JP2020169911A - Device and method for droplet array measurement - Google Patents

Device and method for droplet array measurement Download PDF

Info

Publication number
JP2020169911A
JP2020169911A JP2019071784A JP2019071784A JP2020169911A JP 2020169911 A JP2020169911 A JP 2020169911A JP 2019071784 A JP2019071784 A JP 2019071784A JP 2019071784 A JP2019071784 A JP 2019071784A JP 2020169911 A JP2020169911 A JP 2020169911A
Authority
JP
Japan
Prior art keywords
flow path
droplet
cross
discharge
continuous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019071784A
Other languages
Japanese (ja)
Other versions
JP7293819B2 (en
Inventor
篤紀 服部
Atsunori Hattori
篤紀 服部
和樹 飯嶋
Kazuki Iijima
和樹 飯嶋
智久 加藤
Tomohisa Kato
智久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019071784A priority Critical patent/JP7293819B2/en
Publication of JP2020169911A publication Critical patent/JP2020169911A/en
Application granted granted Critical
Publication of JP7293819B2 publication Critical patent/JP7293819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a device capable of more efficiently, simply, and swiftly conducting droplet array measurement by a fine droplet method.SOLUTION: A device 1 comprises: a microchannel chip and liquid feeding means fluid-connected to the microchannel chip. The microchannel chip comprises: a droplet generation unit 30 that brings a dispersed layer and a continuous layer that have flowed in from a dispersed layer inflow portion 10 and a continuous layer inflow portion 20 into contact with each other via channels 11 and 21 to form droplets; a droplet holding portion 61 fluid-connected to an emulsion channel 40 via a branch portion 50; discharge channels 70a and 70b, which are fluid-connected to the branch portion 50 and selectively let the continuous layer flowing in from a droplet generation channel flow in by hydrodynamic effect; and a discharge port 80 fluid-connected to the droplet holding portion 61 and the discharge channels 70a and 70b.SELECTED DRAWING: Figure 1

Description

本発明は、液滴アレイ測定をより効率的かつ簡便・迅速に行える装置及び方法に関する。 The present invention relates to an apparatus and method capable of performing droplet array measurement more efficiently, easily and quickly.

マイクロ流体装置を用いて、微小液滴内で所定の反応を行い、単一レベルで分子などを分画することで、デジタル計測への応用が期待されている。近年、装置の簡便化・迅速化の観点から、検出領域に液滴を単層に整列させて簡便にシグナルを測定する液滴アレイ測定が注目されている。 It is expected to be applied to digital measurement by performing a predetermined reaction in a minute droplet using a microfluidic device and fractionating molecules and the like at a single level. In recent years, from the viewpoint of simplification and speeding up of the apparatus, a droplet array measurement in which droplets are arranged in a single layer in a detection region and a signal is easily measured has attracted attention.

液滴アレイ測定では、より効率的にシグナル測定を行うため、検出領域に液滴を高密度かつ液滴同士が重ならないように配列させる必要がある。一般的な方法として、液滴同士が重ならないように液滴の大きさと同程度の高さの幅の広い流路に液滴を滞留させ保持する方法があるが(非特許文献1)、液滴を高密度に配列することに課題があった。例えば、液滴を流路に保持する前に、分散層と連続層の比重差などを利用してエマルジョンを濃縮するといった方法が提案されているが(特許文献1、非特許文献2)、送液操作が増加し、装置が複雑化するため、簡便・迅速な測定には不向きであった。 In the droplet array measurement, in order to perform signal measurement more efficiently, it is necessary to arrange the droplets in the detection region at high density and so that the droplets do not overlap each other. As a general method, there is a method of retaining and holding a droplet in a wide flow path having a height similar to that of the droplet so that the droplets do not overlap each other (Non-Patent Document 1). There was a problem in arranging the droplets at high density. For example, a method has been proposed in which an emulsion is concentrated by utilizing the difference in specific gravity between a dispersed layer and a continuous layer before holding a droplet in a flow path (Patent Document 1 and Non-Patent Document 2). It was not suitable for simple and quick measurement because the liquid operation increased and the equipment became complicated.

特開2016−138896号公報Japanese Unexamined Patent Publication No. 2016-138896

Chaoyong James Yang et al, BIOMICROFLUIDICS 8, 014110(2014)Chaoyong James Yang et al, BIOMICROFLUIDICS 8, 014110 (2014) Deniz Pekin et al,Lab on a Chip 11, 2156−2166(2011)Deniz Pekin et al, Lab on a Chip 11, 2156-2166 (2011) Remi Dangla et al, Lab on a Chip 10, 2032-2045(2010)Remi Dangla et al, Lab on a Chip 10, 2032-2045 (2010) Howard A. Stone et al, Microfluid Nanofluid, 5,585−594(2008)Howard A. Stone et al, Microfluid Nanofluid, 5,585-594 (2008)

本発明の目的は、微小液滴法の液滴アレイ測定をより効率的かつ簡便・迅速に行える装置を提供することにある。 An object of the present invention is to provide an apparatus capable of more efficiently, easily and quickly performing sessile drop technique measurement of a droplet array.

本発明者らは上記課題を解決するために、鋭意検討を重ねた結果、本発明に到達した。 The present inventors have arrived at the present invention as a result of repeated diligent studies in order to solve the above problems.

すなわち本発明の一態様は、
分散層と連続層とを接触させて液滴を形成させるための液滴生成流路と、
前記液滴生成流路に分岐部を介して流体接続された前記液滴を保持する液滴保持流路と、
前記分岐部に流体接続された、流体力学的な効果によって、前記液滴生成流路から流入した前記連続層を選択的に流入させる排出流路と、
前記液滴保持流路及び前記排出流路に流体接続された排出口と、
を有するマイクロ流路チップと、
前記マイクロ流路チップと流体接続された送液手段と、
を備えた、装置である。
That is, one aspect of the present invention is
A droplet generation flow path for contacting the dispersed layer and the continuous layer to form a droplet,
A droplet holding flow path for holding the droplet, which is fluidly connected to the droplet generation flow path via a branch portion,
A discharge flow path that selectively flows in the continuous layer that has flowed in from the droplet generation flow path by a hydrodynamic effect that is fluidly connected to the branch portion.
A discharge port fluidly connected to the droplet holding flow path and the discharge flow path,
With a microchannel tip with
A liquid feeding means fluidly connected to the microchannel chip,
It is a device equipped with.

本発明では、前記分岐部において余分な連続層を前記排出流路へ移送することで、前記液滴保持流路(すなわち検出領域)に分散層と連続層を任意の体積比に濃縮したエマルジョンを移送することができる。また、1度の送液操作で液滴生成、液滴濃縮、液滴保持を連続した流路で行うことで可能となった。 In the present invention, by transferring an extra continuous layer to the discharge flow path at the branch portion, an emulsion in which the dispersion layer and the continuous layer are concentrated to an arbitrary volume ratio in the droplet holding flow path (that is, the detection region) is produced. Can be transferred. In addition, it has become possible to generate droplets, concentrate droplets, and retain droplets in a continuous flow path by performing a single liquid feeding operation.

本発明では、検出領域に液滴を高密度かつ液滴同士が重ならないように配列させることができ、安定した液滴生成と効率的な液滴アレイ測定を両立させることが可能となった。 In the present invention, droplets can be arranged in the detection region at high density so that the droplets do not overlap with each other, and stable droplet generation and efficient droplet array measurement can be achieved at the same time.

本発明の装置の一態様を示す図(平面図)である。It is a figure (plan view) which shows one aspect of the apparatus of this invention. 図1に示す反応装置のA−A’断面図(正面図)である。It is a cross-sectional view (front view) of AA'of the reactor shown in FIG. 図1のうち点線四角で囲まれた部分(濃縮用分岐部50、十字構造)を拡大した図である。FIG. 1 is an enlarged view of a portion surrounded by a dotted square (branch portion 50 for concentration, cross structure) in FIG. DLDに基づく液滴のサイズ分離による濃縮を行う場合の分岐部50の一態様を示す図である。It is a figure which shows one aspect of the branch part 50 in the case of performing concentration by size separation of a droplet based on DLD. PFFに基づく液滴のサイズ分離による濃縮を行う場合の分岐部50の一態様を示す図である。It is a figure which shows one aspect of the branch part 50 in the case of performing concentration by size separation of a droplet based on PFF. 液滴に働く慣性力に基づく液滴のサイズ分離による濃縮を行う場合の分岐部50の一態様を示す図である。It is a figure which shows one aspect of the branch part 50 in the case of performing concentration by size separation of a droplet based on the inertial force acting on the droplet. HDFに基づく液滴の濃縮を行う場合の分岐部50の一態様を示す図である。図内の放物線は一般的な円管流路における流速分布を示す。It is a figure which shows one aspect of the branch part 50 when the droplet is concentrated based on HDF. The parabola in the figure shows the flow velocity distribution in a general circular pipe flow path. 実施例1における、送液開始から1分後、3分後、5分後、7分後、17分後の分岐部50の様子を示す図(明視野像)である。It is a figure (bright-field image) which shows the state of the branch part 50 after 1 minute, 3 minutes, 5 minutes, 7 minutes, and 17 minutes from the start of liquid feeding in Example 1. 実施例1における、送液開始から7分後に生成・濃縮された液滴の液滴保持部61における様子を示す図(明視野像)である。It is a figure (bright-field image) which shows the state in the droplet holding part 61 of the droplet which was generated and concentrated 7 minutes after the start of liquid feeding in Example 1. FIG.

以下、本発明を実施する目的や語句の意義について、具体的な例示と共に説明するが、本発明は必ずしも例示に限定されるものではない。 Hereinafter, the purpose of carrying out the present invention and the meaning of the terms will be described together with specific examples, but the present invention is not necessarily limited to the examples.

本発明において、分散層とは目的とする試験のための一般対象としてのサンプル及び、サンプルに対して特定の試験を行うための試薬を含有する液体である。また、一般的に分散層内では、サンプル中の基質及び/又は分析物と試薬の反応が起こり、その反応の出現及び/又は反応の出現の程度を示す検出可能なシグナル(例えば、蛍光シグナル)を提供するものである。前記反応は、化学反応、結合反応、表現型の変化、又はこれらの組合せであってもよい。 In the present invention, the dispersion layer is a sample as a general object for a target test and a liquid containing a reagent for performing a specific test on the sample. Also, generally, in the dispersion layer, a reaction between the substrate and / or the analyte in the sample and the reagent occurs, and a detectable signal (eg, a fluorescent signal) indicating the appearance of the reaction and / or the degree of appearance of the reaction. Is to provide. The reaction may be a chemical reaction, a binding reaction, a phenotypic change, or a combination thereof.

本発明では、分散層と分散層に対して非混和性を示す連続層を接触させることで液滴を形成させる。液滴とは、連続層と接触することでカプセル封入された分散層のことをいう。また、エマルジョンとは、分散層と連続層を接触させることで得られた、分散層が液滴として連続層に分散した分散性溶液のことをいう。分散層が水系(W)の場合、連続層はオイル(O)とすればよく、この場合、分散層と連続層の接触により、ウォーターインオイル(W/O)型エマルジョンが形成される。前記オイルの一例として、シリコーンオイル、鉱油、フルオロカーボン、植物油、又はこれらの組合せがあげられる。なお、分散層及び/又は連続層に界面活性剤、その他添加剤をさらに含んでもよい。 In the present invention, droplets are formed by contacting a dispersed layer and a continuous layer showing immiscibility with the dispersed layer. A droplet is a dispersed layer encapsulated by contact with a continuous layer. Further, the emulsion refers to a dispersible solution in which the dispersed layer is dispersed in the continuous layer as droplets, which is obtained by bringing the dispersed layer and the continuous layer into contact with each other. When the dispersed layer is water-based (W), the continuous layer may be oil (O). In this case, a water-in-oil (W / O) type emulsion is formed by contact between the dispersed layer and the continuous layer. Examples of the oil include silicone oil, mineral oil, fluorocarbon, vegetable oil, or a combination thereof. The dispersion layer and / or the continuous layer may further contain a surfactant and other additives.

また、本発明において形成される液滴の体積は、分析物を概ね一個保持できるだけの体積であるのが好ましく、具体的には、平均体積が0.00001〜100nLであることが好ましい。また、単分散性が高い方が好ましく、具体的には、液滴体積の変動係数(CV)が20%以下であることが好ましい。また、以下では説明をわかりやすくするため、液滴を球状として取り扱うが、流路構造や周囲の流れによって液滴が非球状になっていても同様に考えてよい。 Further, the volume of the droplet formed in the present invention is preferably a volume capable of holding approximately one analysis object, and specifically, the average volume is preferably 0.00001 to 100 nL. Further, it is preferable that the monodispersity is high, and specifically, the coefficient of variation (CV) of the droplet volume is preferably 20% or less. Further, in the following, the droplets are treated as spherical to make the explanation easy to understand, but the same may be considered even if the droplets are non-spherical due to the flow path structure or the surrounding flow.

さらに、液滴は少なくとも分析物の反応温度条件下で液滴の形状を維持できるだけの熱安定性を有していればよい。具体例として、本発明を、TRC法による核酸増幅に適用する場合は40℃から48℃の温度条件下で、形状を維持できるだけの熱安定性を液滴が有していればよい。 Further, the droplets need only have thermal stability sufficient to maintain the shape of the droplets at least under the reaction temperature conditions of the analyte. As a specific example, when the present invention is applied to nucleic acid amplification by the TRC method, the droplet may have thermal stability sufficient to maintain its shape under temperature conditions of 40 ° C. to 48 ° C.

以下、図面を用いてさらに詳細に説明する。 Hereinafter, the description will be described in more detail with reference to the drawings.

本発明の装置の一態様を図1から図3に示す。図1は平面図、図2は正面図(図1のA−A’断面図)、図3は図1のうち点線四角で囲まれた部分を拡大した図である。装置1は、反応液滴を形成し保持するためのマイクロ流路チップ100と、チップ100内の液体の流れを制御するための吸引手段(ポンプ)200から構成される(図2参照)。 One aspect of the apparatus of the present invention is shown in FIGS. 1 to 3. 1 is a plan view, FIG. 2 is a front view (A-A'cross-sectional view of FIG. 1), and FIG. 3 is an enlarged view of a portion of FIG. 1 surrounded by a dotted square. The device 1 is composed of a microchannel chip 100 for forming and holding a reaction droplet and a suction means (pump) 200 for controlling the flow of liquid in the chip 100 (see FIG. 2).

マイクロ流路チップ100は、分散層流入部10と連続層流入部20とから流入した分散層及び連続層を、流路11、21を介して液滴生成部30にて接触させることで液滴化される。連続層中に分散層が液滴として分散したエマルジョンは、エマルジョン流路40を介して分岐部50で、エマルジョン中の液滴は濃縮流路60に、エマルジョン中の余分な連続層は排出流路70に選択的に分配され、濃縮されたエマルジョン中の液滴は液滴保持部61に移送・保持される。図1において、液滴生成流路は、流路11、21、液滴生成部30及びエマルジョン流路40を含んだ一体の流路が該当し、液滴保持流路は、濃縮流路60及び液滴保持部61を含んだ一体の流路が該当する。 In the microchannel chip 100, the dispersion layer and the continuous layer that have flowed in from the dispersion layer inflow section 10 and the continuous layer inflow section 20 are brought into contact with each other at the droplet generation section 30 via the flow paths 11 and 21 to cause droplets. Be made. The emulsion in which the dispersed layer is dispersed as droplets in the continuous layer is the branch portion 50 via the emulsion flow path 40, the droplets in the emulsion are in the concentration flow path 60, and the extra continuous layer in the emulsion is the discharge flow path. The droplets in the emulsion selectively distributed to 70 and concentrated are transferred and retained in the droplet holding portion 61. In FIG. 1, the droplet generation flow path corresponds to an integrated flow path including the flow paths 11, 21, the droplet generation unit 30, and the emulsion flow path 40, and the droplet retention flow path includes the concentration flow path 60 and The integrated flow path including the droplet holding portion 61 corresponds to this.

マイクロ流路チップ100は、流路構造を正確かつ容易に作製可能なモールディングやエンボッシングなど当業者が通常用いる技術を組み合わせて作製すればよい。マイクロ流路チップ100の作製に用いる材料として、PDMS(ポリジメチルシロキサン)、アクリルといったポリマー材料、ステンレスといった金属材料、ガラス、シリコーン、セラミックスなどが挙げられる。中でも流路自体を安価に作製でき、ディスポーザブルな態様としやすいポリマー材料を少なくとも部分的に用いると好ましい。 The microchannel chip 100 may be manufactured by combining techniques usually used by those skilled in the art, such as molding and embossing, which can accurately and easily fabricate the channel structure. Examples of the material used for producing the microchannel chip 100 include polymer materials such as PDMS (polydimethylsiloxane) and acrylic, metal materials such as stainless steel, glass, silicone, and ceramics. Above all, it is preferable to use at least a partial polymer material in which the flow path itself can be manufactured at low cost and is easy to make a disposable mode.

マイクロ流路チップ100を構成する流路の幅や深さは、目的とする液滴の体積を考慮し適宜決定すればよい。例えば、標的分子がDNAやRNAなどの核酸であり、標的分子の反応が当該核酸のデジタル増幅反応(一分子単位での増幅反応)である場合は、pL又はnLオーダーの液滴作製が必要なため、エマルジョン流路40周辺の流路の幅や深さは0.1から300μmの範囲とすると好ましい。 The width and depth of the flow path constituting the micro flow path chip 100 may be appropriately determined in consideration of the volume of the target droplet. For example, when the target molecule is a nucleic acid such as DNA or RNA and the reaction of the target molecule is a digital amplification reaction (amplification reaction in units of one molecule) of the nucleic acid, it is necessary to prepare droplets on the order of pL or nL. Therefore, the width and depth of the flow path around the emulsion flow path 40 are preferably in the range of 0.1 to 300 μm.

なお、マイクロ流路チップ100を構成する流路及び各手段は、連続層に対して親和性の高い流路壁面にすると好ましい。連続層に対して親和性の高い材料を用いてマイクロ流路チップ100を作製してもよく、非混和性液体に対して親和性の高い材料で流路壁面に相当する部分を表面処理してもよい。一例として、連続層としてフッ素系オイルを用いる場合、PTFE(ポリテトラフルオロエチレン)などのフッ素系高分子材料を用いてマイクロ流路チップを作製してもよく、フッ素系シラン化剤による流路壁面の表面処理を行なってもよい。 It is preferable that the flow path and each means constituting the micro flow path chip 100 have a flow path wall surface having a high affinity for the continuous layer. The microchannel chip 100 may be prepared using a material having a high affinity for the continuous layer, and the portion corresponding to the wall surface of the channel is surface-treated with a material having a high affinity for the immiscible liquid. May be good. As an example, when a fluorine-based oil is used as a continuous layer, a microchannel chip may be produced using a fluorine-based polymer material such as PTFE (polytetrafluoroethylene), and a channel wall surface formed by a fluorine-based silaneizing agent. Surface treatment may be performed.

反応装置1では、吸引手段200を用いて、排出口80よりマイクロ流路チップ100内の流体(気体、連続層又はエマルジョン)を吸引することで、分散層及び連続層をマイクロ流路チップ100に陰圧で導入しているが、陽圧で導入する方法、遠心力や電場を用いて導入する方法、液面差(重力)と毛細管力で導入する方法を使用しても問題ない。なお、マイクロ流路チップ100への導入を陰圧又は陽圧で行なう場合、吸引手段又は圧力印加手段を備えない側にも圧力を制御する手段を別個に又は共通に備えてもよく、大気圧開放又は実質的に大気圧開放されている態様としてもよい。 In the reaction device 1, the fluid (gas, continuous layer or emulsion) in the microchannel chip 100 is sucked from the discharge port 80 by using the suction means 200, so that the dispersed layer and the continuous layer are transferred to the microchannel chip 100. Although it is introduced by negative pressure, there is no problem by using the method of introducing by positive pressure, the method of introducing by using centrifugal force or electric field, or the method of introducing by liquid level difference (gravity) and capillary force. When the introduction to the microchannel chip 100 is performed by negative pressure or positive pressure, the side not provided with the suction means or the pressure applying means may be provided with means for controlling the pressure separately or in common, and the atmospheric pressure may be provided. It may be open or substantially open to atmospheric pressure.

液滴生成流路は、図1に記載の構造に限定されるものではなく、T−janction、Flow−Focus、co−flow、step−emulsificationなどの一般的な液滴生成手法を利用した流路を適宜用いればよい。迅速にエマルジョンを生成するために液滴生成部30を複数並列させてもよく、エマルジョン流路40のように、エマルジョン中の液滴を攪拌し、後述するように液滴を流路の中心に位置させるための流路を備えていてもよい。 The droplet generation flow path is not limited to the structure shown in FIG. 1, and is a flow path using a general droplet generation method such as T-janction, Flow-Focus, co-flow, and step-emulsion. May be used as appropriate. A plurality of droplet generation units 30 may be arranged in parallel in order to rapidly generate an emulsion. Like the emulsion flow path 40, the droplets in the emulsion are agitated, and the droplets are centered on the flow path as described later. It may be provided with a flow path for positioning.

液滴保持流路の流路高さは、液滴の直径と同程度にするのが好ましい。また、液滴保持流路の幅・長さに関しても、検出領域や液滴の体積・数等に合わせて適宜設定すればよく、例えば幅と長さがほぼ同等の幅広い単純な流路にしても良いし、連続した単一の長い流路を蛇行状(図1における液滴保持部61)、渦巻き状に配列させても良い。また、液滴生成流路が液滴保持流路より流路断面積が小さい場合、線速が急激に変化する影響で流路の中心部と端部で流速に勾配が生じ液滴が効率よく捕捉できないため、液滴保持流路の上流に複数の分岐部を設けて緩やかに線速を減少させてもよい。 The height of the droplet holding flow path is preferably about the same as the diameter of the droplet. Further, the width and length of the droplet holding flow path may be appropriately set according to the detection area, the volume and number of droplets, and the like, for example, a wide and simple flow path having almost the same width and length. Alternatively, a single continuous long flow path may be arranged in a meandering shape (droplet holding portion 61 in FIG. 1) or in a spiral shape. In addition, when the flow path cross-sectional area of the droplet generation flow path is smaller than that of the droplet holding flow path, the flow velocity is gradient at the center and end of the flow path due to the effect of the rapid change in linear velocity, and the droplets are efficiently produced. Since it cannot be captured, a plurality of branching portions may be provided upstream of the droplet holding flow path to gradually reduce the linear velocity.

分岐部においては、ハイドロダイナミック・フィルトレーション法(以下HDF)、ピンチド・フロー・フラクショネーション法(以下PFF)、デターミニストリック・ラテラル・ディスプレイスメント法(以下DLD)等の流体力学的な効果を利用して、液滴生成流路から流入した連続層を排出流路に選択的に流入させて、エマルジョン中の液滴密度を濃縮させる。但し、本発明における濃縮とは、目的の液滴の単位体積あたりの個数が相対的に高くなる場合のほか、目的外の液滴に対する目的の液滴の割合が増加する場合も含むこととする。 Fluid dynamic effects such as hydrodynamic filtration method (hereinafter HDF), pinched flow fractionation method (hereinafter PFF), and determinist lateral displacement method (hereinafter DLD) at the branching part. Is used to selectively flow the continuous layer flowing from the droplet generation flow path into the discharge flow path to concentrate the droplet density in the emulsion. However, the concentration in the present invention includes not only the case where the number of the target droplets per unit volume is relatively high, but also the case where the ratio of the target droplets to the non-target droplets increases. ..

また、本発明において生成液滴全てを液滴保持部流路に移送することが一般的であるが、目的に応じて一部の液滴が排出流路に移送されても良い。例えば生成液滴のサイズが不均一で、特定のサイズの液滴を液滴保持流路に移送したい場合、上記流体力学的な効果を利用して目的の液滴をサイズ分離した後に前記流路へ移送してもよい。 Further, in the present invention, it is common to transfer all the generated droplets to the droplet holding section flow path, but some droplets may be transferred to the discharge flow path depending on the purpose. For example, when the size of the generated droplet is non-uniform and it is desired to transfer a droplet of a specific size to the droplet holding flow path, the target droplet is size-separated by using the hydrodynamic effect, and then the flow path is described. May be transferred to.

分岐部50において、DLDに基づく液滴のサイズ分離による濃縮を行う場合、エマルジョン流路40において、複数のピラー300がDLDの理論に基づいて配置される構造が好ましい(図4)。 When concentration is performed by size separation of droplets based on DLD in the branch portion 50, a structure in which a plurality of pillars 300 are arranged based on the theory of DLD is preferable in the emulsion flow path 40 (FIG. 4).

分岐部50において、PFFに基づく液滴のサイズ分離による濃縮を行う場合、エマルジョン流路40に対して、連続層を供給するシース液流路400が合流して形成される狭隘流路401と、狭隘流路401の末端に接続される拡大流路402内で液滴がサイズごとに分離され、拡大流路402下流の液滴濃縮流路60、排出流路70へ各流体が流れる構造とするとよい(図5)。 In the branching portion 50, when the droplets are concentrated by size separation based on PFF, the narrow flow path 401 formed by merging the sheath liquid flow path 400 that supplies the continuous layer with the emulsion flow path 40, Assuming that the droplets are separated according to size in the expansion flow path 402 connected to the end of the narrow flow path 401, and each fluid flows to the droplet concentration flow path 60 and the discharge flow path 70 downstream of the expansion flow path 402. Good (Fig. 5).

分岐部50において、慣性力を利用した液滴のサイズ分離による濃縮を行う場合、エマルジョン流路40において、流体が下流へ向かって流れる際にディーン渦と呼ばれる二次流れが生じるよう、屈曲構造500の流路とするとよく、前記二次流れが生じる流量条件を各流体の粘度や密度に応じて適宜調整することがより好ましい(図6)。 In the branching portion 50, when the droplets are concentrated by size separation using an inertial force, the bending structure 500 causes a secondary flow called a Dean vortex when the fluid flows downstream in the emulsion flow path 40. It is more preferable to appropriately adjust the flow rate condition at which the secondary flow occurs according to the viscosity and density of each fluid (FIG. 6).

また、層流条件の一般的なマイクロ流路において、液滴は流速が最も大きくなる流域に沿って流れやすい性質を持つため(非特許文献3)、図7に示すような放物線型の流速分布では、液滴の中心が流路の中心に沿って流れる。この現象を利用すると、HDFの原理に基づいて、図7のような単純な流路構造であって、かつ高い濃縮倍率であっても、排出流路70に連続層のみを移送し、濃縮流路60に全ての液滴を安定して移送可能である。 Further, in a general microchannel under laminar flow conditions, the droplet has a property of easily flowing along the basin where the flow velocity is maximum (Non-Patent Document 3), and therefore, a parabolic flow velocity distribution as shown in FIG. Then, the center of the droplet flows along the center of the flow path. Utilizing this phenomenon, based on the principle of HDF, even if the flow path structure is as simple as that shown in FIG. 7 and the concentration ratio is high, only the continuous layer is transferred to the discharge flow path 70, and the concentration flow is concentrated. All droplets can be stably transferred to the road 60.

本発明において、マイクロ流路チップが有する流路断面は、液滴の中心が流路の中心に沿って流れやすいため、円状、半円状、楕円状、凸型、凹型、長方形、台形が好ましい。また、以下の説明では、最も一般的な断面形状である長方形を例として取り上げるが、他の断面形状に関しても同様に考えることが可能である。 分岐部50の構造は、十字構造が好ましく、液滴生成流路の末端(図1ではエマルジョン流路40)と液滴保持流路(図1では濃縮流路60)が分岐部を介して直線上に配置され、2つの排出流路70が分岐部を介して直線上に配置されていることが好ましい。加えて、十字部における流線分布が液滴の流れ方向を軸として対称となっている方が液滴を安定して前記濃縮流路に移送しやすいため、2つの前記排出流路は液滴の流れ方向を軸として対称な流路構造になっていることが好ましい。また、流路の中心付近に沿って流れる液滴が前記排出流路に流入しにくいように、2つの排出流路における連続層の流量が同等である方が良いため、2つの排出流路の流路断面形状及び流路長さが同一であることが好ましい。 In the present invention, the flow path cross section of the micro flow path chip has a circular shape, a semicircular shape, an elliptical shape, a convex shape, a concave shape, a rectangular shape, and a trapezoidal shape because the center of the droplet easily flows along the center of the flow path. preferable. Further, in the following description, the rectangle, which is the most common cross-sectional shape, is taken as an example, but other cross-sectional shapes can be considered in the same manner. The structure of the branch portion 50 is preferably a cross structure, and the end of the droplet generation flow path (emulsion flow path 40 in FIG. 1) and the droplet retention flow path (concentration flow path 60 in FIG. 1) are straight lines via the branch portion. It is preferable that the two discharge flow paths 70 are arranged on the top and are arranged in a straight line through the branch portion. In addition, if the streamline distribution at the cross section is symmetrical with respect to the flow direction of the droplet, the droplet can be stably transferred to the concentration channel, so that the two discharge channels are the droplet. It is preferable that the flow path structure is symmetrical with respect to the flow direction of. Further, since it is better that the flow rates of the continuous layers in the two discharge channels are the same so that the droplets flowing along the vicinity of the center of the flow paths do not easily flow into the discharge channels, the flow rates of the two discharge channels It is preferable that the cross-sectional shape of the flow path and the length of the flow path are the same.

液滴は界面自由エネルギーが低い状態を保つように形状を維持する性質があるため、より断面積が大きい流路に流れやすい。よって、分岐部50の上流の流路断面積は、濃縮流路60の流路断面積以下であることが好ましく、濃縮流路60の流路断面積は排出流路70の流路断面積以上であることが好ましい。また、同様の液滴の性質より、分岐部50の上流の流路高さは、濃縮流路60と同じであり、排出流路70以上であることが好ましい。 Since the droplet has the property of maintaining its shape so as to maintain a low interfacial free energy, it easily flows into a flow path having a larger cross-sectional area. Therefore, the flow path cross-sectional area upstream of the branch portion 50 is preferably equal to or less than the flow path cross-sectional area of the enrichment flow path 60, and the flow path cross-sectional area of the enrichment flow path 60 is equal to or greater than the flow path cross-sectional area of the discharge flow path 70. Is preferable. Further, due to the same droplet properties, the height of the flow path upstream of the branch portion 50 is the same as that of the concentration flow path 60, and is preferably equal to or higher than the discharge flow path 70.

本装置は、濃縮流路60と排出流路70の流量比(Q60/Q70)を制御するため、濃縮流路60から排出口80までの流路が有する圧損抵抗(R60)と排出流路70から排出口80までの流路が有する圧損抵抗(R70)を考慮して流路構造を設計する必要がある。液滴生成を行うマイクロ流路チップでは、送液開始前に連続層又は連続層と類似した物性の液体を流路全体に充填しておくのが一般的であるが、連続層のみの粘度よりも液滴を含むエマルジョンの粘度の方が大きいため、時間経過で液滴が捕捉されると共にR60が大きくなり、Q60/Q70が小さくなる。そこで、排出流路及び液滴保持流路が、その一部に流路断面積が一定となっている流路領域を有しており、液滴保持流路の当該流路領域の方が排出流路の当該流路領域よりも流路断面積が大きくなるように設計された装置であれば、濃縮流路よりも下流の流路(液滴保持流路を含む)および排出流路よりも下流の流路を気体(空気を含む)で満たした状態で送液を開始し、送液中に気体の代わりに連続層又はエマルジョンを充填し、排出口80に連続層又はエマルジョンが侵入する前に送液を停止することによって、Q60/Q70を終始一定の条件で運転することが可能である。 In order to control the flow rate ratio (Q 60 / Q 70 ) between the concentration flow path 60 and the discharge flow path 70, this device has the pressure drop resistance (R 60 ) and the discharge of the flow path from the concentration flow path 60 to the discharge port 80. It is necessary to design the flow path structure in consideration of the pressure loss resistance (R 70 ) of the flow path from the flow path 70 to the discharge port 80. In a microchannel chip that generates droplets, it is common to fill the entire flow path with a continuous layer or a liquid with similar physical properties to the continuous layer before starting liquid feeding, but the viscosity of the continuous layer alone However, since the viscosity of the emulsion containing the droplets is higher, the droplets are captured over time, R 60 becomes larger, and Q 60 / Q 70 becomes smaller. Therefore, the discharge flow path and the droplet holding flow path have a flow path region in which the flow path cross-sectional area is constant, and the flow path region of the droplet holding flow path discharges. If the device is designed so that the cross-sectional area of the flow path is larger than that of the flow path region, the flow path downstream of the concentration flow path (including the droplet holding flow path) and the discharge flow path The liquid feeding is started with the downstream flow path filled with gas (including air), and the liquid feeding is filled with a continuous layer or emulsion instead of gas, and before the continuous layer or emulsion invades the discharge port 80. by stopping the feeding to and can be operated at throughout certain conditions the Q 60 / Q 70.

本発明は上述した装置に、マイクロ流路チップ中の流体を温調できる温調部や、液滴のシグナルを検出する検出部をさらに備えてもよい。 In the present invention, the above-described device may further include a temperature control unit capable of controlling the temperature of the fluid in the microchannel chip and a detection unit for detecting a droplet signal.

反応生成物の検出は、当該生成物の特徴を考慮の上、公知の方法を用いて検出すればよい。なお、透過光を用いて検出する場合は、前記光を透過する材料でマイクロ流路チップ100を作製すると、マイクロ流路チップ100を光学検出器に載置するのみで、チップ100内の液滴を移動させることなく反応生成物を検出できる点で好ましい。 The reaction product may be detected by using a known method in consideration of the characteristics of the product. In the case of detection using transmitted light, if the microchannel chip 100 is made of the material that transmits the light, the droplets in the chip 100 are simply placed on the optical detector. It is preferable in that the reaction product can be detected without moving.

以下、実施例及び参考例を用いてさらに詳細を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited thereto.

フォトリソグラフィー及びソフトリソグラフィー技術を用いて、図1〜3に示す反応装置1を構成するマイクロ流路チップ100を作製した。具体的な手順を以下に示す。
(1)4インチベアシリコンウェハ(フィルテック社)上へ、フォトレジストSU−8 3050(Microchem社)を滴下後、スピンコーター(MIKASA社)を用いてフォトレジスト薄膜を形成した。
(2)マスクアライナー(ウシオ電機社)とマイクロ流路チップ100の流路パターンを形成したクロムマスクとを用いて、前記流路パターンをフォトレジスト膜へ形成させた後、SU−8 Developer(Microchem社)を用いて流路パターンを現像することで、マイクロ流路チップ100を構成する流路の鋳型を作製した(流路の高さ80μm)。
(3)SU−8への吸着を抑えるために、Trichloro(1H,1H,2H,2H−perfluoro−octyl)silane(Thermo Fisher Scientific社)による蒸着表面処理を行なった。
(4)(3)の処理を行なった鋳型へ、SYLGARD SILICONE ELASTOMER KIT(東レ・ダウコーニング社)を用いて調製した未硬化のシロキサンモノマーと重合開始剤との混合物(重量比10:1)を流し込み、80℃で2時間加熱することで、流路の形状が転写されたポリマー(PDMS)基板101を作製した。
(5)ポリマー基板101を鋳型から慎重に剥がし、カッターで成形後、パンチャーを用いて分散層流入部10及び連続層流入部20、並びに排出口80を形成した。
(6)流入部及び排出口を形成したポリマー基板101並びにカバーガラス102(松浪硝子社)を酸素プラズマ発生装置(メイワフォーシス社)で表面処理後、PDMS基板101パターン面とカバーガラス102とを貼り合わせた。
(7)2% Trichloro(1H,1H,2H,2H−perfluoro−octyl)silane(Thermo Fisher Scientific社)含有エタノールを流路に導入し、30分間放置することで、流路壁面の表面を修飾後、エタノールを用いて流路内を洗浄し、風乾することでマイクロ流路チップ100を作製した。作製したチップは真空デシケーター内に保存した。
Using photolithography and soft lithography techniques, a microchannel chip 100 constituting the reactor 1 shown in FIGS. 1 to 3 was produced. The specific procedure is shown below.
(1) After dropping a photoresist SU-8 3050 (Microchem) onto a 4-inch bare silicon wafer (Filtech), a photoresist thin film was formed using a spin coater (MIKASA).
(2) Using a mask aligner (Ushio, Inc.) and a chrome mask on which the flow path pattern of the micro flow path chip 100 is formed, the flow path pattern is formed on a photoresist film, and then SU-8 Developer (Microchem) is used. By developing the flow path pattern using the company), a flow path mold constituting the micro flow path chip 100 was produced (flow path height 80 μm).
(3) In order to suppress adsorption to SU-8, a thin-film deposition surface treatment was performed with Trichloro (1H, 1H, 2H, 2H-perfluoro-octyl) silane (Thermo Fisher Scientific).
(4) A mixture (weight ratio 10: 1) of an uncured siloxane monomer prepared using SYLGARD SILICONE ELASTOMER KIT (Toray Dow Corning) and a polymerization initiator was added to the mold treated in (3). By pouring and heating at 80 ° C. for 2 hours, a polymer (PDMS) substrate 101 in which the shape of the flow path was transferred was prepared.
(5) The polymer substrate 101 was carefully peeled from the mold, molded with a cutter, and then the dispersed layer inflow portion 10, the continuous layer inflow portion 20, and the discharge port 80 were formed using a puncher.
(6) After surface-treating the polymer substrate 101 and the cover glass 102 (Matsunami Glass Co., Ltd.) forming the inflow portion and the discharge port with an oxygen plasma generator (Meiwaforsis Co., Ltd.), the PDMS substrate 101 pattern surface and the cover glass 102 are attached. I matched it.
(7) After modifying the surface of the wall surface of the flow path by introducing ethanol containing 2% Trichloro (1H, 1H, 2H, 2H-perfluoro-octyl) silane (Thermo Fisher Scientific) into the flow path and leaving it for 30 minutes. The inside of the flow path was washed with ethanol and air-dried to prepare a micro flow path chip 100. The prepared chips were stored in a vacuum desiccator.

作製したマイクロ流路チップ100は、縦43cm×横63cmの大きさであり、分散層流入部10はφ4mmの穴を、連続層保持部20はφ6mmの穴を、排出口80はφ1.5mmの穴を、それぞれ設けている。
マイクロ流路チップ100におけるソフトリソグラフィーによって形成された流路の高さは全て80μmである。分散層流入部10から液滴形成部30に至るまでの流路11は幅100μm×長さ71mmの蛇行を含む流路であり、連続層流入部20から液滴形成部30に至るまでの2つの流路21はそれぞれ屈曲部を二箇所有した幅100μm×長さ53mmの直線流路である。液滴形成部30は、前記流路11と2つの流路21とが角度90度で十字に交差する(角Rなし)ことで合流した反応液と非混和性液体とを接触させ、液滴生成部30もしくはエマルジョン流路40内で合流した反応液の液滴を形成する。エマルジョン流路40は液滴生成部に直接交わる流路は幅80μm×長さ100μmで、その下流は幅200μm×長さ680μmの直線流路であり、さらにその下流はR275μmの円弧曲線で構成された蛇行を含めた幅200μm×長さ11.5mmの撹拌用流路であり、さらにその下流は長さ700μmに渡って幅200μmから165μmまで約1度で狭窄され、幅165μm×長さ1.97mmの直線流路が分岐部50に直接交わるように構成されている。分岐部50は、エマルジョン流路に対して直線状に存在する幅165μmの濃縮流路60と、その直線に角度90度で2つの幅165μmの排出流路70a/bが交わって構成されている(角Rなし)。濃縮流路60は、屈曲部を1箇所所有した幅165μm×長さ2.5mmの流路が分岐部50で交わり、その下流で長さ600μmに渡って幅165μmから800μmまで30度で寛広されて、液滴保持部61につながっている。排出流路70a/bは、幅165μm×長さ2.1mmの直線流路が分岐部50で交わり、その下流で長さ600μmに渡って幅165μmから800μmまで30度で寛広され、さらにその下流はR500μmの円弧曲線で構成された蛇行(屈曲部)を含めた幅800μm×長さ365mmの流路であり、さらにその下流は長さ2mmに渡って幅800μmから80μmまで約30度で狭窄され、圧損調整流路72a/bとつながっている。液滴保持部61は、R500μmの円弧曲線で構成された蛇行(屈曲部)を含めた幅800μm×長さ382mmの流路であり、その下流は長さ4.78mmに渡って幅800μmから200μmまで約4度で狭窄され、圧損調整流路62とつながっている。圧損調整流路72a/bは、R140μmの円弧曲線で構成された蛇行(屈曲部)を含めた幅80μm×長さ113mmの流路であり、その下流の幅200μm×長さ800μmの流路が排出口とつながっている。圧損調整流路62は、R300μmの円弧曲線で構成された蛇行(屈曲部)を含めた幅200μm×長さ5mmの流路であり、そのまま排出口80につながっている。
The produced microchannel chip 100 has a size of 43 cm in length × 63 cm in width, the dispersion layer inflow portion 10 has a hole of φ4 mm, the continuous layer holding portion 20 has a hole of φ6 mm, and the discharge port 80 has a hole of φ1.5 mm. Each hole is provided.
The heights of the flow paths formed by soft lithography in the micro flow path chip 100 are all 80 μm. The flow path 11 from the dispersed layer inflow portion 10 to the droplet forming portion 30 is a flow path including a meandering width of 100 μm × length of 71 mm, and is 2 from the continuous layer inflow portion 20 to the droplet forming portion 30. Each of the two flow paths 21 is a straight flow path having a width of 100 μm and a length of 53 mm, each having two bent portions. The droplet forming portion 30 brings the reaction liquid and the immiscible liquid that merged by crossing the flow path 11 and the two flow paths 21 at a right angle of 90 degrees (without an angle R) into contact with each other, and droplets are formed. Droplets of the reaction solution merged in the generation unit 30 or the emulsion flow path 40 are formed. The emulsion flow path 40 has a width of 80 μm × a length of 100 μm, a flow path directly intersecting the droplet generation part is a linear flow path of a width of 200 μm × a length of 680 μm, and a further downstream thereof is composed of an arc curve of R275 μm. It is a flow path for stirring with a width of 200 μm × length of 11.5 mm including meandering, and further downstream thereof is narrowed at about 1 degree from a width of 200 μm to 165 μm over a length of 700 μm, and a width of 165 μm × a length of 1. A 97 mm linear flow path is configured to directly intersect the branch portion 50. The branch portion 50 is formed by intersecting a concentration channel 60 having a width of 165 μm that exists linearly with respect to the emulsion flow path and two discharge channels 70a / b having a width of 165 μm at an angle of 90 degrees. (No corner R). In the concentration flow path 60, a flow path having a width of 165 μm and a length of 2.5 mm having one bent portion intersects at a branch portion 50, and is widened at 30 degrees from a width of 165 μm to 800 μm over a length of 600 μm downstream thereof. It is connected to the droplet holding portion 61. In the discharge flow path 70a / b, a linear flow path having a width of 165 μm and a length of 2.1 mm intersects at a branch portion 50, and is widened at 30 degrees from a width of 165 μm to 800 μm over a length of 600 μm downstream thereof. The downstream is a flow path of 800 μm in width × 365 mm in length including a meander (bent part) composed of an arc curve of R500 μm, and further downstream thereof is narrowed at about 30 degrees from 800 μm to 80 μm in width over 2 mm in length. It is connected to the pressure loss adjusting flow path 72a / b. The droplet holding portion 61 is a flow path having a width of 800 μm and a length of 382 mm including a meandering (bent portion) composed of an arc curve of R500 μm, and the downstream thereof has a width of 800 μm to 200 μm over a length of 4.78 mm. It is narrowed at about 4 degrees and is connected to the pressure loss adjusting flow path 62. The pressure drop adjusting flow path 72a / b is a flow path having a width of 80 μm and a length of 113 mm including a meandering (bent portion) formed by an arc curve of R140 μm, and a flow path having a width of 200 μm and a length of 800 μm downstream thereof is It is connected to the outlet. The pressure drop adjusting flow path 62 is a flow path having a width of 200 μm and a length of 5 mm including a meander (bent portion) formed of an arc curve of R300 μm, and is directly connected to the discharge port 80.

実施例1
作製したマイクロ流路チップ100を用いて、送液中の濃縮用分岐部の液滴濃縮の様子と、送液停止後の液滴保持流路の液滴の様子を観測した。
Example 1
Using the prepared microchannel chip 100, the state of droplet concentration at the branch for concentration during liquid feeding and the state of droplets in the droplet holding flow path after the liquid feeding was stopped were observed.

長方形の断面を持つ流路を流れる場合、液滴の密度dは、液滴体積V、流路高さh、流路幅w、隣接する液滴同士の中心間距離Lから、式(1)で表わされる。これは、液滴1個が存在するエマルジョンの体積がw×h×Lであることから算出でき、液滴の形状にかかわらず成り立つ。 When flowing through a flow path having a rectangular cross section, the density d of the droplet is calculated from the droplet volume V, the flow path height h, the flow path width w, and the distance L between the centers of adjacent droplets from the equation (1). It is represented by. This can be calculated from the fact that the volume of the emulsion in which one droplet is present is w × h × L, and holds regardless of the shape of the droplet.

また、球状、ディスク状の液滴の体積Vdrop、Vdisk[nL]は、式(2)と式(3)で表わされる(非特許文献4)。 Further, the volumes V drop and V disk [nL] of the spherical and disk-shaped droplets are represented by the formulas (2) and (3) (Non-Patent Document 4).

本実施例では、これらの式を用いて、液滴の密度及び液滴の体積を算出した。 In this example, the density of the droplet and the volume of the droplet were calculated using these formulas.

(1)分散層流入部10に導入する水溶液として、下記組成の水溶液を調製した。なお、下記組成の水溶液は、核酸増幅反応の1つであるTRC反応を使用する際の反応開始液の組成を模している。
36.8mM 塩化マグネシウム
180.0mM 塩化カリウム
0.2%(w/v) Tween 20
18.0%(v/v) DMSO
2.5%(v/v) グリセロール
(2)液滴内でTRC反応を行う想定で、ガラスヒーター(ブラスト社)を倒立型顕微鏡IX71(オリンパス社)に設置して、TRC反応温度である46℃で加熱した状態で、マイクロ流路チップ100の送液及び観察を行った。
(3)金属針(武蔵エンジニアリング社)とPTFEチューブ(ニチアス社)を接続し、Droplet Generatorオイル for EvaGreen(Biorad社、以下、単にオイルとも表記する)を充填したシリンジ(容量1mL、テルモ社)をシリンジポンプ(KDScientific社)にセットし、前記PTFEチューブの先端をマイクロ流路チップ100に設けた排出口80に接続して、排出口80から前記シリンジポンプでオイルを導入することでマイクロ流路チップ100内にオイルを充填させた。さらに連続層流入部20にオイルを100μL滴下した。
(4)分散層流入部10内のオイルを取り除いて、上記水溶液を30μL滴下した。
(5)シリンジポンプを用いて1000μL/時間の流速で排出口80からオイルを吸引した。吸引開始から20〜60秒で液滴生成が安定化した。
(6)倒立型顕微鏡IX71(オリンパス社)に載置し、デジタルCMOSカメラ(ORCA−FLASH、浜松フォトニクス社)を用いて、吸引開始から1分後、3分後、5分後、7分後、17分後における明視野画像を取得した。
(7)送液停止後の液滴保持部61の液滴の明視野画像を取得した。
(8)(7)で取得した明視野画像を用いて液滴体積を測定した。まず、画像解析ソフト(ImageJ)を利用して、ランダムに抽出した20〜40個の液滴の直径(Ddisk)の平均値を測定した。次に、測定した液滴の直径を、式(3)を利用し、液滴体積(V[nL])を計算した。なお、本特許記載の実施例において、ディスク状の液滴の直径の平均値Ddisk=132μm、流路深さh=80μmであるため、式(3)より液滴体積V=0.96nLとした。
(9)(6)で取得した明視野画像を用いて、送液開始からの経過時間毎の濃縮倍率αを測定した。まず、画像解析ソフト(ImageJ)を利用して、濃縮用分岐部50のエマルジョン流路40と濃縮流路60における最も近い液滴同士の中心間距離(L[μm])を測定した。
(1) An aqueous solution having the following composition was prepared as the aqueous solution to be introduced into the dispersion layer inflow section 10. The aqueous solution having the following composition imitates the composition of the reaction initiator when the TRC reaction, which is one of the nucleic acid amplification reactions, is used.
36.8 mM Magnesium Chloride 180.0 mM Potassium Chloride 0.2% (w / v) Tween 20
18.0% (v / v) DMSO
2.5% (v / v) glycerol (2) Assuming that the TRC reaction is performed in the droplet, a glass heater (Blast) is installed in the inverted microscope IX71 (Olympus), and the TRC reaction temperature is 46. The liquid flow path chip 100 was fed and observed while being heated at ° C.
(3) Connect a metal needle (Musashi Engineering Co., Ltd.) and a PTFE tube (Nichias Co., Ltd.), and insert a syringe (capacity 1 mL, Terumo Corporation) filled with Droplet Generator oil for EvaGreen (Biorad, hereinafter simply referred to as oil). Set in a syringe pump (KDSCionic), connect the tip of the PTFE tube to the discharge port 80 provided in the micro flow path chip 100, and introduce oil from the discharge port 80 with the syringe pump to introduce the micro flow path chip. 100 was filled with oil. Further, 100 μL of oil was added dropwise to the continuous layer inflow portion 20.
(4) The oil in the dispersion layer inflow portion 10 was removed, and 30 μL of the above aqueous solution was added dropwise.
(5) Oil was sucked from the discharge port 80 at a flow rate of 1000 μL / hour using a syringe pump. Droplet formation stabilized 20 to 60 seconds after the start of suction.
(6) Placed on an inverted microscope IX71 (Olympus) and used with a digital CMOS camera (ORCA-FLASH, Hamamatsu Photonics), 1 minute, 3 minutes, 5 minutes, 7 minutes after the start of suction. , A bright field image after 17 minutes was acquired.
(7) A bright field image of the droplet of the droplet holding portion 61 after the liquid feeding was stopped was acquired.
(8) The droplet volume was measured using the bright field image acquired in (7). First, using image analysis software (ImageJ), the average value of the diameters (D disk ) of 20 to 40 randomly extracted droplets was measured. Next, the diameter of the measured droplet was calculated using the equation (3) to calculate the droplet volume (V [nL]). In the examples described in this patent, since the average value of the diameters of the disk-shaped droplets is D disk = 132 μm and the flow path depth h = 80 μm, the droplet volume V = 0.96 nL according to the formula (3). did.
(9) Using the bright field image acquired in (6), the concentration magnification α was measured for each elapsed time from the start of liquid feeding. First, using image analysis software (ImageJ), the distance (L [μm]) between the centers of the closest droplets in the emulsion flow path 40 and the concentration flow path 60 of the concentration branching portion 50 was measured.

液滴密度dを式(1)より算出した。加えて、液滴が全て濃縮流路60に移送される場合、エマルジョン流路40における液滴の体積流量(Q40、液滴)と濃縮流路60における液滴の体積流量(Q60、液滴)は一致する。よって、濃縮前後における全体の流量の比、すなわち濃縮倍率α=d60/d40と計算できる。
送液開始から1分後、3分後、5分後、7分後、17分後の濃縮用分岐部の様子を示す明視野画像を図8に示す。液滴保持流路における送液開始から7分後以降に生成・濃縮された液滴の様子を示す明視野画像を図9に示す。図8より、濃縮用分岐部50でオイルのみ除かれることで、濃縮流路60に液滴がより濃縮されていることが確認できる。なお、送液開始から17分間、排出流路70に液滴が移送されることはなく、全ての液滴が濃縮流路60及び液滴保持部61に移送された。
また、(8)〜(9)の手順に従って濃縮倍率αを計算した結果を表1に示す。
The droplet density d was calculated from the equation (1). In addition, when all the droplets are transferred to the concentration flow path 60, the volume flow rate of the droplets in the emulsion flow path 40 (Q 40, droplets ) and the volume flow rate of the droplets in the concentration flow path 60 (Q 60, liquid). Drops ) match. Therefore, the ratio of the total flow rate before and after concentration, that is, the concentration ratio α = d 60 / d 40 can be calculated.
FIG. 8 shows a bright field image showing the state of the branch for concentration 1 minute, 3 minutes, 5 minutes, 7 minutes, and 17 minutes after the start of liquid feeding. FIG. 9 shows a bright field image showing the state of the droplets generated and concentrated 7 minutes after the start of liquid feeding in the droplet holding flow path. From FIG. 8, it can be confirmed that the droplets are more concentrated in the concentration flow path 60 by removing only the oil at the concentration branch portion 50. For 17 minutes from the start of liquid feeding, the droplets were not transferred to the discharge flow path 70, and all the droplets were transferred to the concentration flow path 60 and the droplet holding portion 61.
Table 1 shows the results of calculating the concentration ratio α according to the procedures (8) to (9).

1:測定装置
100:マイクロ流路チップ
101:ポリマー基板
102:カバーガラス(ガラス基板)
10:分散層流入部
11、21:流路
20:連続層流入部
30:液滴生成部
40:エマルジョン流路
50:分岐部
60:液滴濃縮流路
61:液滴保持部
62:液滴濃縮流路側圧損調整流路
70:排出流路
72:連続層排出流路側圧損調整流路
80:排出口
200:ポンプ
300:ピラー
301:液滴
400:シース液流路
401:狭隘流路
402:拡大流路
500:屈曲構造
1: Measuring device 100: Micro flow path chip 101: Polymer substrate 102: Cover glass (glass substrate)
10: Dispersed layer inflow part 11, 21: Flow path 20: Continuous layer inflow part 30: Droplet generation part 40: Emulsion flow path 50: Branch part 60: Droplet concentration flow path 61: Droplet holding part 62: Droplet Concentration flow path side pressure loss adjustment flow path 70: Discharge flow path 72: Continuous layer discharge flow path side pressure loss adjustment flow path 80: Discharge port 200: Pump 300: Pillar 301: Droplet 400: Sheath liquid flow path 401: Narrow flow path 402: Expansion flow path 500: Bending structure

Claims (9)

分散層と連続層とを接触させて液滴を形成させるための液滴生成流路と、
前記液滴生成流路に分岐部を介して流体接続された前記液滴を保持する液滴保持流路と、
前記分岐部に流体接続された、流体力学的な効果によって、前記液滴生成流路から流入した前記連続層を選択的に流入させる排出流路と、
前記液滴保持流路及び前記排出流路に流体接続された排出口と、
を有するマイクロ流路チップと、
前記マイクロ流路チップと流体接続された送液手段と、
を備えた、装置。
A droplet generation flow path for contacting the dispersed layer and the continuous layer to form a droplet,
A droplet holding flow path for holding the droplet, which is fluidly connected to the droplet generation flow path via a branch portion,
A discharge flow path that selectively flows in the continuous layer that has flowed in from the droplet generation flow path by a hydrodynamic effect that is fluidly connected to the branch portion.
A discharge port fluidly connected to the droplet holding flow path and the discharge flow path,
With a microchannel tip with
A liquid feeding means fluidly connected to the microchannel chip,
A device equipped with.
前記マイクロ流路チップが有する流路断面が、円状、半円状、楕円状、凸型、凹型、長方形、台形のいずれかであることを特徴とする請求項1に記載の装置。 The apparatus according to claim 1, wherein the flow path cross section of the micro flow path chip is any one of circular, semicircular, elliptical, convex, concave, rectangular, and trapezoidal. 前記分岐部が十字構造であって、
前記液滴生成流路の末端と前記液滴保持流路が前記分岐部を介して直線上に配置され、
2つの前記排出流路が前記分岐部を介して直線上に配置されたことを特徴とする請求項1又は2に記載の装置。
The branch has a cross structure
The end of the droplet generation flow path and the droplet retention flow path are arranged in a straight line via the branch portion.
The device according to claim 1 or 2, wherein the two discharge flow paths are arranged in a straight line via the branch portion.
2つの前記排出流路の流路断面形状及び流路長さが同一であることを特徴とする請求項3に記載の装置。 The device according to claim 3, wherein the flow path cross-sectional shape and the flow path length of the two discharge flow paths are the same. 前記十字部において、前記液滴生成流路側の流路断面積が、前記液滴保持流路側の流路断面積以下であることを特徴とする請求項3又は4に記載の装置。 The apparatus according to claim 3 or 4, wherein in the cross portion, the flow path cross-sectional area on the droplet generation flow path side is equal to or less than the flow path cross-sectional area on the droplet holding flow path side. 前記十字部において、前記液滴保持流路側の流路断面積が、前記排出流路側の流路断面積以上であることを特徴とする請求項3〜5に記載の装置。 The apparatus according to claim 3 to 5, wherein in the cross portion, the flow path cross-sectional area on the droplet holding flow path side is equal to or larger than the flow path cross-sectional area on the discharge flow path side. 前記十字部において、前記液滴生成流路側の流路高さが、前記液滴保持流路側の流路高さと同じであり、前記排出流路側の流路高さ以上であることを特徴とする請求項3〜6に記載の装置。 In the cross portion, the flow path height on the droplet generation flow path side is the same as the flow path height on the droplet holding flow path side, and is equal to or higher than the flow path height on the discharge flow path side. The device according to claims 3 to 6. 前記排出流路及び前記液滴保持流路が、その一部に流路断面積が一定となっている流路領域を有しており、前記液滴保持流路の当該流路領域の方が前記排出流路の当該流路領域よりも流路断面積が大きいことを特徴とする請求項1〜7に記載の装置。 The discharge flow path and the droplet holding flow path have a flow path region in which the flow path cross-sectional area is constant, and the flow path region of the droplet holding flow path is larger. The apparatus according to claim 1 to 7, wherein the flow path cross-sectional area is larger than that of the flow path region of the discharge flow path. 前記マイクロ流路チップが有する流路に気体が充填された状態で送液を開始し、送液と共に前記排出流路に連続層が、前記液滴保持流路にエマルジョンが気体の代わりに充填され、前記排出口に連続層又はエマルジョンが侵入する前に送液を停止することを特徴とする請求項8に記載の装置の運転方法。 The liquid feeding is started in a state where the flow path of the micro flow path chip is filled with gas, and the continuous layer is filled in the discharge flow path together with the liquid feeding, and the emulsion is filled in the droplet holding flow path instead of the gas. The method of operating the apparatus according to claim 8, wherein the liquid feeding is stopped before the continuous layer or the emulsion invades the discharge port.
JP2019071784A 2019-04-04 2019-04-04 Apparatus and method for droplet array measurement Active JP7293819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019071784A JP7293819B2 (en) 2019-04-04 2019-04-04 Apparatus and method for droplet array measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019071784A JP7293819B2 (en) 2019-04-04 2019-04-04 Apparatus and method for droplet array measurement

Publications (2)

Publication Number Publication Date
JP2020169911A true JP2020169911A (en) 2020-10-15
JP7293819B2 JP7293819B2 (en) 2023-06-20

Family

ID=72747167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019071784A Active JP7293819B2 (en) 2019-04-04 2019-04-04 Apparatus and method for droplet array measurement

Country Status (1)

Country Link
JP (1) JP7293819B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132837A1 (en) * 2008-10-08 2015-05-14 Universite De Strasbourg Microfluidic devices for reliable on-chip incubation of droplets in delay lines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150132837A1 (en) * 2008-10-08 2015-05-14 Universite De Strasbourg Microfluidic devices for reliable on-chip incubation of droplets in delay lines

Also Published As

Publication number Publication date
JP7293819B2 (en) 2023-06-20

Similar Documents

Publication Publication Date Title
JP6246587B2 (en) Method for forming droplets in a microfluidic circuit
Sim et al. Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels
US9404913B2 (en) Micropores and methods of making and using thereof
Kim et al. The lateral migration of neutrally-buoyant spheres transported through square microchannels
Zhang et al. Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices
JP5345136B2 (en) Device for distributing sample and carrier liquid to microfabricated separation channels
JPWO2015163365A1 (en) Blade composite type open channel device and joined body thereof
Li et al. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay
Kalli et al. Comparison of surfactant mass transfer with drop formation times from dynamic interfacial tension measurements in microchannels
JP4273252B2 (en) Method for suppressing bubble generation in the flow path
Ebrahimi et al. Optimizing the design of a serpentine microchannel based on particles focusing and separation: A numerical study with experimental validation
CN111212688B (en) Microfluidic device with bubble transfer
JP2020169911A (en) Device and method for droplet array measurement
KR100838129B1 (en) Microfluidic Device and Apparatus for Diagnosing and Analyzing Having the Same
Xiong et al. Bubble generation and transport in a microfluidic device with high aspect ratio
JP2022175987A (en) Method and device for generating emulsion in micro-channel chip
EP3662988B1 (en) Method for optimization of droplet formation rate using dripping/jetting to co-flow transition of vacuum-driven microfluidic flow-focusing device with rectangular microchannels
JP2022175986A (en) Method for generating emulsion in micro-channel chip
JP2022175985A (en) Method and device for generating emulsion in micro-channel chip
JP2019170363A (en) Reaction apparatus and reaction method of target molecule
JP2022175983A (en) Method for generating and holding emulsion in micro-channel chip
JP2022175984A (en) Micro-channel chip and its use
KR100955845B1 (en) Droplet merging apparatus and method for merging droplets
JP2005147840A (en) Plastic substrate for microflow device
JP2024038752A (en) microchannel chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R151 Written notification of patent or utility model registration

Ref document number: 7293819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151