JP7405114B2 - Power supply system and computer program - Google Patents

Power supply system and computer program Download PDF

Info

Publication number
JP7405114B2
JP7405114B2 JP2021058226A JP2021058226A JP7405114B2 JP 7405114 B2 JP7405114 B2 JP 7405114B2 JP 2021058226 A JP2021058226 A JP 2021058226A JP 2021058226 A JP2021058226 A JP 2021058226A JP 7405114 B2 JP7405114 B2 JP 7405114B2
Authority
JP
Japan
Prior art keywords
power
pressure
generation device
power generation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021058226A
Other languages
Japanese (ja)
Other versions
JP2022154949A (en
Inventor
剛 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2021058226A priority Critical patent/JP7405114B2/en
Priority to PCT/JP2022/011551 priority patent/WO2022209846A1/en
Publication of JP2022154949A publication Critical patent/JP2022154949A/en
Application granted granted Critical
Publication of JP7405114B2 publication Critical patent/JP7405114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting

Description

本技術は、水素及び酸素を反応させて発電する発電装置と蓄電装置とを備える電力供給システム及びコンピュータプログラムに関する。 The present technology relates to a power supply system and a computer program that include a power generation device and a power storage device that generate electricity by reacting hydrogen and oxygen.

燃料電池と、燃料電池と並列に接続される蓄電装置と、燃料電池の内部の温度を検出する温度検出器と、燃料電池の内部の圧力を検出する圧力検出器と、燃料電池と蓄電装置との電気負荷への出力電力の配分を決定する制御部とを備える電力供給システムが提案されている。制御部は、温度検出器で検出される燃料電池の温度によって、燃料電池の出電力の上限値を変更し、圧力検出器で検出される燃料電池の圧力によって、燃料電池の出力電力の下限値を変更する(特許文献1参照)。 A fuel cell, a power storage device connected in parallel with the fuel cell, a temperature detector that detects the temperature inside the fuel cell, a pressure detector that detects the pressure inside the fuel cell, and the fuel cell and the power storage device. A power supply system has been proposed that includes a control unit that determines distribution of output power to electrical loads. The control unit changes the upper limit value of the output power of the fuel cell according to the temperature of the fuel cell detected by the temperature detector, and changes the lower limit value of the output power of the fuel cell according to the pressure of the fuel cell detected by the pressure detector. (see Patent Document 1).

特許第4986932号公報Patent No. 4986932

燃料電池には、例えば水素タンクが接続される。上記電力供給システムは、燃料電池の温度又は圧力に基づき、燃料電池の発電を制御しているが、水素タンクの水素量を考慮していない。そのため、水素タンク内の水素が減少し、水素タンクの交換が必要な状態になっても、燃料電池が発電を続け、その結果、燃料電池による発電が異常停止するおそれがある。 For example, a hydrogen tank is connected to the fuel cell. The above power supply system controls the power generation of the fuel cell based on the temperature or pressure of the fuel cell, but does not take into account the amount of hydrogen in the hydrogen tank. Therefore, even if the amount of hydrogen in the hydrogen tank decreases and the hydrogen tank needs to be replaced, the fuel cell continues to generate power, and as a result, there is a risk that the power generation by the fuel cell will abnormally stop.

本開示は斯かる事情に鑑みてなされたものであり、燃料電池による発電の異常停止を防止し、水素タンクから水素を可能な限り取り出し、電気負荷への電力供給時間を長くすることができる電力供給システム及びコンピュータプログラムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and provides electric power that can prevent abnormal stoppage of power generation by fuel cells, extract as much hydrogen as possible from the hydrogen tank, and extend the power supply time to electrical loads. Its purpose is to provide supply systems and computer programs.

本開示の一実施形態に係る電力供給システムは、水素及び酸素を反応させて発電し、電気負荷に電力を供給可能な発電装置と、水素を貯蔵し、前記発電装置に水素を供給する水素貯蔵部と、前記発電装置と並列に接続され、外部電源から電力を受けて充電可能であり、電気負荷に電力を供給可能な蓄電装置と、前記発電装置の温度を検出する温度検出器と、前記水素貯蔵部の内部の圧力を検出する圧力検出器と、前記発電装置が前記電気負荷に供給する電力を制御する制御部とを備え、前記外部電源の電力低下あるいは喪失時に電力を供給する電力供給システムであって、前記制御部は、前記温度検出器で検出される温度が第1温度閾値未満の場合における前記発電装置が供給する電力の上限値を、前記温度検出器で検出される温度が前記第1温度閾値以上の場合における前記電力の上限値よりも高い値に設定し、前記圧力検出器にて第1圧力閾値以上の圧力が検出された場合、前記発電装置が供給する電力の設定値を高くし、前記圧力検出器にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出された場合、前記発電装置が供給する電力の設定値を低くする。 A power supply system according to an embodiment of the present disclosure includes a power generation device capable of reacting hydrogen and oxygen to generate power and supply power to an electrical load, and a hydrogen storage device that stores hydrogen and supplies hydrogen to the power generation device. a power storage device that is connected in parallel with the power generation device and that can be charged by receiving power from an external power source and can supply power to an electric load; a temperature detector that detects the temperature of the power generation device; A power supply comprising a pressure detector that detects the internal pressure of the hydrogen storage unit and a control unit that controls the power that the power generation device supplies to the electrical load, and that supplies power when the external power supply decreases or is lost. In the system, the control unit sets an upper limit value of electric power supplied by the power generation device when the temperature detected by the temperature detector is less than a first temperature threshold. Set to a value higher than the upper limit value of the electric power when the temperature is equal to or higher than the first temperature threshold, and set the electric power supplied by the power generator when the pressure is detected by the pressure detector to be equal to or higher than the first pressure threshold. When the pressure detector detects a pressure equal to or lower than a second pressure threshold value, which is smaller than the first pressure threshold value, the set value of the electric power supplied by the power generation device is lowered.

本開示の一実施形態に係るコンピュータプログラムは、水素及び酸素を反応させて発電する発電装置が電気負荷に供給する電力を制御する制御部にて実行可能なコンピュータプログラムであって、前記制御部に、前記発電装置の温度が温度閾値未満の場合における前記発電装置が供給する電力の上限値を、前記発電装置の温度が前記温度閾値以上の場合における前記電力の上限値よりも高い値に設定し、水素貯蔵部の内部の圧力を検出する圧力検出器にて、第1圧力閾値以上の圧力が検出された場合、前記発電装置が供給する電力の設定値を高くし、前記圧力検出器にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出された場合、前記発電装置が供給する電力の設定値を低くする処理を実行させる。 A computer program according to an embodiment of the present disclosure is a computer program executable by a control unit that controls power supplied to an electrical load by a power generation device that generates electricity by reacting hydrogen and oxygen, , the upper limit value of the power supplied by the power generator when the temperature of the power generator is less than the temperature threshold is set to a higher value than the upper limit of the power supplied when the temperature of the power generator is equal to or higher than the temperature threshold; , when a pressure equal to or higher than the first pressure threshold is detected by the pressure detector that detects the internal pressure of the hydrogen storage section, the set value of the electric power supplied by the power generator is increased, and the pressure detector detects the pressure inside the hydrogen storage section. When a pressure equal to or lower than a second pressure threshold, which is smaller than the first pressure threshold, is detected, processing is performed to lower a set value of the electric power supplied by the power generation device.

本開示の一実施形態に係る電力供給システムにあっては、発電装置は、出力電力の設定値を水素貯蔵部の圧力によって変更するため、燃料電池による発電の異常停止を防止することができる。また水素貯蔵部から可能な限り水素を取り出し、電力供給システムは、電気負荷に電力を可能な限り長時間供給することができる。 In the power supply system according to an embodiment of the present disclosure, the power generation device changes the set value of output power depending on the pressure of the hydrogen storage unit, so that abnormal stoppage of power generation by the fuel cell can be prevented. It also extracts as much hydrogen as possible from the hydrogen storage, allowing the power supply system to supply power to the electrical loads for as long as possible.

スイッチが開いた状態の電力供給システムのブロック図である。FIG. 2 is a block diagram of the power supply system with the switch open. スイッチが閉じた状態の電力供給システムのブロック図である。FIG. 2 is a block diagram of the power supply system with the switch closed. スタックの内部温度及び収納庫内の温度と、発電装置の出力電力の上限値との関係を示す表の一例である。It is an example of the table which shows the relationship between the internal temperature of the stack, the temperature in the storage, and the upper limit value of the output power of the power generation device. 第1水素ボンベ又は第2水素ボンベの1次圧力、発電装置の出力電圧、及びスタックの出力電流と、DC/DCコンバータの出力電力の設定値との関係を示す表の一例である。It is an example of a table showing the relationship between the primary pressure of the first hydrogen cylinder or the second hydrogen cylinder, the output voltage of the power generation device, the output current of the stack, and the set value of the output power of the DC/DC converter. 第2制御装置による発電装置の出力電力の上限値及びDC/DCコンバータの出力電力を設定する処理を説明するフローチャートである。It is a flowchart explaining the process by which a 2nd control apparatus sets the upper limit value of the output power of a power generation device, and the output power of a DC/DC converter.

以下本発明を電力供給システムに係る図面に基づいて説明する。図1は、スイッチが開いた状態の電力供給システムのブロック図である。電力供給システムは、外部電源1と、蓄電装置2と、発電装置6とを備える。外部電源1は交流電源である。蓄電装置2はAC/DCコンバータ3と、蓄電池4と、第1制御装置5とを備える。第1制御装置5は、CPU、RAM、及び記憶部等を有し、記憶部に記憶した蓄電装置2の制御プログラムをRAMに読み出して実行する。記憶部は、例えばEPROM、EEPROM等の書き換え可能な不揮発性メモリである。 The present invention will be explained below based on the drawings related to the power supply system. FIG. 1 is a block diagram of the power supply system with the switch open. The power supply system includes an external power supply 1, a power storage device 2, and a power generation device 6. The external power supply 1 is an AC power supply. The power storage device 2 includes an AC/DC converter 3, a storage battery 4, and a first control device 5. The first control device 5 includes a CPU, a RAM, a storage section, and the like, and reads out a control program for the power storage device 2 stored in the storage section into the RAM and executes it. The storage unit is, for example, a rewritable nonvolatile memory such as EPROM or EEPROM.

外部電源1はAC/DCコンバータ3に接続され、AC/DCコンバータ3は交流電圧を直流電圧に変換し、電気負荷20に電力を供給する。AC/DCコンバータ3は蓄電池4に電力を供給する。第1制御装置5は蓄電池4の残容量を検出する。第1制御装置5は、例えばクーロン・カウンタ方式の残容量ICを使用して、蓄電池4の残容量を検出する。第1制御装置5は、AC/DCコンバータ3から電気負荷20への電力供給の有無を検出する。 External power supply 1 is connected to AC/DC converter 3 , which converts alternating current voltage into direct current voltage and supplies power to electric load 20 . AC/DC converter 3 supplies power to storage battery 4 . The first control device 5 detects the remaining capacity of the storage battery 4. The first control device 5 detects the remaining capacity of the storage battery 4 using, for example, a coulomb counter type remaining capacity IC. The first control device 5 detects whether or not power is being supplied from the AC/DC converter 3 to the electric load 20 .

発電装置6は、スタック7と、第1温度検出器8と、電圧/電流検出器9と、DC/DCコンバータ10と、内部電源11と、スイッチ12と、第2温度検出器13と、第2制御装置14と、電力検出器22とを備える。第2制御装置14は、CPU、RAM、及び記憶部等を有し、記憶部に記憶した発電装置6の制御プログラムをRAMに読み出して実行する。記憶部は、例えばEPROM、EEPROM等の書き換え可能な不揮発性メモリである。制御プログラムは、例えば記録媒体21から記憶部にインストールされ、又はネットワークを介してサーバから記憶部にダウンロードされる。 The power generation device 6 includes a stack 7, a first temperature detector 8, a voltage/current detector 9, a DC/DC converter 10, an internal power supply 11, a switch 12, a second temperature detector 13, and a second temperature detector 13. 2 control device 14 and a power detector 22. The second control device 14 has a CPU, a RAM, a storage section, and the like, and reads out a control program for the power generation device 6 stored in the storage section into the RAM and executes it. The storage unit is, for example, a rewritable nonvolatile memory such as EPROM or EEPROM. The control program is installed in the storage unit from the recording medium 21, for example, or downloaded from a server to the storage unit via a network.

スタック7は水素及び酸素により発電する燃料電池である。スタック7はDC/DCコンバータ10に接続され、DC/DCコンバータ10はスイッチ12及び電力検出器22を介して電気負荷20に電力を供給する。電力検出器22はスイッチ12と電気負荷20の間に設けられている。電力検出器22は発電装置6の出力電力を検出する。第1温度検出器8はスタック7の温度を検出する。電圧/電流検出器9は、スタック7とDC/DCコンバータ10との間に設けられ、スタック7の出力電圧及び出力電流を検出する。内部電源11は第2制御装置14に電力を供給する。AC/DCコンバータ3は内部電源11に電力を供給する。DC/DCコンバータ10、内部電源11及びスイッチ12は、収納庫19に収納されている。第2温度検出器13は収納庫19内の温度を検出する。 The stack 7 is a fuel cell that generates power using hydrogen and oxygen. The stack 7 is connected to a DC/DC converter 10, which supplies power to an electrical load 20 via a switch 12 and a power detector 22. A power detector 22 is provided between the switch 12 and the electrical load 20. Power detector 22 detects the output power of power generation device 6. The first temperature detector 8 detects the temperature of the stack 7. Voltage/current detector 9 is provided between stack 7 and DC/DC converter 10 and detects the output voltage and output current of stack 7. Internal power supply 11 supplies power to second control device 14 . AC/DC converter 3 supplies power to internal power supply 11 . The DC/DC converter 10, internal power supply 11, and switch 12 are housed in a storage 19. The second temperature detector 13 detects the temperature inside the storage 19 .

スタック7には水素貯蔵部15から水素が供給される。水素貯蔵部15は、第1水素ボンベ16及び第2水素ボンベ17を備える。圧力検出器18によって、第1水素ボンベ16及び第2水素ボンベ17の内部の圧力が検出される。初期状態において、第1水素ボンベ16から水素が供給される。 Hydrogen is supplied to the stack 7 from a hydrogen storage section 15 . The hydrogen storage section 15 includes a first hydrogen cylinder 16 and a second hydrogen cylinder 17. The pressure detector 18 detects the pressure inside the first hydrogen cylinder 16 and the second hydrogen cylinder 17 . In the initial state, hydrogen is supplied from the first hydrogen cylinder 16.

外部電源1が駆動している場合、外部電源1から電気負荷20に電力が供給され、更に、蓄電池4及び内部電源11に電力が供給される。蓄電池4は定電流定電圧充電方式で充電される。外部電源1が停止した場合、即ち停電した場合、蓄電池4から電気負荷20に電力が供給され、更に、内部電源11に電力が供給される。すなわち、電力供給システムは無停電電源装置として機能する。 When the external power source 1 is driving, power is supplied from the external power source 1 to the electric load 20, and further, power is supplied to the storage battery 4 and the internal power source 11. The storage battery 4 is charged using a constant current constant voltage charging method. When the external power supply 1 stops, that is, when there is a power outage, power is supplied from the storage battery 4 to the electric load 20, and further, power is supplied to the internal power supply 11. That is, the power supply system functions as an uninterruptible power supply.

図2は、スイッチ12が閉じた状態の電力供給システムのブロック図である。外部電源1の停止後、かつ所定時間が経過した場合、又は、外部電源1の停止後、かつ蓄電池4の残容量が所定の閾値以下である場合、第1制御装置5は、第2制御装置14にスイッチ12を閉じる閉指令を送信する。所定時間とは、停電後の蓄電池4からの給電時間であって、予め設定された時間である。なお、第1制御装置5はタイマを備え、AC/DCコンバータ3から電気負荷20への電力供給が無いことを検出した後、即ち外部電源1の停止後、停止してからの経過時間を計測する。閉指令を受信した第2制御装置14はスイッチ12を閉じる。スタック7から電気負荷20に電力が供給され、更に内部電源11に電力が供給される。つまり、外部電源1が停止すると無瞬断で蓄電池4から給電が行われ、その後に燃料電池のスタック7の給電が開始される。 FIG. 2 is a block diagram of the power supply system with switch 12 closed. After the external power supply 1 is stopped and a predetermined time has elapsed, or after the external power supply 1 is stopped and the remaining capacity of the storage battery 4 is below a predetermined threshold, the first control device 5 controls the second control device A close command to close the switch 12 is sent to the switch 14. The predetermined period of time is a preset period of time during which power is supplied from the storage battery 4 after a power outage. Note that the first control device 5 includes a timer and measures the elapsed time after detecting that there is no power supply from the AC/DC converter 3 to the electric load 20, that is, after the external power supply 1 is stopped. do. The second control device 14 that has received the close command closes the switch 12 . Power is supplied from the stack 7 to the electrical load 20 and further to the internal power supply 11. That is, when the external power source 1 is stopped, power is supplied from the storage battery 4 without momentary interruption, and then power supply to the fuel cell stack 7 is started.

スイッチ12が閉じた後、第2制御装置14は、第1温度検出器8及び第2温度検出器13の検出結果に基づいて、発電装置6の出力電力の上限値を設定する。第2制御装置14は、設定された出力電力の上限値を超過しないように、発電装置6の発電量を制御する。スイッチ12が閉じてからのスタック7の発電初期時において、発電電力が安定しない場合であっても、不足する電力は、蓄電池4から電気負荷20に供給される。したがって、電気負荷20への供給電力が不安定になることはない。第2制御装置14は、発電装置6の出力電力の下限値を設定する。下限値は、発電装置6から内部電源11に電力が供給できる最低値である。すなわち、発電装置6の出力電力が下限値を下回ると、内部電源11に電力が供給できなくなる。 After the switch 12 is closed, the second control device 14 sets the upper limit value of the output power of the power generator 6 based on the detection results of the first temperature detector 8 and the second temperature detector 13. The second control device 14 controls the amount of power generated by the power generation device 6 so as not to exceed the set upper limit value of output power. Even if the generated power is not stable at the beginning of power generation by the stack 7 after the switch 12 is closed, the insufficient power is supplied from the storage battery 4 to the electric load 20. Therefore, the power supplied to the electric load 20 will not become unstable. The second control device 14 sets a lower limit value of the output power of the power generation device 6. The lower limit value is the lowest value at which power can be supplied from the power generation device 6 to the internal power supply 11. That is, when the output power of the power generator 6 falls below the lower limit value, power cannot be supplied to the internal power supply 11.

図3は、スタック7の内部温度及び収納庫19内の温度と、発電装置6の出力電力の上限値との関係を示す表の一例である。図3の表は第2制御装置14の記憶部に記憶されている。図3において、Taは第1温度検出器8の検出結果、即ちスタック7の内部温度を示し、Tbは第2温度検出器13の検出結果、即ち収納庫19内の温度を示す。T1~T4は、スタック7の内部温度Taに対する温度閾値を示し、T1<T2<T3<T4である。T5~T8は、収納庫19内の温度Tbに対する温度閾値を示し、T5<T6<T7<T8である。A1~A4は、発電装置6の出力電力の上限値を示し、A1>A2>A3>A4である。温度の単位は℃である。 FIG. 3 is an example of a table showing the relationship between the internal temperature of the stack 7, the temperature inside the storage 19, and the upper limit value of the output power of the power generation device 6. The table in FIG. 3 is stored in the storage section of the second control device 14. In FIG. 3, Ta indicates the detection result of the first temperature detector 8, that is, the internal temperature of the stack 7, and Tb indicates the detection result of the second temperature detector 13, that is, the temperature inside the storage 19. T1 to T4 indicate temperature threshold values for the internal temperature Ta of the stack 7, and T1<T2<T3<T4. T5 to T8 indicate temperature threshold values for the temperature Tb inside the storage 19, and T5<T6<T7<T8. A1 to A4 indicate the upper limit values of the output power of the power generation device 6, and A1>A2>A3>A4. The unit of temperature is °C.

温度Taが温度閾値T1未満であり、且つ温度Tbが温度閾値T5未満である場合、第2制御装置14はA1を発電装置6の出力電力の上限値として設定する。温度Taが上昇し、温度Taが温度閾値T1以上となるか、又は温度Tbが上昇し、温度Tbが温度閾値T5以上となった場合、第2制御装置14はA2を発電装置6の出力電力における上限値として設定する。 When the temperature Ta is less than the temperature threshold T1 and the temperature Tb is less than the temperature threshold T5, the second control device 14 sets A1 as the upper limit of the output power of the power generator 6. When the temperature Ta increases and becomes equal to or higher than the temperature threshold value T1, or when the temperature Tb increases and the temperature Tb becomes equal to or higher than the temperature threshold value T5, the second control device 14 changes A2 to the output power of the power generation device 6. Set as the upper limit value.

温度Taが上昇し、温度Taが温度閾値T2以上となるか、又は温度Tbが上昇し、温度Tbが温度閾値T6以上となった場合、第2制御装置14はA3を発電装置6の出力電力の上限値として設定する。温度Taが上昇し、温度Taが温度閾値T3以上となるか、又は温度Tbが上昇し、温度Tbが温度閾値T7以上となった場合、第2制御装置14はA4を発電装置6の出力電力の上限値として設定する。 When the temperature Ta increases and becomes equal to or higher than the temperature threshold value T2, or when the temperature Tb increases and the temperature Tb becomes equal to or higher than the temperature threshold value T6, the second control device 14 changes A3 to the output power of the power generation device 6. Set as the upper limit value. When the temperature Ta increases and becomes equal to or higher than the temperature threshold value T3, or when the temperature Tb increases and the temperature Tb becomes equal to or higher than the temperature threshold value T7, the second control device 14 changes A4 to the output power of the power generation device 6. Set as the upper limit value.

温度Taが上昇し、温度Taが温度閾値T4以上となるか、又は温度Tbが上昇し、温度Tbが温度閾値T8以上となった場合、第2制御装置14はスタック7を停止させて、警告を出力させる。温度閾値T1、T2、T3と、温度閾値T5、T6、T7とは第1温度閾値である。温度閾値T4及びT8は第2温度閾値である。 When the temperature Ta increases and becomes equal to or higher than the temperature threshold value T4, or when the temperature Tb increases and the temperature Tb becomes equal to or higher than the temperature threshold value T8, the second control device 14 stops the stack 7 and issues a warning. output. The temperature thresholds T1, T2, T3 and the temperature thresholds T5, T6, T7 are first temperature thresholds. Temperature thresholds T4 and T8 are second temperature thresholds.

温度閾値T1~T4には所定の大きさの不感帯が設けられている。例えば、3℃の幅の不感帯が設けられている。なお温度閾値T1とT2の差分、T2とT3の差分、T3とT4の差分は、いずれも3℃以上である。そのため、温度Taが温度T4以上から温度T4-3℃以下になったとき、停止が解除され、第2制御装置14はA4を発電装置6の出力電力の上限値として設定する。温度Taが温度T3以上から温度T3-3℃以下になったとき、第2制御装置14はA3を発電装置6の出力電力の上限値として設定し、温度Taが温度T2以上から温度T2-3℃以下になったとき、第2制御装置14はA2を発電装置6の出力電力の上限値として設定する。 A dead zone of a predetermined size is provided between the temperature threshold values T1 to T4. For example, a dead zone with a width of 3° C. is provided. Note that the difference between the temperature thresholds T1 and T2, the difference between T2 and T3, and the difference between T3 and T4 are all 3° C. or more. Therefore, when the temperature Ta becomes from the temperature T4 or higher to the temperature T4-3° C. or lower, the stoppage is canceled and the second control device 14 sets A4 as the upper limit value of the output power of the power generator 6. When the temperature Ta becomes from the temperature T3 or more to the temperature T3-3°C or less, the second control device 14 sets A3 as the upper limit value of the output power of the power generator 6, and the temperature Ta changes from the temperature T2 or more to the temperature T2-3. ℃ or below, the second control device 14 sets A2 as the upper limit value of the output power of the power generation device 6.

温度閾値T5~T8には所定の大きさの不感帯が設けられている。例えば、3℃の幅の不感帯が設けられている。なお温度閾値T5とT6の差分、T6とT7の差分、T7とT8の差分は、いずれも3℃以上である。そのため、温度Tbが温度T8以上から温度T8-3℃以下になったとき、停止が解除され、第2制御装置14はA4を発電装置6の出力電力の上限値として設定する。温度Tbが温度T7以上から温度T7-3℃以下になったとき、第2制御装置14はA3を発電装置6の出力電力の上限値として設定し、温度Taが温度T6以上から温度T6-3℃以下になったとき、第2制御装置14はA2を発電装置6の出力電力の上限値として設定する。 A dead zone of a predetermined size is provided between the temperature threshold values T5 to T8. For example, a dead zone with a width of 3° C. is provided. Note that the difference between the temperature thresholds T5 and T6, the difference between T6 and T7, and the difference between T7 and T8 are all 3° C. or more. Therefore, when the temperature Tb becomes from the temperature T8 or higher to the temperature T8-3° C. or lower, the stoppage is canceled and the second control device 14 sets A4 as the upper limit value of the output power of the power generator 6. When the temperature Tb becomes from the temperature T7 or more to the temperature T7-3°C or less, the second control device 14 sets A3 as the upper limit value of the output power of the power generator 6, and the temperature Ta changes from the temperature T6 or more to the temperature T6-3. ℃ or below, the second control device 14 sets A2 as the upper limit value of the output power of the power generation device 6.

温度Taが温度T1以上から温度T1-3℃以下になったとき、且つ、温度Tbが温度T5以上から温度T5-3℃以下になったとき、第2制御装置14はA1を発電装置6の出力電力の上限値として設定する。 When the temperature Ta becomes from the temperature T1 or more to the temperature T1-3°C or less, and when the temperature Tb becomes from the temperature T5 or more to the temperature T5-3°C or less, the second control device 14 controls A1 to the power generator 6. Set as the upper limit value of output power.

スイッチ12が閉じた後であって、現在の発電装置6の出力電力が、設定された前記出力電力の上限値と許容値(不感帯)との加算値を超えない場合に、第2制御装置14は、圧力検出器18及び電圧/電流検出器9の検出結果に基づいて、DC/DCコンバータ10の出力電力の設定値を設定する。DC/DCコンバータ10は、設定値の電力を出力する。 After the switch 12 is closed, when the current output power of the power generation device 6 does not exceed the sum of the set upper limit value of the output power and the allowable value (dead zone), the second control device 14 sets the set value of the output power of the DC/DC converter 10 based on the detection results of the pressure detector 18 and the voltage/current detector 9. The DC/DC converter 10 outputs a set value of power.

図4は、第1水素ボンベ16又は第2水素ボンベ17の1次圧力、発電装置6の出力電圧、及びスタック7の出力電流と、DC/DCコンバータ10の出力電力の設定値との関係を示す表の一例である。図4の表は第2制御装置14の記憶部に記憶されている。図4において、Pは圧力検出器18の検出結果、即ち使用中の第1水素ボンベ16又は第2水素ボンベ17の1次圧力(以下、単に水素の1次圧力という)を示し、Vは電圧/電流検出器9にて検出された電圧、即ちスタック7の出力電圧を示し、Iは電圧/電流検出器9にて検出された電流、即ちスタック7の出力電流を示す。圧力の単位はパスカルであり、電圧の単位はボルトであり、電流の単位はアンペアである。 FIG. 4 shows the relationship between the primary pressure of the first hydrogen cylinder 16 or the second hydrogen cylinder 17, the output voltage of the power generator 6, the output current of the stack 7, and the set value of the output power of the DC/DC converter 10. This is an example of a table shown. The table in FIG. 4 is stored in the storage section of the second control device 14. In FIG. 4, P indicates the detection result of the pressure detector 18, that is, the primary pressure of the first hydrogen cylinder 16 or the second hydrogen cylinder 17 in use (hereinafter simply referred to as hydrogen primary pressure), and V indicates the voltage / indicates the voltage detected by the current detector 9, that is, the output voltage of the stack 7, and I indicates the current detected by the voltage/current detector 9, that is, the output current of the stack 7. The unit of pressure is Pascal, the unit of voltage is Volt, and the unit of current is Ampere.

P1及びP2は水素の1次圧力Pに対する圧力閾値を示し、P1>P2である。P1は第1圧力閾値であり、P2は第2圧力閾値である。V1及びV2はスタック7の出力電圧Vに対する電圧閾値を示し、V1>V2である。V1は第1電圧閾値であり、V2は第2電圧閾値である。I1及びI2はスタック7の出力電流Iに対する電流閾値を示し、I1<I2である。I1は第1電流閾値であり、I2は第2電流閾値である。 P1 and P2 indicate pressure threshold values for the primary pressure P of hydrogen, and P1>P2. P1 is a first pressure threshold and P2 is a second pressure threshold. V1 and V2 indicate voltage thresholds for the output voltage V of the stack 7, and V1>V2. V1 is a first voltage threshold and V2 is a second voltage threshold. I1 and I2 indicate current threshold values for the output current I of the stack 7, with I1<I2. I1 is the first current threshold and I2 is the second current threshold.

水素の1次圧力Pが第1圧力閾値P1以上であり、且つスタック7の出力電圧Vが第1電圧閾値V1以上であり、且つスタック7の出力電流Iが第1電流閾値I1以下である場合、第2制御装置14は、DC/DCコンバータ10の出力電力における現在設定された設定値から5W加算した値を、新たな設定値として設定する。なおDC/DCコンバータ10の出力電力の設定値は、設定された発電装置6の出力電力の上限値を超えないように、設定される。 When the primary pressure P of hydrogen is greater than or equal to the first pressure threshold P1, and the output voltage V of the stack 7 is greater than or equal to the first voltage threshold V1, and the output current I of the stack 7 is less than or equal to the first current threshold I1. , the second control device 14 sets a value obtained by adding 5 W to the currently set setting value of the output power of the DC/DC converter 10 as a new setting value. Note that the set value of the output power of the DC/DC converter 10 is set so as not to exceed the set upper limit value of the output power of the power generation device 6.

水素の1次圧力Pが第2圧力閾値P2を超過し、第1圧力閾値P1未満であるか、又はスタック7の出力電圧Vが第2電圧閾値V2を超過し、第1電圧閾値V1未満であるか、又はスタック7の出力電流Iが第1電流閾値I1を超過し、第2電流閾値I2未満である場合、第2制御装置14は、DC/DCコンバータ10の出力電力の設定値を変更せず、維持する。 The primary pressure P of hydrogen exceeds the second pressure threshold P2 and is less than the first pressure threshold P1, or the output voltage V of the stack 7 exceeds the second voltage threshold V2 and is less than the first voltage threshold V1. or if the output current I of the stack 7 exceeds the first current threshold value I1 and is less than the second current threshold value I2, the second control device 14 changes the set value of the output power of the DC/DC converter 10. Don't do it, keep it.

水素の1次圧力Pが第2圧力閾値P2以下であるか、又はスタック7の出力電圧Vが第2電圧閾値V2以下であるか、又はスタック7の出力電流Iが第2電流閾値I2以上である場合、第2制御装置14は、DC/DCコンバータ10の出力電力の設定値を、現在の設定値に10W減算した値にする。なおDC/DCコンバータ10の出力電力には最低値が設定されており、減算後の設定値が最低値以下となる場合、設定値は最低値となる。DC/DCコンバータ10の出力電力を設定する処理はリアルタイム処理であり、所定時間が経過する都度、実行される。 Either the primary pressure P of hydrogen is less than or equal to the second pressure threshold P2, or the output voltage V of the stack 7 is less than or equal to the second voltage threshold V2, or the output current I of the stack 7 is greater than or equal to the second current threshold I2. In some cases, the second control device 14 sets the set value of the output power of the DC/DC converter 10 to a value obtained by subtracting 10 W from the current set value. Note that a minimum value is set for the output power of the DC/DC converter 10, and when the set value after subtraction is less than or equal to the minimum value, the set value becomes the lowest value. The process of setting the output power of the DC/DC converter 10 is a real-time process, and is executed every time a predetermined time elapses.

なお。第2制御装置14は圧力検出器18から検出結果を取り込み、第1水素ボンベ16の圧力が第3圧力閾値P3以下である場合、スタック7への水素供給源を第1水素ボンベ16から第2水素ボンベ17に切り替える。第3圧力閾値P3は第2圧力閾値P2よりも低い。 In addition. The second control device 14 takes in the detection result from the pressure detector 18, and when the pressure of the first hydrogen cylinder 16 is below the third pressure threshold P3, the hydrogen supply source to the stack 7 is changed from the first hydrogen cylinder 16 to the second hydrogen cylinder. Switch to hydrogen cylinder 17. The third pressure threshold P3 is lower than the second pressure threshold P2.

図5は、第2制御装置14による発電装置6の出力電力の上限値及びDC/DCコンバータ10の出力電力を設定する処理を説明するフローチャートである。第2制御装置14は、第1制御装置5がスイッチ12を閉じた後に以下の処理を実行する。 FIG. 5 is a flowchart illustrating a process of setting the upper limit value of the output power of the power generation device 6 and the output power of the DC/DC converter 10 by the second control device 14. The second control device 14 executes the following process after the first control device 5 closes the switch 12.

第2制御装置14は、第1温度検出器8及び第2温度検出器13の検出結果を取得し(S1)、取得した温度Ta、Tbに基づいて、発電装置6の出力電力の上限値を設定する(S2、図3参照)。なお第2制御装置14はタイマを有し、ステップS1の処理を開始してからの経過時間を測定する。第2制御装置14は、電力検出器22の検出結果を取得し、発電装置6の現在の出力電力が、設定された出力電力の上限値と許容値との加算値よりも大きいか否か判定する(S3)。 The second control device 14 acquires the detection results of the first temperature detector 8 and the second temperature detector 13 (S1), and sets the upper limit value of the output power of the power generation device 6 based on the acquired temperatures Ta and Tb. settings (S2, see Figure 3). Note that the second control device 14 has a timer and measures the elapsed time after starting the process in step S1. The second control device 14 acquires the detection result of the power detector 22 and determines whether the current output power of the power generation device 6 is larger than the sum of the set upper limit value of output power and the allowable value. (S3).

発電装置6の現在の出力電力が前記加算値よりも大きい場合(S3:YES)、即ち、発電装置6の現在の出力電力が過大である場合、第2制御装置14は、DC/DCコンバータ10の出力電力の設定値を、現在の設定値から減算した値に設定する(S4)。具体的には、第2制御装置14は、発電装置6の現在の出力電力と設定された出力電力の上限値との差分を演算し、DC/DCコンバータ10の出力電力における現在の設定値から前記差分を減算した値を新たな設定値にする。 If the current output power of the power generation device 6 is larger than the added value (S3: YES), that is, if the current output power of the power generation device 6 is excessive, the second control device 14 controls the DC/DC converter 10. The set value of the output power is set to a value subtracted from the current set value (S4). Specifically, the second control device 14 calculates the difference between the current output power of the power generation device 6 and the set upper limit value of the output power, and calculates the difference from the current set value of the output power of the DC/DC converter 10. The value obtained by subtracting the difference is set as a new setting value.

第2制御装置14はステップS1の処理を開始してから所定時間、例えば2秒が経過したか否か判定する(S5)。所定時間が経過していない場合(S5:NO)、第2制御装置14はステップS5に処理を戻す。所定時間が経過した場合(S5:YES)、第2制御装置14はタイマをリセットし、ステップS1に処理を戻す。第2制御装置14は、所定時間毎に所定量の出力電力を増減させることができる。第2制御装置14は、予め設定される増加率、例えば2秒毎に5W増加させる割合でDC/DCコンバータ10の出力電力の設定値を増加させるか、又は、予め設定される低下率、例えば2秒毎に10W減少させる割合でDC/DCコンバータ10の出力電力の設定値を減少させる。なお、前記増加率と前記低下率の値はこの実施形態における一例である。低下率と増加率は変化速度で比べたときに低下率が増加率よりも早く変化するように予め設定してある。これは、出力電力の過剰な供給を早急に是正するためである。その必要がない場合には低下率の変化速度と増加率の変化速度とは同じ値に設定することも可能である。 The second control device 14 determines whether a predetermined period of time, for example 2 seconds, has elapsed since starting the process in step S1 (S5). If the predetermined time has not elapsed (S5: NO), the second control device 14 returns the process to step S5. If the predetermined time has elapsed (S5: YES), the second control device 14 resets the timer and returns the process to step S1. The second control device 14 can increase or decrease the output power by a predetermined amount at predetermined time intervals. The second control device 14 increases the set value of the output power of the DC/DC converter 10 at a preset rate of increase, for example, 5W every 2 seconds, or increases the set value of the output power of the DC/DC converter 10 at a preset rate of decrease, for example, The set value of the output power of the DC/DC converter 10 is decreased at a rate of decreasing 10W every 2 seconds. Note that the values of the increase rate and the decrease rate are examples in this embodiment. The rate of decrease and the rate of increase are set in advance so that when comparing the rate of change, the rate of decrease changes faster than the rate of increase. This is to promptly correct excessive supply of output power. If this is not necessary, the rate of change in the rate of decrease and the rate of change in the rate of increase can be set to the same value.

ステップS3において、発電装置6の現在の出力電力が前記加算値よりも大きくない場合(S3:NO)、第2制御装置14は、DC/DCコンバータ10の出力電力の設定値を更新する(S6)。具体的には、第2制御装置14は、圧力検出器18の検出結果、並びに、電圧/電流検出器9にて検出された電圧及び電流に基づいて、現在の設定値から10W減算した値、現在の設定値に5W加算した値、又は現在の設定値そのままの値を、新たな設定値として設定する(図4参照)。 In step S3, if the current output power of the power generation device 6 is not larger than the added value (S3: NO), the second control device 14 updates the set value of the output power of the DC/DC converter 10 (S6 ). Specifically, the second control device 14 subtracts 10 W from the current setting value based on the detection result of the pressure detector 18 and the voltage and current detected by the voltage/current detector 9. A value obtained by adding 5W to the current setting value, or a value that is the same as the current setting value is set as a new setting value (see FIG. 4).

なおステップS2において、温度Taが温度閾値T4以上となるか、又は温度Tbが温度閾値T8以上となった場合、即ち、スタック7を停止させる場合、この処理を強制的に終了させる。 Note that in step S2, if the temperature Ta becomes equal to or higher than the temperature threshold value T4, or if the temperature Tb becomes equal to or higher than the temperature threshold value T8, that is, when the stack 7 is stopped, this process is forcibly terminated.

以上のように、本開示の一実施形態に係る電力供給システムは、水素及び酸素を反応させて発電し、電気負荷20に電力を供給可能な発電装置6と、水素を貯蔵し、前記発電装置6に水素を供給する水素貯蔵部15と、前記発電装置6と並列に接続され、外部電源1から電力を受けて充電可能であり、電気負荷20に電力を供給可能な蓄電装置2と、前記発電装置6の温度を検出する温度検出器と、前記水素貯蔵部15の内部の圧力を検出する圧力検出器18と、前記発電装置6が前記電気負荷20に供給する電力を制御する制御部とを備え、前記外部電源1の電力低下あるいは喪失時に電力を供給する電力供給システムであって、前記制御部は、前記温度検出器で検出される温度が第1温度閾値未満の場合における前記発電装置6が供給する電力の上限値を、前記温度検出器で検出される温度が前記第1温度閾値以上の場合における前記電力の上限値よりも高い値に設定し、前記圧力検出器18にて第1圧力閾値以上の圧力が検出される都度、前記発電装置6が供給する電力の設定値を高くし、前記圧力検出器18にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出される都度、前記発電装置6が供給する電力の設定値を低くする。 As described above, the power supply system according to an embodiment of the present disclosure includes a power generation device 6 capable of generating power by reacting hydrogen and oxygen and supplying power to the electric load 20, and a power generation device 6 that stores hydrogen and generates power by reacting hydrogen and oxygen. a hydrogen storage unit 15 that supplies hydrogen to the electric load 20; a temperature detector that detects the temperature of the power generation device 6; a pressure detector 18 that detects the pressure inside the hydrogen storage section 15; and a control section that controls the power that the power generation device 6 supplies to the electric load 20. A power supply system that supplies power when the power of the external power source 1 decreases or is lost, the control unit controlling the power generation device when the temperature detected by the temperature detector is less than a first temperature threshold. 6 sets the upper limit value of the power supplied by the temperature sensor 18 to a value higher than the upper limit value of the power when the temperature detected by the temperature detector 18 is equal to or higher than the first temperature threshold, and Each time a pressure equal to or higher than the first pressure threshold is detected, the set value of the electric power supplied by the power generation device 6 is increased, and the pressure detected by the pressure detector 18 is equal to or lower than the second pressure threshold, which is lower than the first pressure threshold. Each time it is detected, the set value of the power supplied by the power generation device 6 is lowered.

本開示の一実施形態にあっては、発電装置6は、出力電力の設定値を水素貯蔵部15の圧力によって変更するため、燃料電池による発電の異常停止を防止することができる。また水素貯蔵部15から可能な限り水素を取り出し、電力供給システムは、電気負荷20に電力を可能な限り長時間供給することができる。 In one embodiment of the present disclosure, the power generation device 6 changes the set value of output power according to the pressure of the hydrogen storage unit 15, so that abnormal stoppage of power generation by the fuel cell can be prevented. Further, by extracting as much hydrogen as possible from the hydrogen storage unit 15, the power supply system can supply power to the electric load 20 for as long as possible.

本開示の一実施形態に係る電力供給システムは、前記発電装置6の出力電圧を検出する電圧検出器をさらに備え、前記制御部は、前記圧力検出器18で検出される圧力が前記第1圧力閾値以上、且つ、前記電圧検出器で検出される出力電圧が第1電圧閾値以上の場合に、前記発電装置6が供給する電力の設定値を増加させ、前記圧力検出器18で検出される圧力が前記第2圧力閾値以下、または前記電圧検出器で検出される出力電圧が、前記第1電圧閾値よりも小さい第2電圧閾値以下の場合に、前記発電装置6が供給する電力の設定値を低下させる。 The power supply system according to an embodiment of the present disclosure further includes a voltage detector that detects the output voltage of the power generation device 6, and the control unit is configured such that the pressure detected by the pressure detector 18 is the first pressure. When the output voltage detected by the voltage detector is equal to or higher than the threshold value and the output voltage detected by the voltage detector is equal to or higher than the first voltage threshold value, the set value of the power supplied by the power generator 6 is increased, and the pressure detected by the pressure detector 18 is increased. is equal to or less than the second pressure threshold, or when the output voltage detected by the voltage detector is equal to or less than the second voltage threshold, which is smaller than the first voltage threshold, a set value of the power supplied by the power generation device 6 is set. lower.

本開示の一実施形態にあっては、発電装置6の電力の設定値が発電装置6の出力電圧によっても変更されるため、発電装置6の出力電圧が過小になり、故障することを抑制することができる。 In one embodiment of the present disclosure, the power setting value of the power generation device 6 is also changed depending on the output voltage of the power generation device 6, so that the output voltage of the power generation device 6 is prevented from becoming too low and failure. be able to.

本開示の一実施形態に係る電力供給システムは、前記発電装置6の出力電流を検出する電流検出器をさらに備え、前記制御部は、前記圧力検出器18で検出される圧力が前記第1圧力閾値以上、且つ、前記電流検出器で検出される出力電流が第1電流閾値以下の場合に、前記発電装置6が供給する電力の設定値を増加させ、前記圧力検出器18で検出される圧力が前記第2圧力閾値以下、または前記電流検出器で検出される出力電流が、前記第1電流閾値より大きい第2電流閾値以上の場合に、前記発電装置6が供給する電力の設定値を低下させる。 The power supply system according to an embodiment of the present disclosure further includes a current detector that detects the output current of the power generation device 6, and the control unit is configured such that the pressure detected by the pressure detector 18 is the first pressure. When the output current detected by the current detector is equal to or higher than the threshold value and is equal to or lower than the first current threshold value, the set value of the power supplied by the power generator 6 is increased, and the pressure detected by the pressure detector 18 is increased. is below the second pressure threshold, or when the output current detected by the current detector is above a second current threshold, which is larger than the first current threshold, the set value of the power supplied by the power generation device 6 is reduced. let

本開示の一実施形態にあっては、発電装置6の電力の設定値が発電装置6の出力電流によっても変更されるため、発電装置6の出力電流が過大になり、故障することを抑制することができる。 In one embodiment of the present disclosure, the power set value of the power generation device 6 is also changed by the output current of the power generation device 6, so that the output current of the power generation device 6 is prevented from becoming excessive and failure. be able to.

本開示の一実施形態に係る電力供給システムは、前記電力の設定値を低下させる場合の変化量が、前記電力の設定値を増加させる場合の変化量より大きい。 In the power supply system according to an embodiment of the present disclosure, the amount of change when decreasing the power setting value is larger than the amount of change when increasing the power setting value.

本開示の一実施形態にあっては、出力電力を低下させる場合の変化量が大きいため、発電装置6が供給する電力が過大の場合に、出力電力を急激に抑えることができ、発電装置6が故障することを抑制することができる。 In an embodiment of the present disclosure, since the amount of change when reducing the output power is large, when the power supplied by the power generation device 6 is excessive, the output power can be rapidly suppressed, and the power generation device 6 It is possible to suppress failures.

本開示の一実施形態に係る電力供給システムは、前記水素貯蔵部15は第1水素ボンベ16と第2水素ボンベ17を備え、前記制御部は、前記圧力検出器18で検出される前記第1水素ボンベ16の圧力が、前記第2圧力閾値よりも低い第3圧力閾値以下の場合、前記第1水素ボンベ16から前記発電装置6への水素の供給から、前記第2水素ボンベ17から前記発電装置6への水素の供給に変更する。 In the power supply system according to an embodiment of the present disclosure, the hydrogen storage unit 15 includes a first hydrogen cylinder 16 and a second hydrogen cylinder 17, and the control unit controls the first hydrogen cylinder detected by the pressure detector 18. When the pressure of the hydrogen cylinder 16 is equal to or lower than the third pressure threshold, which is lower than the second pressure threshold, hydrogen is supplied from the first hydrogen cylinder 16 to the power generation device 6 and from the second hydrogen cylinder 17 to the power generation. Change to hydrogen supply to device 6.

本開示の一実施形態にあっては、第1水素ボンベ16が第3圧力閾値以下の場合に、発電装置6への水素の供給が第1水素ボンベ16から第2水素ボンベ17へと切り替わるため、発電装置6を異常停止させることなく、第1水素ボンベ16に貯蔵される水素を可能な限り取り出すことができる。 In one embodiment of the present disclosure, when the pressure of the first hydrogen cylinder 16 is equal to or lower than the third pressure threshold, the supply of hydrogen to the power generation device 6 is switched from the first hydrogen cylinder 16 to the second hydrogen cylinder 17. , hydrogen stored in the first hydrogen cylinder 16 can be taken out as much as possible without abnormally stopping the power generation device 6.

本開示の一実施形態に係る電力供給システムは、前記制御部は、前記温度検出器で検出される温度が、前記第1温度閾値よりも大きい第2温度閾値以上の場合に、前記発電装置6での発電を停止させる。 In the power supply system according to an embodiment of the present disclosure, when the temperature detected by the temperature detector is equal to or higher than a second temperature threshold that is larger than the first temperature threshold, the control unit controls the power generation device 6 to stop power generation.

本開示の一実施形態にあっては、発電装置6の高温による故障を抑制することができる。 In one embodiment of the present disclosure, failure of the power generation device 6 due to high temperature can be suppressed.

本開示の一実施形態に係る電力供給システムは、前記制御部は、前記蓄電装置2が放電を開始してから所定時間経過後、または前記蓄電装置2の放電能力が所定値以下となった場合に前記発電装置6の発電を開始させる。 In the power supply system according to an embodiment of the present disclosure, the control unit controls the power storage device 2 after a predetermined period of time has elapsed since the power storage device 2 started discharging, or when the discharge capacity of the power storage device 2 becomes equal to or less than a predetermined value. The power generation device 6 starts generating electricity.

本開示の一実施形態にあっては、蓄電装置2の放電を発電装置6の発電に先行させるので、長時間給電が可能となり、発電装置6の発電初期の低電力時であっても電気負荷20に所定電力を供給することができる。 In an embodiment of the present disclosure, since the power storage device 2 is discharged before the power generation by the power generation device 6, it is possible to supply power for a long time, and even when the power generation device 6 is at low power in the initial stage of power generation, the electric load can be reduced. 20 can be supplied with a predetermined power.

本開示の一実施形態に係る電力供給システムは、前記制御部は、前記発電装置6が供給する電力の設定値を増加させる場合、予め設定される増加率で設定値を増加させ、前記発電装置6が供給する電力の設定値を低下させる場合、予め設定される低下率で設定値を低下させ、前記増加率は、所定時間毎に、出力電力を所定の増加量で増加させる割合であり、前記低下率は、所定時間毎に、出力電力を所定の低下量で低下させる割合である。 In the power supply system according to an embodiment of the present disclosure, when increasing the set value of the power supplied by the power generating device 6, the control unit increases the set value at a preset increase rate, and increases the set value of the power supplied by the power generating device 6. When reducing the set value of the power supplied by 6, the set value is lowered by a preset reduction rate, and the increase rate is a rate at which the output power is increased by a predetermined increase amount every predetermined time, The reduction rate is a rate at which the output power is reduced by a predetermined amount at predetermined intervals.

本開示の一実施形態にあっては、所定時間毎に所定量の出力電力を増減させることで、出力電力を急激な増減を抑えることができ、発電装置6が故障することを抑制することができる。 In one embodiment of the present disclosure, by increasing or decreasing the output power by a predetermined amount at predetermined time intervals, it is possible to suppress a sudden increase or decrease in the output power, and it is possible to suppress the power generation device 6 from breaking down. can.

本開示の一実施形態に係る電力供給システムは、前記制御部は、前記外部電源1の駆動時に、前記外部電源1から前記電気負荷20に電力を供給させ且つ前記蓄電装置2に充電させ、前記外部電源1の停止時に、前記蓄電装置2から前記電気負荷20に電力を供給させ、前記蓄電装置2による電力供給開始後、所定時間が経過した場合、または前記蓄電装置2による電力供給開始後、前記蓄電装置2の放電能力が所定値以下となった場合、前記発電装置6から前記電気負荷20に電力を供給させる。 In the power supply system according to an embodiment of the present disclosure, when the external power supply 1 is driven, the control unit causes the external power supply 1 to supply power to the electric load 20 and charge the power storage device 2; When the external power supply 1 is stopped, power is supplied from the power storage device 2 to the electric load 20, and a predetermined time has elapsed after the power storage device 2 started supplying power, or after the power storage device 2 started supplying power, When the discharge capacity of the power storage device 2 becomes less than or equal to a predetermined value, power is supplied from the power generation device 6 to the electric load 20.

本開示の一実施形態にあっては、外部電源1の停止時に、蓄電装置2から電気負荷20に電力を供給する。その後、発電装置6から電気負荷20に電力を供給する。そのため、電力供給システムは、外部電源1の停止後、電気負荷20に電力を可能な限り長時間供給することができる。 In one embodiment of the present disclosure, power is supplied from power storage device 2 to electric load 20 when external power supply 1 is stopped. Thereafter, power is supplied from the power generation device 6 to the electric load 20. Therefore, the power supply system can supply power to the electrical load 20 for as long as possible after the external power supply 1 is stopped.

本開示の一実施形態に係るコンピュータプログラムは、水素及び酸素を反応させて発電する発電装置6が電気負荷に供給する電力を制御する制御部にて実行可能なコンピュータプログラムであって、前記制御部に、前記発電装置6の温度が第1温度閾値未満の場合における前記発電装置6が供給する電力の上限値を、前記発電装置6の温度が前記第1温度閾値以上の場合における前記電力の上限値よりも高い値に設定させ、水素貯蔵部15の内部の圧力を検出する圧力検出器18にて第1圧力閾値以上の圧力が検出される都度、前記発電装置6が供給する電力の設定値を高くし、前記圧力検出器18にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出される都度、前記発電装置6が供給する電力の設定値を低くする。 A computer program according to an embodiment of the present disclosure is a computer program executable by a control unit that controls electric power supplied to an electric load by a power generation device 6 that generates electricity by reacting hydrogen and oxygen, the computer program being executable by the control unit. The upper limit value of the power supplied by the power generator 6 when the temperature of the power generator 6 is less than the first temperature threshold, and the upper limit of the power supplied by the power generator 6 when the temperature of the power generator 6 is equal to or higher than the first temperature threshold. The set value of the electric power supplied by the power generation device 6 each time a pressure equal to or higher than the first pressure threshold is detected by the pressure detector 18 that detects the internal pressure of the hydrogen storage section 15. , and each time the pressure detector 18 detects a pressure equal to or lower than a second pressure threshold, which is smaller than the first pressure threshold, the set value of the electric power supplied by the power generation device 6 is lowered.

今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、特許請求の範囲内での全ての変更及び特許請求の範囲と均等の範囲が含まれることが意図される。 The embodiments disclosed herein are illustrative in all respects and should be considered not to be restrictive. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all changes within the scope of the claims and the range of equivalents to the scope of the claims. be done.

1 外部電源
2 蓄電装置
5 第1制御装置
6 発電装置
8 第1温度検出器
12 スイッチ
13 第2温度検出器
14 第2制御装置
15 水素貯蔵部
16 第1水素ボンベ
17 第2水素ボンベ
18 圧力検出器
20 電気負荷
1 External power supply 2 Power storage device 5 First control device 6 Power generation device 8 First temperature detector 12 Switch 13 Second temperature detector 14 Second control device 15 Hydrogen storage section 16 First hydrogen cylinder 17 Second hydrogen cylinder 18 Pressure detection 20 Electrical load

Claims (10)

水素及び酸素を反応させて発電し、電気負荷に電力を供給可能な発電装置と、
水素を貯蔵し、前記発電装置に水素を供給する水素貯蔵部と、
前記発電装置と並列に接続され、外部電源から電力を受けて充電可能であり、電気負荷に電力を供給可能な蓄電装置と、
前記発電装置の温度を検出する温度検出器と、
前記水素貯蔵部の内部の圧力を検出する圧力検出器と、
前記発電装置が前記電気負荷に供給する電力を制御する制御部とを備え、前記外部電源の電力低下あるいは喪失時に電力を供給する電力供給システムであって、
前記制御部は、
前記温度検出器で検出される温度が第1温度閾値未満の場合における前記発電装置が供給する電力の上限値を、前記温度検出器で検出される温度が前記第1温度閾値以上の場合における前記電力の上限値よりも高い値に設定し、
前記圧力検出器にて第1圧力閾値以上の圧力が検出された場合、前記発電装置が供給する電力の設定値を高くし、
前記圧力検出器にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出された場合、前記発電装置が供給する電力の設定値を低くする
電力供給システム。
A power generation device capable of generating power by reacting hydrogen and oxygen and supplying power to an electrical load;
a hydrogen storage unit that stores hydrogen and supplies hydrogen to the power generation device;
a power storage device connected in parallel with the power generation device, capable of receiving power from an external power source for charging, and capable of supplying power to an electric load;
a temperature detector that detects the temperature of the power generation device;
a pressure detector that detects the pressure inside the hydrogen storage section;
A power supply system comprising: a control unit that controls the power that the power generation device supplies to the electric load; and a power supply system that supplies power when the external power supply is reduced or lost;
The control unit includes:
The upper limit value of the power supplied by the power generation device when the temperature detected by the temperature detector is less than the first temperature threshold, and Set it to a value higher than the power limit,
When a pressure equal to or higher than a first pressure threshold is detected by the pressure detector, increasing a set value of electric power supplied by the power generation device,
When the pressure detector detects a pressure equal to or lower than a second pressure threshold that is smaller than the first pressure threshold, the power supply system lowers a set value of the electric power supplied by the power generator.
前記発電装置の出力電圧を検出する電圧検出器をさらに備え、
前記制御部は、
前記圧力検出器で検出される圧力が前記第1圧力閾値以上、且つ、前記電圧検出器で検出される出力電圧が第1電圧閾値以上の場合に、前記発電装置が供給する電力の設定値を高くし、
前記圧力検出器で検出される圧力が前記第2圧力閾値以下、または前記電圧検出器で検出される出力電圧が、前記第1電圧閾値よりも小さい第2電圧閾値以下の場合に、前記発電装置が供給する電力の設定値を低くする
請求項1に記載の電力供給システム。
Further comprising a voltage detector that detects the output voltage of the power generation device,
The control unit includes:
When the pressure detected by the pressure detector is equal to or higher than the first pressure threshold, and the output voltage detected by the voltage detector is equal to or higher than the first voltage threshold, a set value of the power supplied by the power generation device is set. make it expensive,
When the pressure detected by the pressure detector is equal to or less than the second pressure threshold, or when the output voltage detected by the voltage detector is equal to or less than a second voltage threshold, which is smaller than the first voltage threshold, the power generation device The power supply system according to claim 1, wherein the set value of the power supplied by the power supply system is lowered.
前記発電装置の出力電流を検出する電流検出器をさらに備え、
前記制御部は、
前記圧力検出器で検出される圧力が前記第1圧力閾値以上、且つ、前記電流検出器で検出される出力電流が第1電流閾値以下の場合に、前記発電装置が供給する電力の設定値を高くし、
前記圧力検出器で検出される圧力が前記第2圧力閾値以下、または前記電流検出器で検出される出力電流が、前記第1電流閾値より大きい第2電流閾値以上の場合に、前記発電装置が供給する電力の設定値を低くする
請求項1または2に記載の電力供給システム。
further comprising a current detector that detects the output current of the power generation device,
The control unit includes:
When the pressure detected by the pressure detector is equal to or higher than the first pressure threshold, and the output current detected by the current detector is equal to or lower than the first current threshold, a set value of the power supplied by the power generation device is set. make it expensive,
When the pressure detected by the pressure detector is equal to or less than the second pressure threshold, or when the output current detected by the current detector is equal to or greater than a second current threshold, which is larger than the first current threshold, the power generation device The power supply system according to claim 1 or 2, wherein the set value of the supplied power is lowered.
前記電力の設定値を低下させる場合の変化量が、前記電力の設定値を増加させる場合の変化量より大きい
請求項1から3のいずれか一つに記載の電力供給システム。
The power supply system according to any one of claims 1 to 3, wherein the amount of change when decreasing the set value of the power is larger than the amount of change when increasing the set value of the power.
前記水素貯蔵部は第1水素ボンベと第2水素ボンベを備え、
前記制御部は、前記圧力検出器で検出される前記第1水素ボンベの圧力が、前記第2圧力閾値よりも低い第3圧力閾値以下の場合、前記第1水素ボンベから前記発電装置への水素の供給から、前記第2水素ボンベから前記発電装置への水素の供給に変更する
請求項1から4いずれか一つに記載の電力供給システム。
The hydrogen storage unit includes a first hydrogen cylinder and a second hydrogen cylinder,
When the pressure of the first hydrogen cylinder detected by the pressure detector is equal to or lower than a third pressure threshold that is lower than the second pressure threshold, the control unit controls the flow of hydrogen from the first hydrogen cylinder to the power generation device. The power supply system according to any one of claims 1 to 4, wherein the supply of hydrogen is changed from the supply of hydrogen to the supply of hydrogen from the second hydrogen cylinder to the power generation device.
前記制御部は、前記温度検出器で検出される温度が、前記第1温度閾値よりも大きい第2温度閾値以上の場合に、前記発電装置での発電を停止させる
請求項1から5のいずれか一つに記載の電力供給システム。
Any one of claims 1 to 5, wherein the control unit stops power generation in the power generation device when the temperature detected by the temperature detector is equal to or higher than a second temperature threshold that is larger than the first temperature threshold. The power supply system described in one.
前記制御部は、前記蓄電装置が放電を開始してから所定時間経過後、または前記蓄電装置の放電能力が所定値以下となった場合に前記発電装置の発電を開始させる
請求項1から6のいずれか一つに記載の電力供給システム。
The control unit causes the power generation device to start power generation after a predetermined time has elapsed since the power storage device started discharging, or when the discharge capacity of the power storage device becomes a predetermined value or less. The power supply system described in any one of the above.
前記制御部は、
前記発電装置が供給する電力の設定値を増加させる場合、予め設定される増加率で設定値を高くし、
前記発電装置が供給する電力の設定値を低下させる場合、予め設定される低下率で設定値を低くし、
前記増加率は、所定時間毎に、出力電力を所定の増加量で増加させる割合であり、
前記低下率は、所定時間毎に、出力電力を所定の低下量で低下させる割合である
請求項1から7のいずれか一つに記載の電力供給システム。
The control unit includes:
When increasing the set value of the power supplied by the power generation device, the set value is increased at a preset increase rate,
When lowering the set value of the power supplied by the power generation device, lower the set value at a preset reduction rate,
The increase rate is a rate at which the output power is increased by a predetermined increase amount every predetermined time,
The power supply system according to any one of claims 1 to 7, wherein the reduction rate is a rate at which the output power is reduced by a predetermined amount at predetermined intervals.
前記制御部は、
前記外部電源の駆動時に、前記外部電源から前記電気負荷に電力を供給させ且つ前記蓄電装置に充電させ、
前記外部電源の停止時に、前記蓄電装置から前記電気負荷に電力を供給させ、
前記蓄電装置による電力供給開始後、所定時間が経過した場合、または前記蓄電装置による電力供給開始後、前記蓄電装置の放電能力が所定値以下となった場合、前記発電装置から前記電気負荷に電力を供給させる
請求項1から8のいずれか一つに記載の電力供給システム。
The control unit includes:
When driving the external power source, supplying power from the external power source to the electric load and charging the power storage device,
supplying power from the power storage device to the electrical load when the external power supply is stopped;
If a predetermined period of time has elapsed after the power storage device started supplying power, or if the discharge capacity of the power storage device became less than a predetermined value after the power storage device started supplying power, the power generation device would not supply power to the electrical load. The power supply system according to any one of claims 1 to 8.
水素及び酸素を反応させて発電する発電装置が電気負荷に供給する電力を制御する制御部にて実行可能なコンピュータプログラムであって、
前記制御部に、
前記発電装置の温度が温度閾値未満の場合における前記発電装置が供給する電力の上限値を、前記発電装置の温度が前記温度閾値以上の場合における前記電力の上限値よりも高い値に設定し、
水素貯蔵部の内部の圧力を検出する圧力検出器にて、第1圧力閾値以上の圧力が検出された場合、前記発電装置が供給する電力の設定値を高くし、前記圧力検出器にて前記第1圧力閾値よりも小さい第2圧力閾値以下の圧力が検出された場合、前記発電装置が供給する電力の設定値を低くする
処理を実行させる
コンピュータプログラム。
A computer program executable by a control unit that controls power supplied to an electrical load by a power generation device that generates electricity by reacting hydrogen and oxygen,
In the control section,
setting the upper limit value of the power supplied by the power generating device when the temperature of the power generating device is less than the temperature threshold to a value higher than the upper limit value of the power when the temperature of the power generating device is equal to or higher than the temperature threshold;
When a pressure equal to or higher than a first pressure threshold is detected by a pressure detector that detects the internal pressure of the hydrogen storage section, the set value of the electric power supplied by the power generator is increased, and the pressure detector detects the A computer program that executes a process of lowering a set value of electric power supplied by the power generation device when a pressure equal to or lower than a second pressure threshold, which is smaller than the first pressure threshold, is detected.
JP2021058226A 2021-03-30 2021-03-30 Power supply system and computer program Active JP7405114B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021058226A JP7405114B2 (en) 2021-03-30 2021-03-30 Power supply system and computer program
PCT/JP2022/011551 WO2022209846A1 (en) 2021-03-30 2022-03-15 Power supply system and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021058226A JP7405114B2 (en) 2021-03-30 2021-03-30 Power supply system and computer program

Publications (2)

Publication Number Publication Date
JP2022154949A JP2022154949A (en) 2022-10-13
JP7405114B2 true JP7405114B2 (en) 2023-12-26

Family

ID=83458983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021058226A Active JP7405114B2 (en) 2021-03-30 2021-03-30 Power supply system and computer program

Country Status (2)

Country Link
JP (1) JP7405114B2 (en)
WO (1) WO2022209846A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344488A (en) 2005-06-09 2006-12-21 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2015177576A (en) 2014-03-13 2015-10-05 ブラザー工業株式会社 Ac uninterruptible power supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098662A1 (en) * 2015-12-11 2017-06-15 株式会社 東芝 Hydrogen energy supply system for building, and method for controlling hydrogen energy supply system for building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344488A (en) 2005-06-09 2006-12-21 Osaka Gas Co Ltd Solid oxide fuel cell system
JP2015177576A (en) 2014-03-13 2015-10-05 ブラザー工業株式会社 Ac uninterruptible power supply system

Also Published As

Publication number Publication date
JP2022154949A (en) 2022-10-13
WO2022209846A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
TWI594540B (en) Power storage system and power source system
JP5437707B2 (en) Autonomous operation control system for important loads
JP4763660B2 (en) Power system
JP5207060B2 (en) Self-sustaining operation system using power storage / emergency power generator
JP5297127B2 (en) DC power supply system and power storage device
JP2016119728A (en) Storage battery charge/discharge control device and storage battery charge/discharge control method
KR101187836B1 (en) Smart uninterruptible power supply capable of high efficiency operation and method of controlling uninterruptible power supply
JP6770581B2 (en) Direct current (DC) load leveler
JP7405114B2 (en) Power supply system and computer program
JP6208660B2 (en) Solid oxide fuel cell system
KR101417492B1 (en) Uninterruptible powerr supply connected to power system and control method thereof
JP6305830B2 (en) Uninterruptible power system
JP2008092767A (en) Power plant
KR101219799B1 (en) Smart uninterruptible power supply capable of reducing input peak power and method for controlling uninterruptible power supply
WO2016152177A1 (en) Electricity storage system
JP3552586B2 (en) Uninterruptible power system
JP4910467B2 (en) Variable speed control device for motor
JP5587941B2 (en) Uninterruptible power supply and uninterruptible power supply method
KR102154722B1 (en) Power supply circuit for memory, control apparatus, and power supply method for memory
US11183869B2 (en) System and method for generator frequency control during UPS power walk-in
JPH0765851A (en) Dc output fuel cell system and its operation
JP2004048834A (en) Ac power unit
JP6387809B2 (en) Fuel cell system interconnection system
JP7020824B2 (en) Battery converter and three-phase power storage system
JP2019030160A (en) Distribution-type power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7405114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150