JP7404639B2 - Method of filling fluid into channel structure - Google Patents
Method of filling fluid into channel structure Download PDFInfo
- Publication number
- JP7404639B2 JP7404639B2 JP2019069949A JP2019069949A JP7404639B2 JP 7404639 B2 JP7404639 B2 JP 7404639B2 JP 2019069949 A JP2019069949 A JP 2019069949A JP 2019069949 A JP2019069949 A JP 2019069949A JP 7404639 B2 JP7404639 B2 JP 7404639B2
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- channel
- liquid
- narrowed
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 239000012530 fluid Substances 0.000 title description 15
- 239000007788 liquid Substances 0.000 claims description 31
- 239000002245 particle Substances 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 17
- 238000011084 recovery Methods 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 4
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 4
- 239000012901 Milli-Q water Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001825 field-flow fractionation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002174 soft lithography Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Landscapes
- Automatic Analysis And Handling Materials Therefor (AREA)
Description
本発明は、流路構造体への流体充填方法に関する。 The present invention relates to a method for filling fluid into a channel structure.
マイノリティーな粒子群を正確に検出可能な技術として、電気的検出を用いるコールター法(電気的検知帯法;以下、ESZと記載)が知られている。ESZ法ではアパーチャに粒子を通過させた際に発生する電気的シグナルを用いて粒子径を算出するが、一般にそのダイナミックレンジはアパーチャ径の2~60%といわれている。ESZ法の欠点であるダイナミックレンジの狭さを解消するため粒子を分級し、異なるアパーチャ径を持つESZ法で検出する方法が開発されている(例えば、特許文献1)。 The Coulter method (electronic detection zone method; hereinafter referred to as ESZ) using electrical detection is known as a technique capable of accurately detecting minority particle groups. In the ESZ method, the particle diameter is calculated using an electrical signal generated when a particle passes through an aperture, and its dynamic range is generally said to be 2 to 60% of the aperture diameter. In order to eliminate the narrow dynamic range that is a drawback of the ESZ method, a method has been developed in which particles are classified and detected using the ESZ method having different aperture diameters (for example, Patent Document 1).
特許文献1のように連続的な分離を可能にする技術として、マイクロ流路を用いたピンチドフローフラクショネーション(Pinched Flow Fractionation)(以下、PFFと記載)が利用されている。PFF法は流体力学的特性を利用するため流路内に発生する気泡や流路内部が完全に液体で充填されていないと望みの分級を行うことはできないが、PFF法を用いた流路構造は複雑なため、インレットから溶液を導入する方法では完全に流路内部を溶液で満たすことは困難であった。 As a technology that enables continuous separation as in Patent Document 1, pinched flow fractionation (hereinafter referred to as PFF) using a microchannel is used. Since the PFF method uses hydrodynamic characteristics, it is not possible to perform the desired classification unless bubbles occur in the flow channel or the flow channel is completely filled with liquid. However, the flow channel structure using the PFF method Because of the complexity of the solution, it has been difficult to completely fill the inside of the channel with the solution by introducing the solution from the inlet.
本発明の課題は、狭窄部位を有する流路構造体へ気泡を残さず効率よく流体を充填する方法を提供することにある。 An object of the present invention is to provide a method for efficiently filling a fluid into a channel structure having a constricted portion without leaving any air bubbles.
本発明者らは上記課題を解決するために、鋭意検討を重ねた結果、本発明に到達した。 In order to solve the above-mentioned problems, the present inventors have made extensive studies and have arrived at the present invention.
すなわち本発明の一態様は、
狭窄部位を有する流路に繋がった入口を備えた流路構造体に対して、前記入口以外の流路末端孔から流体を充填することを特徴とする。
That is, one aspect of the present invention is
The present invention is characterized in that a channel structure having an inlet connected to a channel having a constricted portion is filled with fluid from a channel end hole other than the inlet.
また、本発明の別態様は、
狭窄部位を有する流路に繋がった入口と、狭窄部位を有する流路のみに繋がった出口と、狭窄部位を有する流路以外とも繋がった充填用出口と、を備えた流路構造体に対して、前記充填用出口から流体を充填することを特徴とする。
Further, another aspect of the present invention is
For a channel structure including an inlet connected to a channel having a constricted region, an outlet connected only to the channel having the constricted region, and a filling outlet connected to a channel other than the channel having the constricted region , characterized in that the fluid is filled from the filling outlet.
本発明により、ナノ~マイクロレベルの微小な粒子を広範囲に定量的に評価できる流路構造体へ気泡を残さず効率よく流体を充填することが可能となる。 According to the present invention, it becomes possible to efficiently fill a fluid without leaving any air bubbles into a channel structure that allows quantitative evaluation of nano- to micro-sized particles over a wide range of areas.
以下、本発明を実施するための形態について、図面を用いて詳細に説明する。但し本発明は異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものでは無い。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail using the drawings. However, the present invention can be implemented in different forms and is not limited to the embodiments and examples shown below.
狭窄部位を有する流路とは、ある流路に接続されている当該流路より相対的に流路幅が狭くなった流路や、流路途中で流路幅が部分的に狭くなっている流路のことを指す。狭窄部位を有する流路に繋がった入口を備えた流路構造体としては、PFFをシステム化した流路構造体(以下、PFF流路と省略することがある)、ハイドロダイナミックフィルトレーション法、フィールドフローフラクショネーション法(膜の部分が狭窄流路とみなされる)、ESZ法(アパーチャ部位)をシステム化した流路構造体が例示される。例えば、PFF流路ではサンプル液を流す流路(サンプル流路)とシース液を流す流路(シース流路)が合流して形成される狭窄流路、狭窄流路に接続された拡大流路、拡大流路に接続された出口流路を少なくとも備えており、狭窄流路はサンプル流路やシース流路よりも流路幅が狭くなっていることが原理上、必要となるため、狭窄流路は本発明における狭窄部位を有する流路に該当する。すなわち、PFF流路に対して、出口流路の末端(出口)から流体を充填すれば、気泡を残さず効率よく流体を充填することが可能となる。 A flow path having a narrowed portion is a flow path whose width is relatively narrower than that of the flow path connected to a certain flow path, or a flow path where the width of the flow path is partially narrowed in the middle of the flow path. Refers to the flow path. Examples of the flow path structure having an inlet connected to a flow path having a constricted area include a flow path structure that systemizes PFF (hereinafter sometimes abbreviated as PFF flow path), hydrodynamic filtration method, Examples include channel structures that systemize the field flow fractionation method (membrane portion is regarded as a constricted channel) and the ESZ method (aperture region). For example, in a PFF channel, a constricted channel is formed by merging a channel for a sample liquid (sample channel) and a channel for a sheath fluid (sheath channel), and an enlarged channel is connected to the constricted channel. , it is necessary in principle to have at least an outlet channel connected to the expanded channel, and the narrowed channel has a narrower channel width than the sample channel and the sheath channel. The channel corresponds to a channel having a constricted portion in the present invention. That is, by filling the PFF channel with fluid from the end (exit) of the outlet channel, it becomes possible to fill the fluid efficiently without leaving any bubbles.
図1に示すようなPFF流路にESZ法を組み合わせたような粒子分離検出流路を備えたマイクロチップ10の場合、インレット14a、14b、アウトレット23、104a、104b、104cを孔として持ち、各孔の間を入口側分岐18a、18b、狭窄流路16、拡大流路17、ドレイン流路22、粒子回収流路102a、102b、102c、粒子検出流路103a、103b、103cが繋ぐ構造になっている(図1(a)、(b)参照)。粒子検出流路103a、103b、103cにはアパーチャ53が存在している(図1(c)参照)。アパーチャにより粒子検出流路は部分的に流路幅が狭まるため、粒子検出流路は本発明における狭窄部位を有する流路に該当する。すなわち、アウトレット104a、104b、104cは、狭窄部位を有する流路のみに繋がった出口であり、アウトレット23は(狭窄流路16及び拡大流路17に流体接続されている)ドレイン流路22に繋がった出口であり、アウトレット23から流体を充填すれば、気泡を残さず効率よく流体を充填することが可能となる。 In the case of a microchip 10 equipped with a particle separation detection flow path such as a combination of a PFF flow path and an ESZ method as shown in FIG. The structure is such that the inlet branches 18a, 18b, the constricted channel 16, the enlarged channel 17, the drain channel 22, the particle recovery channels 102a, 102b, 102c, and the particle detection channels 103a, 103b, 103c connect between the holes. (See Figures 1(a) and (b)). Apertures 53 are present in the particle detection channels 103a, 103b, and 103c (see FIG. 1(c)). Since the width of the particle detection channel is partially narrowed by the aperture, the particle detection channel corresponds to a channel having a narrowed portion in the present invention. That is, the outlets 104a, 104b, and 104c are outlets that are connected only to the flow path that has the constricted region, and the outlet 23 is connected to the drain flow path 22 (which is fluidly connected to the constricted flow path 16 and the enlarged flow path 17). If the fluid is filled from the outlet 23, it becomes possible to efficiently fill the fluid without leaving any air bubbles.
流体を充填する方法としてはシリンジポンプ、ペリスタポンプ、圧送ポンプ等の圧力勾配による送液、電気浸透流ポンプによる送液、液面差による送液、孔に注入した流体を図4に示すようなピン構造物を用いて、圧入することも可能である。また、ピンを用いて流体を導入する方法として、図5に示すようなピンを押し込むため冶具を用いて圧入すると、簡便かつ再現性が良くなり好ましい。 Methods for filling fluid include liquid transfer using a pressure gradient such as a syringe pump, peristaltic pump, or pressure pump, liquid transfer using an electroosmotic flow pump, liquid transfer using a liquid level difference, and liquid injection using a pin as shown in Figure 4. It is also possible to press fit using a structure. Further, as a method of introducing the fluid using a pin, it is preferable to use a jig to press in the pin as shown in FIG. 5 because it is simple and has good reproducibility.
流路構造体の材質としては、ポリジメチルシロキサン(PDMS)、アクリル等の各種ポリマー材料、ガラス、シリコーン、セラミクス、ステンレスなどの各種金属、半導体などを用いることができ、またこれらの材料のうち、任意の2種類の基板を組み合わせて用いることも可能である。ただし、流路自体を安価に作製し提供するためには、少なくとも部分的にポリマー材料を用いることが好ましい。 As the material of the channel structure, various polymer materials such as polydimethylsiloxane (PDMS) and acrylic, various metals such as glass, silicone, ceramics, and stainless steel, semiconductors, etc. can be used, and among these materials, It is also possible to use a combination of any two types of substrates. However, in order to manufacture and provide the channel itself at low cost, it is preferable to use a polymer material at least partially.
流路がPDMS等の伸縮可能な材質であれば、上述したピン構造物は硬質の材料、例えばアクリル等の各種ポリマー材料であればガラス、シリコーン、セラミクス、ステンレスなどの各種金属が好ましい。逆に流路が前記硬質の材料であればPDMSやブタジエンースチレンゴムなどの伸縮可能な材料を用いることで、液を圧入することができる。 If the flow path is made of a stretchable material such as PDMS, the pin structure described above is preferably made of a hard material, for example, if it is made of various polymeric materials such as acrylic, glass, silicone, ceramics, various metals such as stainless steel are preferred. On the other hand, if the channel is made of the above-mentioned hard material, the liquid can be press-injected by using a stretchable material such as PDMS or butadiene-styrene rubber.
本発明における流体は、水溶液であり、好ましくは界面活性剤含む水溶液であるが、塩が入っていても良い。またオイルや油を用いることもできる。 The fluid in the present invention is an aqueous solution, preferably an aqueous solution containing a surfactant, but may also contain a salt. Moreover, oil or oil can also be used.
実施例1
一般的なフォトリソグラフィーとソフトリソグラフィー技術を用いて、図1に示すマイクロチップ10を作製した。具体的な手順は、特許文献1の実施例に記載の方法と同様である。この時、マイクロチップ10の各流路について、流路13の高さは粒子検出部103a、粒子検出部103c以外すべて4.5μmとし、流路13の端部に、基板11の上面に貫通するインレット14a、14b、アウトレット104a、104a’、104b、104b’、104c、104c’、23(それぞれ穴の径2mm)を設けた。また流路13は、分岐流路18a(幅20μm、長さ1.5mm)、分岐流路18b(幅40μm、長さ500μm)、狭窄流路16(幅6μm、長さ20μm)、拡大流路17(24b角度135度、最大拡大時流路幅600μm、長さ0.5mm)、ドレイン流路22(幅500μm、長さ1.7mm)、粒子回収流路102a(幅75μm、長さ4mm)、粒子回収流路102c(幅140μm、長さ7.5mm)、粒子回収流路102b(幅512μm、長さ3.75mm)とした。また、粒子検出部102aの2つのアパーチャは、どちらも幅1μm、高さ0.4μm、長さ10μmとし、粒子検出部102cの2つのアパーチャは、どちらも幅2μm、高さ0.8μm、長さ10μmとし、粒子検出部102bの2つのアパーチャは、どちらも幅3.5μm、高さ4.5μm、長さ20μmとした。
アウトレット23に液体100NとしてミリQ水7μLを導入した。導入した液を図5に示す冶具で圧入し内部に液が均一に圧入されることを確認した。
Example 1
A microchip 10 shown in FIG. 1 was manufactured using general photolithography and soft lithography techniques. The specific procedure is the same as the method described in Examples of Patent Document 1. At this time, for each channel of the microchip 10, the height of the channel 13 is set to 4.5 μm for all channels except for the particle detection section 103a and the particle detection section 103c. Inlets 14a, 14b, outlets 104a, 104a', 104b, 104b', 104c, 104c', and 23 (each hole diameter 2 mm) were provided. The flow path 13 includes a branch flow path 18a (width 20 μm, length 1.5 mm), a branch flow path 18b (width 40 μm, length 500 μm), a narrowed flow path 16 (width 6 μm, length 20 μm), and an expanded flow path. 17 (24b angle 135 degrees, channel width at maximum expansion 600 μm, length 0.5 mm), drain channel 22 (width 500 μm, length 1.7 mm), particle collection channel 102a (width 75 μm, length 4 mm), A particle recovery channel 102c (width 140 μm, length 7.5 mm) and a particle recovery channel 102b (width 512 μm, length 3.75 mm) were used. The two apertures of the particle detection unit 102a are both 1 μm wide, 0.4 μm high, and 10 μm long, and the two apertures of the particle detection unit 102c are both 2 μm wide, 0.8 μm high, and long. The particle detection unit 102b has two apertures each having a width of 3.5 μm, a height of 4.5 μm, and a length of 20 μm.
7 μL of Milli-Q water was introduced into the outlet 23 as a liquid of 100N. The introduced liquid was press-fitted using the jig shown in FIG. 5, and it was confirmed that the liquid was uniformly press-fitted inside.
比較例1
実施例1で用いたマイクロチップに対して、インレット14a、14bに液体100NとしてミリQ水7μLずつを導入した。導入した液の圧入具合を顕微鏡観察し、内部に液が均一に圧入されていないことを確認した(図2(b)、(c)参照)。
Comparative example 1
Into the microchip used in Example 1, 7 μL each of Milli-Q water was introduced as a 100N liquid into the inlets 14a and 14b. The degree of pressure injection of the introduced liquid was observed under a microscope, and it was confirmed that the liquid was not uniformly pressed into the interior (see FIGS. 2(b) and 2(c)).
比較例2
実施例1で用いたマイクロチップに対して、アウトレット104aに液体100NとしてミリQ水7μLを導入した。導入した液導入した液を図5に示す冶具で圧入し圧入具合を顕微鏡観察したところ、狭窄部位(アパーチャ)にゴミが閉塞し流路として使用できないことを確認した(図3(b)参照)。
Comparative example 2
Into the microchip used in Example 1, 7 μL of Milli-Q water was introduced into the outlet 104a as a 100N liquid. Introduced liquid When the introduced liquid was press-fitted using the jig shown in Figure 5 and the condition of the press-in was observed under a microscope, it was confirmed that the constricted area (aperture) was clogged with dust and could not be used as a flow path (see Figure 3(b)). .
8 アパーチャを閉塞した粒子
10 マイクロチップ
11 基板
12 基板
13 流路
14a、14b 入口側ポート
16 狭窄流路
16a サンプル液側狭窄流路壁面
16b シース液側狭窄流路壁面
17 拡大流路
17a サンプル液側拡大流路壁面
17b シース液側狭拡大路壁面
18a、18b 入口側分岐
19 拡大開始点
21 流路
22 ドレイン流路
23 アウトレット
24b 角度
40 スロープ部分
50 粒子
53 アパーチャ
54、54a、54b 電極
62 粒子検出流路
100N 流体
102a~c 粒子回収流路
103a~c 粒子検出部
104a~c アウトレット
105 粒子回収流路
106 粒子回収流路
107 アパーチャA
8 Particles that blocked the aperture 10 Microchip 11 Substrate 12 Substrate 13 Channels 14a, 14b Inlet side ports 16 Constricted channel 16a Wall surface of the narrowed channel on the sample liquid side 16b Wall surface of the narrowed channel on the sheath liquid side 17 Enlarged channel 17a Sample liquid side Expansion channel wall surface 17b Sheath liquid side narrow expansion channel wall surface 18a, 18b Inlet side branch 19 Enlargement start point 21 Channel 22 Drain channel 23 Outlet 24b Angle 40 Slope portion 50 Particle 53 Aperture 54, 54a, 54b Electrode 62 Particle detection flow Channel 100N Fluid 102a-c Particle recovery channel 103a-c Particle detection section 104a-c Outlet 105 Particle recovery channel 106 Particle recovery channel 107 Aperture A
Claims (2)
前記流路構造体は、
複数の入口側流路が接続された入口側分岐流路と、
該入口側分岐流路が接続された狭窄流路と、
該狭窄流路に接続された拡大流路と、
前記拡大流路に接続され、粒子検出用のアパーチャ部位を有する複数の回収流路と、
前記拡大流路に接続されたドレイン流路と、
を備え、
前記入口側流路は、前記流路構造体に液体を流入させる入口として使用される開口部である孔を有する流路であり、
前記狭窄流路は、PFF流路の一部としての機能を有する流路であり、
前記回収流路は、前記流路構造体から液体を取り出す出口として使用される開口部である孔を有し、かつ、前記拡大流路に対する狭窄部を有する流路であり、
前記ドレイン流路は、前記流路構造体から液体を出し入れする部分として使用される開口部である孔を有し、かつ、前記拡大流路に接続された前記狭窄流路および前記回収流路に含まれる前記狭窄部よりも広い流路であり、
前記ドレイン流路の有する開口部から、前記流路構造体に接続された開口部を有する流路のうち最も広い流路である前記ドレイン流路を介して前記流路構造体に液体を充填することを特徴とする液体充填方法。 A liquid filling method for filling a flow path structure with a particle separation detection flow path in which a particle detection portion is combined with a PFF flow path without leaving any air bubbles , the method comprising:
The flow path structure is
an inlet side branch flow path to which a plurality of inlet side flow paths are connected ;
a narrowed channel to which the inlet side branch channel is connected;
an enlarged flow path connected to the narrowed flow path;
a plurality of recovery channels connected to the enlarged channel and having an aperture portion for particle detection;
a drain flow path connected to the enlarged flow path;
Equipped with
The inlet side flow path is a flow path having a hole that is an opening used as an inlet for flowing liquid into the flow path structure,
The narrowed channel is a channel that functions as a part of the PFF channel,
The recovery flow path is a flow path that has a hole that is an opening used as an outlet for taking out the liquid from the flow path structure, and has a narrowed portion with respect to the expanded flow path,
The drain flow path has a hole that is an opening used as a part for taking in and out liquid from the flow path structure, and has a hole that is an opening used as a part for taking liquid in and out from the flow path structure, and has a hole in the narrowed flow path and the recovery flow path connected to the expanded flow path. a flow path wider than the narrowed portion included ;
Filling the flow path structure with liquid from an opening of the drain flow path through the drain flow path, which is the widest flow path among the flow paths having an opening connected to the flow path structure. A liquid filling method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069949A JP7404639B2 (en) | 2019-04-01 | 2019-04-01 | Method of filling fluid into channel structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019069949A JP7404639B2 (en) | 2019-04-01 | 2019-04-01 | Method of filling fluid into channel structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020169831A JP2020169831A (en) | 2020-10-15 |
JP7404639B2 true JP7404639B2 (en) | 2023-12-26 |
Family
ID=72746362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019069949A Active JP7404639B2 (en) | 2019-04-01 | 2019-04-01 | Method of filling fluid into channel structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7404639B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009019890A (en) | 2007-07-10 | 2009-01-29 | Konica Minolta Medical & Graphic Inc | Micro inspection chip and inspection device |
JP2009047626A (en) | 2007-08-22 | 2009-03-05 | Aida Eng Ltd | Electrophoretic micro flow passage chip and electrophoretic method |
JP2012215535A (en) | 2010-06-02 | 2012-11-08 | Sekisui Chem Co Ltd | Method for measuring matter, substrate for measurement of matter, and system for measuring matter |
-
2019
- 2019-04-01 JP JP2019069949A patent/JP7404639B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009019890A (en) | 2007-07-10 | 2009-01-29 | Konica Minolta Medical & Graphic Inc | Micro inspection chip and inspection device |
JP2009047626A (en) | 2007-08-22 | 2009-03-05 | Aida Eng Ltd | Electrophoretic micro flow passage chip and electrophoretic method |
JP2012215535A (en) | 2010-06-02 | 2012-11-08 | Sekisui Chem Co Ltd | Method for measuring matter, substrate for measurement of matter, and system for measuring matter |
Also Published As
Publication number | Publication date |
---|---|
JP2020169831A (en) | 2020-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Patterning microfluidic device wettability with spatially-controlled plasma oxidation | |
US10675624B2 (en) | Generation and trapping of aqueous droplets in a microfluidic chip with an air continuous phase | |
KR100509254B1 (en) | Micro-fluidic device to control flow time of micro-fluid | |
Chiu et al. | Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing | |
JP5196304B2 (en) | Emulsion-forming microchip and method for producing the same | |
Jiang et al. | A microfluidic chip for blood plasma separation using electro-osmotic flow control | |
KR20040019869A (en) | Cascaded hydrodynamic focusing in microfluidic channels | |
JP2007232673A (en) | Micro fluid chip | |
Lian et al. | Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator | |
CN109070075A (en) | Microfluidic device with capillary chamber | |
JP6650237B2 (en) | Micro channel device | |
CN111212688B (en) | Microfluidic device with bubble transfer | |
CN110918144A (en) | Microfluidic chip and whole blood separation method based on microfluidic chip | |
JP7404639B2 (en) | Method of filling fluid into channel structure | |
US20110061472A1 (en) | Biochip system, method for determining sperm quality and method for separating sperm | |
Lapierre et al. | Split and flow: Reconfigurable capillary connection for digital microfluidic devices | |
KR101929924B1 (en) | Microfluidic channel based hydrodynamic activated microparticle sorting biochip | |
WO2006056219A1 (en) | Process for separation of dispersions and an apparatus | |
Hairer et al. | An integrated flow-cell for full sample stream control | |
Hairer et al. | Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device | |
JP2019002926A (en) | Microfluidic device and method for feeding fluid | |
JP2006226753A (en) | Component separation mechanism and component separation method | |
CN114466700B (en) | Preventing and removing bubbles in microfluidic devices | |
DK173796B1 (en) | Method for controlling flow in a flow system | |
Christoforidis et al. | Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230221 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231127 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7404639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |