JP7404993B2 - Engine additive gas supply device - Google Patents

Engine additive gas supply device Download PDF

Info

Publication number
JP7404993B2
JP7404993B2 JP2020077665A JP2020077665A JP7404993B2 JP 7404993 B2 JP7404993 B2 JP 7404993B2 JP 2020077665 A JP2020077665 A JP 2020077665A JP 2020077665 A JP2020077665 A JP 2020077665A JP 7404993 B2 JP7404993 B2 JP 7404993B2
Authority
JP
Japan
Prior art keywords
branch pipe
additive gas
section
gas supply
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020077665A
Other languages
Japanese (ja)
Other versions
JP2021173223A (en
Inventor
脩平 山元
義之 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2020077665A priority Critical patent/JP7404993B2/en
Priority to DE102021110252.9A priority patent/DE102021110252A1/en
Publication of JP2021173223A publication Critical patent/JP2021173223A/en
Application granted granted Critical
Publication of JP7404993B2 publication Critical patent/JP7404993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、エンジンの添加ガス供給装置に関する。 The present invention relates to an additive gas supply device for an engine.

従来のエンジンの添加ガス供給装置として、特許文献1に記載されたものが知られている。特許文献1に記載のものは、排気ガスの一部を吸気経路に環流するEGR装置を備えている。このEGR装置は、吸気マニホールドとEGRパイプとの連結部の間に、排気ガスの流量を調整するための小径の吸気孔を形成しており、吸気孔の断面積を最適化することにより、複数の気筒に分配する環流ガスの流量のばらつきを低減させている。 2. Description of the Related Art As a conventional engine additive gas supply device, one described in Patent Document 1 is known. The device described in Patent Document 1 includes an EGR device that recirculates a portion of exhaust gas to the intake path. This EGR device has a small-diameter intake hole for adjusting the flow rate of exhaust gas between the intake manifold and the EGR pipe, and by optimizing the cross-sectional area of the intake hole, multiple This reduces variations in the flow rate of recirculated gas distributed to the cylinders.

特開2007-211698号公報Japanese Patent Application Publication No. 2007-211698

しかしながら、従来のエンジンの添加ガス供給装置にあっては、環流する排気ガスの経路に小径の吸気孔を設けたことにより圧力損失が増加し、多量の排気ガスを吸気通路に流せなくなって排気ガス浄化性能が低下するという問題があった。 However, in conventional engine additive gas supply devices, pressure loss increases due to the provision of small-diameter intake holes in the path of the circulating exhaust gas, and a large amount of exhaust gas cannot flow into the intake passage. There was a problem that the purification performance deteriorated.

本発明は、上記のような事情に着目してなされたものであり、圧力損失を増加させることなく、多量の添加ガスを複数の吸気通路に均等に分配することができるエンジンの吸気装置を提供することを目的とするものである。 The present invention has been made in view of the above-mentioned circumstances, and provides an engine intake device that can evenly distribute a large amount of additive gas to a plurality of intake passages without increasing pressure loss. The purpose is to

本発明は、気筒列方向に並んで配列され、エンジンに空気を供給する吸気通路が内部に形成された複数の吸気管と、添加ガスを取り入れる添加ガス取入口と、前記吸気通路にそれぞれ連通する複数の連通路と、前記連通路の上流側に配置され添加ガスが前記添加ガス取入口から供給される複数の分岐管部と、を有する添加ガス供給管を備えたエンジンの添加ガス供給装置であって、前記分岐管部は、この分岐管部の内部に突出する曲面からなるとともに前記連通路の上流端に向かって突出する突部をその内壁に有し、前記分岐管部における前記連通路の上流側の通路断面は、前記連通路の通路断面より大きいことを特徴とする。 The present invention provides a plurality of intake pipes that are arranged in a row in a cylinder row direction and have an intake passage formed therein for supplying air to the engine, an additive gas intake port that takes in additive gas, and a plurality of intake pipes each communicating with the intake passage. An additive gas supply device for an engine, comprising an additive gas supply pipe having a plurality of communication passages and a plurality of branch pipe parts arranged upstream of the communication passages and from which additive gas is supplied from the additive gas intake port. The branch pipe section has a curved surface projecting into the branch pipe section and has a protrusion on its inner wall that projects toward the upstream end of the communication path, and the communication path in the branch pipe section The passage cross section on the upstream side is larger than the passage cross section of the communication passage.

このように上記の本発明によれば、圧力損失を増加させることなく、多量の添加ガスを複数の吸気通路に均等に分配することができるエンジンの吸気装置を提供することができる。 As described above, according to the present invention described above, it is possible to provide an engine intake device that can evenly distribute a large amount of additive gas to a plurality of intake passages without increasing pressure loss.

図1は、本発明の一実施例に係るエンジンの添加ガス供給装置の斜視図である。FIG. 1 is a perspective view of an engine additive gas supply device according to an embodiment of the present invention. 図2は、本発明の一実施例に係るエンジンの添加ガス供給装置の平面図である。FIG. 2 is a plan view of an additional gas supply device for an engine according to an embodiment of the present invention. 図3は、本発明の一実施例に係るエンジンの添加ガス供給装置の内部通路を示す平面図である。FIG. 3 is a plan view showing an internal passage of an engine additive gas supply device according to an embodiment of the present invention. 図4は、本発明の一実施例に係るエンジンの添加ガス供給装置の添加ガス供給管の上側の部材の底面図である。FIG. 4 is a bottom view of the upper member of the additive gas supply pipe of the additive gas supply device for an engine according to an embodiment of the present invention. 図5は、図2に示すエンジンの添加ガス供給装置のV-V方向の矢視断面図である。FIG. 5 is a cross-sectional view of the additive gas supply device for the engine shown in FIG. 2 taken along the line VV. 図6は、図2に示すエンジンの添加ガス供給装置のVI-VI方向の矢視断面図である。FIG. 6 is a sectional view of the additive gas supply device for the engine shown in FIG. 2 taken along the line VI-VI. 図7は、図2に示すエンジンの添加ガス供給装置のVII-VII方向の矢視断面図である。FIG. 7 is a sectional view of the additive gas supply device for the engine shown in FIG. 2 taken along the line VII-VII. 図8は、図2に示すエンジンの添加ガス供給装置のVIII-VIII方向の矢視断面図である。FIG. 8 is a cross-sectional view of the additive gas supply device for the engine shown in FIG. 2 taken along the direction of arrows VIII-VIII.

本発明の一実施の形態に係るエンジンの添加ガス供給装置は、気筒列方向に並んで配列され、エンジンに空気を供給する吸気通路が内部に形成された複数の吸気管と、添加ガスを取り入れる添加ガス取入口と、吸気通路にそれぞれ連通する複数の連通路と、連通路の上流側に配置され添加ガスが添加ガス取入口から供給される複数の分岐管部と、を有する添加ガス供給管を備えたエンジンの添加ガス供給装置であって、分岐管部は、その内壁に連通路の上流端に向かって突出する突部を有し、分岐管部における連通路の上流側の通路断面は、連通路の通路断面より大きいことを特徴とする。これにより、本発明の一実施の形態に係るエンジンの添加ガス供給装置は、圧力損失を増加させることなく、多量の添加ガスを複数の吸気通路に均等に分配することができる。 An additive gas supply device for an engine according to an embodiment of the present invention includes a plurality of intake pipes that are arranged in line in the cylinder row direction and have intake passages formed therein for supplying air to the engine, and a plurality of intake pipes that take in the additive gas. An additive gas supply pipe having an additive gas intake port, a plurality of communication passages each communicating with an intake passage, and a plurality of branch pipe sections disposed upstream of the communication passage and from which additive gas is supplied from the additive gas intake port. The branch pipe section has a protrusion on its inner wall that protrudes toward the upstream end of the communication passage, and the branch pipe section has a passage cross section on the upstream side of the communication passage. , is characterized by being larger than the passage cross section of the communication passage. As a result, the engine additive gas supply device according to the embodiment of the present invention can evenly distribute a large amount of additive gas to the plurality of intake passages without increasing pressure loss.

以下、本発明の一実施例に係るエンジンの添加ガス供給装置について、図面を用いて説明する。図1から図8は、本発明の一実施例に係るエンジンの添加ガス供給装置を示す図である。図1から図8において、上下前後左右方向は、エンジンの添加ガス供給装置の車両に設置された状態の上下前後左右方向とし、前後方向に対して直交する方向が左右方向、高さ方向が上下方向である。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An engine additive gas supply device according to an embodiment of the present invention will be described below with reference to the drawings. 1 to 8 are diagrams showing an additional gas supply device for an engine according to an embodiment of the present invention. In Figures 1 to 8, the up, down, front, back, left and right directions refer to the up, down, front, back, left and right directions of the engine additive gas supply system installed in the vehicle, the direction orthogonal to the front and back direction is the left and right direction, and the height direction is up and down. It is the direction.

まず、構成を説明する。図2において、エンジン1はエンジン本体1Aを備えている。エンジン本体1Aの後側面には、吸気マニホールド20が設けられている。吸気マニホールド20は、図示しないエアクリーナを通過した空気をエンジン本体1Aの複数の吸気ポートに分配している。エンジン1は、吸気ポートから取入れた空気と燃料とからなる混合気を図示しない点火プラグによって点火して燃焼させ、燃焼後の排気ガスを排気出口から排出する。 First, the configuration will be explained. In FIG. 2, the engine 1 includes an engine main body 1A. An intake manifold 20 is provided on the rear side of the engine body 1A. The intake manifold 20 distributes air that has passed through an air cleaner (not shown) to a plurality of intake ports of the engine body 1A. The engine 1 ignites and burns a mixture of air and fuel taken in from an intake port using an ignition plug (not shown), and discharges the burned exhaust gas from an exhaust outlet.

図1、図2において、吸気マニホールド20は、図示しないサージタンクから分岐してその下流端がエンジン本体1Aに連結される多岐部22を備えており、この多岐部22は、複数の吸気管23、24、25を有している。吸気管23、24、25の内部には、エンジン1に空気を供給する吸気通路23A、24A、25Aが形成されている。複数の吸気管23、24、25は、気筒列方向に沿って互いに並列に配置されている。吸気管23、24、25のエンジン本体1A側の端部にはヘッド側フランジ部26が設けられており、ヘッド側フランジ部26はエンジン本体1Aに連結されている。ヘッド側フランジ部26は気筒列方向に延びている。 1 and 2, the intake manifold 20 includes a diverging portion 22 that branches from a surge tank (not shown) and has a downstream end connected to the engine main body 1A. , 24, 25. Intake passages 23A, 24A, and 25A that supply air to the engine 1 are formed inside the intake pipes 23, 24, and 25. The plurality of intake pipes 23, 24, 25 are arranged in parallel with each other along the cylinder row direction. A head side flange portion 26 is provided at the end of the intake pipes 23, 24, and 25 on the side of the engine body 1A, and the head side flange portion 26 is connected to the engine body 1A. The head side flange portion 26 extends in the cylinder row direction.

吸気マニホールド20には、吸気管23、24、25内を流れる空気に添加ガスとしての排気ガスを導入する添加ガス供給管30が設けられている。添加ガス供給管30は、吸気マニホールド20の上面に設けられており、図示しない排気管から導入した添加ガスを吸気マニホールド20の各吸気管23、24、25に分配および供給している。添加ガス供給管30は、まず吸気管23への経路と他の経路とに二股に分岐し、その後に他の経路が吸気管24への経路と吸気管25への経路とに二股に分岐する構造を有している。このように、添加ガス供給管30は、トーナメント表に類似する構造を有している。 The intake manifold 20 is provided with an additive gas supply pipe 30 that introduces exhaust gas as an additive gas into the air flowing through the intake pipes 23, 24, and 25. The additive gas supply pipe 30 is provided on the upper surface of the intake manifold 20, and distributes and supplies additive gas introduced from an exhaust pipe (not shown) to each of the intake pipes 23, 24, and 25 of the intake manifold 20. The additive gas supply pipe 30 first branches into two routes: a route to the intake pipe 23 and another route, and then the other route branches into two routes: a route to the intake pipe 24 and a route to the intake pipe 25. It has a structure. In this way, the additional gas supply pipe 30 has a structure similar to a tournament table.

図3において、添加ガス供給管30は、その上流端に添加ガスを取り入れる添加ガス取入口38を有している。添加ガス取入口38の周囲にはフランジ部38Aが設けられており、このフランジ部38Aには添加ガス供給用の図示しない配管が接続される。 In FIG. 3, the additive gas supply pipe 30 has an additive gas intake port 38 at its upstream end to take in the additive gas. A flange portion 38A is provided around the additive gas intake port 38, and a pipe (not shown) for supplying additive gas is connected to the flange portion 38A.

添加ガス供給管30は、添加ガス取入口38から気筒列方向に延びる第1管部31と、第1管部31の下流端から気筒列方向と交差する交差方向に延びる第2管部32と、第2管部32の下流端から気筒列方向で互いに反対側に延びる第1分岐管部34および第2分岐管部35と、を有している。第1管部31と第2管部32とは、接合部30Aにおいて、概ね直角に接合されている。第1分岐管部34および第2分岐管部35は、第2管部32の下流端側の分岐部30Cから二股に分岐している。 The additive gas supply pipe 30 includes a first pipe part 31 extending from the additive gas intake port 38 in the cylinder row direction, and a second pipe part 32 extending from the downstream end of the first pipe part 31 in a cross direction intersecting the cylinder row direction. , a first branch pipe part 34 and a second branch pipe part 35 extending from the downstream end of the second pipe part 32 in opposite directions in the cylinder row direction. The first tube portion 31 and the second tube portion 32 are joined at a generally right angle at the joint portion 30A. The first branch pipe section 34 and the second branch pipe section 35 are bifurcated from a branch section 30C on the downstream end side of the second pipe section 32.

添加ガス供給管30は、第2分岐管部35の下流端に連結された第3管部33と、第3管部33の下流端から互いに反対側に延びる第3分岐管部36および第4分岐管部37とを有している。第2分岐管部35と第3管部33とは、接合部30Bにおいて、概ね直角に接合されている。第3分岐管部36および第4分岐管部37は、第3管部33の下流端側の分岐部30Dから二股に分岐している。 The additive gas supply pipe 30 includes a third pipe section 33 connected to the downstream end of the second branch pipe section 35, and a third branch pipe section 36 and a fourth branch pipe section 36 extending in opposite directions from the downstream end of the third pipe section 33. It has a branch pipe section 37. The second branch pipe portion 35 and the third pipe portion 33 are joined at a generally right angle at the joint portion 30B. The third branch pipe section 36 and the fourth branch pipe section 37 are bifurcated from the branch section 30D on the downstream end side of the third pipe section 33.

第1管部31および第2管部32は、その内部通路31A、32Aが直線状にそれぞれ形成されている。添加ガス供給管30は、上側と下側のそれぞれの部材を接合したものからなる。第3管部33の内部通路33A、第1分岐管34の内部通路34A、第2分岐管35の内部通路35A、第3分岐管36の内部通路36A、第4分岐管37の内部通路37Aも直線状に形成されている。図3は、内部通路31A、32A等を目視可能なように添加ガス供給管30の下側の部材のみを表している。 The first tube portion 31 and the second tube portion 32 have internal passages 31A and 32A formed in a straight line, respectively. The additive gas supply pipe 30 is made up of upper and lower members joined together. The internal passage 33A of the third pipe part 33, the internal passage 34A of the first branch pipe 34, the internal passage 35A of the second branch pipe 35, the internal passage 36A of the third branch pipe 36, and the internal passage 37A of the fourth branch pipe 37 are also It is formed in a straight line. FIG. 3 shows only the lower part of the additive gas supply pipe 30 so that the internal passages 31A, 32A, etc. can be visually observed.

第1分岐管部34の下流端には、吸気管23の吸気通路23Aと連通する連通路34Bが設けられている。第3分岐管部36の下流端には、吸気管24の吸気通路24Aと連通する連通路36Bが設けられている。第4分岐管部37の下流端には、吸気管25の吸気通路25Aと連通する連通路37Bが設けられている。第1分岐管部34、第2分岐管部35、第3分岐管部36、第4分岐管部37は、連通路34B、36B、37Bから見た場合は、添加ガスの流れ方向の上流側に配置されている。 A communication passage 34B communicating with the intake passage 23A of the intake pipe 23 is provided at the downstream end of the first branch pipe portion 34. A communication passage 36B communicating with the intake passage 24A of the intake pipe 24 is provided at the downstream end of the third branch pipe portion 36. A communication passage 37B communicating with the intake passage 25A of the intake pipe 25 is provided at the downstream end of the fourth branch pipe portion 37. The first branch pipe section 34, the second branch pipe section 35, the third branch pipe section 36, and the fourth branch pipe section 37 are located on the upstream side in the flow direction of the additive gas when viewed from the communication passages 34B, 36B, and 37B. It is located in

図4において、第1分岐管部34、第3分岐管部36、第4分岐管部37の内壁には、突部34C、36C、37Cが設けられている。突部34C、36C、37Cは、連通路34B、36B、37Bの上流端に向かって突出している。 In FIG. 4, the inner walls of the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37 are provided with protrusions 34C, 36C, and 37C. The protrusions 34C, 36C, and 37C protrude toward the upstream ends of the communication passages 34B, 36B, and 37B.

本実施例では、第1分岐管部34、第3分岐管部36、第4分岐管部37の上部に突部34C、36C、37Cが設けられ、第1分岐管部34、第3分岐管部36、第4分岐管部37の下部に連通路34B、36B、37Bの上流端が位置しており、突部34C、36C、37Cは下方に突出している。 In this embodiment, protrusions 34C, 36C, and 37C are provided at the upper portions of the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37, and the first branch pipe section 34, the third branch pipe section 37, and The upstream ends of the communication passages 34B, 36B, and 37B are located at the lower portions of the section 36 and the fourth branch pipe section 37, and the protrusions 34C, 36C, and 37C protrude downward.

図3、図4において、第1分岐管部34、第3分岐管部36、第4分岐管部37は、円筒状に形成されている。また、第2分岐管部35、第1管部31、第2管部32、第3管部33も円筒状に形成されている。 In FIGS. 3 and 4, the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37 are formed in a cylindrical shape. Further, the second branch pipe section 35, the first pipe section 31, the second pipe section 32, and the third pipe section 33 are also formed in a cylindrical shape.

図8において、第4分岐管部37における連通路37Bの上流側の通路断面S1は、連通路37Bの通路断面S2より大きくされている。 In FIG. 8, a passage cross section S1 on the upstream side of the communication passage 37B in the fourth branch pipe portion 37 is larger than a passage cross section S2 of the communication passage 37B.

図4および図8に示すよう、突部37Cは、気筒列方向に延びる中心軸C1を中心とする曲面からなる。第4分岐管部37の中心軸C2は気筒列方向(中心軸C1)に対して傾斜して延びている。突部37Cは、第4分岐管部37の中心軸C2に向かって突出する。そして、図8に示すよう、第4分岐管部37における気筒列方向と直交する断面において、突部37Cを構成する曲面は、中心軸C2の近傍まで突出している。 As shown in FIGS. 4 and 8, the protrusion 37C has a curved surface centered on the central axis C1 extending in the cylinder row direction. The center axis C2 of the fourth branch pipe portion 37 extends obliquely with respect to the cylinder row direction (center axis C1). The protrusion 37C protrudes toward the central axis C2 of the fourth branch pipe portion 37. As shown in FIG. 8, in a cross section of the fourth branch pipe portion 37 perpendicular to the cylinder row direction, the curved surface forming the protrusion 37C protrudes to the vicinity of the central axis C2.

突部37Cの曲面は、気筒列方向(中心軸C1)と直交する所定の断面(図6、図7、図8参照)で気筒列方向へ延びている。また、図6、図7、図8に示すように、第4分岐管部37の下流側に向かうにつれて、突部37Cの突出量が増加している。なお、第4分岐管部37の上流端には、突部37Cは形成されていない(図5参照)。第1分岐管部34および第3分岐管部36の突部34C、36Cも、第4分岐管部37の突部37Cと同様に構成されている。 The curved surface of the protrusion 37C extends in the cylinder row direction at a predetermined cross section (see FIGS. 6, 7, and 8) orthogonal to the cylinder row direction (center axis C1). Further, as shown in FIGS. 6, 7, and 8, the amount of protrusion of the protrusion 37C increases toward the downstream side of the fourth branch pipe portion 37. Note that no protrusion 37C is formed at the upstream end of the fourth branch pipe portion 37 (see FIG. 5). The protrusions 34C and 36C of the first branch pipe part 34 and the third branch pipe part 36 are also configured similarly to the protrusion 37C of the fourth branch pipe part 37.

以上説明したように、本実施例では、第1分岐管部34、第3分岐管部36、第4分岐管部37は、その内壁に連通路34B、36B、37Bの上流端に向かって突出する突部34C、36C、37Cを有している。また、第4分岐管部37における連通路37Bの上流側の通路断面S1は、連通路37Bの通路断面S2より大きくされている。 As explained above, in this embodiment, the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37 have inner walls protruding toward the upstream ends of the communication passages 34B, 36B, and 37B. It has protrusions 34C, 36C, and 37C. Further, a passage cross section S1 on the upstream side of the communication passage 37B in the fourth branch pipe portion 37 is larger than a passage cross section S2 of the communication passage 37B.

これにより、第1分岐管部34、第3分岐管部36、第4分岐管部37を流れる添加ガスを突部34C、36C、37Cによって連通路34B、36B、37Bに送り込むように案内でき、添加ガスを吸気管23、24、25の吸気通路23A、24A、25Aに均一に分配できる。また、第4分岐管部37における連通路37Bの上流側の通路断面S1は、連通路37Bの通路断面S2より大きくされているので、突部37Cを設けたことによる圧力損失の影響を低減することができる。この結果、圧力損失を増加させることなく、多量の添加ガスを複数の吸気通路に均等に分配することができる。 Thereby, the additive gas flowing through the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37 can be guided by the protrusions 34C, 36C, and 37C so as to be sent into the communication paths 34B, 36B, and 37B, The additive gas can be uniformly distributed to the intake passages 23A, 24A, 25A of the intake pipes 23, 24, 25. Further, since the passage cross section S1 on the upstream side of the communication passage 37B in the fourth branch pipe portion 37 is made larger than the passage cross section S2 of the communication passage 37B, the influence of pressure loss due to the provision of the protrusion 37C is reduced. be able to. As a result, a large amount of additive gas can be evenly distributed to the plurality of intake passages without increasing pressure loss.

また、本実施例では、第1分岐管部34、第3分岐管部36、第4分岐管部37は、円筒状に形成されている。また、突部37Cは、第4分岐管部37の中心軸C2に向かって突出する曲面からなる。そして、気筒列方向と直交する断面において、突部37Cを構成する曲面は、中心軸C2の近傍まで突出している。 Further, in this embodiment, the first branch pipe section 34, the third branch pipe section 36, and the fourth branch pipe section 37 are formed in a cylindrical shape. Further, the protrusion 37C has a curved surface that protrudes toward the central axis C2 of the fourth branch pipe portion 37. In a cross section perpendicular to the cylinder row direction, the curved surface forming the protrusion 37C protrudes to the vicinity of the central axis C2.

これにより、第4分岐管部37の下流側に向かうにつれて突部37Cの曲面を大きくして突出量を大きくすることにより、添加ガスを連通路37Bに送り込む効果を高めることができる。同様に、連通路34B、36Bにおいても、第1分岐管部34および第3分岐管部36下流側に向かうにつれて突部34C、36Cの曲面を大きくすることにより、添加ガスを送り込む効果を高めることができる。また、曲面を大きくしつつ第1分岐管部34、第3分岐管部36、第4分岐管部37における連通路34B、36B、37Bの直上流部の通路断面S1を連通路の通路断面S2より確実に大きくすることができる。 Thereby, by increasing the curved surface of the protrusion 37C toward the downstream side of the fourth branch pipe portion 37 and increasing the amount of protrusion, it is possible to enhance the effect of feeding the additive gas into the communication path 37B. Similarly, in the communication passages 34B and 36B, the curved surfaces of the protrusions 34C and 36C are made larger toward the downstream side of the first branch pipe section 34 and the third branch pipe section 36, thereby increasing the effect of feeding the additive gas. I can do it. In addition, while increasing the curved surface, the passage cross section S1 of the immediately upstream portion of the communication passages 34B, 36B, and 37B in the first branch pipe part 34, the third branch pipe part 36, and the fourth branch pipe part 37 is changed to the passage cross section S2 of the communication passage. It can be made larger more reliably.

また、本実施例では、第4分岐管部37の中心軸C2が気筒列方向に対して傾斜して延びている。突部37Cの曲面は、気筒列方向と直交する所定の断面で気筒列方向へ延びている。そして、第4分岐管部37の下流側に向かうにつれて、突部37Cの突出量が増加している。 Furthermore, in this embodiment, the central axis C2 of the fourth branch pipe portion 37 extends obliquely with respect to the cylinder row direction. The curved surface of the protrusion 37C extends in the cylinder row direction with a predetermined cross section perpendicular to the cylinder row direction. The amount of protrusion of the protrusion 37C increases toward the downstream side of the fourth branch pipe portion 37.

これにより、第4分岐管部37の下流側に向かうにつれて突部37Cの突出量が徐々に増加するので、第4分岐管部37の通路断面を緩やかに変化させることができ、添加ガスをスムーズに連通路37Bに導くことができる。 As a result, the amount of protrusion of the protrusion 37C gradually increases toward the downstream side of the fourth branch pipe section 37, so that the passage cross section of the fourth branch pipe section 37 can be changed gradually, and the additive gas can be smoothly distributed. can be guided to the communication path 37B.

本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。 Although embodiments of the invention have been disclosed, it will be apparent that modifications may be made by one skilled in the art without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

1...エンジン、1A...エンジン本体、20...吸気マニホールド、23,24,25...吸気管、23A,24A,25A...吸気通路、30...添加ガス供給管、34...第1分岐管部(分岐管部)、34B...連通路、34C...突部、36...第3分岐管部(分岐管部)、36B...連通路、36C...突部、37...第4分岐管部(分岐管部)、37B...連通路、37C...突部、38...添加ガス取入口、C2...中心軸、S1...通路断面、S2...通路断面 1... Engine, 1A... Engine body, 20... Intake manifold, 23, 24, 25... Intake pipe, 23A, 24A, 25A... Intake passage, 30... Additive gas supply pipe , 34...First branch pipe part (branch pipe part), 34B...Communication path, 34C...Protrusion, 36...Third branch pipe part (branch pipe part), 36B...Connection Passage, 36C...Protrusion, 37...Fourth branch pipe section (branch pipe section), 37B...Communication passage, 37C...Protrusion, 38...Additional gas intake port, C2.. .Central axis, S1...passage cross section, S2...passage cross section

Claims (3)

気筒列方向に並んで配列され、エンジンに空気を供給する吸気通路が内部に形成された複数の吸気管と、
添加ガスを取り入れる添加ガス取入口と、前記吸気通路にそれぞれ連通する複数の連通路と、前記連通路の上流側に配置され添加ガスが前記添加ガス取入口から供給される複数の分岐管部と、を有する添加ガス供給管を備えたエンジンの添加ガス供給装置であって、
前記分岐管部は、この分岐管部の内部に突出する曲面からなるとともに前記連通路の上流端に向かって突出する突部をその内壁に有し、
前記分岐管部における前記連通路の上流側の通路断面は、前記連通路の通路断面より大きいことを特徴とするエンジンの添加ガス供給装置。
a plurality of intake pipes arranged in the direction of the cylinder rows and each having an intake passage formed therein for supplying air to the engine;
an additive gas intake port that takes in additive gas; a plurality of communication passages each communicating with the intake passage; and a plurality of branch pipe portions disposed upstream of the communication passage and to which the additive gas is supplied from the additive gas intake port. An additive gas supply device for an engine equipped with an additive gas supply pipe having,
The branch pipe section has a protrusion on its inner wall that is made of a curved surface that protrudes into the interior of the branch pipe section and that protrudes toward the upstream end of the communication path,
An additive gas supply device for an engine, wherein a passage cross section on an upstream side of the communication passage in the branch pipe portion is larger than a passage cross section of the communication passage.
前記分岐管部は、円筒状に形成され
前記分岐管部の前記気筒列方向と直交する断面において、前記突部を構成する前記曲面は、前記分岐管部中心軸の近傍まで突出していることを特徴とする請求項1に記載のエンジンの添加ガス供給装置。
The branch pipe portion is formed in a cylindrical shape ,
The engine according to claim 1, wherein in a cross section of the branch pipe section perpendicular to the cylinder row direction, the curved surface forming the protrusion protrudes to the vicinity of a central axis of the branch pipe section. Additive gas supply device.
前記分岐管部の前記中心軸が前記気筒列方向に対して傾斜して延び、
前記曲面は、前記気筒列方向と直交する断面が所定の断面形状であり、前記所定の断面形状にて前記気筒列方向へ延び、
前記分岐管部の下流側に向かうにつれて、前記突部の突出量が増加していることを特徴とする請求項2に記載のエンジンの添加ガス供給装置。
The central axis of the branch pipe portion extends obliquely with respect to the cylinder row direction,
The curved surface has a predetermined cross-sectional shape in a cross section perpendicular to the cylinder row direction , and extends in the cylinder row direction with the predetermined cross-sectional shape ,
3. The additive gas supply device for an engine according to claim 2, wherein the amount of protrusion of the protrusion increases toward the downstream side of the branch pipe portion.
JP2020077665A 2020-04-24 2020-04-24 Engine additive gas supply device Active JP7404993B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020077665A JP7404993B2 (en) 2020-04-24 2020-04-24 Engine additive gas supply device
DE102021110252.9A DE102021110252A1 (en) 2020-04-24 2021-04-22 ADDITIONAL ENGINE GAS SUPPLY DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077665A JP7404993B2 (en) 2020-04-24 2020-04-24 Engine additive gas supply device

Publications (2)

Publication Number Publication Date
JP2021173223A JP2021173223A (en) 2021-11-01
JP7404993B2 true JP7404993B2 (en) 2023-12-26

Family

ID=78261036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077665A Active JP7404993B2 (en) 2020-04-24 2020-04-24 Engine additive gas supply device

Country Status (2)

Country Link
JP (1) JP7404993B2 (en)
DE (1) DE102021110252A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100288A (en) 2017-12-06 2019-06-24 愛三工業株式会社 EGR gas distributor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605787B2 (en) 2006-02-09 2011-01-05 ヤンマー株式会社 EGR device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100288A (en) 2017-12-06 2019-06-24 愛三工業株式会社 EGR gas distributor

Also Published As

Publication number Publication date
JP2021173223A (en) 2021-11-01
DE102021110252A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JPS6060252A (en) Exhaust-gas recirculating apparatus for v-type engine
JP2002371917A (en) Gas injection device for gas engine
JP5577299B2 (en) Intake device for internal combustion engine
US20120090578A1 (en) Intake mixture introducing apparatus
JP4896154B2 (en) Supply air distribution device for internal combustion engines
JP7404993B2 (en) Engine additive gas supply device
CN107178445B (en) Gas reflux device
CN210106037U (en) Engine air intake manifold and car
JP6098652B2 (en) Multi-cylinder engine intake system
KR0173355B1 (en) Intake manifold unit of an internal combustion engine
JP7140204B2 (en) Intake structure of internal combustion engine
JP7299181B2 (en) intake manifold device
JP2007309168A (en) Exhaust gas recirculation device for engine
JP2019085920A (en) Intake device of multicylinder engine
JP2020133574A (en) Intake manifold
JP2017133413A (en) Intake structure of internal combustion engine
JP6388330B2 (en) Cylinder head of internal combustion engine
JP6691691B2 (en) Engine intake manifold
JP2013007360A (en) Air intake device of internal combustion engine
JP2005030392A (en) Intake port and its core of lean burn engine
JP2009281212A (en) Fuel rail of gas engine
JPH0599088A (en) Intake system for engine
JP6142864B2 (en) Engine intake system
JP2021173222A (en) Engine intake device
JP7131309B2 (en) Intake structure of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R151 Written notification of patent or utility model registration

Ref document number: 7404993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151