but from the viewpoint of obtaining a good hard metal build-up layer without defects, 60 vol. .. % or less.

また、本発明の硬質金属部材の製造方法においては、前記硬質粒子がタングステンカーバイド(WC)粒子であること、が好ましい。タングステンカーバイド粒子は高硬度を有し、産業的に汎用されている超硬合金の主成分でもあり、適当な自溶性合金粉末と組み合わせることで、硬質金属肉盛層に超硬合金と同程度の耐摩耗性を付与することができる。 Moreover, in the method for manufacturing a hard metal member of the present invention, it is preferable that the hard particles are tungsten carbide (WC) particles. Tungsten carbide particles have high hardness and are the main component of industrially used cemented carbide.By combining with an appropriate self-fusing alloy powder, tungsten carbide particles can be applied to hard metal build-up layers with the same level of hardness as cemented carbide. Abrasion resistance can be imparted.

また、本発明の硬質金属部材の製造方法においては、前記硬質粒子が粉砕粉であること、が好ましい。一般的に粉砕粉では素材本来の機械的性質が担保されており、硬質金属部材に確実に高い硬度を付与することができる。 Moreover, in the method for manufacturing a hard metal member of the present invention, it is preferable that the hard particles are pulverized powder. Generally, pulverized powder maintains the original mechanical properties of the material, and can reliably impart high hardness to hard metal members.

また、硬質金属肉盛層で硬質粒子の焼結相となる自溶性合金についても、本発明の効果を損なわない限りにおいて、従来公知の種々の金属を用いることができるが、超硬合金やサーメットの金属結合相として使用されている金属材を好適に用いることができる。自溶性合金粉末のサイズ及び形状は、硬質粒子の形状、大きさ及び添加量を踏まえて、無欠陥の硬質金属肉盛層が効率的に形成されるように適宜調整すればよい。 Furthermore, as for the self-fusing alloy that becomes the sintered phase of the hard particles in the hard metal build-up layer, various conventionally known metals can be used as long as they do not impair the effects of the present invention. Metal materials used as the metal binder phase can be suitably used. The size and shape of the self-fusing alloy powder may be appropriately adjusted based on the shape, size, and amount of the hard particles so that a defect-free hard metal build-up layer is efficiently formed.

また、前記自溶性合金粉末がニッケル基自溶性合金粉末であること、が好ましい。超硬合金の代表的な金属結合相はコバルト基合金又はニッケル基合金であるが、ニッケル基合金を用いることで、硬質金属肉盛層に優れた耐食性と靭性を付与することができる。 Further, it is preferable that the self-fusing alloy powder is a nickel-based self-fusing alloy powder. A typical metal binder phase of cemented carbide is a cobalt-based alloy or a nickel-based alloy, and by using a nickel-based alloy, excellent corrosion resistance and toughness can be imparted to the hard metal build-up layer.

また、本発明の硬質金属部材の製造方法においては、前記硬質金属肉盛層に切削加工を施すこと、が好ましい。硬質金属肉盛層の表面に形成させた金属肉盛層のみを切削加工して所望の最終形状としてもよいが、その場合は、硬度及び耐摩耗性に劣る金属肉盛層が再表面に僅かに残存してしまう。これに対し、硬質金属肉盛層の表面近傍にも切削加工を施すことで、最表面が極めて均質かつ高硬度な硬質金属部材を得ることができる。ここで、金属肉盛層の形成過程において、硬質金属肉盛層表面近傍の硬質粒子のエッジが丸みを帯びると共に、サイズも低減されるため、精密な切削加工に適した状況となっている。 Moreover, in the method for manufacturing a hard metal member of the present invention, it is preferable that the hard metal build-up layer is subjected to a cutting process. Only the metal build-up layer formed on the surface of the hard metal build-up layer may be cut into the desired final shape, but in that case, the metal build-up layer, which is inferior in hardness and wear resistance, may be slightly removed from the surface. remains. On the other hand, by cutting near the surface of the hard metal build-up layer, it is possible to obtain a hard metal member with an extremely homogeneous outermost surface and high hardness. Here, in the process of forming the metal build-up layer, the edges of the hard particles near the surface of the hard metal build-up layer become rounded and the size is reduced, making the situation suitable for precision cutting.

一方で、金属肉盛層のみに切削加工を施すことで、切削加工の時間が短縮されると共に、切削精度が向上する。また、金属肉盛層のみを切削加工した場合は硬質金属部材の最表面が当該金属肉盛層となり、当該金属肉盛層には硬質粒子が存在しないため、潤滑や滑り止めを目的とした微細パターン加工も可能である。更に、例えば、標準的に摩耗する部位と激しく摩耗する部位で、金属肉盛層と硬質金属肉盛層を使い分けることができる。また、補修を目的として、自溶性合金の肉盛溶接を施すこともできる。 On the other hand, by cutting only the metal overlay layer, cutting time is shortened and cutting accuracy is improved. In addition, when only the metal build-up layer is cut, the outermost surface of the hard metal member becomes the metal build-up layer, and since there are no hard particles in the metal build-up layer, fine particles are used for lubrication and anti-slip purposes. Pattern processing is also possible. Furthermore, for example, a metal build-up layer and a hard metal build-up layer can be used selectively for areas that are normally worn and areas that are severely worn. Furthermore, for the purpose of repair, overlay welding of self-fusing alloys can also be performed.

本発明の硬質金属部材の製造方法においては、硬質金属肉盛層及び金属肉盛層をレーザ粉体肉盛溶接によって形成させるため、基本的に形状及び大きさの制約がなく、従来の焼結材では製造できない大型部材を得ることができる。 In the method for manufacturing a hard metal member of the present invention, since the hard metal build-up layer and the metal build-up layer are formed by laser powder build-up welding, there are basically no restrictions on shape and size, and there are no restrictions on the shape or size of the hard metal build-up layer. It is possible to obtain large components that cannot be manufactured using wood.

また、本発明は、
金属基材の表面に硬質金属肉盛層を有し、
前記硬質金属肉盛層は自溶性合金と硬質粒子からなり、
前記硬質金属肉盛層の最表面における前記硬質粒子の平均粒径は、前記硬質金属肉盛層全体の値よりも小さくなっていること、
を特徴とする硬質金属部材、も提供する。
Moreover, the present invention
It has a hard metal overlay layer on the surface of the metal base material,
The hard metal overlay layer is composed of a self-fusing alloy and hard particles,
The average particle diameter of the hard particles at the outermost surface of the hard metal build-up layer is smaller than the value of the entire hard metal build-up layer;
A hard metal member is also provided.

本発明の硬質金属部材は、本発明の硬質金属部材の製造方法によって好適に得ることができるが、硬質金属肉盛層の最表面における硬質粒子の平均粒径が硬質金属肉盛層全体の値よりも小さくなっていることで、滑らかかつ精密な表面形状を実現することができる。なお、硬質粒子のエッジが丸くなることでも、当該硬質粒子の平均粒径は低下することになる。 The hard metal member of the present invention can be suitably obtained by the method of manufacturing a hard metal member of the present invention, but the average particle diameter of the hard particles on the outermost surface of the hard metal build-up layer is the value of the entire hard metal build-up layer. By being smaller than this, a smooth and precise surface shape can be achieved. Note that when the edges of the hard particles become rounded, the average particle size of the hard particles also decreases.

また、本発明の硬質金属部材においては、前記硬質粒子がタングステンカーバイド(WC)粒子であることが好ましく、前記硬質粒子が粉砕粉であることが好ましい。上述のとおり、硬質粒子には従来公知の種々のセラミックス粒子を用いることができるが、タングステンカーバイド粒子は高い硬度と優れた耐摩耗性を有しており、粉砕粉を用いることで、素材が本来有する性質を十分に発現させることができる。 Moreover, in the hard metal member of the present invention, it is preferable that the hard particles are tungsten carbide (WC) particles, and it is preferable that the hard particles are pulverized powder. As mentioned above, various conventionally known ceramic particles can be used as the hard particles, but tungsten carbide particles have high hardness and excellent wear resistance, and by using pulverized powder, the material is It is possible to fully express the properties that it has.

また、本発明の硬質金属部材は、前記金属基材の表面に金属肉盛層からなる領域を有し、 前記金属肉盛層は前記自溶性合金からなること、が好ましい。例えば、硬質金属部材において標準的に摩耗する部位の表面を金属肉盛層、激しく摩耗する部位を硬質金属肉盛層とすることで、全体としてバランスよく摩耗が進行する硬質金属部材とすることができる。 Further, it is preferable that the hard metal member of the present invention has a region made of a metal build-up layer on the surface of the metal base material, and the metal build-up layer is made of the self-fusing alloy. For example, by using a metal build-up layer on the surface of a part of a hard metal member that normally wears, and a hard metal build-up layer on the area that wears severely, it is possible to create a hard metal member that wears out in a well-balanced manner as a whole. can.

更に、本発明の硬質金属部材は、搬送ローラー、金型及び切削工具のうちのいずれかであること、が好ましい。搬送ローラー、金型及び切削工具は滑らかかつ精密に加工された表面形状と優れた耐摩耗性が要求されるところ、本発明の硬質金属部材はこれらの要求を全て具備している。 Furthermore, it is preferable that the hard metal member of the present invention is any one of a conveyance roller, a mold, and a cutting tool. Conveyance rollers, molds, and cutting tools are required to have smooth and precisely machined surfaces and excellent wear resistance, and the hard metal member of the present invention meets all of these requirements.

本発明によれば、優れた耐摩耗性と良好な仕上げ面を有する硬質金属肉盛層を簡便かつ効率的に得る方法、及び当該によって製造される硬質金属部材を提供することができる。 According to the present invention, it is possible to provide a method for simply and efficiently obtaining a hard metal build-up layer having excellent wear resistance and a good finished surface, and a hard metal member manufactured by the method.

本発明の硬質金属部材の製造方法の工程図である。It is a process diagram of the manufacturing method of the hard metal member of this invention. 本発明における硬質金属肉盛層の形成方法を示す模式図である。FIG. 3 is a schematic diagram showing a method of forming a hard metal build-up layer in the present invention. 本発明における粉体肉盛溶接に関するレーザ走査方向の一例を示す模式図である。It is a schematic diagram which shows an example of the laser scanning direction regarding powder build-up welding in this invention. 硬質金属肉盛層6の一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a hard metal build-up layer 6. FIG. 第一工程後及び第二工程後の被処理材の状況を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the state of the treated material after the first step and after the second step. 本発明の硬質金属部材の一態様を示す概略断面図である。1 is a schematic cross-sectional view showing one embodiment of a hard metal member of the present invention. 本発明の硬質金属部材の別の態様を示す概略断面図である。It is a schematic sectional view showing another aspect of the hard metal member of the present invention. 実施例における切削加工の状況を示す写真である。It is a photograph which shows the cutting process situation in an Example. 実施例で切削加工された硬質金属肉盛層の表面状態を示す写真である。It is a photograph showing the surface condition of a hard metal build-up layer that was cut in an example.

以下、図を参照しながら、本発明の硬質金属部材の製造方法及び硬質金属部材における代表的な実施形態を詳細に説明する。但し、本発明は図示されるものに限られるものではなく、各図面は本発明を概念的に説明するためのものであるから、理解容易のために必要に応じて比や数を誇張又は簡略化して表している場合もある。更に、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略することもある。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a hard metal member of the present invention and a typical embodiment of the hard metal member will be described in detail with reference to the drawings. However, the present invention is not limited to what is illustrated, and each drawing is for conceptually explaining the present invention, so ratios and numbers may be exaggerated or simplified as necessary to facilitate understanding. Sometimes it is expressed as Furthermore, in the following description, the same or corresponding parts are denoted by the same reference numerals, and overlapping description may be omitted.

1.硬質金属部材の製造方法
図1に本発明の硬質金属部材の製造方法の工程図を示す。本発明の硬質金属部材の製造方法は、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程(S01)と、レーザ粉体肉盛溶接によって硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程(S02)と、金属肉盛層に切削加工を施す第三工程(S03)と、を含んでいる。以下、これらの各工程について詳述する。
1. Method for manufacturing a hard metal member FIG. 1 shows a process diagram of the method for manufacturing a hard metal member of the present invention. The method for manufacturing a hard metal member of the present invention includes a first step (S01) of forming a hard metal build-up layer on the surface of a metal base material by laser powder build-up welding, and a hard metal build-up layer by laser powder build-up welding. The method includes a second step (S02) of forming a metal build-up layer on the surface of the build-up layer, and a third step (S03) of cutting the metal build-up layer. Each of these steps will be explained in detail below.

(1)第一工程(S01:硬質金属肉盛層の形成)
第一工程は、自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成するための工程である。
(1) First step (S01: Formation of hard metal overlay layer)
The first step is a step for forming a hard metal build-up layer on the surface of a metal base material by laser powder build-up welding using a mixed powder containing a self-fusing alloy powder and hard particles as raw materials.

図2に本実施形態に係る硬質金属肉盛層の形成方法の模式図を示す。本実施形態に係る硬質金属肉盛層の形成方法では、レーザ粉体肉盛溶接が用いられる。ここで、レーザ粉体肉盛溶接はレーザメタルデポジション法とも呼ばれ、例えばレーザクラッディング法やダイレクトエナジーデポジション法等と略同様で、レーザビーム2を用いて原料粉末を溶融することで、金属基材4の被肉盛領域に硬質金属肉盛層6を形成することができる。 FIG. 2 shows a schematic diagram of a method for forming a hard metal build-up layer according to this embodiment. In the method for forming a hard metal build-up layer according to this embodiment, laser powder build-up welding is used. Here, laser powder deposition welding is also called laser metal deposition method, and is almost the same as, for example, laser cladding method or direct energy deposition method, and by melting raw material powder using laser beam 2, A hard metal build-up layer 6 can be formed in the build-up area of the metal base material 4 .

レーザ粉体肉盛溶接では、レーザ光源から射出されたレーザビーム2を集光させて局所的な入熱を行うことで金属粉末を溶融するため、硬質金属肉盛層6は急速溶融及び急冷凝固により形成される。また、金属基材4に対する熱ひずみや熱影響部を少なくし、金属基材4と形成した硬質金属肉盛層6とにおける希釈率を低減することが可能である。更に、レーザビーム2及び原料粉末を射出するトーチ部8はプログラムによるロボット制御が可能であり、硬質金属肉盛層6の形成領域及び形状を比較的正確にコントロールすることができる。 In laser powder build-up welding, the metal powder is melted by focusing the laser beam 2 emitted from the laser light source and locally inputting heat, so the hard metal build-up layer 6 undergoes rapid melting and rapid solidification. formed by Furthermore, it is possible to reduce the thermal strain and heat-affected zone on the metal base material 4, and to reduce the dilution rate between the metal base material 4 and the formed hard metal build-up layer 6. Furthermore, the laser beam 2 and the torch section 8 that injects the raw material powder can be controlled by a robot according to a program, and the formation area and shape of the hard metal build-up layer 6 can be controlled relatively accurately.

図3に粉体肉盛溶接におけるレーザ走査方向の一例を示す模式図を示す。レーザ粉体肉盛溶接では、所望の被肉盛領域に対してレーザビーム2の直線移動及び所定の間隔による並行移動によって略面状の硬質金属肉盛層6を形成することが基本である。 FIG. 3 is a schematic diagram showing an example of a laser scanning direction in powder overlay welding. The basic principle of laser powder overlay welding is to form a substantially planar hard metal overlay layer 6 by linear movement of the laser beam 2 and parallel movement at a predetermined interval with respect to a desired overlay area.

図4に硬質金属肉盛層6の断面図を示す。図4に示すとおり、形成する硬質金属肉盛層6の厚さ方向の寸法を調整する場合は、複数の溶接ビードからなる積層構造とすることが望ましい。より具体的な積層方法としては、特開2016-155155号公報に開示された工具材の製造方法を用いることができる。 FIG. 4 shows a cross-sectional view of the hard metal build-up layer 6. As shown in FIG. 4, when adjusting the dimension in the thickness direction of the hard metal build-up layer 6 to be formed, it is desirable to have a laminated structure consisting of a plurality of weld beads. As a more specific lamination method, the tool material manufacturing method disclosed in Japanese Patent Application Laid-Open No. 2016-155155 can be used.

硬質金属肉盛層6の形成に用いるレーザ粉体肉盛溶接の条件としては、レーザ出力、レーザ焦点距離、レーザ走査速度、原料粉末の供給量、キャリアガス(シールドガス)の供給量、及び長手方向Yの並行移動量等であるが、使用する金属基材4や自溶性金属粉末及び硬質粒子の組成、形状、サイズ及び混合量等に応じて、適宜最適な条件を選択することが好ましい。 The conditions for laser powder overlay welding used to form the hard metal overlay layer 6 include laser output, laser focal length, laser scanning speed, raw material powder supply amount, carrier gas (shielding gas) supply amount, and longitudinal direction. Regarding the amount of parallel movement in the direction Y, etc., it is preferable to appropriately select optimal conditions depending on the composition, shape, size, mixing amount, etc. of the metal base material 4 and the self-fusing metal powder and hard particles to be used.

金属基材4の材質は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の金属材を用いることができる。当該金属材としては、例えば、各種ステンレス鋼、合金工具鋼、高速度工具鋼等の鉄基合金、ニッケル基合金及びコバルト基合金を用いることができる。 The material of the metal base material 4 is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known metal materials can be used. As the metal material, for example, various stainless steels, alloy tool steels, iron-based alloys such as high-speed tool steels, nickel-based alloys, and cobalt-based alloys can be used.

原料として用いる硬質粒子は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のセラミックス粒子を用いることができる。セラミックス粒子としては、例えば、WC、TiC、VC、MoC、ZrC、HfC、NbC、TaC、Cr、SiC等の炭化物、Si等の窒化物、TiB等のホウ化物およびAl等の酸化物等を例示することができるが、WCとすることが好ましい。硬質粒子をWCとすることで、硬質金属肉盛層6に焼結超硬合金材と同等以上の耐摩耗性を付与することができる。 The hard particles used as raw materials are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known ceramic particles can be used. Examples of ceramic particles include carbides such as WC, TiC, VC, Mo2C , ZrC, HfC, NbC, TaC , Cr3C2 , and SiC, nitrides such as Si3N4 , and borides such as TiB2 . Examples include oxides such as Al 2 O 3 and Al 2 O 3 , but WC is preferable. By using WC as the hard particles, it is possible to provide the hard metal overlay layer 6 with wear resistance equal to or higher than that of the sintered cemented carbide material.

硬質粒子の組成、形状及びサイズは適当に選定することができ、硬質金属肉盛層6に対する所望の硬度及び耐摩耗性等に応じて、適宜選定すればよい。 The composition, shape, and size of the hard particles can be appropriately selected depending on the desired hardness, wear resistance, etc. of the hard metal build-up layer 6.

また、自溶性合金粉末についても、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の自溶性合金粉末を用いることができるが、ニッケル基又はコバルト基の自溶性合金粉末を用いることが好ましい。これらを用いることで、硬質金属肉盛層6に優れた耐食性と靭性を付与することができる。 Further, the self-fusing alloy powder is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known self-fusing alloy powders can be used, but nickel-based or cobalt-based self-fusing alloy powders may be used. It is preferable to use By using these, it is possible to impart excellent corrosion resistance and toughness to the hard metal overlay layer 6.

(2)第二工程(S02:金属肉盛層の形成)
第二工程(S02)は、第一工程(S01)で用いた自溶性合金粉末のみを原料とし、レーザ粉体肉盛溶接によって硬質金属肉盛層6の表面に金属肉盛層を形成させるための工程である。
(2) Second step (S02: Formation of metal build-up layer)
The second step (S02) uses only the self-fusing alloy powder used in the first step (S01) as a raw material, and forms a metal build-up layer on the surface of the hard metal build-up layer 6 by laser powder build-up welding. This is the process.

本発明の効果を損なわない限り、レーザ粉体肉盛溶接の条件は特に限定されず、原料粉末の種類や所望の金属肉盛層の厚さ等に応じて、適宜調整すればよい。基本的には、第一工程(S01)で用いたレーザ粉体肉盛条件を基準とし、必要に応じて微調整することで、良好な金属肉盛層を得ることができる。 As long as the effects of the present invention are not impaired, the conditions for laser powder overlay welding are not particularly limited and may be adjusted as appropriate depending on the type of raw material powder, the desired thickness of the metal overlay layer, etc. Basically, a good metal build-up layer can be obtained by using the laser powder build-up conditions used in the first step (S01) as a reference and making fine adjustments as necessary.

図5は第一工程後及び第二工程後の状態の一例であり、金属基材4及びその表面の概略断面図である。本発明の硬質金属部材の製造方法においては、未加工の金属基材4に硬質金属肉盛層6を形成し、硬質金属肉盛層6の表面に金属肉盛層10を形成させてもよいが、第三工程(S03)の切削加工を考慮し、図5に示すように、当該切削加工後に硬質金属肉盛層6が再表面となるように金属基材4の表面を加工しておくことが好ましい。 FIG. 5 is an example of the state after the first step and after the second step, and is a schematic cross-sectional view of the metal base material 4 and its surface. In the method for manufacturing a hard metal member of the present invention, a hard metal build-up layer 6 may be formed on the unprocessed metal base material 4, and a metal build-up layer 10 may be formed on the surface of the hard metal build-up layer 6. However, in consideration of the cutting process in the third step (S03), the surface of the metal base material 4 is processed so that the hard metal build-up layer 6 is resurfaced after the cutting process, as shown in FIG. It is preferable.

具体的には、金属基材4の表面に凹部を形成し、当該領域に硬質金属肉盛層6と金属肉盛層10を形成し、金属肉盛層10を切削除去した状態を仕上げ形状とすることが好ましい。このような製造工程とすることで、極めて効率的に再表面を硬質金属肉盛層6とする硬質金属部材を簡便かつ高精度に得ることができる。 Specifically, a concave portion is formed on the surface of the metal base material 4, a hard metal build-up layer 6 and a metal build-up layer 10 are formed in the area, and the state in which the metal build-up layer 10 is removed is called the finished shape. It is preferable to do so. By using such a manufacturing process, it is possible to easily and accurately obtain a hard metal member whose surface is resurfaced as the hard metal build-up layer 6 in an extremely efficient manner.

(3)第三工程(S03:切削加工)
第三工程(S03)は、金属肉盛層10(必要に応じて硬質金属肉盛層6)に切削加工を施して、所望の形状を有する硬質金属部材を得るための工程である。
(3) Third process (S03: cutting)
The third step (S03) is a step for cutting the metal build-up layer 10 (hard metal build-up layer 6 if necessary) to obtain a hard metal member having a desired shape.

例えば、WC粒子とニッケル基自溶性合金粉末からなる従来一般的な硬質金属肉盛層に切削加工を施す場合、硬質金属肉盛層6は焼結超硬合金材と同等以上の硬度及び耐摩耗性を有していることから、CBN製の切削工具を用いて極端に加工速度を落とすか、高価なダイヤモンド焼結体製の切削工具を用いる必要がある。これに対し、第三工程(S03)では主として金属肉盛層10に切削加工を施すため、汎用の安価な切削工具を用いて、比較的高速で加工を施すことができる。 For example, when cutting a conventional hard metal build-up layer made of WC particles and nickel-based self-fusing alloy powder, the hard metal build-up layer 6 has hardness and wear resistance equal to or higher than that of the sintered cemented carbide material. Therefore, it is necessary to use a cutting tool made of CBN to extremely slow down the machining speed, or to use a cutting tool made of an expensive diamond sintered body. On the other hand, in the third step (S03), since cutting is mainly performed on the metal build-up layer 10, processing can be performed at a relatively high speed using a general-purpose, inexpensive cutting tool.

また、金属肉盛層10のみに切削加工を施す場合、金属肉盛層10には硬質粒子が存在しないため、例えば、潤滑や滑り止めを目的とした微細パターンを加工することも可能である。 Further, when cutting only the metal build-up layer 10, since there are no hard particles in the metal build-up layer 10, it is also possible to process a fine pattern for the purpose of lubrication or slip prevention, for example.

また、第二工程(S02)における入熱で硬質金属肉盛層6の表面近傍の硬質粒子のエッジが丸みを帯びると共に、サイズも低減されるため、精密な切削加工に適した状況となっている。その結果、硬質金属肉盛層6に僅かに切削加工を施すことで、極めて良好な仕上がり表面を得ることができる。 In addition, the heat input in the second step (S02) rounds the edges of the hard particles near the surface of the hard metal build-up layer 6 and reduces the size, making the situation suitable for precision cutting. There is. As a result, by slightly cutting the hard metal overlay layer 6, an extremely good finished surface can be obtained.

2.硬質金属部材
図6に本発明の硬質金属部材の一態様に関する概略断面図を示す。図6には、金属基材4の表面の全域に硬質金属肉盛層6が形成されている場合を示している。硬質金属肉盛層6は自溶性合金と硬質粒子からなり、硬質金属肉盛層6の最表面における硬質粒子の平均粒径は、硬質金属肉盛層6全体の値よりも小さくなっている。
2. Hard Metal Member FIG. 6 shows a schematic cross-sectional view of one embodiment of the hard metal member of the present invention. FIG. 6 shows a case where a hard metal build-up layer 6 is formed over the entire surface of the metal base material 4. The hard metal build-up layer 6 is made of a self-fusing alloy and hard particles, and the average particle size of the hard particles at the outermost surface of the hard metal build-up layer 6 is smaller than the value of the hard metal build-up layer 6 as a whole.

図6において、硬質金属部材20は金属基材4の表面の全域に硬質金属肉盛層6を有している。ここで、硬質金属部材20の表面形状は硬質金属肉盛層6の表面に形成させた金属肉盛層10を切削除去して得られたものであり、硬質金属肉盛層6の表面には薄い金属肉盛層10が残存していてもよく、金属肉盛層10は完全に除去されていてもよい。金属肉盛層10は、硬質金属肉盛層6の自溶性合金のみからなるものである。 In FIG. 6, the hard metal member 20 has a hard metal build-up layer 6 over the entire surface of the metal base material 4. As shown in FIG. Here, the surface shape of the hard metal member 20 is obtained by cutting and removing the metal build-up layer 10 formed on the surface of the hard metal build-up layer 6. The thin metal build-up layer 10 may remain, or the metal build-up layer 10 may be completely removed. The metal build-up layer 10 is made only of the self-fusing alloy of the hard metal build-up layer 6.

硬質金属肉盛層6の表面に形成された金属肉盛層10が完全に除去されている場合は、硬質金属部材20の最表面は硬質金属肉盛層6となる。ここで、硬質金属肉盛層6の表面近傍では、その他の領域と比較して硬質粒子が微細化され、角が丸まった形状となっていることから、滑らかかつ寸法精度の高い表面となっている。 When the metal build-up layer 10 formed on the surface of the hard metal build-up layer 6 is completely removed, the outermost surface of the hard metal member 20 becomes the hard metal build-up layer 6. Here, near the surface of the hard metal build-up layer 6, the hard particles are finer than in other areas, and the corners are rounded, resulting in a smooth surface with high dimensional accuracy. There is.

硬質金属肉盛層6の最表面における硬質粒子の平均粒径は、硬質金属肉盛層6全体の値よりも小さくなっている。硬質粒子の平均粒径の測定方法は特に限定されないが、例えば、適当な断面試料に対する光学顕微鏡観察や走査電子顕微鏡観察を行い、少なくとも20個程度の硬質粒子が含まれる観察画像を用いて、粒径の平均値を算出すればよい。 The average particle diameter of the hard particles on the outermost surface of the hard metal build-up layer 6 is smaller than the value of the hard metal build-up layer 6 as a whole. The method for measuring the average particle size of hard particles is not particularly limited, but for example, an appropriate cross-sectional sample is observed with an optical microscope or a scanning electron microscope, and an observation image containing at least about 20 hard particles is used to determine the particle size. What is necessary is to calculate the average value of the diameter.

硬質金属肉盛層6の硬質粒子は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の硬質粒子を用いることができる。セラミックス粒子としては、例えば、WC、TiC、VC、MoC、ZrC、HfC、NbC、TaC、Cr、SiC等の炭化物、Si等の窒化物、TiB等のホウ化物およびAl等の酸化物等を例示することができるが、WCとすることが好ましい。硬質粒子をWCとすることで、硬質金属肉盛層6に焼結超硬合金材と同等以上の耐摩耗性を付与することができる。また、硬質粒子の組成、形状及びサイズは適当に選定することができ、硬質金属肉盛層6に対する所望の硬度及び耐摩耗性等に応じて、適宜選定すればよい。 The hard particles of the hard metal build-up layer 6 are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known hard particles can be used. Examples of ceramic particles include carbides such as WC, TiC, VC, Mo2C , ZrC, HfC, NbC, TaC , Cr3C2 , and SiC, nitrides such as Si3N4 , and borides such as TiB2 . Examples include oxides such as Al 2 O 3 and Al 2 O 3 , but WC is preferable. By using WC as the hard particles, it is possible to provide the hard metal overlay layer 6 with wear resistance equal to or higher than that of the sintered cemented carbide material. Further, the composition, shape, and size of the hard particles can be appropriately selected depending on the desired hardness, wear resistance, etc. of the hard metal build-up layer 6.

硬質金属肉盛層6の自溶性合金粉末は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の自溶性合金粉末を用いることができるが、ニッケル基自溶性合金粉末を用いることが好ましい。ニッケル基合金を用いることで、硬質金属肉盛層6に優れた耐食性と靭性を付与することができる。 The self-fusing alloy powder of the hard metal build-up layer 6 is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known self-fusing alloy powders can be used, but nickel-based self-fusing alloy powders may be used. It is preferable to use By using a nickel-based alloy, the hard metal build-up layer 6 can be provided with excellent corrosion resistance and toughness.

硬質金属肉盛層6は金属基材4と冶金的に接合されている。一方で、硬質金属肉盛層6と金属基材4の混合や希釈は最小限に留められており、接合界面近傍での強度低下や耐食性低下等が効果的に抑制されている。また、硬質金属肉盛層6と金属基材4が冶金的に確実に接合されていることで、硬質金属肉盛層6に大きな応力や繰り返しの応力が印加されるような用途にも好適に使用することができる。 The hard metal build-up layer 6 is metallurgically bonded to the metal base material 4. On the other hand, mixing and dilution of the hard metal build-up layer 6 and the metal base material 4 are kept to a minimum, and a decrease in strength and corrosion resistance near the bonding interface is effectively suppressed. Furthermore, since the hard metal build-up layer 6 and the metal base material 4 are metallurgically bonded reliably, it is suitable for applications where large stress or repeated stress is applied to the hard metal build-up layer 6. can be used.

金属基材4は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の金属基材を用いることができるが、表面に形成させる硬質金属肉盛層6及び/又は金属肉盛層10との密着性、機械的性質及び価格等の観点から、鋼材を用いることが好ましく、例えば、工具鋼や軸受鋼等を好適に用いることができる。より具体的には、金属基材4として、例えば、中炭素鋼材(S45C等)、クロムモリブデン鋼鋼材、合金工具鋼鋼材、高炭素クロム軸受鋼鋼材、ステンレス鋼材等を用いることができる。 The metal base material 4 is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known metal base materials can be used, but the hard metal overlay layer 6 and/or the metal overlay formed on the surface From the viewpoint of adhesion with the layer 10, mechanical properties, cost, etc., it is preferable to use a steel material, and for example, tool steel, bearing steel, etc. can be suitably used. More specifically, as the metal base material 4, for example, medium carbon steel (such as S45C), chromium molybdenum steel, alloy tool steel, high carbon chromium bearing steel, stainless steel, etc. can be used.

図7に本発明の硬質金属部材のその他の態様に関する概略断面図を示す。図7には、金属基材の表面に硬質金属肉盛層6の領域と金属肉盛層10の領域が形成されている場合を示している。 FIG. 7 shows a schematic cross-sectional view of another embodiment of the hard metal member of the present invention. FIG. 7 shows a case where a region of hard metal build-up layer 6 and a region of metal build-up layer 10 are formed on the surface of a metal base material.

図7に示す硬質金属部材20では、標準的に摩耗する部位の表面が金属肉盛層10、激しく摩耗する部位が硬質金属肉盛層6となっており、全体としてバランスよく摩耗を進行させることができる。 In the hard metal member 20 shown in FIG. 7, the surface of the part that normally wears is the metal build-up layer 10, and the part that is severely worn is the hard metal build-up layer 6, so that the wear progresses in a well-balanced manner as a whole. I can do it.

ここで、金属肉盛層10と金属基材4も冶金的に接合されている。硬質金属肉盛層10と金属基材4の混合や希釈は最小限に留められており、接合界面近傍での強度低下や耐食性低下等が効果的に抑制されている。 Here, the metal overlay layer 10 and the metal base material 4 are also metallurgically joined. Mixing and dilution of the hard metal build-up layer 10 and the metal base material 4 are kept to a minimum, and a decrease in strength and corrosion resistance near the bonding interface is effectively suppressed.

硬質金属部材20は、搬送ローラー、金型及び切削工具のうちのいずれかに好適に用いることができる。搬送ローラー、金型及び切削工具は滑らかかつ精密に加工された表面形状と優れた耐摩耗性が要求されるところ、硬質金属部材20はこれらの要求を全て具備している。加えて、硬質金属肉盛層6及び金属肉盛層10はレーザ粉体肉盛溶接によって形成させることができ、硬質金属部材20のサイズは特に限定されないことから、従来のHIP(熱間等方圧加圧法)等による製造方法ではサイズが大きすぎる用途や、経済的に割が合わない大型の製品にも好適に適用することができる。 The hard metal member 20 can be suitably used as a conveyance roller, a mold, or a cutting tool. Conveyance rollers, molds, and cutting tools are required to have smooth and precisely machined surfaces and excellent wear resistance, and the hard metal member 20 meets all of these requirements. In addition, the hard metal build-up layer 6 and the metal build-up layer 10 can be formed by laser powder build-up welding, and the size of the hard metal member 20 is not particularly limited. It can be suitably applied to applications where the size is too large for manufacturing methods such as the pressurization method, or to large products that are not economically viable.

以下、実施例において本発明の硬質金属部材の製造方法及び硬質金属部材について更に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the method for manufacturing a hard metal member and the hard metal member of the present invention will be further explained in Examples, but the present invention is not limited to these Examples at all.

Ni基自溶性合金(NiBSi)粉末とWC粉末を、WC粉末が30vol.%となるように混合し、外径320mm、長さ2300mmの円筒状のSS基材上にレーザクラッディングを施して、2層の硬質金属肉盛層を形成した。その後、Ni基自溶性合金(NiBSi)粉末のみを用いて、硬質金属肉盛層の表面に薄い金属肉盛層を形成させた。レーザには半導体レーザを用い、レーザ出力5kW、レーザビーム幅19mm、レーザ移動速度900mm/分とした。 Ni-based self-fusing alloy (NiBSi) powder and WC powder were mixed, and the WC powder was 30 vol. %, and laser cladding was performed on a cylindrical SS base material with an outer diameter of 320 mm and a length of 2300 mm to form two hard metal overlay layers. Thereafter, a thin metal build-up layer was formed on the surface of the hard metal build-up layer using only Ni-based self-fusing alloy (NiBSi) powder. A semiconductor laser was used as the laser, with a laser output of 5 kW, a laser beam width of 19 mm, and a laser movement speed of 900 mm/min.

次に、CBN製の切削チップを用いて、被削材の回転数:40rpm、切削送り:0.25mm/rev、切込量:0.2mmの条件で外周面の切削を施した。当該切削の状況を図8、切削面の拡大写真を図9にそれぞれ示す。切削面は滑らかな状態となっており、本発明の硬質金属部材は一般的な切削によって表面加工が可能であることが分かる。また、得られた表面は各種搬送ローラーや金型に使用できる状態であることに加え、大量のWC粉末を含んでおり耐摩耗性等に優れている。 Next, the outer peripheral surface was cut using a CBN cutting tip under the following conditions: rotation speed of the workpiece: 40 rpm, cutting feed: 0.25 mm/rev, depth of cut: 0.2 mm. The cutting situation is shown in FIG. 8, and an enlarged photograph of the cut surface is shown in FIG. 9. The cut surface was in a smooth state, and it can be seen that the surface of the hard metal member of the present invention can be processed by general cutting. In addition, the obtained surface can be used for various conveyance rollers and molds, and it also contains a large amount of WC powder and has excellent wear resistance.

2・・・レーザビーム、
4・・・金属基材、
6・・・硬質金属肉盛層、
8・・・トーチ部、
10・・・金属肉盛層、
20・・・硬質金属部材。
2...Laser beam,
4...metal base material,
6...Hard metal overlay layer,
8...Torch part,
10...metal overlay layer,
20...Hard metal member.

Claims (10)

自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程と、
前記自溶性合金粉末のみを原料とし、前記レーザ粉体肉盛溶接によって前記硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程と、
前記金属肉盛層に切削加工を施す第三工程と、を含むこと、
を特徴とする硬質金属部材の製造方法。
A first step of forming a hard metal overlay layer on the surface of a metal base material by laser powder overlay welding using a mixed powder containing self-fusing alloy powder and hard particles as raw materials;
a second step of forming a metal build-up layer on the surface of the hard metal build-up layer by the laser powder build-up welding using only the self-fusing alloy powder as a raw material;
a third step of cutting the metal overlay layer;
A method for manufacturing a hard metal member, characterized by:
前記硬質粒子がタングステンカーバイド(WC)粒子であること、
を特徴とする請求項1に記載の硬質金属部材の製造方法。
the hard particles are tungsten carbide (WC) particles;
The method for manufacturing a hard metal member according to claim 1.
前記硬質粒子が粉砕粉であること、
を特徴とする請求項1又は2に記載の硬質金属部材の製造方法。
the hard particles are pulverized powder;
The method for manufacturing a hard metal member according to claim 1 or 2, characterized in that:
前記自溶性合金粉末がニッケル基自溶性合金粉末であること、
を特徴とする請求項1~3のうちのいずれかに記載の硬質金属部材の製造方法。
the self-fusing alloy powder is a nickel-based self-fusing alloy powder;
The method for manufacturing a hard metal member according to any one of claims 1 to 3, characterized in that:
前記硬質金属肉盛層に切削加工を施すこと、
を特徴とする請求項1~4のうちのいずれかに記載の硬質金属部材の製造方法。
cutting the hard metal overlay layer;
The method for manufacturing a hard metal member according to any one of claims 1 to 4, characterized in that:
金属基材の表面に硬質金属肉盛層を有し、
前記硬質金属肉盛層は自溶性合金と硬質粒子からなり、
前記硬質金属肉盛層の最表面における前記硬質粒子の平均粒径は、前記硬質金属肉盛層全体の値よりも小さくなっていること、
を特徴とする硬質金属部材。
It has a hard metal overlay layer on the surface of the metal base material,
The hard metal overlay layer is composed of a self-fusing alloy and hard particles,
The average particle diameter of the hard particles at the outermost surface of the hard metal build-up layer is smaller than the value of the entire hard metal build-up layer;
A hard metal member characterized by:
前記硬質粒子がタングステンカーバイド(WC)粒子であり、
前記自溶性合金がニッケル基自溶性合金であること、
を特徴とする請求項6に記載の硬質金属部材。
The hard particles are tungsten carbide (WC) particles,
the self-fusing alloy is a nickel-based self-fusing alloy;
The hard metal member according to claim 6, characterized in that:
前記硬質粒子が粉砕粉であること、
を特徴とする請求項6又は7に記載の硬質金属部材。
the hard particles are pulverized powder;
The hard metal member according to claim 6 or 7, characterized by:
前記金属基材の表面に金属肉盛層からなる領域を有し、
前記金属肉盛層は前記自溶性合金からなること、
を特徴とする請求項6~8のうちのいずれかに記載の硬質金属部材。
having a region made of a metal overlay layer on the surface of the metal base material,
the metal overlay layer is made of the self-fusing alloy;
The hard metal member according to any one of claims 6 to 8, characterized by:
搬送ローラー、金型及び切削工具のうちのいずれかであること、
を特徴とする請求項6~9のうちのいずれかに記載の硬質金属部材。
be any of conveyor rollers, molds and cutting tools;
The hard metal member according to any one of claims 6 to 9, characterized by:
JP2020072628A 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member Active JP7406443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072628A JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072628A JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Publications (2)

Publication Number Publication Date
JP2021169108A JP2021169108A (en) 2021-10-28
JP7406443B2 true JP7406443B2 (en) 2023-12-27

Family

ID=78149928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072628A Active JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Country Status (1)

Country Link
JP (1) JP7406443B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672803A (en) * 2022-04-14 2022-06-28 中国石油化工股份有限公司 Petroleum plunger process method based on laser cladding nickel-based tungsten carbide coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109545A1 (en) 2003-11-25 2005-05-26 Greg Lockwood Barrier Coated Granules for Imporve Hardfacing Material
JP2011506763A (en) 2007-12-14 2011-03-03 シーバー フォーミング ソリューションズ ゲーエムベーハー Method and apparatus for producing an annular rotationally symmetric workpiece from metal powder and / or ceramic powder using metal powder and / or ceramic powder and laser beam
JP2011225960A (en) 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050109545A1 (en) 2003-11-25 2005-05-26 Greg Lockwood Barrier Coated Granules for Imporve Hardfacing Material
JP2011506763A (en) 2007-12-14 2011-03-03 シーバー フォーミング ソリューションズ ゲーエムベーハー Method and apparatus for producing an annular rotationally symmetric workpiece from metal powder and / or ceramic powder using metal powder and / or ceramic powder and laser beam
JP2011225960A (en) 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof

Also Published As

Publication number Publication date
JP2021169108A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
Haldar et al. Identifying defects and problems in laser cladding and suggestions of some remedies for the same
EP3209811B1 (en) Method and apparatus for cladding a surface of an article
CN106312843B (en) A kind of skive and its production method
TWI754127B (en) Tool material regeneration method and tool material
EA001332B1 (en) Sintered mechanical part with abrasionproof surface and method for producing same
JP2009255170A (en) TOOL FOR FRICTION STIR WORKING COMPRISING Ni-BASE DOUBLE MULTIPHASE INTERMETALLIC COMPOUND ALLOY AND FRICTION STIR WORKING METHOD
JP7406443B2 (en) Hard metal member manufacturing method and hard metal member
Shinonaga et al. Surface smoothing and repairing of additively manufactured metal products by large-area electron beam irradiation
RU2542199C1 (en) Method for preparing composite coatings of powder materials
Hoye et al. Machining of GTAW additively manufactured Ti-6Al-4V structures
CN112795916A (en) Laser cladding alloy powder and laser cladding method for roller step pad
RU2684997C1 (en) Method for producing cutting tool blank and corresponding blank
Rodrigues et al. Effect of dynamic wire feeding on deposition quality in laser cladding process
EP1193042A2 (en) Housing for plastics, metal powder, ceramic powder or food processing machines
Laxminarayana et al. Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM
JP2022144437A (en) Fe-based alloy and metal powder
Kawalec et al. Laser assisted machining of aluminium composite reinforced by SiC particle
Warneke et al. Influence of the process speed in laser melt injection for reinforcing skin-pass rolls
RU2752403C1 (en) Method for producing durable composite coating on metal parts
US7459219B2 (en) Items made of wear resistant materials
WO2023220770A1 (en) Process of forming a cutting tool with additively deposited cutting edge
Pradeep Kumar et al. Parametric Modeling for Optimization of Deposition Rate in Wire Arc Additive Manufacturing of AISI 410 Stainless Steel Using Bead-on-Plate Specimens
Mellor Welding surface treatment methods for protection against wear
US20190329449A1 (en) Core drill bit and methods of forming the same
Teli et al. Overlap Ratio in Wire-and Powder-Based Laser Metal Deposition of H11+ Nb for Hot Forging Dies

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230315

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150