JP7406338B2 - Stage device, stage device adjustment method, and article manufacturing method - Google Patents

Stage device, stage device adjustment method, and article manufacturing method Download PDF

Info

Publication number
JP7406338B2
JP7406338B2 JP2019189656A JP2019189656A JP7406338B2 JP 7406338 B2 JP7406338 B2 JP 7406338B2 JP 2019189656 A JP2019189656 A JP 2019189656A JP 2019189656 A JP2019189656 A JP 2019189656A JP 7406338 B2 JP7406338 B2 JP 7406338B2
Authority
JP
Japan
Prior art keywords
substrate
adjustment
base
fastening
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019189656A
Other languages
Japanese (ja)
Other versions
JP2021063953A (en
Inventor
彰宏 高橋
淳生 遠藤
敦之 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019189656A priority Critical patent/JP7406338B2/en
Priority to TW109131269A priority patent/TWI833991B/en
Priority to KR1020200128567A priority patent/KR20210045312A/en
Priority to CN202011091475.8A priority patent/CN112666797B/en
Publication of JP2021063953A publication Critical patent/JP2021063953A/en
Application granted granted Critical
Publication of JP7406338B2 publication Critical patent/JP7406338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、ステージ装置、ステージ装置の調整方法、および物品製造方法に関する。 The present invention relates to a stage device, a method for adjusting the stage device, and a method for manufacturing articles.

フラットパネルディスプレイ等の製造工程であるリソグラフィ工程において、ステップ・アンド・スキャン方式(スキャナー方式)の露光装置が用いられる。スキャナー方式の露光装置は、スリット状の露光領域でのみ露光光を照射しながらフォトマスク(原版)とガラス基板とを走査方向に同期駆動させ、マスクに形成されたパターンを光によって基板上に転写する。フラットパネルディスプレイの高精細化・高性能化に伴い、転写されるパターンの微細化が進んでおり、スキャナー方式の露光装置には、高い解像力を実現することが求められている。 In a lithography process that is a manufacturing process for flat panel displays and the like, a step-and-scan type (scanner type) exposure apparatus is used. Scanner-type exposure equipment drives a photomask (original) and glass substrate synchronously in the scanning direction while irradiating exposure light only in the slit-shaped exposure area, and transfers the pattern formed on the mask onto the substrate using light. do. As flat panel displays become more precise and performant, the patterns that are transferred are becoming increasingly finer, and scanner-type exposure equipment is required to achieve high resolution.

解像力を向上させるには、投影光学系の開口率(NA)を大きくする方法が一般的である。ところが、レイリーの式に従えば、露光装置の解像力は投影光学系の開口率(NA)に反比例して向上するのに対し、投影光学系の焦点深度(DOF)は開口率の2乗に反比例して小さくなる。すなわち、解像力と焦点深度は一般にはトレードオフの関係にある。そのため、高い解像力を持つ投影光学系を使用した露光装置においては焦点深度を確保することが非常に重要な課題となる。 A common method for improving resolution is to increase the aperture ratio (NA) of the projection optical system. However, according to Rayleigh's equation, the resolution of the exposure device improves in inverse proportion to the aperture ratio (NA) of the projection optical system, while the depth of focus (DOF) of the projection optical system improves in inverse proportion to the square of the aperture ratio. and become smaller. That is, resolution and depth of focus are generally in a trade-off relationship. Therefore, in an exposure apparatus using a projection optical system with high resolution, ensuring the depth of focus is a very important issue.

所望の解像力を実現するためには、光学系の収差やマスク平面度、基板平面度などのさまざまなフォーカス阻害要因の総和が、焦点深度内に収まっている必要がある。したがって、高い解像力を達成するためには、基板と接して基板を保持する基板保持部には高い平面度が求められることが一般的である。加えて、部材の経時変化や装置温度などの装置環境の変化に対する余裕も小さくなるため、その高い基板平面度を長期にわたり保つ、あるいは装置メンテナンスとして再調整を行うなどして平面度を維持していく必要がある。 In order to achieve the desired resolution, the sum of various focus-inhibiting factors such as optical system aberrations, mask flatness, and substrate flatness must fall within the depth of focus. Therefore, in order to achieve high resolution, the substrate holder that holds the substrate in contact with the substrate is generally required to have high flatness. In addition, there is less margin for changes in the equipment environment, such as changes in components over time or equipment temperature, so it is necessary to maintain high board flatness over a long period of time, or to perform readjustment as part of equipment maintenance. We have to go.

基板保持部の高い平面度を実現するために、基板保持部の高精度加工や組み立て時の高さ調整が実施される。特許文献1では、加工時には実使用時と同じ応力状態を再現した状態で加工を行い、基板保持部の組み立て時には基板保持部の直下に高さ調整部を設け、高さ方向に駆動させることで所定の平面度を実現することが記載されている。また、特許文献1では、基板保持部と調整可動部(調整部には高さ方向に駆動する可動部と、ベース側に固定される固定部がある)との間の結合状態を真空吸着あるいは磁気により切り替え可能にしている。そして、高さ調整部の駆動前に結合解除、駆動後に再結合するというステップを踏んで基板保持部の平面度調整が行われる。これにより、高さ調整に伴って基板保持部に発生する歪みに起因する応力の発生および残留を防止し、残留応力が経時的に緩和されることによって発生する平面度変化を防ぐ、とされている。 In order to achieve high flatness of the substrate holder, high-precision processing of the substrate holder and height adjustment during assembly are performed. In Patent Document 1, processing is performed in a state that reproduces the same stress state as in actual use, and when assembling the substrate holder, a height adjustment section is provided directly under the substrate holder and driven in the height direction. It is described that a predetermined flatness is achieved. Furthermore, in Patent Document 1, the bonding state between the substrate holding part and the adjustment movable part (the adjustment part has a movable part that is driven in the height direction and a fixed part that is fixed to the base side) is determined by vacuum suction or Switching is possible using magnetism. Then, the flatness of the substrate holder is adjusted by following the steps of releasing the coupling before driving the height adjusting section and recoupling it after driving. This is said to prevent stress from occurring and remaining due to distortion that occurs in the substrate holder due to height adjustment, and prevent flatness changes that occur as residual stress is alleviated over time. There is.

特許第5932305号公報Patent No. 5932305

ところで、基板保持部は基板を吸着して保持する機能が必要であるため、基板と同程度の大きさを有する必要があり、例えばG8.5世代では一辺が2500mmにも及ぶ。基板保持部の材質はアルミニウムなどの軽金属あるいはセラミックスなどが用いられることが多いが、一体での製作は、材料の入手性の問題や、加工機が限定されるなどの問題があり、製作が困難あるいは非常に高コストである。また、一体での製作が可能としても、このサイズの基板の全面を吸着保持できるほどの大型の基板保持部を高い平面度で加工するためには、相応の部材剛性が必要とされる。これは基板保持部が厚く、そして重くなることを意味する。基板保持部は基板ステージ上に構成され、基板ステージとともに平面内に駆動する部材であるため、この部材の重量増加は基板ステージのアクチュエータの負荷を増大させ、基板ステージの不要な巨大化を招く。 By the way, since the board holding part needs to have the function of sucking and holding the board, it needs to have the same size as the board, and for example, in the G8.5 generation, one side is 2500 mm. The substrate holding part is often made of light metals such as aluminum or ceramics, but manufacturing it as one piece is difficult due to issues such as availability of materials and limited processing machines. Or it's very expensive. Further, even if it is possible to manufacture the substrate in one piece, in order to process a substrate holding portion large enough to suction and hold the entire surface of a substrate of this size with high flatness, a corresponding degree of member rigidity is required. This means that the substrate holder is thick and heavy. Since the substrate holder is a member that is configured on the substrate stage and is driven in a plane together with the substrate stage, an increase in the weight of this member increases the load on the actuator of the substrate stage, leading to an unnecessary increase in the size of the substrate stage.

これに対し、基板保持部を複数に分割し一つ一つのサイズを小さくすることにより、材料の入手性や加工機制限等の問題は軽減させることができる。しかし、単品の加工精度を向上させるためには、一体の場合と同様に部材剛性を高くする必要がある。また、基板保持部を分割した場合は隣接する基板保持部間の隣接辺で高さ差が発生するが、このような箇所では平面度が急峻に変化することになるため、露光時にパターン不良が発生してしまう場合がある。そのため、隣接辺付近の調整にはより精度が求められる。 On the other hand, by dividing the substrate holder into a plurality of parts and reducing the size of each part, problems such as material availability and processing machine limitations can be alleviated. However, in order to improve the processing accuracy of a single item, it is necessary to increase the rigidity of the member as in the case of an integral part. In addition, when the substrate holder is divided, a difference in height will occur between adjacent sides of the substrate holder, and since the flatness changes sharply at such locations, pattern defects may occur during exposure. This may occur. Therefore, more precision is required for adjustment near the adjacent sides.

このような状況を鑑みた場合、特許文献1の技術では次のような不都合が発生する。特許文献1では、基板保持部と調整可動部の結合を真空吸着、または磁気力の補助による真空吸着により行うとしているが、これらの結合力と基板保持部の剛性との関連性に関する記述はない。そのため、基板保持部を部分的に調整するためには、基板保持部を変形させる場合に、調整量次第で基板保持部の剛性が真空吸着力に打ち勝ってしまう場合が想定され、調整が不安定になるばかりか調整不可能な場合も生じうる。例えば、部分的に5μm高さを下げる方向に調整を行おうとした場合、真空吸着の結合力によりチャックを5μm局所的に変形させる必要があるが、真空吸着力によって2μmしか変形できなければ、3μmは調整不可能分として残留してしまう。調整量がさらに大きくなった場合、真空リークが大きくなり結合力がさらに弱くなってしまうため、調整が全くできなくなってしまう場合もありうる。 In view of this situation, the technique of Patent Document 1 causes the following inconvenience. Patent Document 1 states that the substrate holding part and the adjustment movable part are coupled by vacuum suction or vacuum suction with the assistance of magnetic force, but there is no description regarding the relationship between these bonding forces and the rigidity of the substrate holding part. . Therefore, when deforming the substrate holder in order to partially adjust the substrate holder, depending on the amount of adjustment, the rigidity of the substrate holder may overcome the vacuum suction force, making the adjustment unstable. In some cases, it may not be possible to make adjustments. For example, if an attempt is made to partially lower the height by 5 μm, it is necessary to locally deform the chuck by 5 μm using the bonding force of the vacuum suction, but if the chuck can only be deformed by 2 μm due to the vacuum suction force, then the chuck will be deformed by 3 μm. remains as a non-adjustable amount. If the amount of adjustment becomes even larger, the vacuum leak will increase and the bonding force will become even weaker, so there is a possibility that adjustment will not be possible at all.

更に特許文献1では、基板保持部を調整可動部と結合させているが、基板保持部の剛性と調整部自体の剛性(調整可動部と調整固定部との間の剛性)の関連性に関する記述がない。そのため、同様の理由で調整部が変形してしまって調整が不安定になるばかりか調整不可能な場合も生じる。例えば、部分的に高さを5μm下げる方向に調整部を駆動させた場合、調整部と基板保持部の剛性比に応じて調整可動部自体が上方に引っ張り上げられてしまう。そうすると、調整部は5μm下げたものの3μm上方に変形し、基板保持部は2μmしか下げられない、という状況が発生しうる。基板保持部を5μm下げるためには程度調整部をもっと下げてから真空吸着を行う必要があるが、吸着開始時の真空リークが大きくなり結合力がさらに弱くなってしまい、調整不可能になってしまう場合もある。 Further, in Patent Document 1, the substrate holding section is coupled to the adjustment movable section, but there is a description regarding the relationship between the rigidity of the substrate holding section and the rigidity of the adjustment section itself (rigidity between the adjustment movable section and the adjustment fixed section). There is no. Therefore, for the same reason, the adjustment section is deformed, making the adjustment unstable or even impossible. For example, if the adjustment section is driven in a direction that partially lowers the height by 5 μm, the adjustment movable section itself will be pulled upward depending on the rigidity ratio of the adjustment section and the substrate holding section. In this case, a situation may occur in which the adjustment portion is lowered by 5 μm but deformed upward by 3 μm, and the substrate holding portion can be lowered by only 2 μm. In order to lower the substrate holding part by 5 μm, it is necessary to lower the degree adjustment part further before performing vacuum suction, but the vacuum leak at the start of suction becomes large and the bonding force becomes even weaker, making adjustment impossible. Sometimes it gets put away.

特許文献1の調整機構は調整に不安定性を抱えており、調整精度に難があるばかりか、調整量次第では調整自体が不可能になる場合もありうる。また、調整精度が低いために所定の精度を達成するためには何度も繰り返し追い込み調整を行う必要があり、調整に時間を要する。 The adjustment mechanism of Patent Document 1 has instability in adjustment, and not only does the adjustment accuracy have difficulty, but depending on the amount of adjustment, the adjustment itself may become impossible. In addition, since the adjustment accuracy is low, it is necessary to perform follow-up adjustment many times in order to achieve a predetermined accuracy, and the adjustment takes time.

本発明は、上述した問題を解決するためになされたものであって、例えば、基板保持部の平面度の精度と調整速度の両立に有利なステージ装置を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a stage device that is advantageous in achieving both accuracy of flatness of a substrate holder and adjustment speed.

本発明の一側面によれば、基板を保持して移動するステージ装置であって、ベースと、前記ベースより上の位置で前記基板を保持する基板保持部と、前記ベースと前記基板保持部との間に設けられ、前記基板保持部の基板保持面の形状を調整するために前記基板保持面の複数の箇所のそれぞれに対して個別に下方から力を加える複数の調整部と、前記複数の調整部のそれぞれに対応して設けられ、締結部材を用いて、前記調整部を挟み込む形で前記ベースと前記基板保持部とを締結する複数の締結部と、を有し、前記複数の調整部のそれぞれは、前記基板保持部と接触して移動する可動部と、前記ベースに配置され前記可動部を支持する固定部と、前記可動部および前記固定部を貫いて前記ベースと前記基板保持部とを連通する中空部と、を含み、前記複数の締結部のそれぞれは、前記ベースと前記基板保持部とを接続する前記締結部材としてのロッドを含み、前記ロッドは、前記中空部の内部に、前記可動部と同心状に配置される、ことを特徴とするステージ装置が提供される。 According to one aspect of the present invention, there is provided a stage apparatus that holds and moves a substrate, including a base, a substrate holding section that holds the substrate at a position above the base, and a substrate holding section that includes the base and the substrate holding section. a plurality of adjusting parts provided between the plurality of substrate holding parts, which individually apply force from below to each of the plurality of locations on the substrate holding surface in order to adjust the shape of the substrate holding surface of the substrate holding part; a plurality of fastening parts that are provided corresponding to each of the adjustment parts and fasten the base and the substrate holding part by sandwiching the adjustment parts using fastening members, and the plurality of adjustment parts each includes a movable part that moves in contact with the substrate holding part, a fixed part that is disposed on the base and supports the movable part, and a part that passes through the movable part and the fixed part to connect the base and the substrate holding part. each of the plurality of fastening parts includes a rod as the fastening member that connects the base and the substrate holding part, and the rod is inside the hollow part. , there is provided a stage apparatus characterized in that the stage apparatus is arranged concentrically with the movable part .

本発明によれば、例えば、基板保持部の平面度の精度と調整速度の両立に有利なステージ装置を提供することができる。 According to the present invention, it is possible to provide, for example, a stage device that is advantageous in achieving both precision in flatness of a substrate holder and adjustment speed.

実施形態における露光装置の構成を示す図。FIG. 1 is a diagram showing the configuration of an exposure apparatus in an embodiment. 実施形態における基板ステージの構成を示す図。FIG. 3 is a diagram showing the configuration of a substrate stage in an embodiment. 実施形態における基板ステージの詳細な構成を示す図。FIG. 3 is a diagram showing a detailed configuration of a substrate stage in an embodiment. 実施形態における調整部の構成を示す図。The figure which shows the structure of the adjustment part in embodiment. 変形例に係る調整部の構成を示す図。The figure which shows the structure of the adjustment part based on a modification. 変形例に係る調整部の構成を示す図。The figure which shows the structure of the adjustment part based on a modification. 実施形態における基板保持部の位置決め機構の構成を示す図。FIG. 3 is a diagram showing the configuration of a positioning mechanism for a substrate holding section in an embodiment.

以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following embodiments do not limit the claimed invention. Although a plurality of features are described in the embodiments, not all of these features are essential to the invention, and the plurality of features may be arbitrarily combined. Furthermore, in the accompanying drawings, the same or similar components are designated by the same reference numerals, and redundant description will be omitted.

まず、本発明のステージ装置が適用される露光装置の説明をする。なお以下の説明では具体的な構成、動作等を示して説明を行うが、これらは適宜変更することができる。 First, an exposure apparatus to which the stage apparatus of the present invention is applied will be explained. In the following description, specific configurations, operations, etc. will be shown and explained, but these can be changed as appropriate.

図1は、実施形態における露光装置の概略図である。本明細書および図面においては、水平面をXY平面とするXYZ座標系において方向が示される。一般には、被露光基板である基板Wはその表面が水平面(XY平面)と平行になるように基板ステージ20の上に置かれる。よって以下では、基板Wの表面に沿う平面内で互いに直交する方向をX軸およびY軸とし、X軸およびY軸に垂直な方向をZ軸とする。また、以下では、XYZ座標系におけるX軸、Y軸、Z軸にそれぞれ平行な方向をX方向、Y方向、Z方向といい、X軸周りの回転方向、Y軸周りの回転方向、Z軸周りの回転方向をそれぞれθx方向、θy方向、θz方向という。 FIG. 1 is a schematic diagram of an exposure apparatus in an embodiment. In this specification and the drawings, directions are shown in an XYZ coordinate system in which the horizontal plane is the XY plane. Generally, a substrate W, which is a substrate to be exposed, is placed on the substrate stage 20 so that its surface is parallel to a horizontal plane (XY plane). Therefore, hereinafter, directions perpendicular to each other within a plane along the surface of the substrate W will be referred to as the X-axis and the Y-axis, and a direction perpendicular to the X-axis and the Y-axis will be referred to as the Z-axis. In addition, in the following, directions parallel to the X, Y, and Z axes in the XYZ coordinate system are referred to as the X direction, Y direction, and Z direction, respectively, and the rotation direction around the X axis, the rotation direction around the Y axis, and the Z axis The surrounding rotation directions are respectively referred to as the θx direction, the θy direction, and the θz direction.

露光装置は、投影光学系10、基板Wを保持するステージ装置としての基板ステージ20、原版であるマスクMを保持するマスクステージ30、照明光学系40、干渉計50、本体ベース60を含みうる。投影光学系10は、マスクステージ30によって保持されたマスクMのパターンを基板ステージ20によって保持されている基板Wに投影する。この投影は、マスクMに向けて照射される照明光学系40の光源の光を利用し、マスクMから発せられる回折光によって行われる。また、照明光学系40とマスクMとの間には、観察光学系41が配置されうる。観察光学系41は、マスクMと投影光学系10によって基板W上に結像される像を観察することができる。 The exposure apparatus may include a projection optical system 10, a substrate stage 20 serving as a stage device that holds a substrate W, a mask stage 30 that holds a mask M that is an original, an illumination optical system 40, an interferometer 50, and a main body base 60. The projection optical system 10 projects the pattern of the mask M held by the mask stage 30 onto the substrate W held by the substrate stage 20. This projection is performed using diffracted light emitted from the mask M using light from a light source of the illumination optical system 40 that irradiates the mask M. Further, an observation optical system 41 may be arranged between the illumination optical system 40 and the mask M. The observation optical system 41 can observe the image formed on the substrate W by the mask M and the projection optical system 10.

マスクMはマスクステージ30内のマスク保持部32の上に吸着保持されている。マスク保持部32はマスクステージベース31上に配置されている。マスクステージ30がX方向およびY方向に移動することで、マスクMはX方向およびY方向に移動可能である。なお、ここでは、Y方向を走査露光におけるスキャン方向(走査方向)、X方向をステップ方向(非走査方向)とする。すなわち、投影露光時にマスクステージ30と基板ステージ20が同期走査される方向はY方向である。また、マスクMは、X、Y方向の2軸で形成されるX、Y面内で回転する回転方向(θz方向)にも移動可能である。 The mask M is held by suction on a mask holding section 32 within the mask stage 30. The mask holding section 32 is arranged on the mask stage base 31. The mask M can be moved in the X and Y directions by moving the mask stage 30 in the X and Y directions. Note that here, the Y direction is defined as a scan direction (scanning direction) in scanning exposure, and the X direction is defined as a step direction (non-scanning direction). That is, the direction in which the mask stage 30 and the substrate stage 20 are synchronously scanned during projection exposure is the Y direction. Further, the mask M is also movable in a rotational direction (θz direction) in which it rotates within the X and Y planes formed by two axes in the X and Y directions.

投影露光により、マスクMから基板Wへのパターンへの転写は、マスクMと基板Wの倍率比と同じ速度比で同期走査することにより行われる。このマスクMのパターンが転写される基板W上の個々の領域のことをショット領域という。なお、基板W上には、各ショット領域とマスクとのアライメントに使用される不図示のアライメントマークが形成されている。このアライメントマークは、観察光学系41によって観察可能である。 By projection exposure, the pattern is transferred from the mask M to the substrate W by synchronous scanning at the same speed ratio as the magnification ratio of the mask M and the substrate W. Each area on the substrate W onto which the pattern of the mask M is transferred is called a shot area. Note that alignment marks (not shown) are formed on the substrate W to be used for alignment between each shot area and the mask. This alignment mark can be observed by the observation optical system 41.

干渉計50は、マスクステージ30と基板ステージ20のそれぞれの位置を計測する。干渉計50は、検出光の光源となるレーザーヘッド51、ビームスプリッタ52、折り曲げミラー53、検出光を反射するバーミラー54および55を含みうる。 Interferometer 50 measures the respective positions of mask stage 30 and substrate stage 20. Interferometer 50 may include a laser head 51 serving as a light source of detection light, a beam splitter 52, a bending mirror 53, and bar mirrors 54 and 55 that reflect detection light.

基板ステージ20は、少なくともXYの2軸方向に駆動可能なステージ装置である。基板ステージ20は、マスクMに対して基板Wを所定の露光位置(ショット位置)に移動させ、観察光学系41によるアライメントマークの計測結果から得られる補正値に基づいて位置合わせされうる。その後、基板ステージ20は、走査露光時に、マスクステージ30と同期して走査駆動されうる。また、基板ステージ20は、位置合わせやフォーカス補正のために、Z、θx、θy、θzの各方向にも駆動されうる。ただし、図1には、基板ステージ20の各方向への駆動機構はいずれも不図示である。本体ベース60の上にステージベース21が配置され、バーミラー54や基板Wは、ステージベース21の上に配置される。 The substrate stage 20 is a stage device that can be driven in at least two axes of X and Y directions. The substrate stage 20 moves the substrate W to a predetermined exposure position (shot position) with respect to the mask M, and can be aligned based on the correction value obtained from the measurement result of the alignment mark by the observation optical system 41. Thereafter, the substrate stage 20 may be scan-driven in synchronization with the mask stage 30 during scanning exposure. Further, the substrate stage 20 can also be driven in each of the Z, θx, θy, and θz directions for positioning and focus correction. However, in FIG. 1, no mechanism for driving the substrate stage 20 in each direction is shown. The stage base 21 is arranged on the main body base 60, and the bar mirror 54 and the substrate W are arranged on the stage base 21.

制御部70は、露光装置の各部を制御する。制御部70は、CPUおよびメモリを含むコンピュータによって実現されうる。制御部70は、露光装置の各部と有線または無線で接続され、上記した露光装置の各部とは隔離された場所に設置されうる。これにより、露光装置は遠隔操作されうるようになっている。 The control section 70 controls each section of the exposure apparatus. The control unit 70 may be implemented by a computer including a CPU and memory. The control unit 70 is connected to each part of the exposure apparatus by wire or wirelessly, and may be installed in a location isolated from each part of the exposure apparatus described above. This allows the exposure apparatus to be remotely controlled.

図2は、基板ステージ20の構成を示す図である。本体ベース60の上にステージベース21が配置され、ステージベース21の上に基板保持部ベース220(ベース)が配置される。また、基板保持部ベース220とステージベース21との関係性は、本開示においては重要ではない。基板保持部ベース220とステージベース21とは、別部材で互いに固定されていてもよいし、両者が何らかの駆動軸を介して結合されていてよい。あるいは、基板保持部ベース220とステージベース21とは、一体で構成されていてもよい。ステージベース21には、Z、θx、θy、θzの各方向への駆動機構が設けられるが、それらの構成の図示および説明は省略する。 FIG. 2 is a diagram showing the configuration of the substrate stage 20. As shown in FIG. A stage base 21 is arranged on the main body base 60, and a substrate holder base 220 (base) is arranged on the stage base 21. Further, the relationship between the substrate holder base 220 and the stage base 21 is not important in the present disclosure. The substrate holder base 220 and the stage base 21 may be fixed to each other as separate members, or may be coupled together via some kind of drive shaft. Alternatively, the substrate holder base 220 and the stage base 21 may be integrally configured. The stage base 21 is provided with drive mechanisms for driving in each of the Z, θx, θy, and θz directions, but illustrations and explanations of these structures will be omitted.

基板保持部ベース220より上の位置には、基板Wを保持する基板保持部230が配置されている。基板保持部ベース220と基板保持部230との間には、複数の調整部240が配置されている。複数の調整部240は、基板保持部230の基板保持面の形状を調整するために基板保持面の複数の箇所のそれぞれに対して個別に下方から力を加えるように構成されている。基板Wは、基板保持部230に対して真空吸着によって固定される。実施形態において、基板保持部230の基板保持面は複数の領域に分割されている。基板保持部230には、基板Wを吸着固定するための吸着溝や空圧配管、空圧制御機器などが設けられるが、それらの構成の図示および説明は省略する。また、ステージベース21の上には、干渉計50のバーミラー54も配置されている。 A substrate holder 230 that holds the substrate W is arranged above the substrate holder base 220. A plurality of adjustment parts 240 are arranged between the substrate holding part base 220 and the substrate holding part 230. The plurality of adjustment sections 240 are configured to individually apply force from below to each of a plurality of locations on the substrate holding surface of the substrate holding section 230 in order to adjust the shape of the substrate holding surface. The substrate W is fixed to the substrate holder 230 by vacuum suction. In the embodiment, the substrate holding surface of the substrate holding part 230 is divided into a plurality of regions. Although the substrate holding unit 230 is provided with suction grooves, pneumatic piping, pneumatic control equipment, etc. for suctioning and fixing the substrate W, illustration and description of these structures will be omitted. Furthermore, a bar mirror 54 of the interferometer 50 is also arranged on the stage base 21.

基板保持部230の基板Wと接する基板保持面の平面度は、図1に示されている高さセンサ42(計測部)によって計測されうる。高さセンサ42は露光装置の内部に設けられていてもよいし、露光装置の外部に設けられていてもよい。基板保持部230をXY方向に移動させながら複数箇所を高さセンサ42で基板保持部230のZ方向の高さを計測することにより、基板保持部230の平面度を計測することができる。 The flatness of the substrate holding surface of the substrate holding section 230 that is in contact with the substrate W can be measured by the height sensor 42 (measuring section) shown in FIG. The height sensor 42 may be provided inside the exposure apparatus or may be provided outside the exposure apparatus. The flatness of the substrate holder 230 can be measured by measuring the height of the substrate holder 230 in the Z direction using the height sensor 42 at multiple locations while moving the substrate holder 230 in the XY directions.

図3は、基板ステージ20の詳細な構成を説明する図である。複数の調整部240のそれぞれは、基板保持部230と接触して移動する可動部242と、基板保持部ベース220に配置され可動部242を支持する固定部241と、可動部242を駆動するアクチュエータ243とを含みうる。アクチュエータ243は、モータ、減速機構、駆動変換機構などを含み、更に、ドライバ基板、制御基板、モータの駆動位置を算出するエンコーダ、原点センサなどを含んでいてもよい。なお、アクチュエータ243には、上位の制御システムや電源回路等と接続される不図示のケーブルも配置されうる。固定部241は、基板保持部ベース220の上に固定されている。可動部242は、固定部241に対してZ方向に動作可能である。アクチュエータ243から出力される直動あるいは回転駆動量が、固定部241の内部でZ方向の直動に変換され、可動部242のZ方向への駆動として出力される。調整部240の具体的構成は、アクチュエータ243の種類やZ変換機構の種類等に応じて種々考えうるが、一例を図4に示す。 FIG. 3 is a diagram illustrating the detailed configuration of the substrate stage 20. Each of the plurality of adjustment sections 240 includes a movable section 242 that moves in contact with the substrate holding section 230, a fixed section 241 that is disposed on the substrate holding section base 220 and supports the movable section 242, and an actuator that drives the movable section 242. 243. The actuator 243 includes a motor, a deceleration mechanism, a drive conversion mechanism, and the like, and may further include a driver board, a control board, an encoder that calculates the drive position of the motor, an origin sensor, and the like. Note that a cable (not shown) that is connected to a higher-level control system, a power supply circuit, etc. may also be arranged in the actuator 243. The fixing part 241 is fixed on the substrate holding part base 220. The movable part 242 is movable in the Z direction with respect to the fixed part 241. The amount of linear motion or rotational drive output from the actuator 243 is converted into linear motion in the Z direction inside the fixed part 241, and is output as a drive of the movable part 242 in the Z direction. Although various specific configurations of the adjustment section 240 can be considered depending on the type of actuator 243, the type of Z conversion mechanism, etc., one example is shown in FIG.

図4の調整部240は、Z変換機構としてクサビ機構を採用し、アクチュエータ243の出力としてすべり送りねじの直動駆動量を採用したものである。調整部240は、固定部241の底部241bの上でアクチュエータ243によって水平方向(Y方向)に移動するクサビ部材241aを有する。クサビ部材241aの上面は、Y方向に対して傾斜する斜面になっている。このクサビ部材241aの上に可動部242が搭載されている。クサビ部材241aの上面と当接する可動部242の下面は、可動部242の上面が水平になるようにクサビ部材241aの上面の斜面に対応する斜面となっている。可動部242は、固定部241の縦壁によってX方向およびY方向への動きは規制されており、Z方向への移動のみ可能とされている。 The adjustment section 240 in FIG. 4 employs a wedge mechanism as the Z conversion mechanism, and employs the linear drive amount of a sliding feed screw as the output of the actuator 243. The adjustment section 240 includes a wedge member 241a that is moved in the horizontal direction (Y direction) by an actuator 243 on the bottom 241b of the fixed section 241. The upper surface of the wedge member 241a is a slope inclined with respect to the Y direction. A movable portion 242 is mounted on this wedge member 241a. The lower surface of the movable portion 242 that comes into contact with the upper surface of the wedge member 241a has a slope corresponding to the slope of the upper surface of the wedge member 241a so that the upper surface of the movable portion 242 is horizontal. The movable part 242 is restricted from moving in the X direction and the Y direction by the vertical wall of the fixed part 241, and is only allowed to move in the Z direction.

クサビ部材241aの側面には、クサビ部材241aをY方向へ駆動するための、Y方向に延びる送りねじ243aが取り付けられている。送りねじ243aの回転は、減速機243bを介して回転モータ243cによって与えられる。送りねじ243aが回転することによりクサビ部材241aがY方向に移動する。可動部242は、クサビ部材241aのY方向への移動に伴って、クサビ比に従う量、上方向(Z方向)に移動する。 A feed screw 243a extending in the Y direction is attached to the side surface of the wedge member 241a to drive the wedge member 241a in the Y direction. Rotation of the feed screw 243a is provided by a rotary motor 243c via a reduction gear 243b. As the feed screw 243a rotates, the wedge member 241a moves in the Y direction. The movable portion 242 moves upward (Z direction) by an amount according to the wedge ratio as the wedge member 241a moves in the Y direction.

この際、クサビ比を25~100のように大きくとることにより、この機構のZ方向の分解能を高くすることができる。また、減速機243bの減速比を適切に設定することで回転モータ243cの出力も小さくとることができ、全体として非常に小さいモータで機構を実現することができる。このことは調整部240が配置されるスペースの抑制につながり、ステージ全体の小型・軽量化に役立つ。 At this time, by setting a large wedge ratio such as 25 to 100, the resolution of this mechanism in the Z direction can be increased. Further, by appropriately setting the reduction ratio of the reduction gear 243b, the output of the rotary motor 243c can be made small, and the entire mechanism can be realized with a very small motor. This leads to a reduction in the space in which the adjustment section 240 is arranged, and is useful for reducing the size and weight of the entire stage.

減速機243bの機構には、ウォームギア、ギアトレイン、遊星ギア列などを採用することができる。回転モータ243cには、DCモータ、ステッピングモータ、ACモータ、超音波モータなど、様々な種類の回転モータを使用できる。また、回転モータ243cにはエンコーダを配してもよく、エンコーダを使って調整部240の駆動量を推定することが可能である。減速機による減速比、およびねじ機構の減速比、クサビ機構による減速比の積が、機構全体の減速比である。本機構は、減速比が非常に大きい機構となっているため、エンコーダ分解能が比較的粗くてもサブミクロンオーダーのZ方向分解能が実現できる。そのため、円板に円状に多数配されたスリットをフォトインタプタにより検出するような簡素なものでも十分な分解能を実現可能である。また、クサビ機構をすべり送りねじで駆動する機構は、-Z方向の力に対しては内部摩擦によりセルフロックする機構であるため減速機やモータ軸が逆回転させられることはなく、-Z方向の剛性が非常に大きい機構となっている。また、クサビ機構は+Z方向には剛性がゼロの機構であるが、以下で説明するように、締結部250によって、調整部240を介して基板保持部230と基板保持部ベース220とが締結されるため、-Z方向の剛性のみを考えればよい。 A worm gear, a gear train, a planetary gear train, etc. can be employed as the mechanism of the speed reducer 243b. Various types of rotary motors can be used as the rotary motor 243c, such as a DC motor, a stepping motor, an AC motor, and an ultrasonic motor. Furthermore, an encoder may be disposed on the rotary motor 243c, and the amount of drive of the adjustment section 240 can be estimated using the encoder. The product of the reduction ratio of the reduction gear, the reduction ratio of the screw mechanism, and the reduction ratio of the wedge mechanism is the reduction ratio of the entire mechanism. Since this mechanism has a very large reduction ratio, it is possible to achieve submicron-order Z-direction resolution even if the encoder resolution is relatively coarse. Therefore, sufficient resolution can be achieved even with a simple method such as detecting a large number of circular slits arranged on a disk using a photointerceptor. In addition, the mechanism in which the wedge mechanism is driven by a sliding feed screw is a mechanism that self-locks due to internal friction against force in the -Z direction, so the reducer and motor shaft will not rotate in the opposite direction. The mechanism has extremely high rigidity. Furthermore, although the wedge mechanism is a mechanism that has zero rigidity in the +Z direction, the fastening section 250 fastens the substrate holding section 230 and the substrate holding section base 220 via the adjustment section 240, as described below. Therefore, it is only necessary to consider the rigidity in the -Z direction.

実施形態における基板ステージは、複数の締結部250を有する。複数の締結部250のそれぞれは、複数の調整部240のそれぞれに対応して設けられ、締結部材を用いて、調整部240を挟み込む形で基板保持部ベース220と基板保持部230とを締結する。締結部250は、基板保持部ベース220と基板保持部230との間でZ方向に延びて両者を接続する締結部材としてのロッド252と、ロッド252を駆動する駆動部251とを有する。基板保持部230には貫通孔が形成されておりそこをロッド252が貫通する。ロッド252の頭部252aはその貫通孔より大きな径を有しており、頭部252がその貫通孔を貫通することはできない。また、基板保持部230には、貫通孔の上部において頭部252を収容する凹部が形成されており、通常時において頭部252が基板保持部230の上面より上に突出しないようにされている。 The substrate stage in the embodiment has a plurality of fastening parts 250. Each of the plurality of fastening parts 250 is provided corresponding to each of the plurality of adjustment parts 240, and uses a fastening member to fasten the substrate holding part base 220 and the board holding part 230 with the adjustment part 240 sandwiched therebetween. . The fastening section 250 includes a rod 252 as a fastening member that extends in the Z direction between the substrate holding section base 220 and the substrate holding section 230 to connect them, and a driving section 251 that drives the rod 252. A through hole is formed in the substrate holding part 230, and the rod 252 passes through the through hole. The head 252a of the rod 252 has a larger diameter than the through hole, and the head 252 cannot pass through the through hole. Further, the board holding part 230 is formed with a recessed part for accommodating the head 252 at the upper part of the through hole, so that the head 252 does not protrude above the top surface of the board holding part 230 under normal conditions. .

駆動部251は、基板保持部ベース220の内部に構成されており、ロッド252の先端部は、駆動部251に取り付けられている。駆動部251は、ロッド252の引き込み/解放を行う。駆動部251がロッド252を所定の力Fで引き込むことにより、調整部240を介して基板保持部230と基板保持部ベース220とが力Fで結合される。実現例としては、エアシリンダにより押し引き駆動する方式、油圧シリンダにより押し引き駆動する方式、引き込み力Fはばね等で発生させ、引き込み力Fをキャンセルする押し上げ力を直動シリンダ等で付与し締結解放を行う方法等、様々考えられる。エアシリンダの代わりに電動の直動アクチュエータを使用してもよいし、省スペース化のためにシリンダに倍力機構を搭載してもよい。また、ロッド252にねじを形成し、駆動部251に内蔵したモータでねじを回転させ、トルクリミッタにより規定トルクを付与してねじ締結する方式でもよい。 The drive unit 251 is configured inside the substrate holder base 220 , and the tip of the rod 252 is attached to the drive unit 251 . The drive unit 251 pulls in/releases the rod 252. When the drive unit 251 pulls in the rod 252 with a predetermined force F, the substrate holding unit 230 and the substrate holding unit base 220 are coupled with the force F via the adjustment unit 240. Examples of implementation include a push-pull drive method using an air cylinder, a push-pull drive method using a hydraulic cylinder, and a method in which the retracting force F is generated by a spring, etc., and a pushing force that cancels the retracting force F is applied using a direct-acting cylinder, etc., for fastening. There are many possible ways to perform the release. An electric linear actuator may be used instead of the air cylinder, or a booster mechanism may be mounted on the cylinder to save space. Alternatively, a method may be adopted in which a screw is formed on the rod 252, the screw is rotated by a motor built in the drive section 251, and a specified torque is applied by a torque limiter to tighten the screw.

この締結部250は、流体駆動であればチューブを、電動であればケーブルを基板保持部の外部に延伸することが容易であり、制御部70あるいは外部の制御機器から遠隔操作を行うことが可能である。調整部240、締結部250はともに外部から遠隔操作ができるような構成にすることで、非常に短時間で平面度調整を実施することが可能になる。 This fastening section 250 can easily extend the tube outside the board holding section if it is fluid-driven or the cable if it is electric, and can be remotely controlled from the control section 70 or an external control device. It is. By configuring both the adjustment section 240 and the fastening section 250 so that they can be remotely controlled from the outside, it becomes possible to adjust the flatness in a very short time.

締結部250に必要とされる締結力Fは、次のようにして決定されうる。 The fastening force F required for the fastening portion 250 can be determined as follows.

まず、基板保持部230に必要な調整量を定める。基板保持部ベース220の上面の平面度、基板保持部230の平面度、隣接する基板保持部230間の厚み差など、平面度の低下要因が抽出され、その総和が必要最大調整量として決定される。 First, the amount of adjustment necessary for the substrate holder 230 is determined. Factors that reduce flatness, such as the flatness of the upper surface of the substrate holder base 220, the flatness of the substrate holder 230, and the difference in thickness between adjacent substrate holders 230, are extracted, and the sum of these factors is determined as the maximum necessary adjustment amount. Ru.

次に、決定された必要最大調整量を複数の基板保持部230のそれぞれの支持調整点に付与したときに発生する反力が、FEM等を用いて算出される。算出された反力に安全係数を掛け合わせた数値が、必要締結力として決定される。 Next, the reaction force generated when the determined maximum necessary adjustment amount is applied to each support adjustment point of the plurality of substrate holders 230 is calculated using an FEM or the like. The value obtained by multiplying the calculated reaction force by the safety factor is determined as the required fastening force.

締結部250がこの締結力Fを発生させている限り、締結部250による挟み込み結合によって基板保持部230、調整部240、基板保持部ベース220が密着することが保証される。この状態においては、調整部240の駆動量がそのまま基板保持部230の平面度の変化量に反映されることになり、これにより、高精度に平面度を調整することができる。 As long as the fastening section 250 generates this fastening force F, it is guaranteed that the substrate holding section 230, the adjusting section 240, and the substrate holding section base 220 will come into close contact with each other due to the sandwiching connection by the fastening section 250. In this state, the amount of drive of the adjustment section 240 is directly reflected in the amount of change in the flatness of the substrate holding section 230, thereby making it possible to adjust the flatness with high precision.

次に、平面度の調整方法および調整部240の駆動量の算出方法について説明する。上記したように、基板保持部230の平面度は、高さセンサ42を用いて計測されうる。平面度は、基板ステージ20を逐次駆動し、高さセンサ42により基板保持部230の全面を所定の間隔で計測することにより求められる。 Next, a method for adjusting the flatness and a method for calculating the amount of drive of the adjustment section 240 will be explained. As described above, the flatness of the substrate holder 230 can be measured using the height sensor 42. The flatness is determined by sequentially driving the substrate stage 20 and measuring the entire surface of the substrate holder 230 at predetermined intervals using the height sensor 42.

次に、複数の調整部240のそれぞれの調整量が算出される。例えば、複数の調整部240のそれぞれについて、複数の調整部240の駆動量と基板保持部230の変形量との関係が、FEMあるいは実測により予め求められ、補正テーブルとして記憶されている。その補正テーブルと平面度の計測結果から、調整後の平面度が最小になるように複数の調整部240それぞれの調整量を、最小二乗法等を用いて逆算する。 Next, the adjustment amount of each of the plurality of adjustment units 240 is calculated. For example, for each of the plurality of adjustment sections 240, the relationship between the drive amount of the plurality of adjustment sections 240 and the deformation amount of the substrate holding section 230 is determined in advance by FEM or actual measurement, and is stored as a correction table. Based on the correction table and the flatness measurement results, the adjustment amount of each of the plurality of adjustment sections 240 is calculated backward using the method of least squares or the like so that the flatness after adjustment is minimized.

このように算出された複数の調整部240それぞれの調整量でもって複数の調整部240それぞれを調整することにより、基板保持部の複数の領域間の段差や局所的な凹凸まで含めて高精度に調整することが可能になる。しかし、この場合には、基板保持部230の内部に応力が残留し、この残留応力が経時的に緩和されることにより、平面度の変化が発生する可能性がある。 By adjusting each of the plurality of adjustment sections 240 using the adjustment amount of each of the plurality of adjustment sections 240 calculated in this way, high accuracy can be achieved, including even the steps and local irregularities between the plurality of regions of the substrate holding section. It becomes possible to adjust. However, in this case, stress remains inside the substrate holder 230, and as this residual stress is relaxed over time, a change in flatness may occur.

そこで本実施形態では、複数の締結部250のそれぞれは、基板保持部ベース220と基板保持部230とを締結している締結状態と、基板保持部ベース220と基板保持部230との締結が解放された解放状態とに切り替え制御可能に構成される。複数の調整部240のうちの少なくとも1つの調整部において調整を行う間、複数の締結部250のうちの上記少なくとも1つの調整部に対応する少なくとも1つの締結部を解放状態に切り替えることができる。 Therefore, in this embodiment, each of the plurality of fastening parts 250 is in a fastened state in which the board holding part base 220 and the board holding part 230 are fastened together, and in a state in which the fastening state in which the board holding part base 220 and the board holding part 230 are fastened is released. It is configured to be able to control switching between the released state and the released state. While adjusting at least one adjustment section among the plurality of adjustment sections 240, at least one fastening section corresponding to the at least one adjustment section among the plurality of fastening sections 250 can be switched to a released state.

例えば、制御部70は、複数の調整部240のそれぞれと複数の締結部250のそれぞれを制御するように構成されている。制御部70は、計測部である高さセンサ42の計測結果に基づいて、少なくとも1つの締結部を解放状態にした後、複数の領域のうち隣接する領域の端部の間の段差が小さくなりかつ基板保持面が平坦になるように、上記少なくとも1つの調整部を制御する。 For example, the control section 70 is configured to control each of the plurality of adjustment sections 240 and each of the plurality of fastening sections 250. Based on the measurement results of the height sensor 42, which is a measurement unit, the control unit 70 sets at least one fastening portion to a released state, and then controls the control unit 70 to reduce the difference in level between the ends of adjacent areas among the plurality of areas. In addition, the at least one adjusting section is controlled so that the substrate holding surface becomes flat.

上記構成により、次のようなステージ装置の調整方法が実現される。いったん締結部250の結合が解放される。締結部250の結合が解放された後、前工程で算出された複数の調整部240それぞれの調整量でもって少なくとも1つの調整部による調整が行われる。調整が行われた後、締結部により締結状態にされる。調整部による調整においては、各調整部を順次駆動してもよいし、全ての調整部を同時に駆動してもよい。この際、各調整部におけるアクチュエータ243に内蔵されたエンコーダの情報を用いて駆動量を保証するようにしてもよい。あるいは、高さセンサ42を用いて各調整部の支持調整箇所またはその近傍を計測して、その計測結果に基づいて駆動量を保証するようにしてもよい。前者の場合は、駆動精度はエンコーダと調整部240全体の駆動精度に依存してしまう。しかし、その分全ての調整機構を同時に駆動させることが可能であるため、調整時間自体は短縮できる。後者の場合は、調整部240それぞれの支持調整箇所またはその近傍において高さセンサ42を用いた計測が必要であるため、逐時ステージを移動させる必要がある。さらに各支持調整箇所で、計測、締結解放、調整部の駆動、締結、計測のステップを踏んで、所定の調整量駆動されているかどうかを保証することになる。そのため、調整精度は高いが調整時間自体は長くなる。 調整部240に弾性がある場合、締結力Fと弾性定数に応じた量、調整部が変形しうる。この場合、予め弾性定数を計算または実測しておき、補正テーブルに補正値として加算しておくことで、弾性の影響を考慮した調整が可能である。ただし、誤差成分が増えてしまうことになるため、その分調整精度が低下する可能性はある。したがって、調整部240が剛であるほうが調整精度という観点からは有利である。 With the above configuration, the following stage device adjustment method is realized. Once the fastening portion 250 is uncoupled. After the coupling of the fastening portion 250 is released, adjustment is performed by at least one adjustment portion using the adjustment amount of each of the plurality of adjustment portions 240 calculated in the previous step. After the adjustment is made, the fastening section brings the fastening state into a fastened state. In the adjustment by the adjustment sections, each adjustment section may be driven sequentially, or all the adjustment sections may be driven simultaneously. At this time, the drive amount may be guaranteed using information from an encoder built into the actuator 243 in each adjustment section. Alternatively, the height sensor 42 may be used to measure the support adjustment location of each adjustment section or its vicinity, and the drive amount may be guaranteed based on the measurement results. In the former case, the driving accuracy depends on the driving accuracy of the encoder and the adjustment section 240 as a whole. However, since all adjustment mechanisms can be driven simultaneously, the adjustment time itself can be shortened. In the latter case, it is necessary to measure using the height sensor 42 at or near each support adjustment location of the adjustment section 240, and therefore it is necessary to move the stage from time to time. Further, at each support adjustment location, the steps of measurement, fastening/releasing, driving the adjustment section, fastening, and measurement are performed to ensure whether or not the support is being driven by a predetermined adjustment amount. Therefore, although the adjustment accuracy is high, the adjustment time itself becomes long. When the adjustment part 240 has elasticity, the adjustment part can be deformed by an amount depending on the fastening force F and the elastic constant. In this case, by calculating or actually measuring the elastic constant in advance and adding it to the correction table as a correction value, it is possible to perform adjustment taking into account the influence of elasticity. However, since the error component will increase, there is a possibility that the adjustment accuracy will decrease accordingly. Therefore, it is advantageous for the adjustment section 240 to be rigid from the viewpoint of adjustment accuracy.

同様の考え方で、基板保持部ベース220の剛性が基板保持部230の剛性に対して無視できない場合が考えられる。この場合も、基板保持部ベース220の剛性を含めたFEMを実施して補正テーブルを作成することで補正が可能である。しかし、この場合もやはり、誤差成分が増えてしまうことには違いないため、基板保持部230に比して剛であるほうが望ましい。 In a similar way, there may be a case where the rigidity of the substrate holder base 220 cannot be ignored compared to the rigidity of the substrate holder 230. In this case as well, correction can be made by performing FEM including the rigidity of the substrate holder base 220 and creating a correction table. However, in this case as well, the error component is bound to increase, so it is preferable that the substrate holding part 230 be more rigid than the substrate holding part 230.

実施形態において、ロッド252は、可動部242と同心状(同軸状)に配置される。例えば、可動部242および固定部241を貫いて基板保持部ベース220と基板保持部230とを連通する中空部246が形成されている。ロッド252がこの中空部246の内部に配置されることにより、ロッド252は、可動部242と同心状(同軸状)に配置されうる。これにより、締結力Fの作用点のずれによるモーメントの発生を防ぐことができる。また、基板保持部230の変形が複雑化し平面度調整のための補正テーブルの誤差成分が大きく発生してしまうことを防ぐこともできる。以上のような構成によれば、平面度の調整を高精度に行うことができる。 In the embodiment, the rod 252 is arranged concentrically (coaxially) with the movable portion 242 . For example, a hollow portion 246 is formed that passes through the movable portion 242 and the fixed portion 241 and communicates the substrate holding portion base 220 and the substrate holding portion 230. By disposing the rod 252 inside the hollow portion 246, the rod 252 can be disposed concentrically (coaxially) with the movable portion 242. Thereby, it is possible to prevent the generation of a moment due to a shift in the point of application of the fastening force F. Further, it is also possible to prevent the deformation of the substrate holder 230 from becoming complicated and causing a large error component in the correction table for flatness adjustment. According to the above configuration, the flatness can be adjusted with high precision.

基板保持部230を締結部250による締結を行う際に基板保持部230の位置がずれると、締結力Fの作用点がずれてモーメントが発生し、そのモーメントに伴って基板保持部230の平面度が変化する可能性がある。そのため、締結部250が解放状態にされた後、基板保持部230の位置決めを行い、位置決めがなされた後、締結状態にすることが望ましい。したがって、基板保持部230の位置ずれを修正するための位置決め機構を、基板保持部230と基板保持部ベース220との間に設けてもよい。 If the position of the board holder 230 shifts when the board holder 230 is fastened by the fastening part 250, the point of application of the fastening force F shifts and a moment is generated, which causes the flatness of the board holder 230 to change. may change. Therefore, it is desirable to position the substrate holding part 230 after the fastening part 250 is in the released state, and after the positioning, to put it in the fastened state. Therefore, a positioning mechanism for correcting the positional shift of the substrate holder 230 may be provided between the substrate holder 230 and the substrate holder base 220.

図7に、基板保持部230の位置決め機構の一例を示す。位置決め機構は、基板保持部ベース220に対する基板保持部230の水平方向(XY方向)の位置決めを行う。図7(a)は側面図、図7(b)は基板Wを取り去った状態の平面透視図である。基板保持部230には、基板保持部ベース220に向かって突出する位置決めピン253が2つ設けられている。また、基板保持部ベース220上には、それぞれの位置決めピン253をX方向またはY方向に沿って挟むように、位置決め部材254と押圧部材255が設けられる。具体的には、一方の位置決めピン253をY方向に沿って挟むように、位置決め部材254と押圧部材255が設けられ、他方の位置決めピン253をX方向に沿って挟むように、位置決め部材254と押圧部材255が配置される。一例において、図7(b)に示されるように、2つの位置決め部材254の位置決めピン253との当接部は、一方はV字型、他方は平面型とされる。締結部250による締結前に、押圧部材255で位置決めピン253を押し込むことで基板保持部230が移動する。この押圧によって位置決めピン253が位置決め部材254に突き当たることで位置決めが行われる。 FIG. 7 shows an example of a positioning mechanism for the substrate holding section 230. The positioning mechanism positions the substrate holder 230 in the horizontal direction (XY direction) with respect to the substrate holder base 220. FIG. 7(a) is a side view, and FIG. 7(b) is a plan perspective view with the substrate W removed. The substrate holder 230 is provided with two positioning pins 253 that protrude toward the substrate holder base 220. Further, a positioning member 254 and a pressing member 255 are provided on the substrate holding unit base 220 so as to sandwich each positioning pin 253 along the X direction or the Y direction. Specifically, a positioning member 254 and a pressing member 255 are provided so as to sandwich one positioning pin 253 along the Y direction, and a positioning member 254 and a pressing member 255 are provided so as to sandwich the other positioning pin 253 along the X direction. A pressing member 255 is arranged. In one example, as shown in FIG. 7B, the contact portions of the two positioning members 254 with the positioning pin 253 are V-shaped, and the other is flat. Before fastening by the fastening section 250, the substrate holding section 230 is moved by pushing the positioning pin 253 with the pressing member 255. This pressing causes the positioning pin 253 to abut against the positioning member 254, thereby performing positioning.

この位置決めがなされた状態で締結部250による締結が行われる。締結が完了したら、押圧部材255による押圧は解除してもよい。なお、押圧部材は、例えば、エアシリンダ、電動アクチュエータ等によって構成されうる。また、ばねなどを用いて常に押圧が行われるようにしてもよい。 With this positioning performed, fastening by the fastening portion 250 is performed. Once the fastening is completed, the pressing by the pressing member 255 may be released. Note that the pressing member may be configured by, for example, an air cylinder, an electric actuator, or the like. Alternatively, the pressure may be constantly applied using a spring or the like.

また、図7の例では、基板保持部230に設けられた位置決めピン253を位置決め部材254に押し付けることにより位置決めを行っているが、他の構成により位置決めを行うようにしてもよい。例えば、位置決め部材254に孔を設け、位置決めピン253をその孔に差し込むことにより位置決めを行ってもよい。この方式はアクチュエータがいらないため簡便で低コストで実現可能である。ただし、位置決めピン253を差し込むための孔の位置の精度が低い場合には、位置決めの誤差が大きくなる可能性がある。孔の位置ずれによって発生する基板保持部230の平面度変化量が許容範囲内であれば、この方式を利用することも可能である。 Further, in the example of FIG. 7, positioning is performed by pressing the positioning pins 253 provided on the substrate holder 230 against the positioning member 254, but positioning may be performed using other configurations. For example, positioning may be performed by providing a hole in the positioning member 254 and inserting the positioning pin 253 into the hole. Since this method does not require an actuator, it is simple and can be realized at low cost. However, if the accuracy of the position of the hole for inserting the positioning pin 253 is low, the positioning error may become large. This method can also be used as long as the amount of change in flatness of the substrate holder 230 caused by the positional deviation of the holes is within a permissible range.

以上のように、本実施形態では、締結部250を一旦解放して調整部240の調整を行い、その後、締結部250を再度締結する。これにより、応力状態および平面度を再度調整時と同じ状態に戻すことが可能である。 As described above, in this embodiment, the fastening section 250 is once released, the adjusting section 240 is adjusted, and then the fastening section 250 is fastened again. This makes it possible to return the stress state and flatness to the same state as when adjusting again.

なお、締結部250が外部から遠隔操作できるように構成されていれば、解放および締結は装置外部から指令により短時間で実施可能である。そのため、装置運用中にメンテナンス動作として機能を盛り込むことも可能であり、平面度の維持に好適である。 Note that if the fastening section 250 is configured to be remotely controlled from the outside, release and fastening can be performed in a short time by commands from outside the device. Therefore, it is possible to incorporate a function as a maintenance operation during device operation, which is suitable for maintaining flatness.

(変形例)
調整部240の変形例を図5に示す。図5では、非圧縮性流体の体積移動をZ駆動量に変換する調整機構が採用されている。図5の例では、固定部241は、非圧縮流体を満たす容器を形成している。固定部241(容器)の内部には、オイルのような非圧縮性流体245が充填されており、非圧縮性流体245の液面はダイヤフラム244でシールされている。可動部242の両端部はダイヤフラム244に接続されている。非圧縮性流体245は、ピストン式のアクチュエータ243からチューブを介して固定部241の内部に送られる。アクチュエータ243から送られた非圧縮性流体の量に応じて内部における非圧縮性流体245の体積が変化し、それに応じてダイヤフラム244が変形する。ダイヤフラム244が変形することで可動部242が上方向(Z方向)に移動する。
(Modified example)
A modification of the adjustment section 240 is shown in FIG. In FIG. 5, an adjustment mechanism is employed that converts the volume movement of the incompressible fluid into a Z drive amount. In the example of FIG. 5, the fixing portion 241 forms a container filled with incompressible fluid. The inside of the fixed part 241 (container) is filled with an incompressible fluid 245 such as oil, and the surface of the incompressible fluid 245 is sealed with a diaphragm 244 . Both ends of the movable part 242 are connected to a diaphragm 244. Incompressible fluid 245 is sent from piston-type actuator 243 to the inside of fixed part 241 via a tube. The volume of the incompressible fluid 245 inside changes depending on the amount of incompressible fluid sent from the actuator 243, and the diaphragm 244 deforms accordingly. As the diaphragm 244 deforms, the movable portion 242 moves upward (Z direction).

ピストン式のアクチュエータ243と固定部241とを接続するチューブの長さは任意である。よって、アクチュエータ243は基板保持部ベース220の外部にあってもよい。そのため、ピストン部を外部から制御することで基板保持部230を遠隔調整することが可能である。 The length of the tube connecting the piston-type actuator 243 and the fixed part 241 is arbitrary. Therefore, the actuator 243 may be located outside the substrate holder base 220. Therefore, it is possible to remotely adjust the substrate holding section 230 by controlling the piston section from the outside.

調整部240の中央部(Z軸中心)には中空部246が形成されており、その中空部246を通して、締結部250により、基板保持部230と基板保持部ベース220とが、調整部240を挟み込む形で結合される。このような構造により、流体を使用した調整部でも高精度に調整することが可能である。また、非圧縮性流体245の非圧縮性が完全なものではない場合、ダイヤフラムやチューブの弾性によって、機構が弾性を持つことが考えられる。そのような弾性を予め実測し、補正テーブルに加味することにより、調整精度を向上させることができる。 A hollow part 246 is formed in the center part (Z-axis center) of the adjustment part 240, and the board holding part 230 and the board holding part base 220 are connected to each other by the fastening part 250 through the hollow part 246. They are joined in a sandwiched manner. With such a structure, it is possible to perform highly accurate adjustment even with an adjustment section that uses fluid. Furthermore, if the incompressibility of the incompressible fluid 245 is not perfect, the mechanism may have elasticity due to the elasticity of the diaphragm or tube. By actually measuring such elasticity in advance and adding it to the correction table, adjustment accuracy can be improved.

非圧縮性流体を用いた調整部は、可動部242に関してX軸周りおよびY軸周りの傾斜自由度を持つ2軸チルト機構を有する。すなわち、可動部242は、基板保持部230に力を加えた方向とは異なる方向への基板保持部の変位を許容するためのチルト機構を含むことができる。この2軸チルト機構の効果により、基板保持部230の裏面の平面度の影響を受けにくい構造になっており、また、基板保持部230全体を均一に傾けるような駆動をした際の局所的な曲げの影響がなくなるため、調整精度の点で有利である。 The adjustment section using an incompressible fluid has a two-axis tilt mechanism that has degrees of freedom in tilting the movable section 242 around the X-axis and around the Y-axis. That is, the movable section 242 can include a tilt mechanism for allowing the substrate holder to be displaced in a direction different from the direction in which force is applied to the substrate holder 230. Due to the effect of this two-axis tilt mechanism, the structure is not easily affected by the flatness of the back surface of the substrate holder 230, and it also has a structure that is not easily affected by the flatness of the back surface of the substrate holder 230. Since the influence of bending is eliminated, it is advantageous in terms of adjustment accuracy.

このような2軸チルト機構を、前述したクサビ機構による調整部(図4)にも適用することができる。一例として、図6に、可動部242の上に2軸チルト機能を有する支持部材を有する調整部240の構成を示す。図6において、可動部242の上に、基板保持部230を支持する支持部材256が設けられている。支持部材256の上面は、基板保持部230を受けるために平面とされている一方、支持部材256の下端部は、凸球面とされている。支持部材256が配置される可動部242の上面には、球面座242aが形成されている。球面座242aは、凸球面とされた支持部材256の下端部を抱持するように凹球状に形成されている。支持部材256は、可動部242の球面座242aによって揺動回転自在に支持される。こうして揺動回転自在に支持された支持部材256は、基板保持部230の裏面の平面度のばらつきを吸収する、いわゆる「かわし」機構としての役割を果たす。 Such a two-axis tilt mechanism can also be applied to the aforementioned wedge mechanism adjustment section (FIG. 4). As an example, FIG. 6 shows a configuration of an adjustment section 240 having a support member having a two-axis tilt function on the movable section 242. In FIG. 6, a support member 256 that supports the substrate holding section 230 is provided on the movable section 242. The upper surface of the support member 256 is a flat surface for receiving the substrate holder 230, while the lower end of the support member 256 is a convex spherical surface. A spherical seat 242a is formed on the upper surface of the movable portion 242 where the support member 256 is disposed. The spherical seat 242a is formed into a concave spherical shape so as to hold the lower end of the support member 256, which has a convex spherical surface. The support member 256 is supported by the spherical seat 242a of the movable portion 242 so as to be swingable and rotatable. The support member 256 supported so as to be able to swing and rotate in this manner serves as a so-called "dodging" mechanism that absorbs variations in the flatness of the back surface of the substrate holder 230.

なお、かわし機構は、この他にも、球面+3点支持、ヒンジ機構等、種々の構成で実現可能である。ただし、そのかわし機構の弾性は考慮する必要がある。前述のように、かわし機構の弾性を予め計測しておき、その影響を補正テーブルに加味しておくことで補正が可能である。 Note that the dodging mechanism can be realized with various other configurations such as a spherical surface + three-point support, a hinge mechanism, etc. However, it is necessary to consider the elasticity of the dodging mechanism. As mentioned above, correction can be made by measuring the elasticity of the dodging mechanism in advance and taking its influence into consideration in the correction table.

<物品製造方法の実施形態>
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of article manufacturing method>
The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing articles such as micro devices such as semiconductor devices and elements having fine structures. The article manufacturing method of the present embodiment includes a step of forming a latent image pattern on a photosensitive agent applied to a substrate using the above exposure device (a step of exposing the substrate), and a step of forming a latent image pattern in this step. and developing the substrate. Additionally, such manufacturing methods include other well-known steps (oxidation, deposition, deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, etc.). The article manufacturing method of this embodiment is advantageous in at least one of article performance, quality, productivity, and production cost compared to conventional methods.

(他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読み出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
(Other embodiments)
The present invention provides a system or device with a program that implements one or more functions of the embodiments described above via a network or a storage medium, and one or more processors in a computer of the system or device reads and executes the program. This can also be achieved by processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.

発明は上記実施形態に制限されるものではなく、発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、発明の範囲を公にするために請求項を添付する。 The invention is not limited to the embodiments described above, and various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the following claims are hereby appended to disclose the scope of the invention.

220:基板保持部ベース、230:基板保持部、240:調整部、241:固定部、242:可動部、243:アクチュエータ、250:締結部、251:駆動部、252:ロッド 220: Board holding part base, 230: Board holding part, 240: Adjustment part, 241: Fixed part, 242: Movable part, 243: Actuator, 250: Fastening part, 251: Drive part, 252: Rod

Claims (14)

基板を保持して移動するステージ装置であって、
ベースと、
前記ベースより上の位置で前記基板を保持する基板保持部と、
前記ベースと前記基板保持部との間に設けられ、前記基板保持部の基板保持面の形状を調整するために前記基板保持面の複数の箇所のそれぞれに対して個別に下方から力を加える複数の調整部と、
前記複数の調整部のそれぞれに対応して設けられ、締結部材を用いて、前記調整部を挟み込む形で前記ベースと前記基板保持部とを締結する複数の締結部と、
を有し、
前記複数の調整部のそれぞれは、
前記基板保持部と接触して移動する可動部と、
前記ベースに配置され前記可動部を支持する固定部と、
前記可動部および前記固定部を貫いて前記ベースと前記基板保持部とを連通する中空部と、
を含み、
前記複数の締結部のそれぞれは、前記ベースと前記基板保持部とを接続する前記締結部材としてのロッドを含み、
前記ロッドは、前記中空部の内部に、前記可動部と同心状に配置される、ことを特徴とするステージ装置。
A stage device that holds and moves a substrate,
base and
a substrate holder that holds the substrate at a position above the base;
A plurality of parts are provided between the base and the substrate holder, and apply force from below individually to each of a plurality of locations on the substrate holding surface in order to adjust the shape of the substrate holding surface of the substrate holder. an adjustment section,
a plurality of fastening parts that are provided corresponding to each of the plurality of adjustment parts and fasten the base and the substrate holding part using fastening members to sandwich the adjustment parts;
has
Each of the plurality of adjustment parts is
a movable part that moves in contact with the substrate holding part;
a fixed part disposed on the base and supporting the movable part;
a hollow part that penetrates the movable part and the fixed part and communicates the base and the substrate holding part;
including;
Each of the plurality of fastening parts includes a rod as the fastening member that connects the base and the substrate holding part,
The stage apparatus is characterized in that the rod is arranged inside the hollow part and concentrically with the movable part .
前記複数の締結部のそれぞれは、前記ベースと前記基板保持部とを締結している締結状態と、前記ベースと前記基板保持部との締結が解放された解放状態とに切り替え制御可能に構成されていることを特徴とする請求項1に記載のステージ装置。 Each of the plurality of fastening parts is configured to be switchable and controllable between a fastened state in which the base and the substrate holding part are fastened, and a released state in which the fastening between the base and the board holding part is released. The stage device according to claim 1, characterized in that: 前記複数の調整部のうちの少なくとも1つの調整部において調整を行う間、前記複数の締結部のうちの前記少なくとも1つの調整部に対応する少なくとも1つの締結部を前記解放状態に切り替えることを特徴とする請求項2に記載のステージ装置。 While adjusting at least one of the plurality of adjustment parts, at least one fastening part corresponding to the at least one adjustment part among the plurality of fastening parts is switched to the released state. The stage device according to claim 2. 前記複数の締結部のそれぞれは、
記ベースに設けられ、前記ロッドを引き込むように駆動する駆動部を更に含み、
記駆動部により前記ロッドを所定の力で引き込むことによって前記締結状態を得ることを特徴とする請求項2または3に記載のステージ装置。
Each of the plurality of fastening parts is
further comprising a drive unit provided on the base and configured to drive the rod to retract it;
4. The stage apparatus according to claim 2, wherein the fastened state is obtained by drawing the rod with a predetermined force by the drive section.
前記複数の調整部のそれぞれは、記可動部を駆動するアクチュエータを更に含むことを特徴とする請求項4に記載のステージ装置。 5. The stage apparatus according to claim 4, wherein each of the plurality of adjustment sections further includes an actuator that drives the movable section. 前記可動部は、前記基板保持部に前記力を加えた方向とは異なる方向への前記基板保持部の変位を許容するためのチルト機構を含むことを特徴とする請求項乃至のいずれか1項に記載のステージ装置。 6. The movable section includes a tilt mechanism for allowing displacement of the substrate holder in a direction different from the direction in which the force is applied to the substrate holder. The stage device according to item 1. 前記複数の調整部のそれぞれは、前記固定部の上で前記アクチュエータによって水平方向に移動するクサビ部材を更に有し、
前記可動部は、前記クサビ部材の移動に伴って上方向に移動する
ことを特徴とする請求項に記載のステージ装置。
Each of the plurality of adjustment parts further includes a wedge member that is moved in a horizontal direction by the actuator on the fixed part,
The stage apparatus according to claim 5 , wherein the movable part moves upward as the wedge member moves.
前記固定部は、非圧縮性流体を満たす容器を形成しており、
前記複数の調整部のそれぞれは、前記容器に満たされている前記非圧縮性流体の液面をシールするダイヤフラムを更に有し、
前記アクチュエータは、前記容器に非圧縮性流体を送り込むように構成されており、
前記可動部は、前記アクチュエータによって前記容器に非圧縮性流体が送り込まれたことによる前記ダイヤフラムの変形に伴って上方向に移動する
ことを特徴とする請求項5または7に記載のステージ装置。
The fixed part forms a container filled with an incompressible fluid,
Each of the plurality of adjustment parts further includes a diaphragm that seals a liquid level of the incompressible fluid filled in the container,
the actuator is configured to pump an incompressible fluid into the container;
The stage apparatus according to claim 5 or 7, wherein the movable part moves upward as the diaphragm is deformed due to incompressible fluid being sent into the container by the actuator.
前記ベースに対する前記基板保持部の水平方向の位置決めを行う位置決め機構を更に有し、
前記複数の締結部を前記解放状態にした後、前記位置決め機構により前記位置決めを行い、前記位置決めがなされた後、前記複数の締結部を前記締結状態にする
ことを特徴とする請求項2乃至5、7、8のいずれか1項に記載のステージ装置。
further comprising a positioning mechanism for horizontally positioning the substrate holder with respect to the base,
Claims 2 to 5, characterized in that, after the plurality of fastening parts are brought into the released state, the positioning is performed by the positioning mechanism, and after the positioning is performed, the plurality of fastening parts are brought into the fastened state. The stage device according to any one of , 7 and 8 .
前記複数の調整部のそれぞれと前記複数の締結部のそれぞれを制御する制御部と、
前記基板保持部によって保持された前記基板の平面度を計測する計測部と、を更に有し、
前記基板保持面は複数の領域に分割されており、
前記制御部は、前記計測部の計測結果に基づいて、前記少なくとも1つの締結部を前記解放状態にした後、前記複数の領域のうち隣接する領域の端部の間の段差が小さくなりかつ前記基板保持面が平坦になるように、前記少なくとも1つの調整部を制御する
ことを特徴とする請求項3に記載のステージ装置。
a control unit that controls each of the plurality of adjustment units and each of the plurality of fastening units;
further comprising a measuring unit that measures the flatness of the substrate held by the substrate holding unit,
The substrate holding surface is divided into a plurality of regions,
Based on the measurement result of the measurement unit, the control unit may be configured to reduce the difference in level between the ends of adjacent areas among the plurality of areas and to reduce the difference in level between the ends of adjacent areas of the plurality of areas, after the at least one fastening part is brought into the released state, based on the measurement result of the measurement unit. The stage device according to claim 3, wherein the at least one adjustment section is controlled so that the substrate holding surface becomes flat.
基板を保持して移動するステージ装置であって、A stage device that holds and moves a substrate,
ベースと、base and
前記ベースより上の位置で前記基板を保持する基板保持部と、a substrate holder that holds the substrate at a position above the base;
前記ベースと前記基板保持部との間に設けられ、前記基板保持部の基板保持面の形状を調整するために前記基板保持面の複数の箇所のそれぞれに対して個別に下方から力を加える複数の調整部と、A plurality of parts are provided between the base and the substrate holder, and apply force from below individually to each of a plurality of locations on the substrate holding surface in order to adjust the shape of the substrate holding surface of the substrate holder. an adjustment section,
前記複数の調整部のそれぞれに対応して設けられ、締結部材を用いて、前記調整部を挟み込む形で前記ベースと前記基板保持部とを締結する複数の締結部と、a plurality of fastening parts that are provided corresponding to each of the plurality of adjustment parts and fasten the base and the substrate holding part using fastening members to sandwich the adjustment parts;
前記ベースに対する前記基板保持部の水平方向の位置決めを行う位置決め機構と、a positioning mechanism that horizontally positions the substrate holder with respect to the base;
を有し、has
前記複数の締結部のそれぞれは、前記ベースと前記基板保持部とを締結している締結状態と、前記ベースと前記基板保持部との締結が解放された解放状態とに切り替え制御可能に構成され、Each of the plurality of fastening parts is configured to be switchable and controllable between a fastened state in which the base and the substrate holding part are fastened, and a released state in which the fastening between the base and the board holding part is released. ,
前記複数の締結部を前記解放状態にした後、前記位置決め機構により前記位置決めを行い、前記位置決めがなされた後、前記複数の締結部を前記締結状態にする、After the plurality of fastening parts are brought into the released state, the positioning is performed by the positioning mechanism, and after the positioning is performed, the plurality of fastening parts are brought into the fastened state.
ことを特徴とするステージ装置。A stage device characterized by:
ベースと、前記ベースより上の位置で基板を保持する基板保持部と、前記ベースと前記基板保持部との間に設けられ、前記基板保持部の基板保持面の形状を調整するために前記基板保持面の複数の箇所のそれぞれに対して個別に下方から力を加える複数の調整部と、前記複数の調整部のそれぞれに対応して設けられ、締結部材を用いて、前記調整部を挟み込む形で前記ベースと前記基板保持部とを締結する複数の締結部と、を有するステージ装置の調整方法であって、
前記複数の調整部のそれぞれは、
前記基板保持部と接触して移動する可動部と、
前記ベースに配置され前記可動部を支持する固定部と、
前記可動部および前記固定部を貫いて前記ベースと前記基板保持部とを連通する中空部と、
を含み、
前記複数の締結部のそれぞれは、前記ベースと前記基板保持部とを接続する前記締結部材としてのロッドを含み、
前記ロッドは、前記中空部の内部に、前記可動部と同心状に配置されており、
前記調整方法は、
前記複数の調整部のうちの少なくとも1つの調整部において調整を行うために、前記複数の締結部のうちの前記少なくとも1つの調整部に対応する少なくとも1つの締結部を、前記ベースと前記基板保持部との締結が解放された解放状態にする工程と、
前記少なくとも1つの締結部が前記解放状態にされた後、前記少なくとも1つの調整部による調整を行う工程と、
前記少なくとも1つの調整部による調整が行われた後、前記少なくとも1つの締結部を、前記ベースと前記基板保持部とを締結する締結状態にする工程と、
を有することを特徴とする調整方法。
a base, a substrate holder for holding a substrate at a position above the base; and a substrate holder provided between the base and the substrate holder to adjust the shape of the substrate holding surface of the substrate holder. A plurality of adjustment parts that individually apply force from below to each of a plurality of locations on the holding surface, and a type that is provided corresponding to each of the plurality of adjustment parts, and the adjustment parts are sandwiched using fastening members. A method for adjusting a stage device, comprising: a plurality of fastening parts that fasten the base and the substrate holding part,
Each of the plurality of adjustment parts is
a movable part that moves in contact with the substrate holding part;
a fixed part disposed on the base and supporting the movable part;
a hollow part that penetrates the movable part and the fixed part and communicates the base and the substrate holding part;
including;
Each of the plurality of fastening parts includes a rod as the fastening member that connects the base and the substrate holding part,
The rod is arranged inside the hollow part and concentrically with the movable part,
The adjustment method is
In order to perform adjustment in at least one of the plurality of adjustment parts, at least one fastening part corresponding to the at least one adjustment part of the plurality of fastening parts is connected to the base and the substrate holding part. a step of bringing the connection to the part into a released state,
After the at least one fastening section is brought into the released state, adjusting the at least one adjusting section;
After the adjustment by the at least one adjustment section is performed, the at least one fastening section is brought into a fastening state that fastens the base and the substrate holding section;
An adjustment method characterized by having the following.
基板を露光する露光装置であって、
前記基板を保持する、請求項1乃至1のいずれか1項に記載のステージ装置を有することを特徴とする露光装置。
An exposure device that exposes a substrate,
An exposure apparatus comprising the stage apparatus according to any one of claims 1 to 11 , which holds the substrate.
請求項1に記載の露光装置を用いて基板を露光する工程と、
前記露光された基板を現像する工程と、
を含み、前記現像された基板から物品を製造することを特徴とする物品製造方法。
A step of exposing the substrate using the exposure apparatus according to claim 13 ;
Developing the exposed substrate;
A method for manufacturing an article, comprising: manufacturing an article from the developed substrate.
JP2019189656A 2019-10-16 2019-10-16 Stage device, stage device adjustment method, and article manufacturing method Active JP7406338B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019189656A JP7406338B2 (en) 2019-10-16 2019-10-16 Stage device, stage device adjustment method, and article manufacturing method
TW109131269A TWI833991B (en) 2019-10-16 2020-09-11 Mounting table device, mounting table device adjustment method, exposure device, and article manufacturing method
KR1020200128567A KR20210045312A (en) 2019-10-16 2020-10-06 Stage apparatus, method of adjusting stage apparatus, exposure apparatus, and method of manufacturing article
CN202011091475.8A CN112666797B (en) 2019-10-16 2020-10-13 Stage device, method for adjusting stage device, exposure device, and method for manufacturing article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019189656A JP7406338B2 (en) 2019-10-16 2019-10-16 Stage device, stage device adjustment method, and article manufacturing method

Publications (2)

Publication Number Publication Date
JP2021063953A JP2021063953A (en) 2021-04-22
JP7406338B2 true JP7406338B2 (en) 2023-12-27

Family

ID=75403263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019189656A Active JP7406338B2 (en) 2019-10-16 2019-10-16 Stage device, stage device adjustment method, and article manufacturing method

Country Status (3)

Country Link
JP (1) JP7406338B2 (en)
KR (1) KR20210045312A (en)
CN (1) CN112666797B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106007A (en) 2011-11-16 2013-05-30 Canon Inc Stage device, exposure equipment and device manufacturing method
JP2014225514A (en) 2013-05-15 2014-12-04 東京エレクトロン株式会社 Peeling device, peeling system, peeling method, program, and computer storage medium
JP2015079812A (en) 2013-10-16 2015-04-23 キヤノン株式会社 Substrate holding device and exposure device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932305B2 (en) 1976-03-27 1984-08-08 株式会社クボタ Extrusion molding method
DE4420950A1 (en) * 1994-06-20 1995-12-21 Walter Nicolai System for activating displacement mechanism in sealed storage vessel
JPH08321457A (en) * 1995-05-26 1996-12-03 Nikon Corp Aligner
KR19980019031A (en) * 1996-08-27 1998-06-05 고노 시게오 A stage device (A STAGE APPARATUS)
JP4679172B2 (en) * 2005-02-23 2011-04-27 株式会社日立ハイテクノロジーズ Display panel substrate exposure apparatus, display panel substrate exposure method, and display panel substrate manufacturing method
JP6736371B2 (en) * 2016-06-17 2020-08-05 キヤノン株式会社 Position adjusting mechanism, exposure apparatus, and article manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106007A (en) 2011-11-16 2013-05-30 Canon Inc Stage device, exposure equipment and device manufacturing method
JP2014225514A (en) 2013-05-15 2014-12-04 東京エレクトロン株式会社 Peeling device, peeling system, peeling method, program, and computer storage medium
JP2015079812A (en) 2013-10-16 2015-04-23 キヤノン株式会社 Substrate holding device and exposure device

Also Published As

Publication number Publication date
CN112666797B (en) 2024-04-02
JP2021063953A (en) 2021-04-22
TW202134794A (en) 2021-09-16
CN112666797A (en) 2021-04-16
KR20210045312A (en) 2021-04-26

Similar Documents

Publication Publication Date Title
JP4638454B2 (en) Lithographic apparatus and method for controlling components of a lithographic apparatus
JP4611325B2 (en) Lithographic apparatus and stage apparatus
JP3814453B2 (en) Positioning apparatus, semiconductor exposure apparatus, and device manufacturing method
WO2006022200A1 (en) Stage apparatus and exposure apparatus
US20110046795A1 (en) Drive control method, drive control apparatus, stage control method, stage control apparatus, exposure method, exposure apparatus and measuring apparatus
JP7047876B2 (en) Mobile device, moving method, exposure device, exposure method, manufacturing method of flat panel display, and device manufacturing method
JP2010182867A (en) Positioning apparatus, exposure apparatus, and device manufacturing method
JP2018066996A (en) Devices, apparatus, microlithography system, and device production method
EP1835348A2 (en) Lithographic apparatus and device manufacturing method
WO2017057589A1 (en) Mobile object device, exposure device, method for manufacturing flat panel display, method for manufacturing device, and method for moving object
TWI484306B (en) Lithographic apparatus and device manufacturing method
JP7406338B2 (en) Stage device, stage device adjustment method, and article manufacturing method
JPWO2006001282A1 (en) Positioning apparatus, positioning method, exposure apparatus, exposure method, and device manufacturing method
TWI833991B (en) Mounting table device, mounting table device adjustment method, exposure device, and article manufacturing method
JP5241276B2 (en) Exposure equipment
JP6862543B2 (en) Motor assembly, lithographic equipment, and device manufacturing methods
JP2012015508A (en) Reticle clamping system
JP5495948B2 (en) Stage apparatus, exposure apparatus, and device manufacturing method
JP5578485B2 (en) MOBILE DEVICE, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP5153017B2 (en) Support structure and lithographic apparatus
JP6172913B2 (en) Stage apparatus, exposure apparatus and article manufacturing method
JP7203194B2 (en) substrate support, lithographic apparatus, substrate inspection apparatus, device manufacturing method
JP2013106007A (en) Stage device, exposure equipment and device manufacturing method
JP2009016386A (en) Positioning device, stage device, exposure apparatus, and device manufacturing method
JP4035200B2 (en) Positioning apparatus and exposure apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R151 Written notification of patent or utility model registration

Ref document number: 7406338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151