JP2021169108A - Hard metal member manufacturing method and hard metal member - Google Patents

Hard metal member manufacturing method and hard metal member Download PDF

Info

Publication number
JP2021169108A
JP2021169108A JP2020072628A JP2020072628A JP2021169108A JP 2021169108 A JP2021169108 A JP 2021169108A JP 2020072628 A JP2020072628 A JP 2020072628A JP 2020072628 A JP2020072628 A JP 2020072628A JP 2021169108 A JP2021169108 A JP 2021169108A
Authority
JP
Japan
Prior art keywords
hard metal
hard
overlay layer
metal
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020072628A
Other languages
Japanese (ja)
Other versions
JP7406443B2 (en
Inventor
毅 石川
Takeshi Ishikawa
智一 阿部
Tomokazu Abe
英治 富田
Eiji Tomita
拓海 中野
Takumi Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Himatex Co Ltd
Original Assignee
Sumitomo Heavy Industries Himatex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Himatex Co Ltd filed Critical Sumitomo Heavy Industries Himatex Co Ltd
Priority to JP2020072628A priority Critical patent/JP7406443B2/en
Publication of JP2021169108A publication Critical patent/JP2021169108A/en
Application granted granted Critical
Publication of JP7406443B2 publication Critical patent/JP7406443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a method that can efficiently and easily obtain a cladded layer of hard metal having excellent abrasion resistance and good finished surface, and a hard metal member that is manufactured by the method.SOLUTION: A hard metal member manufacturing method includes: a first step of forming a cladded layer of hard metal on a surface of a metal base material by laser powder cladding by welding, using mixed powder containing self-fluxing alloy powder and hard particles as raw materials; a second step of forming a cladded layer of metal on a surface of the cladded layer of hard metal by the laser powder cladding by welding, using only the self-fluxing alloy powder as raw materials; and a third step of applying cutting processing to the cladded layer of metal.SELECTED DRAWING: Figure 1

Description

本発明は、金属基材の表面に金属肉盛層を有する硬質金属部材の製造方法及び当該製造方法によって得られる硬質金属部材に関する。 The present invention relates to a method for manufacturing a hard metal member having a metal overlay layer on the surface of a metal base material, and a hard metal member obtained by the manufacturing method.

従来、表面処理技術の一つとして、金属基材の表面に当該金属基材とは異なる高硬度材料を肉盛りすることにより、最表面の耐摩耗性等を向上させる技術が知られている。当該技術を用いた場合、高硬度材料を用いて形成した表面の肉盛層が摩耗しても、基材は元の形状を保持できるため、当該基材に対して再度同様の肉盛りを行うことで、繰り返し使用することが可能である。例えば、特許文献1(特開2013−176778号公報)には、肉盛りを行う手法として、レーザを用いて金属基材表面に高硬度の肉盛層を形成するレーザクラッディング法が開示されている。 Conventionally, as one of the surface treatment techniques, a technique for improving the wear resistance of the outermost surface by overlaying a high hardness material different from the metal base material on the surface of the metal base material is known. When this technique is used, the base material can retain its original shape even if the build-up layer on the surface formed by using the high-hardness material is worn, so the same build-up is performed again on the base material. Therefore, it can be used repeatedly. For example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2013-176778) discloses a laser cladding method for forming a high-hardness overlay layer on the surface of a metal substrate by using a laser as a method for overlaying. There is.

また、特許文献2(特開平4−371390号公報)においては、鉄系母材上へ非酸化性雰囲気でシールドして所望成分のマトリックスを形成するワイヤを溶着肉盛しつつ、当該マトリックス溶融プール中へ粒径0.5〜3.0mmの超硬合金粒体を定率で添加し、肉盛層の30〜70重量%を占める超硬合金粒体をマトリックス中へ均等に分散した複合組織を形成することを特徴とする耐摩耗性肉盛層の溶接方法、が開示されている。 Further, in Patent Document 2 (Japanese Unexamined Patent Publication No. 4-371390), a wire that is shielded on an iron-based base material in a non-oxidizing atmosphere to form a matrix of desired components is welded and built up, and the matrix melting pool is formed. Cemented carbide granules with a particle size of 0.5 to 3.0 mm are added at a constant rate into the matrix, and a composite structure in which the cemented carbide granules occupying 30 to 70% by weight of the overlay layer is evenly dispersed in the matrix is formed. A method for welding an abrasion-resistant overlay layer, which is characterized by forming, is disclosed.

上記特許文献2の肉盛溶接に使用する溶接機は、非酸化性雰囲気すなわち中性(又は還元性)のガスでシールドされたトーチ先端からアークを発して溶着部を母材上に作っていく型式のもので、いわゆるメタルイナートガスアーク溶接機と呼ばれるものであり、この型式の溶接機は、既に各工場で広く普及しており、ワイヤの材質を任意に選んで任意のマトリックスを自由に採択でき、必要とあれば山間の砕石現場へ出張して現地で肉盛再生を施工できるなど汎用性と作業性に優れている、とされている。 The welding machine used for overlay welding in Patent Document 2 emits an arc from the tip of a torch shielded with a non-oxidizing atmosphere, that is, a neutral (or reducing) gas to form a welded portion on a base metal. It is a model, so-called metal inert gas arc welder, and this type of welder is already widely used in each factory, and you can freely select any wire material and freely adopt any matrix. It is said that it has excellent versatility and workability, such as being able to travel to a mountain crushing site if necessary and perform overlay regeneration on site.

特開2013−176778号公報Japanese Unexamined Patent Publication No. 2013-176778 特開平4−371390号公報Japanese Unexamined Patent Publication No. 4-371390

上記特許文献1に記載のレーザクラッディング法や上記特許文献2に記載の耐摩耗性肉盛層の溶接方法を用いることで、基材の表面に種々の金属肉盛層を効率的かつ簡便に形成することができる。また、例えば、従来一般的な超硬合金材は焼結によって製造されるために大きさが限定され、工具等として使用する場合は基材へのロウ付けや機械的接合が必要であったが、金属基材の表面に金属肉盛層を形成させることで、大型製品の製造が容易となり、別工程での基材への接合が不要になる。しかしながら、製品の最終形状とするためには、当該金属肉盛層に切削加工等を施す必要がある。 By using the laser cladding method described in Patent Document 1 and the welding method of the wear-resistant overlay layer described in Patent Document 2, various metal overlay layers can be efficiently and easily formed on the surface of the base material. Can be formed. Further, for example, the size of a conventional general cemented carbide material is limited because it is manufactured by sintering, and when it is used as a tool or the like, brazing or mechanical joining to a base material is required. By forming a metal overlay layer on the surface of the metal base material, it becomes easy to manufacture a large product, and it is not necessary to bond the metal base material to the base material in a separate process. However, in order to obtain the final shape of the product, it is necessary to perform cutting or the like on the metal overlay layer.

ここで、金属肉盛層は一般的に高硬度であり、特に、金属肉盛層に硬質セラミックス粒子が含まれている場合は仕上げ加工の難易度は極めて高く、特殊で高価な切削工具を使用しないと加工ができない。より具体的には、例えば、CBN製の切削工具で極端に加工速度を低下させるか、ダイヤモンド焼結体製の切削工具等を使用しないと加工ができない。そのため、製造コスト及び加工時間が増加することが大きな問題となっていた。 Here, the metal overlay layer generally has a high hardness, and especially when the metal overlay layer contains hard ceramic particles, the difficulty of finishing is extremely high, and a special and expensive cutting tool is used. It cannot be processed without it. More specifically, for example, machining cannot be performed unless the machining speed is extremely reduced with a cutting tool made of CBN or a cutting tool made of a diamond sintered body is used. Therefore, an increase in manufacturing cost and processing time has been a big problem.

以上のような従来技術における問題点に鑑み、本発明の目的は、優れた耐摩耗性と良好な仕上げ面を有する硬質金属肉盛層を簡便かつ効率的に得る方法、及び当該によって製造される硬質金属部材を提供することにある。 In view of the above problems in the prior art, an object of the present invention is a method for easily and efficiently obtaining a hard metal overlay layer having excellent wear resistance and a good finished surface, and the method for producing the same. The purpose is to provide a hard metal member.

本発明者らは、上記目的を達成すべく、硬質金属肉盛層の形成方法及び加工方法について鋭意研究を重ねた結果、自溶性合金粉末と硬質粒子を含む混合粉末を原料として形成させた硬質金属肉盛層の表面に、当該自溶性合金粉末のみを原料として金属肉盛層を形成させ、当該金属肉盛層に対して切削加工を施すこと等が極めて有効であることを見出し、本発明に到達した。 As a result of diligent research on a method for forming and processing a hard metal overlay layer in order to achieve the above object, the present inventors have formed a hard metal using a mixed powder containing a self-soluble alloy powder and hard particles as a raw material. We have found that it is extremely effective to form a metal overlay layer on the surface of the metal overlay layer using only the self-soluble alloy powder as a raw material, and to perform a cutting process on the metal overlay layer. Reached.

即ち、本発明は、
自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程と、
前記自溶性合金粉末のみを原料とし、前記レーザ粉体肉盛溶接によって前記硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程と、
前記金属肉盛層に切削加工を施す第三工程と、を含むこと、
を特徴とする硬質金属部材の製造方法、を提供する。
That is, the present invention
The first step of forming a hard metal overlay layer on the surface of a metal substrate by laser powder overlay welding using a mixed powder containing self-soluble alloy powder and hard particles as a raw material.
A second step of forming a metal overlay layer on the surface of the hard metal overlay layer by the laser powder overlay welding using only the self-soluble alloy powder as a raw material.
Including a third step of cutting the metal overlay layer.
Provided is a method for manufacturing a hard metal member, which is characterized by the above.

本発明の硬質金属部材の製造方法においては、硬質粒子を含む硬質金属肉盛層よりも軟質な金属肉盛層が切削加工の主な対象となるため、良好な仕上げ面を容易に形成させることができる。また、金属肉盛層の形成プロセスにおいて、硬質金属肉盛層の表面近傍が僅かに軟化等するため、当該領域の切削加工も容易となる。 In the method for manufacturing a hard metal member of the present invention, a metal overlay layer softer than a hard metal overlay layer containing hard particles is the main target of cutting, so that a good finished surface can be easily formed. Can be done. Further, in the process of forming the metal overlay layer, the vicinity of the surface of the hard metal overlay layer is slightly softened, so that the cutting process of the region becomes easy.

ここで、金属肉盛層の原料である自溶性合金粉末は、硬質金属肉盛層の原料でもあることから、当該硬質金属肉盛層に不純物元素等が混入することがなく、硬質金属肉盛層への影響を最小限に留めることができる。なお、自溶性合金とは、ニッケル基やコバルト基からなる合金に、ボロンやシリコンなどのフラックス成分を含有させたものである。 Here, since the self-soluble alloy powder, which is the raw material of the metal overlay, is also the raw material of the hard metal overlay, no impurity elements or the like are mixed in the hard metal overlay, and the hard metal overlay is not mixed. The impact on the layer can be minimized. The self-soluble alloy is an alloy composed of a nickel group or a cobalt group containing a flux component such as boron or silicon.

本発明の効果を損なわない限りにおいて、硬質粒子の種類、形状及び大きさは特に限定されず、従来公知の種々のセラミックス粒子を用いることができる。また、硬質粒子の添加量は、硬質金属肉盛層に対する所望の硬度及び耐摩耗性等に応じて、適宜設定すればよいが、欠陥のない良好な硬質金属肉盛層を得る観点から、60vol.%以下とすることが好ましい。 The type, shape, and size of the hard particles are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known ceramic particles can be used. The amount of hard particles added may be appropriately set according to the desired hardness and wear resistance of the hard metal overlay layer, but from the viewpoint of obtaining a good hard metal overlay layer without defects, 60 vol. .. % Or less is preferable.

また、本発明の硬質金属部材の製造方法においては、前記硬質粒子がタングステンカーバイド(WC)粒子であること、が好ましい。タングステンカーバイド粒子は高硬度を有し、産業的に汎用されている超硬合金の主成分でもあり、適当な自溶性合金粉末と組み合わせることで、硬質金属肉盛層に超硬合金と同程度の耐摩耗性を付与することができる。 Further, in the method for producing a hard metal member of the present invention, it is preferable that the hard particles are tungsten carbide (WC) particles. Tungsten carbide particles have high hardness and are also the main component of industrially used cemented carbide, and when combined with an appropriate self-soluble alloy powder, the hard metal overlay layer is comparable to cemented carbide. Abrasion resistance can be imparted.

また、本発明の硬質金属部材の製造方法においては、前記硬質粒子が粉砕粉であること、が好ましい。一般的に粉砕粉では素材本来の機械的性質が担保されており、硬質金属部材に確実に高い硬度を付与することができる。 Further, in the method for producing a hard metal member of the present invention, it is preferable that the hard particles are pulverized powder. In general, the pulverized powder guarantees the original mechanical properties of the material, and can surely impart high hardness to the hard metal member.

また、硬質金属肉盛層で硬質粒子の焼結相となる自溶性合金についても、本発明の効果を損なわない限りにおいて、従来公知の種々の金属を用いることができるが、超硬合金やサーメットの金属結合相として使用されている金属材を好適に用いることができる。自溶性合金粉末のサイズ及び形状は、硬質粒子の形状、大きさ及び添加量を踏まえて、無欠陥の硬質金属肉盛層が効率的に形成されるように適宜調整すればよい。 Further, as a self-soluble alloy which becomes a sintered phase of hard particles in a hard metal overlay layer, various conventionally known metals can be used as long as the effect of the present invention is not impaired, but cemented carbide and cermet can be used. The metal material used as the metal bonding phase of the above can be preferably used. The size and shape of the self-soluble alloy powder may be appropriately adjusted in consideration of the shape, size and addition amount of the hard particles so that a defect-free hard metal overlay layer is efficiently formed.

また、前記自溶性合金粉末がニッケル基自溶性合金粉末であること、が好ましい。超硬合金の代表的な金属結合相はコバルト基合金又はニッケル基合金であるが、ニッケル基合金を用いることで、硬質金属肉盛層に優れた耐食性と靭性を付与することができる。 Further, it is preferable that the self-soluble alloy powder is a nickel-based self-soluble alloy powder. A typical metal bonding phase of a cemented carbide is a cobalt-based alloy or a nickel-based alloy, but by using a nickel-based alloy, excellent corrosion resistance and toughness can be imparted to the hard metal overlay layer.

また、本発明の硬質金属部材の製造方法においては、前記硬質金属肉盛層に切削加工を施すこと、が好ましい。硬質金属肉盛層の表面に形成させた金属肉盛層のみを切削加工して所望の最終形状としてもよいが、その場合は、硬度及び耐摩耗性に劣る金属肉盛層が再表面に僅かに残存してしまう。これに対し、硬質金属肉盛層の表面近傍にも切削加工を施すことで、最表面が極めて均質かつ高硬度な硬質金属部材を得ることができる。ここで、金属肉盛層の形成過程において、硬質金属肉盛層表面近傍の硬質粒子のエッジが丸みを帯びると共に、サイズも低減されるため、精密な切削加工に適した状況となっている。 Further, in the method for manufacturing a hard metal member of the present invention, it is preferable to perform a cutting process on the hard metal overlay layer. Only the metal overlay formed on the surface of the hard metal overlay may be cut to obtain the desired final shape, but in that case, a small amount of the metal overlay having poor hardness and abrasion resistance is present on the surface again. Will remain in. On the other hand, by cutting the vicinity of the surface of the hard metal overlay layer, a hard metal member having an extremely uniform outermost surface and high hardness can be obtained. Here, in the process of forming the metal overlay layer, the edges of the hard particles near the surface of the hard metal overlay layer are rounded and the size is reduced, so that the situation is suitable for precision cutting.

一方で、金属肉盛層のみに切削加工を施すことで、切削加工の時間が短縮されると共に、切削精度が向上する。また、金属肉盛層のみを切削加工した場合は硬質金属部材の最表面が当該金属肉盛層となり、当該金属肉盛層には硬質粒子が存在しないため、潤滑や滑り止めを目的とした微細パターン加工も可能である。更に、例えば、標準的に摩耗する部位と激しく摩耗する部位で、金属肉盛層と硬質金属肉盛層を使い分けることができる。また、補修を目的として、自溶性合金の肉盛溶接を施すこともできる。 On the other hand, by performing the cutting process only on the metal overlay layer, the cutting process time is shortened and the cutting accuracy is improved. Further, when only the metal overlay layer is cut, the outermost surface of the hard metal member becomes the metal overlay layer, and since hard particles do not exist in the metal overlay layer, it is fine for lubrication and anti-slip. Pattern processing is also possible. Further, for example, a metal overlay layer and a hard metal overlay layer can be used properly in a portion that wears normally and a portion that wears heavily. Further, for the purpose of repair, overlay welding of a self-soluble alloy can be performed.

本発明の硬質金属部材の製造方法においては、硬質金属肉盛層及び金属肉盛層をレーザ粉体肉盛溶接によって形成させるため、基本的に形状及び大きさの制約がなく、従来の焼結材では製造できない大型部材を得ることができる。 In the method for manufacturing a hard metal member of the present invention, since the hard metal overlay layer and the metal overlay layer are formed by laser powder overlay welding, there are basically no restrictions on the shape and size, and conventional sintering is performed. It is possible to obtain a large member that cannot be manufactured with a material.

また、本発明は、
金属基材の表面に硬質金属肉盛層を有し、
前記硬質金属肉盛層は自溶性合金と硬質粒子からなり、
前記硬質金属肉盛層の最表面における前記硬質粒子の平均粒径は、前記硬質金属肉盛層全体の値よりも小さくなっていること、
を特徴とする硬質金属部材、も提供する。
In addition, the present invention
It has a hard metal overlay layer on the surface of the metal base material,
The hard metal overlay layer is composed of a self-soluble alloy and hard particles.
The average particle size of the hard particles on the outermost surface of the hard metal overlay layer is smaller than the value of the entire hard metal overlay layer.
A hard metal member, characterized by the above, is also provided.

本発明の硬質金属部材は、本発明の硬質金属部材の製造方法によって好適に得ることができるが、硬質金属肉盛層の最表面における硬質粒子の平均粒径が硬質金属肉盛層全体の値よりも小さくなっていることで、滑らかかつ精密な表面形状を実現することができる。なお、硬質粒子のエッジが丸くなることでも、当該硬質粒子の平均粒径は低下することになる。 The hard metal member of the present invention can be suitably obtained by the method for producing a hard metal member of the present invention, but the average particle size of the hard particles on the outermost surface of the hard metal overlay layer is the value of the entire hard metal overlay layer. By making it smaller than, a smooth and precise surface shape can be realized. The rounded edges of the hard particles also reduce the average particle size of the hard particles.

また、本発明の硬質金属部材においては、前記硬質粒子がタングステンカーバイド(WC)粒子であることが好ましく、前記硬質粒子が粉砕粉であることが好ましい。上述のとおり、硬質粒子には従来公知の種々のセラミックス粒子を用いることができるが、タングステンカーバイド粒子は高い硬度と優れた耐摩耗性を有しており、粉砕粉を用いることで、素材が本来有する性質を十分に発現させることができる。 Further, in the hard metal member of the present invention, the hard particles are preferably tungsten carbide (WC) particles, and the hard particles are preferably pulverized powder. As described above, various conventionally known ceramic particles can be used as the hard particles, but the tungsten carbide particles have high hardness and excellent wear resistance, and by using the pulverized powder, the material is originally made. It is possible to fully express the properties of the particles.

また、本発明の硬質金属部材は、前記金属基材の表面に金属肉盛層からなる領域を有し、 前記金属肉盛層は前記自溶性合金からなること、が好ましい。例えば、硬質金属部材において標準的に摩耗する部位の表面を金属肉盛層、激しく摩耗する部位を硬質金属肉盛層とすることで、全体としてバランスよく摩耗が進行する硬質金属部材とすることができる。 Further, it is preferable that the hard metal member of the present invention has a region made of a metal overlay layer on the surface of the metal base material, and the metal overlay layer is made of the self-soluble alloy. For example, by forming the surface of a part of a hard metal member that wears normally as a metal overlay layer and the part that wears heavily as a hard metal overlay layer, it is possible to obtain a hard metal member in which wear progresses in a well-balanced manner as a whole. can.

更に、本発明の硬質金属部材は、搬送ローラー、金型及び切削工具のうちのいずれかであること、が好ましい。搬送ローラー、金型及び切削工具は滑らかかつ精密に加工された表面形状と優れた耐摩耗性が要求されるところ、本発明の硬質金属部材はこれらの要求を全て具備している。 Further, the hard metal member of the present invention is preferably any of a transfer roller, a mold and a cutting tool. Conveying rollers, dies and cutting tools are required to have a smooth and precisely machined surface shape and excellent wear resistance, and the hard metal member of the present invention meets all of these requirements.

本発明によれば、優れた耐摩耗性と良好な仕上げ面を有する硬質金属肉盛層を簡便かつ効率的に得る方法、及び当該によって製造される硬質金属部材を提供することができる。 According to the present invention, it is possible to provide a method for easily and efficiently obtaining a hard metal overlay layer having excellent wear resistance and a good finished surface, and a hard metal member manufactured by the method.

本発明の硬質金属部材の製造方法の工程図である。It is a process drawing of the manufacturing method of the hard metal member of this invention. 本発明における硬質金属肉盛層の形成方法を示す模式図である。It is a schematic diagram which shows the formation method of the hard metal overlay layer in this invention. 本発明における粉体肉盛溶接に関するレーザ走査方向の一例を示す模式図である。It is a schematic diagram which shows an example of the laser scanning direction about the powder overlay welding in this invention. 硬質金属肉盛層6の一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the hard metal overlay layer 6. 第一工程後及び第二工程後の被処理材の状況を示す概略断面図である。It is a schematic cross-sectional view which shows the state of the material to be processed after the 1st process and after the 2nd process. 本発明の硬質金属部材の一態様を示す概略断面図である。It is a schematic cross-sectional view which shows one aspect of the hard metal member of this invention. 本発明の硬質金属部材の別の態様を示す概略断面図である。It is a schematic cross-sectional view which shows another aspect of the hard metal member of this invention. 実施例における切削加工の状況を示す写真である。It is a photograph which shows the state of the cutting process in an Example. 実施例で切削加工された硬質金属肉盛層の表面状態を示す写真である。It is a photograph which shows the surface state of the hard metal overlay layer which was cut in an Example.

以下、図を参照しながら、本発明の硬質金属部材の製造方法及び硬質金属部材における代表的な実施形態を詳細に説明する。但し、本発明は図示されるものに限られるものではなく、各図面は本発明を概念的に説明するためのものであるから、理解容易のために必要に応じて比や数を誇張又は簡略化して表している場合もある。更に、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略することもある。 Hereinafter, a method for manufacturing a hard metal member of the present invention and a typical embodiment of the hard metal member will be described in detail with reference to the drawings. However, the present invention is not limited to those shown in the drawings, and each drawing is for conceptually explaining the present invention. Therefore, the ratios and numbers are exaggerated or simplified as necessary for easy understanding. It may be expressed as a conversion. Further, in the following description, the same or corresponding parts may be designated by the same reference numerals, and duplicate description may be omitted.

1.硬質金属部材の製造方法
図1に本発明の硬質金属部材の製造方法の工程図を示す。本発明の硬質金属部材の製造方法は、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程(S01)と、レーザ粉体肉盛溶接によって硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程(S02)と、金属肉盛層に切削加工を施す第三工程(S03)と、を含んでいる。以下、これらの各工程について詳述する。
1. 1. Manufacturing Method of Hard Metal Member FIG. 1 shows a process diagram of the manufacturing method of the hard metal member of the present invention. The method for producing a hard metal member of the present invention includes a first step (S01) of forming a hard metal overlay layer on the surface of a metal substrate by laser powder overlay welding and a hard metal overlay welding by laser powder overlay welding. It includes a second step (S02) of forming a metal overlay layer on the surface of the layer and a third step (S03) of performing a cutting process on the metal overlay layer. Hereinafter, each of these steps will be described in detail.

(1)第一工程(S01:硬質金属肉盛層の形成)
第一工程は、自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成するための工程である。
(1) First step (S01: Formation of hard metal overlay layer)
The first step is a step for forming a hard metal overlay layer on the surface of a metal base material by laser powder overlay welding using a mixed powder containing a self-soluble alloy powder and hard particles as a raw material.

図2に本実施形態に係る硬質金属肉盛層の形成方法の模式図を示す。本実施形態に係る硬質金属肉盛層の形成方法では、レーザ粉体肉盛溶接が用いられる。ここで、レーザ粉体肉盛溶接はレーザメタルデポジション法とも呼ばれ、例えばレーザクラッディング法やダイレクトエナジーデポジション法等と略同様で、レーザビーム2を用いて原料粉末を溶融することで、金属基材4の被肉盛領域に硬質金属肉盛層6を形成することができる。 FIG. 2 shows a schematic view of a method for forming a hard metal overlay layer according to the present embodiment. In the method for forming a hard metal overlay layer according to the present embodiment, laser powder overlay welding is used. Here, laser powder overlay welding is also called a laser metal deposition method, which is substantially the same as, for example, a laser cladding method or a direct energy deposition method. By melting a raw material powder using a laser beam 2, the raw material powder is melted. The hard metal overlay layer 6 can be formed in the overlay region of the metal substrate 4.

レーザ粉体肉盛溶接では、レーザ光源から射出されたレーザビーム2を集光させて局所的な入熱を行うことで金属粉末を溶融するため、硬質金属肉盛層6は急速溶融及び急冷凝固により形成される。また、金属基材4に対する熱ひずみや熱影響部を少なくし、金属基材4と形成した硬質金属肉盛層6とにおける希釈率を低減することが可能である。更に、レーザビーム2及び原料粉末を射出するトーチ部8はプログラムによるロボット制御が可能であり、硬質金属肉盛層6の形成領域及び形状を比較的正確にコントロールすることができる。 In laser powder overlay welding, the metal powder is melted by condensing the laser beam 2 emitted from the laser light source and applying local heat, so that the hard metal overlay layer 6 is rapidly melted and rapidly cooled and solidified. Is formed by. Further, it is possible to reduce the heat strain and the heat-affected zone on the metal base material 4 and reduce the dilution ratio between the metal base material 4 and the formed hard metal overlay layer 6. Further, the laser beam 2 and the torch portion 8 for ejecting the raw material powder can be robot-controlled by a program, and the formation region and shape of the hard metal overlay layer 6 can be controlled relatively accurately.

図3に粉体肉盛溶接におけるレーザ走査方向の一例を示す模式図を示す。レーザ粉体肉盛溶接では、所望の被肉盛領域に対してレーザビーム2の直線移動及び所定の間隔による並行移動によって略面状の硬質金属肉盛層6を形成することが基本である。 FIG. 3 shows a schematic view showing an example of the laser scanning direction in powder overlay welding. In laser powder overlay welding, it is basic to form a substantially planar hard metal overlay layer 6 by linear movement of the laser beam 2 and parallel movement at predetermined intervals with respect to a desired overlay region.

図4に硬質金属肉盛層6の断面図を示す。図4に示すとおり、形成する硬質金属肉盛層6の厚さ方向の寸法を調整する場合は、複数の溶接ビードからなる積層構造とすることが望ましい。より具体的な積層方法としては、特開2016−155155号公報に開示された工具材の製造方法を用いることができる。 FIG. 4 shows a cross-sectional view of the hard metal overlay layer 6. As shown in FIG. 4, when adjusting the dimensions of the hard metal overlay layer 6 to be formed in the thickness direction, it is desirable to have a laminated structure composed of a plurality of weld beads. As a more specific laminating method, the method for manufacturing a tool material disclosed in Japanese Patent Application Laid-Open No. 2016-155155 can be used.

硬質金属肉盛層6の形成に用いるレーザ粉体肉盛溶接の条件としては、レーザ出力、レーザ焦点距離、レーザ走査速度、原料粉末の供給量、キャリアガス(シールドガス)の供給量、及び長手方向Yの並行移動量等であるが、使用する金属基材4や自溶性金属粉末及び硬質粒子の組成、形状、サイズ及び混合量等に応じて、適宜最適な条件を選択することが好ましい。 The conditions for laser powder overlay welding used to form the hard metal overlay layer 6 include laser output, laser focal distance, laser scanning speed, raw material powder supply amount, carrier gas (shield gas) supply amount, and longitudinal length. Regarding the amount of parallel movement in the direction Y and the like, it is preferable to appropriately select the optimum conditions according to the composition, shape, size, mixing amount and the like of the metal base material 4, the self-soluble metal powder and the hard particles to be used.

金属基材4の材質は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の金属材を用いることができる。当該金属材としては、例えば、各種ステンレス鋼、合金工具鋼、高速度工具鋼等の鉄基合金、ニッケル基合金及びコバルト基合金を用いることができる。 The material of the metal base material 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known metal materials can be used. As the metal material, for example, various stainless steels, alloy tool steels, iron-based alloys such as high-speed tool steels, nickel-based alloys, and cobalt-based alloys can be used.

原料として用いる硬質粒子は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のセラミックス粒子を用いることができる。セラミックス粒子としては、例えば、WC、TiC、VC、MoC、ZrC、HfC、NbC、TaC、Cr、SiC等の炭化物、Si等の窒化物、TiB等のホウ化物およびAl等の酸化物等を例示することができるが、WCとすることが好ましい。硬質粒子をWCとすることで、硬質金属肉盛層6に焼結超硬合金材と同等以上の耐摩耗性を付与することができる。 The hard particles used as a raw material are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known ceramic particles can be used. Examples of the ceramic particles include carbides such as WC, TiC, VC, Mo 2 C, ZrC, HfC, NbC, TaC, Cr 3 C 2 , SiC, and nitrides such as Si 3 N 4 , and borides such as TiB 2. And oxides such as Al 2 O 3 can be exemplified, but WC is preferable. By using WC as the hard particles, it is possible to impart wear resistance equal to or higher than that of the sintered cemented carbide material to the hard metal overlay layer 6.

硬質粒子の組成、形状及びサイズは適当に選定することができ、硬質金属肉盛層6に対する所望の硬度及び耐摩耗性等に応じて、適宜選定すればよい。 The composition, shape, and size of the hard particles can be appropriately selected, and may be appropriately selected according to the desired hardness, wear resistance, and the like with respect to the hard metal overlay layer 6.

また、自溶性合金粉末についても、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の自溶性合金粉末を用いることができるが、ニッケル基又はコバルト基の自溶性合金粉末を用いることが好ましい。これらを用いることで、硬質金属肉盛層6に優れた耐食性と靭性を付与することができる。 Further, the self-soluble alloy powder is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known self-soluble alloy powders can be used, but nickel-based or cobalt-based self-soluble alloy powders can be used. It is preferable to use it. By using these, excellent corrosion resistance and toughness can be imparted to the hard metal overlay layer 6.

(2)第二工程(S02:金属肉盛層の形成)
第二工程(S02)は、第一工程(S01)で用いた自溶性合金粉末のみを原料とし、レーザ粉体肉盛溶接によって硬質金属肉盛層6の表面に金属肉盛層を形成させるための工程である。
(2) Second step (S02: Formation of metal overlay layer)
In the second step (S02), only the self-soluble alloy powder used in the first step (S01) is used as a raw material, and a metal overlay layer is formed on the surface of the hard metal overlay layer 6 by laser powder overlay welding. This is the process of.

本発明の効果を損なわない限り、レーザ粉体肉盛溶接の条件は特に限定されず、原料粉末の種類や所望の金属肉盛層の厚さ等に応じて、適宜調整すればよい。基本的には、第一工程(S01)で用いたレーザ粉体肉盛条件を基準とし、必要に応じて微調整することで、良好な金属肉盛層を得ることができる。 The conditions for laser powder overlay welding are not particularly limited as long as the effects of the present invention are not impaired, and appropriate adjustments may be made according to the type of raw material powder, the desired thickness of the metal overlay layer, and the like. Basically, a good metal overlay layer can be obtained by making fine adjustments as necessary based on the laser powder overlay conditions used in the first step (S01).

図5は第一工程後及び第二工程後の状態の一例であり、金属基材4及びその表面の概略断面図である。本発明の硬質金属部材の製造方法においては、未加工の金属基材4に硬質金属肉盛層6を形成し、硬質金属肉盛層6の表面に金属肉盛層10を形成させてもよいが、第三工程(S03)の切削加工を考慮し、図5に示すように、当該切削加工後に硬質金属肉盛層6が再表面となるように金属基材4の表面を加工しておくことが好ましい。 FIG. 5 is an example of the state after the first step and after the second step, and is a schematic cross-sectional view of the metal base material 4 and its surface. In the method for producing a hard metal member of the present invention, the hard metal overlay layer 6 may be formed on the raw metal base material 4, and the metal overlay layer 10 may be formed on the surface of the hard metal overlay layer 6. However, in consideration of the cutting process in the third step (S03), as shown in FIG. 5, the surface of the metal base material 4 is processed so that the hard metal overlay layer 6 becomes a resurface surface after the cutting process. Is preferable.

具体的には、金属基材4の表面に凹部を形成し、当該領域に硬質金属肉盛層6と金属肉盛層10を形成し、金属肉盛層10を切削除去した状態を仕上げ形状とすることが好ましい。このような製造工程とすることで、極めて効率的に再表面を硬質金属肉盛層6とする硬質金属部材を簡便かつ高精度に得ることができる。 Specifically, a state in which a recess is formed on the surface of the metal base material 4, a hard metal overlay layer 6 and a metal overlay layer 10 are formed in the region, and the metal overlay layer 10 is cut off is defined as a finished shape. It is preferable to do so. By performing such a manufacturing process, it is possible to obtain a hard metal member having a hard metal overlay layer 6 as a resurface very efficiently easily and with high accuracy.

(3)第三工程(S03:切削加工)
第三工程(S03)は、金属肉盛層10(必要に応じて硬質金属肉盛層6)に切削加工を施して、所望の形状を有する硬質金属部材を得るための工程である。
(3) Third process (S03: cutting)
The third step (S03) is a step of cutting the metal overlay layer 10 (hard metal overlay layer 6 if necessary) to obtain a hard metal member having a desired shape.

例えば、WC粒子とニッケル基自溶性合金粉末からなる従来一般的な硬質金属肉盛層に切削加工を施す場合、硬質金属肉盛層6は焼結超硬合金材と同等以上の硬度及び耐摩耗性を有していることから、CBN製の切削工具を用いて極端に加工速度を落とすか、高価なダイヤモンド焼結体製の切削工具を用いる必要がある。これに対し、第三工程(S03)では主として金属肉盛層10に切削加工を施すため、汎用の安価な切削工具を用いて、比較的高速で加工を施すことができる。 For example, when cutting a conventional hard metal overlay layer composed of WC particles and nickel-based self-soluble alloy powder, the hard metal overlay layer 6 has a hardness equal to or higher than that of a sintered cemented carbide material and wear resistance. Since it has properties, it is necessary to use a cutting tool made of CBN to extremely slow down the processing speed, or to use a cutting tool made of an expensive diamond sintered body. On the other hand, in the third step (S03), since the metal overlay layer 10 is mainly machined, it can be machined at a relatively high speed by using a general-purpose inexpensive cutting tool.

また、金属肉盛層10のみに切削加工を施す場合、金属肉盛層10には硬質粒子が存在しないため、例えば、潤滑や滑り止めを目的とした微細パターンを加工することも可能である。 Further, when cutting is performed only on the metal overlay layer 10, since hard particles do not exist in the metal overlay layer 10, for example, it is possible to process a fine pattern for the purpose of lubrication and anti-slip.

また、第二工程(S02)における入熱で硬質金属肉盛層6の表面近傍の硬質粒子のエッジが丸みを帯びると共に、サイズも低減されるため、精密な切削加工に適した状況となっている。その結果、硬質金属肉盛層6に僅かに切削加工を施すことで、極めて良好な仕上がり表面を得ることができる。 Further, the edge of the hard particles near the surface of the hard metal overlay layer 6 is rounded by the heat input in the second step (S02), and the size is also reduced, so that the situation is suitable for precision cutting. There is. As a result, an extremely good finished surface can be obtained by slightly cutting the hard metal overlay layer 6.

2.硬質金属部材
図6に本発明の硬質金属部材の一態様に関する概略断面図を示す。図6には、金属基材4の表面の全域に硬質金属肉盛層6が形成されている場合を示している。硬質金属肉盛層6は自溶性合金と硬質粒子からなり、硬質金属肉盛層6の最表面における硬質粒子の平均粒径は、硬質金属肉盛層6全体の値よりも小さくなっている。
2. Hard Metal Member FIG. 6 shows a schematic cross-sectional view of one aspect of the hard metal member of the present invention. FIG. 6 shows a case where the hard metal overlay layer 6 is formed on the entire surface of the metal base material 4. The hard metal overlay layer 6 is composed of a self-soluble alloy and hard particles, and the average particle size of the hard particles on the outermost surface of the hard metal overlay layer 6 is smaller than the value of the entire hard metal overlay layer 6.

図6において、硬質金属部材20は金属基材4の表面の全域に硬質金属肉盛層6を有している。ここで、硬質金属部材20の表面形状は硬質金属肉盛層6の表面に形成させた金属肉盛層10を切削除去して得られたものであり、硬質金属肉盛層6の表面には薄い金属肉盛層10が残存していてもよく、金属肉盛層10は完全に除去されていてもよい。金属肉盛層10は、硬質金属肉盛層6の自溶性合金のみからなるものである。 In FIG. 6, the hard metal member 20 has a hard metal overlay layer 6 over the entire surface of the metal base material 4. Here, the surface shape of the hard metal member 20 is obtained by cutting and removing the metal overlay layer 10 formed on the surface of the hard metal overlay layer 6, and is obtained on the surface of the hard metal overlay layer 6. The thin metal overlay layer 10 may remain, and the metal overlay layer 10 may be completely removed. The metal overlay layer 10 is made of only the self-soluble alloy of the hard metal overlay layer 6.

硬質金属肉盛層6の表面に形成された金属肉盛層10が完全に除去されている場合は、硬質金属部材20の最表面は硬質金属肉盛層6となる。ここで、硬質金属肉盛層6の表面近傍では、その他の領域と比較して硬質粒子が微細化され、角が丸まった形状となっていることから、滑らかかつ寸法精度の高い表面となっている。 When the metal overlay layer 10 formed on the surface of the hard metal overlay layer 6 is completely removed, the outermost surface of the hard metal member 20 becomes the hard metal overlay layer 6. Here, in the vicinity of the surface of the hard metal overlay layer 6, the hard particles are finer and have rounded corners as compared with other regions, so that the surface is smooth and has high dimensional accuracy. There is.

硬質金属肉盛層6の最表面における硬質粒子の平均粒径は、硬質金属肉盛層6全体の値よりも小さくなっている。硬質粒子の平均粒径の測定方法は特に限定されないが、例えば、適当な断面試料に対する光学顕微鏡観察や走査電子顕微鏡観察を行い、少なくとも20個程度の硬質粒子が含まれる観察画像を用いて、粒径の平均値を算出すればよい。 The average particle size of the hard particles on the outermost surface of the hard metal overlay layer 6 is smaller than the value of the entire hard metal overlay layer 6. The method for measuring the average particle size of the hard particles is not particularly limited, but for example, the particles are observed by observing an appropriate cross-sectional sample with an optical microscope or a scanning electron microscope, and using an observation image containing at least about 20 hard particles. The average value of the diameters may be calculated.

硬質金属肉盛層6の硬質粒子は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の硬質粒子を用いることができる。セラミックス粒子としては、例えば、WC、TiC、VC、MoC、ZrC、HfC、NbC、TaC、Cr、SiC等の炭化物、Si等の窒化物、TiB等のホウ化物およびAl等の酸化物等を例示することができるが、WCとすることが好ましい。硬質粒子をWCとすることで、硬質金属肉盛層6に焼結超硬合金材と同等以上の耐摩耗性を付与することができる。また、硬質粒子の組成、形状及びサイズは適当に選定することができ、硬質金属肉盛層6に対する所望の硬度及び耐摩耗性等に応じて、適宜選定すればよい。 The hard particles of the hard metal overlay layer 6 are not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known hard particles can be used. Examples of the ceramic particles include carbides such as WC, TiC, VC, Mo 2 C, ZrC, HfC, NbC, TaC, Cr 3 C 2 , SiC, and nitrides such as Si 3 N 4 , and borides such as TiB 2. And oxides such as Al 2 O 3 can be exemplified, but WC is preferable. By using WC as the hard particles, it is possible to impart wear resistance equal to or higher than that of the sintered cemented carbide material to the hard metal overlay layer 6. Further, the composition, shape and size of the hard particles can be appropriately selected, and may be appropriately selected according to the desired hardness and wear resistance of the hard metal overlay layer 6.

硬質金属肉盛層6の自溶性合金粉末は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の自溶性合金粉末を用いることができるが、ニッケル基自溶性合金粉末を用いることが好ましい。ニッケル基合金を用いることで、硬質金属肉盛層6に優れた耐食性と靭性を付与することができる。 The self-soluble alloy powder of the hard metal overlay layer 6 is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known self-soluble alloy powders can be used. It is preferable to use it. By using a nickel-based alloy, excellent corrosion resistance and toughness can be imparted to the hard metal overlay layer 6.

硬質金属肉盛層6は金属基材4と冶金的に接合されている。一方で、硬質金属肉盛層6と金属基材4の混合や希釈は最小限に留められており、接合界面近傍での強度低下や耐食性低下等が効果的に抑制されている。また、硬質金属肉盛層6と金属基材4が冶金的に確実に接合されていることで、硬質金属肉盛層6に大きな応力や繰り返しの応力が印加されるような用途にも好適に使用することができる。 The hard metal overlay layer 6 is metallurgically bonded to the metal base material 4. On the other hand, the mixing and dilution of the hard metal overlay layer 6 and the metal base material 4 are kept to a minimum, and the decrease in strength and the decrease in corrosion resistance in the vicinity of the bonding interface are effectively suppressed. Further, since the hard metal overlay layer 6 and the metal base material 4 are securely joined by metallurgy, it is suitable for applications in which a large stress or repeated stress is applied to the hard metal overlay layer 6. Can be used.

金属基材4は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の金属基材を用いることができるが、表面に形成させる硬質金属肉盛層6及び/又は金属肉盛層10との密着性、機械的性質及び価格等の観点から、鋼材を用いることが好ましく、例えば、工具鋼や軸受鋼等を好適に用いることができる。より具体的には、金属基材4として、例えば、中炭素鋼材(S45C等)、クロムモリブデン鋼鋼材、合金工具鋼鋼材、高炭素クロム軸受鋼鋼材、ステンレス鋼材等を用いることができる。 The metal base material 4 is not particularly limited as long as the effect of the present invention is not impaired, and various conventionally known metal base materials can be used, but the hard metal overlay layer 6 and / or the metal overlay formed on the surface is used. From the viewpoint of adhesion to the layer 10, mechanical properties, price, etc., it is preferable to use a steel material, and for example, tool steel, bearing steel, or the like can be preferably used. More specifically, as the metal base material 4, for example, a medium carbon steel material (S45C or the like), a chrome molybdenum steel material, an alloy tool steel material, a high carbon chrome bearing steel material, a stainless steel material or the like can be used.

図7に本発明の硬質金属部材のその他の態様に関する概略断面図を示す。図7には、金属基材の表面に硬質金属肉盛層6の領域と金属肉盛層10の領域が形成されている場合を示している。 FIG. 7 shows a schematic cross-sectional view of another aspect of the hard metal member of the present invention. FIG. 7 shows a case where a region of the hard metal overlay layer 6 and a region of the metal overlay layer 10 are formed on the surface of the metal base material.

図7に示す硬質金属部材20では、標準的に摩耗する部位の表面が金属肉盛層10、激しく摩耗する部位が硬質金属肉盛層6となっており、全体としてバランスよく摩耗を進行させることができる。 In the hard metal member 20 shown in FIG. 7, the surface of the portion to be worn as standard is the metal overlay layer 10, and the portion to be heavily worn is the hard metal overlay layer 6, so that the wear progresses in a well-balanced manner as a whole. Can be done.

ここで、金属肉盛層10と金属基材4も冶金的に接合されている。硬質金属肉盛層10と金属基材4の混合や希釈は最小限に留められており、接合界面近傍での強度低下や耐食性低下等が効果的に抑制されている。 Here, the metal overlay layer 10 and the metal base material 4 are also metallurgically joined. Mixing and dilution of the hard metal overlay layer 10 and the metal base material 4 are kept to a minimum, and a decrease in strength and a decrease in corrosion resistance in the vicinity of the bonding interface are effectively suppressed.

硬質金属部材20は、搬送ローラー、金型及び切削工具のうちのいずれかに好適に用いることができる。搬送ローラー、金型及び切削工具は滑らかかつ精密に加工された表面形状と優れた耐摩耗性が要求されるところ、硬質金属部材20はこれらの要求を全て具備している。加えて、硬質金属肉盛層6及び金属肉盛層10はレーザ粉体肉盛溶接によって形成させることができ、硬質金属部材20のサイズは特に限定されないことから、従来のHIP(熱間等方圧加圧法)等による製造方法ではサイズが大きすぎる用途や、経済的に割が合わない大型の製品にも好適に適用することができる。 The hard metal member 20 can be suitably used for any one of a transport roller, a mold and a cutting tool. Conveying rollers, dies and cutting tools are required to have a smooth and precisely machined surface shape and excellent wear resistance, and the hard metal member 20 meets all of these requirements. In addition, the hard metal overlay layer 6 and the metal overlay layer 10 can be formed by laser powder overlay welding, and the size of the hard metal member 20 is not particularly limited. Therefore, the conventional HIP (hot isostatic pressing) is used. It can be suitably applied to applications where the size is too large by the manufacturing method by the pressure pressing method) or the like, or to a large product which is not economically viable.

以下、実施例において本発明の硬質金属部材の製造方法及び硬質金属部材について更に説明するが、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the method for producing a hard metal member and the hard metal member of the present invention will be further described in Examples, but the present invention is not limited to these Examples.

Ni基自溶性合金(NiBSi)粉末とWC粉末を、WC粉末が30vol.%となるように混合し、外径320mm、長さ2300mmの円筒状のSS基材上にレーザクラッディングを施して、2層の硬質金属肉盛層を形成した。その後、Ni基自溶性合金(NiBSi)粉末のみを用いて、硬質金属肉盛層の表面に薄い金属肉盛層を形成させた。レーザには半導体レーザを用い、レーザ出力5kW、レーザビーム幅19mm、レーザ移動速度900mm/分とした。 Ni-based self-soluble alloy (NiBSi) powder and WC powder, WC powder is 30 vol. The mixture was mixed so as to be%, and laser cladding was applied on a cylindrical SS substrate having an outer diameter of 320 mm and a length of 2300 mm to form a two-layer hard metal overlay layer. Then, a thin metal overlay was formed on the surface of the hard metal overlay using only Ni-based self-soluble alloy (NiBSi) powder. A semiconductor laser was used as the laser, and the laser output was 5 kW, the laser beam width was 19 mm, and the laser moving speed was 900 mm / min.

次に、CBN製の切削チップを用いて、被削材の回転数:40rpm、切削送り:0.25mm/rev、切込量:0.2mmの条件で外周面の切削を施した。当該切削の状況を図8、切削面の拡大写真を図9にそれぞれ示す。切削面は滑らかな状態となっており、本発明の硬質金属部材は一般的な切削によって表面加工が可能であることが分かる。また、得られた表面は各種搬送ローラーや金型に使用できる状態であることに加え、大量のWC粉末を含んでおり耐摩耗性等に優れている。 Next, using a cutting tip made of CBN, the outer peripheral surface was cut under the conditions of the rotation speed of the work material: 40 rpm, the cutting feed: 0.25 mm / rev, and the depth of cut: 0.2 mm. The cutting situation is shown in FIG. 8, and an enlarged photograph of the cutting surface is shown in FIG. The cut surface is in a smooth state, and it can be seen that the hard metal member of the present invention can be surface-treated by general cutting. Further, the obtained surface is in a state where it can be used for various transport rollers and dies, and also contains a large amount of WC powder, and is excellent in abrasion resistance and the like.

2・・・レーザビーム、
4・・・金属基材、
6・・・硬質金属肉盛層、
8・・・トーチ部、
10・・・金属肉盛層、
20・・・硬質金属部材。
2 ... Laser beam,
4 ... Metal substrate,
6 ... Hard metal overlay,
8 ... Torch section,
10 ... Metal overlay,
20 ... Hard metal member.

Claims (10)

自溶性合金粉末と硬質粒子を含む混合粉末を原料とし、レーザ粉体肉盛溶接によって金属基材の表面に硬質金属肉盛層を形成させる第一工程と、
前記自溶性合金粉末のみを原料とし、前記レーザ粉体肉盛溶接によって前記硬質金属肉盛層の表面に金属肉盛層を形成させる第二工程と、
前記金属肉盛層に切削加工を施す第三工程と、を含むこと、
を特徴とする硬質金属部材の製造方法。
The first step of forming a hard metal overlay layer on the surface of a metal substrate by laser powder overlay welding using a mixed powder containing self-soluble alloy powder and hard particles as a raw material.
A second step of forming a metal overlay layer on the surface of the hard metal overlay layer by the laser powder overlay welding using only the self-soluble alloy powder as a raw material.
Including a third step of cutting the metal overlay layer.
A method for manufacturing a hard metal member.
前記硬質粒子がタングステンカーバイド(WC)粒子であること、
を特徴とする請求項1に記載の硬質金属部材の製造方法。
The hard particles are tungsten carbide (WC) particles.
The method for manufacturing a hard metal member according to claim 1.
前記硬質粒子が粉砕粉であること、
を特徴とする請求項1又は2に記載の硬質金属部材の製造方法。
That the hard particles are crushed powder,
The method for manufacturing a hard metal member according to claim 1 or 2.
前記自溶性合金粉末がニッケル基自溶性合金粉末であること、
を特徴とする請求項1〜3のうちのいずれかに記載の硬質金属部材の製造方法。
The self-soluble alloy powder is a nickel-based self-soluble alloy powder.
The method for manufacturing a hard metal member according to any one of claims 1 to 3.
前記硬質金属肉盛層に切削加工を施すこと、
を特徴とする請求項1〜4のうちのいずれかに記載の硬質金属部材の製造方法。
Cutting the hard metal overlay layer,
The method for manufacturing a hard metal member according to any one of claims 1 to 4.
金属基材の表面に硬質金属肉盛層を有し、
前記硬質金属肉盛層は自溶性合金と硬質粒子からなり、
前記硬質金属肉盛層の最表面における前記硬質粒子の平均粒径は、前記硬質金属肉盛層全体の値よりも小さくなっていること、
を特徴とする硬質金属部材。
It has a hard metal overlay layer on the surface of the metal base material,
The hard metal overlay layer is composed of a self-soluble alloy and hard particles.
The average particle size of the hard particles on the outermost surface of the hard metal overlay layer is smaller than the value of the entire hard metal overlay layer.
A hard metal member characterized by.
前記硬質粒子がタングステンカーバイド(WC)粒子であり、
前記自溶性合金がニッケル基自溶性合金であること、
を特徴とする請求項6に記載の硬質金属部材。
The hard particles are tungsten carbide (WC) particles.
The self-soluble alloy is a nickel-based self-soluble alloy.
The hard metal member according to claim 6.
前記硬質粒子が粉砕粉であること、
を特徴とする請求項6又は7に記載の硬質金属部材。
That the hard particles are crushed powder,
The hard metal member according to claim 6 or 7.
前記金属基材の表面に金属肉盛層からなる領域を有し、
前記金属肉盛層は前記自溶性合金からなること、
を特徴とする請求項6〜8のうちのいずれかに記載の硬質金属部材。
The surface of the metal base material has a region composed of a metal overlay layer, and has a region.
The metal overlay layer shall be made of the self-soluble alloy.
The hard metal member according to any one of claims 6 to 8.
搬送ローラー、金型及び切削工具のうちのいずれかであること、
を特徴とする請求項6〜9のうちのいずれかに記載の硬質金属部材。
Being one of a conveyor roller, a mold and a cutting tool,
The hard metal member according to any one of claims 6 to 9.
JP2020072628A 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member Active JP7406443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072628A JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072628A JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Publications (2)

Publication Number Publication Date
JP2021169108A true JP2021169108A (en) 2021-10-28
JP7406443B2 JP7406443B2 (en) 2023-12-27

Family

ID=78149928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072628A Active JP7406443B2 (en) 2020-04-15 2020-04-15 Hard metal member manufacturing method and hard metal member

Country Status (1)

Country Link
JP (1) JP7406443B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672803A (en) * 2022-04-14 2022-06-28 中国石油化工股份有限公司 Petroleum plunger process method based on laser cladding nickel-based tungsten carbide coating
JP7506421B2 (en) 2022-02-22 2024-06-26 地方独立行政法人大阪産業技術研究所 Method for manufacturing hard metal member, hard metal member and raw material powder thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327887A (en) * 1989-06-22 1991-02-06 Brother Ind Ltd Formation of sintered hard alloy film
JPH10339117A (en) * 1997-06-05 1998-12-22 Nissan Motor Co Ltd Buildup valve seat of engine and manufacture therefor
US20050109545A1 (en) * 2003-11-25 2005-05-26 Greg Lockwood Barrier Coated Granules for Imporve Hardfacing Material
JP2011506763A (en) * 2007-12-14 2011-03-03 シーバー フォーミング ソリューションズ ゲーエムベーハー Method and apparatus for producing an annular rotationally symmetric workpiece from metal powder and / or ceramic powder using metal powder and / or ceramic powder and laser beam
JP2011225960A (en) * 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327887A (en) * 1989-06-22 1991-02-06 Brother Ind Ltd Formation of sintered hard alloy film
JPH10339117A (en) * 1997-06-05 1998-12-22 Nissan Motor Co Ltd Buildup valve seat of engine and manufacture therefor
US20050109545A1 (en) * 2003-11-25 2005-05-26 Greg Lockwood Barrier Coated Granules for Imporve Hardfacing Material
JP2011506763A (en) * 2007-12-14 2011-03-03 シーバー フォーミング ソリューションズ ゲーエムベーハー Method and apparatus for producing an annular rotationally symmetric workpiece from metal powder and / or ceramic powder using metal powder and / or ceramic powder and laser beam
JP2011225960A (en) * 2010-04-23 2011-11-10 Tocalo Co Ltd Method for strengthening surface layer of light metal or alloy thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506421B2 (en) 2022-02-22 2024-06-26 地方独立行政法人大阪産業技術研究所 Method for manufacturing hard metal member, hard metal member and raw material powder thereof
CN114672803A (en) * 2022-04-14 2022-06-28 中国石油化工股份有限公司 Petroleum plunger process method based on laser cladding nickel-based tungsten carbide coating

Also Published As

Publication number Publication date
JP7406443B2 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
EP3209811B1 (en) Method and apparatus for cladding a surface of an article
Haldar et al. Identifying defects and problems in laser cladding and suggestions of some remedies for the same
CN106312843B (en) A kind of skive and its production method
JP7406443B2 (en) Hard metal member manufacturing method and hard metal member
TWI754127B (en) Tool material regeneration method and tool material
JP2018135585A (en) Metal member and method for manufacturing clad layer
Hoye et al. Machining of GTAW additively manufactured Ti-6Al-4V structures
RU2684997C1 (en) Method for producing cutting tool blank and corresponding blank
EP3502297A1 (en) Multi-material tooling and methods of making same
CN106413960B (en) Method for producing rough material, rough material and cutting tool
JPH0649228B2 (en) Tool manufacturing method
KR930001091B1 (en) Hobbing tool for finishing gears
Rodrigues et al. Effect of dynamic wire feeding on deposition quality in laser cladding process
US12031454B2 (en) Method for producing steam turbine member
JP2005305449A (en) Tool for hot working
US20220307116A1 (en) Fe-BASED ALLOY AND METAL POWDER
EP1193042A2 (en) Housing for plastics, metal powder, ceramic powder or food processing machines
WO2013115131A1 (en) Molded article, material for molded article, and methods for producing same
Warneke et al. Influence of the process speed in laser melt injection for reinforcing skin-pass rolls
JP2020070455A (en) Metallic member
JP7546406B2 (en) Rolling roll and its manufacturing method
JP2020138219A (en) Metallic member
Thomas Solid phase cladding by friction surfacing
Fusova et al. Tool wear mechanisms during machining of Alloy 625
RU2424875C2 (en) Hard-alloy tip and method of its production

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20230315

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150