JP7403610B1 - coated cutting tools - Google Patents

coated cutting tools Download PDF

Info

Publication number
JP7403610B1
JP7403610B1 JP2022177480A JP2022177480A JP7403610B1 JP 7403610 B1 JP7403610 B1 JP 7403610B1 JP 2022177480 A JP2022177480 A JP 2022177480A JP 2022177480 A JP2022177480 A JP 2022177480A JP 7403610 B1 JP7403610 B1 JP 7403610B1
Authority
JP
Japan
Prior art keywords
blade
gash
tool
central axis
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022177480A
Other languages
Japanese (ja)
Other versions
JP2024067422A (en
Inventor
聖弥 郡川
佑介 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NS Tool Co Ltd
Original Assignee
NS Tool Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Tool Co Ltd filed Critical NS Tool Co Ltd
Priority to JP2022177480A priority Critical patent/JP7403610B1/en
Priority to JP2023209477A priority patent/JP2024068211A/en
Application granted granted Critical
Publication of JP7403610B1 publication Critical patent/JP7403610B1/en
Publication of JP2024067422A publication Critical patent/JP2024067422A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

【課題】硬質膜が剥がれにくく、刃の損傷が生じにくい刃先構造を実現する。【解決手段】工具本体の先端側に形成された切刃部が硬質膜で覆われている被覆切削工具において、切刃部のうち被切削物を切削する部分28を、硬質膜の成膜後にホーニングすることにより、工具初期摩耗や硬質膜の剥がれを抑制し、加工初期から安定した加工精度、加工面を維持するようにした。【選択図】図4[Problem] To realize a blade edge structure in which the hard film is hard to peel off and the blade is hard to damage. [Solution] In a coated cutting tool in which a cutting edge formed on the tip side of a tool body is covered with a hard film, a portion 28 of the cutting edge that cuts a workpiece is removed after forming a hard film. Honing suppresses initial wear of the tool and peeling of the hard film, and maintains stable machining accuracy and machined surface from the initial stage of machining. [Selection diagram] Figure 4

Description

本発明は、高硬度鋼等を切削加工するための被覆切削工具に関する。 The present invention relates to a coated cutting tool for cutting high-hardness steel and the like.

被切削物の高硬度化に対応し、近年、切削工具の工具先端部に硬質膜を形成してもともと硬質の工具先端部の硬度をさらに高め、切削時の損傷を抑制する被覆切削工具の開発・改良が進んでいる。例えば、特許文献1-3には、工具先端部の耐久性や耐酸化性を高めた被覆切削工具が開示されている。また、成膜前にホーニングを行う表面被覆切削工具が特許文献4,5に開示されている。 In response to the increasing hardness of the workpiece, in recent years we have developed coated cutting tools that form a hard film on the tip of the cutting tool to further increase the hardness of the tip, which is already hard, and suppress damage during cutting.・Improvements are in progress. For example, Patent Documents 1 to 3 disclose coated cutting tools with improved durability and oxidation resistance at the tool tip. Additionally, surface-coated cutting tools that perform honing before film formation are disclosed in Patent Documents 4 and 5.

特許文献1に開示された被覆切削工具では、被切削物を指向する工具先端部に中間皮膜を形成した後、この中間皮膜の上に、より硬質の表面皮膜を形成している。膜種は、金属元素を含む複数種類の元素の複合微粒子である。中間皮膜は炭化物を含有し、硬質の表面膜種は窒化物又は炭窒化物を含有するとされる。特許文献2及び特許文献3に開示されているのは、膜が含有する元素の種類が特許文献1と異なる被覆切削工具である。
特許文献4に開示されている表面被覆切削工具は、Rホーニングされた基材に成膜された硬質膜の表面に分散されたボイドの面積比率を最適化する。特許文献5に開示されている表面被覆切削工具は、硬質膜の表面を機械加工することなく、硬質被覆層の表面の切刃位置とすくい面位置に存在するマクロ粒子の面積比率を最適化する。
In the coated cutting tool disclosed in Patent Document 1, an intermediate coating is formed on the tip of the tool that faces the object to be cut, and then a harder surface coating is formed on the intermediate coating. The film type is a composite fine particle of multiple types of elements including a metal element. The intermediate film contains carbide, and the hard surface film species contains nitride or carbonitride. What is disclosed in Patent Document 2 and Patent Document 3 are coated cutting tools in which the types of elements contained in the film are different from those in Patent Document 1.
The surface-coated cutting tool disclosed in Patent Document 4 optimizes the area ratio of voids dispersed on the surface of a hard film formed on an R-honed base material. The surface-coated cutting tool disclosed in Patent Document 5 optimizes the area ratio of macroparticles existing at the cutting edge position and the rake face position on the surface of the hard coating layer without machining the surface of the hard film. .

特許第6555796号公報Patent No. 6555796 特許第5673904号公報Patent No. 5673904 特許第5764181号公報Patent No. 5764181 特許第4895586号公報Patent No. 4895586 特許第4936703号公報Patent No. 4936703

被覆切削工具のうち径が比較的小さい超硬小径エンドミルの場合、工具先端部への硬質膜の被覆は、気相中で工具先端部の表面に物理的手法により膜の層を堆積させる物理蒸着(Physical Vapor Deposition:PVD)法などで行われることが多い。そのため、硬質膜が被覆された工具先端部は、たとえ特許文献1-3の技術によっても、その表面で膜の粒子の一部(ドロップレット)が無秩序に突起したり窪んだりして工具の輪郭精度が部位によって必ずしも均一にならず、被切削物の加工精度が設計値通りにならないことがある。また、工具先端部の構造によっては、特許文献4,5の技術によっても硬質膜が剥がれて、工具先端部の一部が損傷しやすくなることがある。 In the case of small-diameter carbide end mills, which have a relatively small diameter among coated cutting tools, coating the tool tip with a hard film is performed by physical vapor deposition, in which a layer of film is physically deposited on the surface of the tool tip in a gas phase. (Physical Vapor Deposition: PVD) method is often used. Therefore, even if the tip of a tool coated with a hard film is coated with the technology of Patent Documents 1 to 3, some of the film particles (droplets) will protrude or dent randomly on the surface, resulting in the outline of the tool. Accuracy is not necessarily uniform depending on the part, and the machining accuracy of the workpiece may not be as designed. Further, depending on the structure of the tool tip, the hard film may peel off even with the techniques disclosed in Patent Documents 4 and 5, and a portion of the tool tip may be easily damaged.

本発明の目的の一つは、工具輪郭精度を高めるとともに硬質膜が剥がれにくく且つ工具先端部の損傷が生じにくい構造を有する被覆切削工具を提供することにある。本発明の他の目的は、本開示により自ずと明らかになるであろう。 One of the objects of the present invention is to provide a coated cutting tool having a structure in which the tool contour accuracy is improved, the hard film is hard to peel off, and the tool tip is hard to be damaged. Other objects of the invention will become apparent from this disclosure.

本発明の一態様は、中心軸線回りに回転可能な工具本体の先端側に切刃部が形成され、前記切刃部は、底刃、該底刃の外周側側面に形成された外周刃、および、前記底刃と前記外周刃とを凸R状に繋ぐR刃を有する刃部を1つ以上備え、前記底刃はその一部が前記中心軸線に対して直交し、該底刃から前記R刃に繋がる部分のギャッシュ面が工具回転方向後方にシームレスに捻れた曲面をなすスパイラルギャッシュ形状であり、前記刃部が硬質膜で覆われており、前記刃部のうち被切削物を切削する部分が、前記硬質膜の成膜後にホーニングされていることを特徴とする、被覆切削工具である。 One aspect of the present invention is that a cutting edge portion is formed on the tip side of a tool body that is rotatable around a central axis, and the cutting edge portion includes a bottom blade, a peripheral blade formed on an outer peripheral side surface of the bottom blade; and one or more blade parts each having an R edge connecting the bottom edge and the outer peripheral edge in a convex R shape, a part of the bottom edge being perpendicular to the central axis, and extending from the bottom edge to the edge of the edge. The gash surface of the part that connects to the R blade has a spiral gash shape that is a curved surface that is seamlessly twisted backward in the tool rotation direction , and the blade part is covered with a hard film, and the blade part cuts the object to be cut. The coated cutting tool is characterized in that the portion is honed after the formation of the hard film.

上記態様によれば、硬質膜の成膜後のホーニングにより、工具輪郭精度が高まり、成膜後に硬質膜が剥がれにくく且つ工具先端部の損傷が生じにくい構造を有する被覆切削工具を実現することができる。 According to the above aspect, honing after the formation of the hard film increases tool contour accuracy, and it is possible to realize a coated cutting tool having a structure in which the hard film is difficult to peel off after film formation and the tool tip is less likely to be damaged. can.

本実施形態に係るエンドミルの構造例を示す外観斜視図である。FIG. 1 is an external perspective view showing a structural example of an end mill according to the present embodiment. (a)は、エンドミルの右側面図、(b)は底面図である。(a) is a right side view of the end mill, and (b) is a bottom view. 切刃部の右側面の部分拡大図である。FIG. 3 is a partially enlarged view of the right side of the cutting edge. 切刃部を構成する刃部の部分拡大図である。FIG. 3 is a partially enlarged view of a blade portion that constitutes a cutting edge portion. 切刃部の正面図である。It is a front view of a cutting edge part. (a)、(b)は、切刃部の寸法を示す説明図である。(a) and (b) are explanatory views showing dimensions of a cutting edge portion. 切刃部の外観斜視拡大図である。It is an external perspective enlarged view of a cutting edge part. 長刃のギャッシュ底付近の部分拡大図である。It is a partially enlarged view of the vicinity of the bottom of the long blade gash. 短刃のギャッシュ底付近の部分拡大図である。It is a partially enlarged view of the vicinity of the gash bottom of the short blade. ホーニング例を示す説明図(写真)である。It is an explanatory view (photograph) showing an example of honing. ホーニング例を示す説明図(写真)である。It is an explanatory view (photograph) showing an example of honing. 本実施形態に係るエンドミルの使用態様例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of how the end mill according to the present embodiment is used.

以下、本発明を硬質被覆切削工具の一例となるエンドミルに適用した場合の実施の形態例を説明する。本実施形態のエンドミルは、例えば、合金工具鋼(SKD11)や粉末高速度工具鋼(SKH55等)を被切削物として、精密な金型や部品加工等をする際に用いられる。 Hereinafter, an embodiment in which the present invention is applied to an end mill, which is an example of a hard coated cutting tool, will be described. The end mill of this embodiment is used, for example, when processing precision molds or parts using alloy tool steel (SKD11) or powder high-speed tool steel (SKH55, etc.) as a workpiece.

図1は、本実施形態に係るエンドミルの構造例を示す外観斜視図である。図2(a)は、このエンドミルの右側面図、同(b)は底面図である。図3は、切刃部の右側面の部分拡大図である。図4は、切刃部を構成する刃部の部分拡大図である。図5は、切刃部の正面図である。図6(a),(b)は、切刃部の寸法を示す説明図である。図7は、切刃部の外観斜視拡大図である。図8は、長刃部のギャッシュ底付近の部分拡大図である。図9は、短刃部のギャッシュ底付近の部分拡大図である。図10,図11は、ホーニング前後の切刃部の表面状態を示す図(写真)である。図12は、エンドミルの使用態様例を示す図である。以下、これらの図を適宜参照しながら本実施形態のエンドミルの構成例を説明する。 FIG. 1 is an external perspective view showing a structural example of an end mill according to the present embodiment. FIG. 2(a) is a right side view of this end mill, and FIG. 2(b) is a bottom view. FIG. 3 is a partially enlarged view of the right side surface of the cutting edge. FIG. 4 is a partially enlarged view of the blade portion constituting the cutting edge portion. FIG. 5 is a front view of the cutting blade. FIGS. 6(a) and 6(b) are explanatory diagrams showing dimensions of the cutting edge portion. FIG. 7 is an enlarged perspective view of the appearance of the cutting blade. FIG. 8 is a partially enlarged view of the long blade portion near the gash bottom. FIG. 9 is a partially enlarged view of the short blade portion near the bottom of the gash. 10 and 11 are diagrams (photographs) showing the surface condition of the cutting edge before and after honing. FIG. 12 is a diagram showing an example of how the end mill is used. Hereinafter, a configuration example of the end mill of this embodiment will be described with reference to these figures as appropriate.

[エンドミルの構成例]
本実施形態のエンドミル1は、図1及び図2に破線で例示した略円柱状の工具本体10と、図1及び図2に実線で例示した工具本体10の先端側、すなわち工具本体10の外周において外径が小さくなる所定部位11よりも被切削部を指向する工具先端部に設けられた切刃部20とを有する。工具本体10及び切刃部20は、この種の被覆切削工具において採用される超硬合金で製造することができる。
[Example of end mill configuration]
The end mill 1 of this embodiment includes a substantially cylindrical tool body 10 illustrated by broken lines in FIGS. 1 and 2, and a distal end side of the tool body 10 illustrated by solid lines in FIGS. The tool has a cutting edge portion 20 provided at the tip of the tool that is oriented toward the cut portion rather than the predetermined portion 11 where the outer diameter is smaller. The tool body 10 and the cutting edge 20 can be made of cemented carbide, which is used in coated cutting tools of this type.

工具本体10のうち所定部位11よりも工具基端側(工具本体10の先端側と反対方向の側)は、図示しない工作機械に取り付けられるシャンク部となる。シャンク部の端部12の外径は、工作機械側の取付機構のサイズに合わせて工具本体10の外径よりも小さく成形されている。切刃部20の外径Dは、本実施形態ではφ6であることを前提として説明するが、外径Dのサイズは任意であってよい。シャンク部の外径は、切刃部20の外径Dと同じ、あるいは、切刃部20の外径Dより大きくてもよい。 A portion of the tool body 10 closer to the proximal end of the tool than the predetermined portion 11 (a side opposite to the tip end of the tool body 10) becomes a shank portion that is attached to a machine tool (not shown). The outer diameter of the end 12 of the shank portion is formed smaller than the outer diameter of the tool body 10 in accordance with the size of the attachment mechanism on the machine tool side. Although the description will be made assuming that the outer diameter D of the cutting edge portion 20 is φ6 in this embodiment, the outer diameter D may be of any size. The outer diameter of the shank portion may be the same as the outer diameter D of the cutting edge portion 20, or may be larger than the outer diameter D of the cutting edge portion 20.

切刃部20の形状、構造は、外径Dに関わらず同じである。また、工具本体10及び切刃部20のそれぞれの中心軸線は共通である。本明細書では、該共通の中心軸線を中心軸線O1という。また、工具本体10において、軸線O1に直交する方向を径方向、径方向のうち軸線O1に接近する向きを径方向内側又は中心側、軸線O1から離間する向きを径方向外側又は外周側という。また、軸線O1回りに周回する周方向のうち切削加工時に工具本体10が回転させられる方向を工具回転方向(矢印で図示)という。また、工具回転方向で被切削物の切削を開始する方向を前方又は工具回転前方、その反対方向を後方又は工具回転後方という。また、切刃部20のうち被切削物と対向する面を先端面、先端面から工具基端側の方向を工具基端方向又は工具基端側ということがある。 The shape and structure of the cutting edge portion 20 are the same regardless of the outer diameter D. Further, the tool body 10 and the cutting edge portion 20 have a common central axis. In this specification, the common central axis is referred to as a central axis O1. In the tool body 10, the direction perpendicular to the axis O1 is referred to as the radial direction, the direction approaching the axis O1 in the radial direction is referred to as the radially inner side or center side, and the direction away from the axis O1 is referred to as the radially outer side or outer peripheral side. Further, the direction in which the tool body 10 is rotated during cutting in the circumferential direction around the axis O1 is referred to as a tool rotation direction (indicated by an arrow). In addition, the direction in which cutting of the workpiece starts in the tool rotation direction is referred to as forward or tool rotation forward, and the opposite direction is referred to as backward or tool rotation rear. Further, the surface of the cutting edge portion 20 that faces the object to be cut may be referred to as the tip end surface, and the direction from the tip end surface to the tool base end side may be referred to as the tool base end direction or the tool base end side.

[切刃部の構成概要]
切刃部20は、それぞれ硬質膜を成膜した後にホーニングされた4つの刃部21A、21B、21C、21Dを有する(図1、図5、図6)。4つの刃部21A、21B、21C、21Dは、それぞれ中心軸線O1回りに、周方向に等間隔で、径方向内側から径方向外側に向けて回転対称に設けられている。
刃部21A、21Cは、径方向内側の端部である内終端がそれぞれほぼ中心軸線O1まで延び、後述する逃げ面の勾配が交差する。刃部21B、21Dは、それぞれの内終端が中心軸線O1に至らず、途中で途切れる。刃部21B、21Dにおける後述する逃げ面の勾配は、刃部21A、21Cと同じである。本明細書では、便宜上、刃部21A、21Cを「長刃」と表記し、刃部21B、21Dを「短刃」と表記することがある。長刃と短刃とは、中心軸線O1回りに交互に配置される。そのため、短刃で切削しきれなかった内終端付近の部分が回転方向後方の長刃で直ちに切削されることになる。
[Outline of the configuration of the cutting blade]
The cutting edge portion 20 has four blade portions 21A, 21B, 21C, and 21D that are honed after forming a hard film (FIGS. 1, 5, and 6). The four blade portions 21A, 21B, 21C, and 21D are each provided rotationally symmetrically from the radial inside to the radial outside at equal intervals in the circumferential direction around the central axis O1.
The inner terminal ends of the blade portions 21A and 21C, which are radially inner ends, each extend approximately to the central axis O1, and the slopes of flank surfaces, which will be described later, intersect with each other. The inner ends of the blade portions 21B and 21D do not reach the central axis O1, but are interrupted in the middle. The flank slopes of the blade portions 21B and 21D, which will be described later, are the same as those of the blade portions 21A and 21C. In this specification, for convenience, the blade portions 21A and 21C may be referred to as "long blades" and the blade portions 21B and 21D may be referred to as "short blades." The long blades and the short blades are arranged alternately around the central axis O1. Therefore, the portion near the inner end that could not be completely cut by the short blade is immediately cut by the long blade at the rear in the rotational direction.

本実施形態の切刃部20は、図5及び図6に例示される通り、刃部21A(長刃)と刃部21B(短刃)との間に、切り屑排出機構の一部をなすギャッシュ24Aが存在する。長刃のギャッシュ24Aは、中心軸線O1を超える。刃部21B(短刃)と刃部21C(長刃)との間にギャッシュ24Aとは異なる構造の短刃のギャッシュ24Bが存在する。短刃のギャッシュ24Bは中心軸線O1を超えない。
刃部21C(長刃)と刃部21D(短刃)との間にギャッシュ24Aと同じ構造のギャッシュ24Cが存在する。刃部21D(短刃)と刃部21A(長刃)との間にギャッシュ24Bと同じ構造のギャッシュ24Dが存在する。
As illustrated in FIGS. 5 and 6, the cutting blade 20 of this embodiment forms part of a chip evacuation mechanism between the blade 21A (long blade) and the blade 21B (short blade). Gash 24A is present. The long blade gash 24A exceeds the central axis O1. A short-blade gash 24B having a structure different from that of the gash 24A is present between the blade portion 21B (short blade) and the blade portion 21C (long blade). The short blade gash 24B does not exceed the central axis O1.
A gash 24C having the same structure as the gash 24A exists between the blade portion 21C (long blade) and the blade portion 21D (short blade). A gash 24D having the same structure as the gash 24B exists between the blade portion 21D (short blade) and the blade portion 21A (long blade).

図6(a)は図5の先端部分だけを抜き出した線図であり、図6(a)に破線で示す切刃部20の中心軸線O1付近の部分100の拡大図が同(b)である。
短刃ギャッシュ幅(ギャッシュ24B-ギャッシュ24Dの開口間隔)t111は約0.25mm、長刃ギャッシュ交差(ギャッシュ24A-ギャッシュ24Cの開口部分が図左側からみて重なる長さ)t112は約0.44mmである。ただし、t111,t112は例示であって、後述するギャッシュ底のサイズにより適宜変更可能である。
FIG. 6(a) is a diagram in which only the tip portion of FIG. 5 is extracted, and FIG. 6(b) is an enlarged diagram of the portion 100 near the central axis O1 of the cutting blade 20 shown by a broken line in FIG. 6(a). be.
The short blade gash width (the opening interval between the gashes 24B and the gash 24D) t111 is approximately 0.25 mm, and the long blade gash intersection (the length at which the openings of the gashes 24A and 24C overlap when viewed from the left side of the figure) t112 is approximately 0.44 mm. be. However, t111 and t112 are just examples, and can be changed as appropriate depending on the size of the gash bottom, which will be described later.

[刃部の構造例]
図6(b)に示された部分100以外の形状、構造は、長刃および短刃に関わらず、ほぼ同じになる。例えば、図1及び図2に表示されている刃部(短刃)21Bの形状、構造は、以下のようになる。
[短刃の概要]
刃部21Bは、工具先端部の外表面及び先端面と工具回転方向の切削空間を臨むギャッシュ面23Bとの交差稜線を切刃(エッジ)とする第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4を有する。第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4のすくい角は、本実施形態では負角(ネガティブ形状)とするが、負角に限定されるものではない。第1底刃部22B1と第2底刃部22B2は、刃部21Bの「底刃」を構成する。
[Example of blade structure]
The shape and structure other than the portion 100 shown in FIG. 6(b) are almost the same regardless of whether the blade is long or short. For example, the shape and structure of the blade portion (short blade) 21B shown in FIGS. 1 and 2 are as follows.
[Outline of short blade]
The blade part 21B has a first bottom blade part 21B1 and a second bottom blade part, each of which has a cutting edge that is an intersecting ridgeline between the outer surface and the tip surface of the tool tip and a gash surface 23B facing the cutting space in the tool rotation direction. 21B2, R blade 21B3, and outer peripheral blade 21B4. Although the rake angles of the first bottom blade portion 21B1, the second bottom blade portion 21B2, the R blade 21B3, and the peripheral blade 21B4 are negative angles (negative shapes) in this embodiment, they are not limited to negative angles. The first bottom blade portion 22B1 and the second bottom blade portion 22B2 constitute a “bottom blade” of the blade portion 21B.

刃部21Bは、第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4の各々から工具回転方向後方に所定幅(周方向の長さ)をもつ逃げ面22Bを有する。第1底刃部21B1、第2底刃部21B2のそれぞれの逃げ面を底刃逃げ面22B1、22B2という。また、R刃21B3の逃げ面をR刃逃げ面22B3という。また、外周刃21B4の逃げ面を外周刃逃げ面22B4という。逃げ面22B(22B1,22B2,22B3,22B4)は、第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4よりも工具回転方向後方が相対的に低くなるように傾斜している。 The blade portion 21B has a flank surface 22B having a predetermined width (length in the circumferential direction) rearward in the tool rotation direction from each of the first bottom blade portion 21B1, the second bottom blade portion 21B2, the R blade 21B3, and the peripheral blade 21B4. . Respective flank surfaces of the first bottom blade portion 21B1 and the second bottom blade portion 21B2 are referred to as bottom blade flank surfaces 22B1 and 22B2. Further, the flank surface of the R blade 21B3 is referred to as an R blade flank surface 22B3. Further, the flank surface of the peripheral blade 21B4 is referred to as a peripheral blade flank surface 22B4. The flank surfaces 22B (22B1, 22B2, 22B3, 22B4) are inclined so that the rear side in the tool rotation direction is relatively lower than the first bottom blade part 21B1, second bottom blade part 21B2, R blade 21B3, and peripheral blade 21B4. are doing.

底刃逃げ面22B1の幅t21(図6(a))は、ほぼ均等である。外周刃逃げ面22B4の幅は、底刃逃げ面22B1の幅t21よりも大きい。R刃逃げ面22B3の幅は、底刃逃げ面22B1との接続部分から徐々に大きくなり、外周刃逃げ面22B4の幅まで徐々に拡がる。底刃逃げ面22B1、R刃逃げ面22B3及び外周刃逃げ面22B4は、互いに滑らかに連なる。そのため、シームレス加工された構造となっている。 The width t21 (FIG. 6(a)) of the bottom blade flank surface 22B1 is approximately equal. The width of the peripheral blade flank surface 22B4 is larger than the width t21 of the bottom blade flank surface 22B1. The width of the R blade flank 22B3 gradually increases from the connection part with the bottom blade flank 22B1, and gradually expands to the width of the outer peripheral blade flank 22B4. The bottom blade flank 22B1, the R blade flank 22B3, and the outer peripheral blade flank 22B4 are smoothly continuous with each other. Therefore, it has a seamless structure.

第1底刃部21B1は、先端面で第2底刃部21B2よりもt222の長さで径方向外側に形成されている。便宜上、刃部21Bの先端側で中心軸線O1に直交する仮想線を基準線L1と規定し(図4の部分拡大図下段)、第1底刃部22B1と基準線L1とのなす角度を第1底刃角θ1とする。第1底刃角θ1は、基準線L1とほぼ同じ角度、すなわち約0゜(工具回転方向の後方から見た中心軸線O1を包含する平面に対して約90°)であることが好ましい。「約0°」とは、必ずしも厳密に0°である必要がなく、僅かな誤差を許容することを意味する。 The first bottom blade portion 21B1 is formed radially outward from the second bottom blade portion 21B2 by a length t222 at the tip end surface. For convenience, an imaginary line perpendicular to the central axis O1 on the tip side of the blade portion 21B is defined as the reference line L1 (lower part of the partially enlarged view in FIG. 4), and the angle between the first bottom blade portion 22B1 and the reference line L1 is defined as the reference line L1. 1. Let the base blade angle be θ1. The first bottom edge angle θ1 is preferably approximately the same angle as the reference line L1, that is, approximately 0° (approximately 90° with respect to a plane including the central axis O1 viewed from the rear in the tool rotation direction). "About 0°" does not necessarily have to be exactly 0°, but means that a slight error is allowed.

第2底刃部21B2は、第1底刃部21B1に対して径方向内側に連なり、中心軸線O1に向かう。第2底刃部21B2と基準線L1とのなす角度を第2底刃角θ2とする。第2底刃角θ2は、第1底刃角θ1よりも僅かに工具基端側に向かうことが好ましい(図4の部分拡大図下段)。例えば、第2底刃角θ2は、第1底刃角θ1よりも3゜以上10゜以下の範囲で大きい(工具回転方向の後方から見た中心軸線O1を包含する平面に対して約93°~100°)ことが好ましい。
これにより、刃部21Bのうち中心軸線O1に最も近い部分は、先端面と被切削物の表面との間に隙間が生じる。そのため、切削負荷が大きくなりすぎるのを抑制することができ、硬質膜が離れにくくなっている。
The second bottom blade portion 21B2 continues inward in the radial direction with respect to the first bottom blade portion 21B1, and faces toward the central axis O1. The angle between the second bottom blade portion 21B2 and the reference line L1 is defined as a second bottom blade angle θ2. It is preferable that the second bottom edge angle θ2 is slightly closer to the tool proximal end than the first bottom edge angle θ1 (lower part of the partially enlarged view in FIG. 4). For example, the second bottom edge angle θ2 is larger than the first bottom edge angle θ1 in the range of 3° or more and 10° or less (approximately 93° with respect to the plane that includes the central axis O1 when viewed from the rear in the tool rotation direction). ~100°) is preferred.
As a result, in the portion of the blade portion 21B closest to the central axis O1, a gap is created between the tip surface and the surface of the object to be cut. Therefore, it is possible to prevent the cutting load from becoming too large, and the hard film becomes difficult to separate.

刃部21Bが、底刃に基準線L1とほぼ同じ角度の第1底刃角部21B1を有することから、第1底刃角部22B1が「さらい刃」として機能する。このさらい刃のスクレーパ効果、すなわち、カスプハイト(加工面粗さを表す指標)を小さくする効果により、切削加工時における被切削物の仕上げ面の加工精度(平滑精度)を、第1底刃角部21B1が存在しない場合よりも格段に高めることができる。 Since the blade portion 21B has a first bottom edge corner 21B1 having substantially the same angle as the reference line L1 on the bottom edge, the first bottom edge corner 22B1 functions as a "wiping edge." The scraper effect of this wiper edge, that is, the effect of reducing the cusp height (an index representing machined surface roughness), improves the machining accuracy (smoothness accuracy) of the finished surface of the workpiece during cutting. This can be significantly increased compared to the case where 21B1 does not exist.

R刃21B3は、底刃の第2底刃部21B2、第1底刃部21B1と外周刃21B4とを、継ぎ目なく円弧状又は略円弧状(凸R状)に繋ぐ(図3、図4)。R刃21B3は、1/4円弧を超える長さt221を有し、少なくとも1/4円弧の始端と終端との間の曲率変化率が0.005未満である。R刃21B3から外周刃21B4の加工切り替わりを1/4円弧を越えた位置で外周刃21B4と接続することにより、1/4円弧の始端と終端は、すべてR刃21B3のR輪郭となり、工具輪郭精度、特にR輪郭精度を高精度に維持することができる。 The R blade 21B3 seamlessly connects the second bottom blade part 21B2, the first bottom blade part 21B1, and the outer peripheral blade 21B4 in an arc shape or a substantially arc shape (convex R shape) (FIGS. 3 and 4). . The R blade 21B3 has a length t221 exceeding a quarter arc, and has a curvature change rate of at least less than 0.005 between the starting end and the end of the quarter arc. By connecting the machining switch from the R blade 21B3 to the peripheral blade 21B4 with the peripheral blade 21B4 at a position beyond the 1/4 arc, the starting and ending ends of the 1/4 arc all become the R contour of the R blade 21B3, and the tool contour Accuracy, especially R contour accuracy, can be maintained at a high level of accuracy.

R刃21B3は工具先端側から工具基端側に向けて徐々に捻れながら形成されている(図1、図4)。そのため、切削加工時における切削抵抗が低減され、被切削物の加工寸法精度を、ほぼ設計値通りに維持することができる。 The R blade 21B3 is formed while being gradually twisted from the tool tip side toward the tool base side (FIGS. 1 and 4). Therefore, the cutting resistance during cutting is reduced, and the machining dimensional accuracy of the workpiece can be maintained almost as designed.

R刃21B3のねじれ角は、加工能率の低下防止及び工具寿命の低下防止の観点から、0°~40°の範囲の角度が好ましい。基準線L1から切刃端218Bまでの中心軸線O1と平行の線上の長さが切刃長t51(図3)となる。切刃長t51は、外径Dの80%~90%、特に顕著な効果が得られる約82~84%が好ましい。 The helix angle of the R blade 21B3 is preferably in the range of 0° to 40° from the viewpoint of preventing deterioration in machining efficiency and tool life. The length on a line parallel to the central axis O1 from the reference line L1 to the cutting edge end 218B is the cutting edge length t51 (FIG. 3). The cutting edge length t51 is preferably 80% to 90% of the outer diameter D, particularly about 82 to 84% to obtain a remarkable effect.

[コーティング]
第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4は、すべての部分を硬質膜で成膜(コーティング)した後、ホーニングされている。
[coating]
The first bottom blade portion 21B1, the second bottom blade portion 21B2, the R blade 21B3, and the outer peripheral blade 21B4 are all honed after being coated with a hard film.

ホーニング前に成膜された硬質膜は、単層構造よりも複数種類の膜材が積層された積層膜構造のものが好ましい。本実施形態では、一例として、第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4において、それぞれの刃部基材の表面に第一層を積層し、この第一層の表面に第二層を積層し、さらに第二層の表面に第三層を積層した硬質膜である。第一層、第二層及び第三層は、それぞれの下層においては隣接した上層の結晶の成長を抑制する膜質を含んで構成される。ただし、必ずしも上記のような積層構造の硬質膜に限定されるものではない。 The hard film formed before honing preferably has a laminated film structure in which a plurality of types of film materials are laminated, rather than a single layer structure. In this embodiment, as an example, in the first bottom blade part 21B1, the second bottom blade part 21B2, the R blade 21B3, and the peripheral blade 21B4, a first layer is laminated on the surface of each blade part base material, and this first layer is laminated on the surface of each blade part base material. It is a hard film in which a second layer is laminated on the surface of the first layer, and a third layer is further laminated on the surface of the second layer. The first layer, the second layer, and the third layer each include a film quality in the lower layer that suppresses the growth of crystals in the adjacent upper layer. However, it is not necessarily limited to the hard film having a laminated structure as described above.

[ホーニング]
ホーニングは、成膜後の刃部21Bの表面、特に、第1底刃部21B1、第2底刃部21B2、R刃21B3及び外周刃21B4及びその周辺を平滑化するとともに被切削物との接触面積(例えば刃先の曲率R)を大きくする表面処理法の一種である。例えば、図4上段拡大図に示されるように、あえて切削性を犠牲にした形状の刃先28に加工する手法がホーニングである。
[Honing]
Honing smoothes the surface of the blade portion 21B after film formation, especially the first bottom blade portion 21B1, second bottom blade portion 21B2, R blade 21B3, outer peripheral blade 21B4, and their surroundings, and also prevents contact with the workpiece. This is a type of surface treatment method that increases the area (for example, the curvature R of the cutting edge). For example, as shown in the upper enlarged view of FIG. 4, honing is a method of machining the cutting edge 28 into a shape that intentionally sacrifices machinability.

ホーニングには様々な実施法があるが、本実施形態では、刃部21Bの工具基材よりも硬い微粉の研磨材を切刃部20全体にあてるブラスト加工により、ホーニングを実施した。ホーニングは、研磨加工等でも実施が可能であるが、微粉をあてることにより、底刃全域、R刃21B3及び外周刃21B4の全域にわたってほぼ均一にホーニングすることができ、作業時間を短縮することができるため効果的である。また、ホーニングに際して、硬質膜表面のドロップレットが除去される。ブラスト加工時間を調整することにより、ホーニングの大きさを適宜変えることができる。 There are various methods for honing, but in this embodiment, honing was performed by blasting the entire cutting edge 20 with a finely powdered abrasive that is harder than the tool base material of the blade 21B. Honing can be carried out by polishing, etc., but by applying fine powder, honing can be done almost uniformly over the entire area of the bottom blade, the R blade 21B3, and the peripheral blade 21B4, and the work time can be shortened. It is effective because it can be done. Further, during honing, droplets on the surface of the hard film are removed. By adjusting the blasting time, the magnitude of honing can be changed as appropriate.

ホーニングは、刃部21Bの剛性を高める一方で、切削負荷が高くなり、予期しないトラブルが発生することが一般に知られている。そのため、微細加工を主たる目的とするエンドミルにおいて、硬質膜を成膜した後にホーニングをする例は少なかった。本実施形態では、成膜後に少なくとも底刃、R刃21B3及び外周刃21B4にホーニングすることにより、切削負荷を抑制したまま、刃部21Bの損傷を抑制することができた。本実施形態では、特に、切刃部21Bを覆った硬質膜のうち被切削物を切削する部分が成膜前の切刃部21Bの曲率以上の曲率(「刃先R」という)になるまでホーニングした。一例を挙げれば、図10及び図11に示す通りである。 Although honing increases the rigidity of the blade portion 21B, it is generally known that the cutting load increases and unexpected troubles occur. Therefore, in end mills whose main purpose is microfabrication, honing is rarely performed after forming a hard film. In this embodiment, by honing at least the bottom blade, the R blade 21B3, and the outer peripheral blade 21B4 after film formation, it was possible to suppress damage to the blade portion 21B while suppressing the cutting load. In this embodiment, in particular, honing is performed until the part of the hard film covering the cutting edge 21B that cuts the object has a curvature (referred to as "blade edge R") that is greater than or equal to the curvature of the cutting edge 21B before film formation. did. An example is shown in FIGS. 10 and 11.

図10の上段は、硬質膜の成膜後、ホーニング前における第1底刃部21B1、第1底刃逃げ面22B1、底刃すくい面23Bの部分拡大写真(走査電子顕微鏡撮影:400倍)である。前述の通り、第1底刃部21B1は、ギャッシュ面23Bと第1底刃部21B1の交差稜線なので、被切削物と接触する部分の刃先Rはきわめて小さい。図10上段の例では、第1底刃部21B1の刃先Rは0.002mmである。また、成膜によって、表面にドロップレット(粒状突起)が散在していることが見てとれる。 The upper part of FIG. 10 is a partial enlarged photograph (scanning electron microscopy: 400x) of the first bottom blade part 21B1, first bottom blade flank surface 22B1, and bottom blade rake surface 23B after forming the hard film and before honing. be. As described above, since the first bottom blade part 21B1 is the intersection ridgeline of the gash surface 23B and the first bottom blade part 21B1, the cutting edge R of the portion that contacts the object to be cut is extremely small. In the example shown in the upper part of FIG. 10, the cutting edge R of the first bottom cutting portion 21B1 is 0.002 mm. Furthermore, it can be seen that droplets (granular protrusions) are scattered on the surface due to the film formation.

図10の下段は当該部分のホーニング後の部分拡大写真(同条件による走査電子顕微鏡撮影)である。ホーニングによって、第1底刃部21B1の刃先Rは0.011mmまで大きくなり、且つ、平滑化によりドロップレットが除去されている。ドロップレットが除去された結果、R刃21Bの外表面のR精度も真円弧に近いものとなり、工具の輪郭精度を格段に高めることができた。 The lower part of FIG. 10 is an enlarged photograph of the part after honing (scanning electron microscopy under the same conditions). By honing, the cutting edge R of the first bottom blade portion 21B1 is increased to 0.011 mm, and droplets are removed by smoothing. As a result of the droplets being removed, the R accuracy of the outer surface of the R blade 21B also became close to a perfect circular arc, and the contour accuracy of the tool could be significantly improved.

図11の上段は、硬質膜の成膜後、ホーニング前におけるR刃逃げ面22B3の部分拡大写真(走査電子顕微鏡撮影:1000倍)であり、図11の下段は、当該部分のホーニング後の部分拡大写真(同条件による走査電子顕微鏡撮影)である。図11より、硬質膜表面のドロップレットが除去され、凹凸が大幅に減少して平滑度が高まっている。そのため、表面の凹凸を契機に硬質膜が剥がれることを防止することができる。また、工具初期摩耗を抑制することができ、切削加工の初期から安定した加工精度を維持することができる。なお、特許文献4,5に開示されているように硬質膜の成膜前にホーニングすると、成膜後にホーニングした場合よりも短い時間で硬質膜が剥がれることを確認している。これは、ホーニングによって基材表面が図11に示すように平滑化されるため、その後に硬質膜を被覆しても剥がれやすくなるためと考えられる。 The upper part of FIG. 11 is a partial enlarged photograph (scanning electron microscopy: 1000 times) of the R blade flank surface 22B3 after the hard film has been formed and before honing, and the lower part of FIG. 11 is a part of the part after honing. This is an enlarged photograph (taken using a scanning electron microscope under the same conditions). From FIG. 11, the droplets on the surface of the hard film have been removed, the unevenness has been significantly reduced, and the smoothness has increased. Therefore, it is possible to prevent the hard film from peeling off due to surface irregularities. In addition, initial tool wear can be suppressed, and stable machining accuracy can be maintained from the initial stage of cutting. It has been confirmed that when honing is performed before the hard film is formed as disclosed in Patent Documents 4 and 5, the hard film is peeled off in a shorter time than when honing is performed after the film is formed. This is thought to be because the surface of the base material is smoothed by honing as shown in FIG. 11, so that even if a hard film is coated afterwards, it is likely to peel off.

[短刃のギャッシュ]
刃部21Bの工具回転方向前方部分に形成されたギャッシュ面23Bは、第1底刃部21B1、第2底刃部21B2、R刃21B3に沿ったスパイラルギャッシュ(捻れギャッシュ)形状の面である。このスパイラルギャッシュ形状の面は、中心軸線O1方向に対して所定角度で樋状に窪むギャッシュ底242Bの一底辺241Bまで延びる。
[Short blade gash]
The gash surface 23B formed at the front portion of the blade portion 21B in the tool rotation direction is a spiral gash (twisted gash)-shaped surface along the first bottom blade portion 21B1, the second bottom blade portion 21B2, and the R blade 21B3. This spiral gash-shaped surface extends to one bottom side 241B of the gash bottom 242B, which is recessed in the shape of a gutter at a predetermined angle with respect to the central axis O1 direction.

該底辺241Bは、壁と底とが凹R状に角度を変える。ギャッシュ底242Bは、工具回転方向前方の刃部(長刃)21Cの逃げ面22Cの内終端途中で開口し、該開口部分を始端244Bとして、後端245Bまで均一勾配で傾斜する平面であり(図9)、その終端245Bは、工具基端側のフルート溝26Bと連なる。基準線L1に対するギャッシュ底242Bの傾斜角(工具回転方向の後方から見た中心軸線O1を包含する平面に対する角度)は、刃部21Bの傾斜角よりも大きくなっている。そのため、切削加工時に生じる気流や切り屑がギャッシュ底242Bに集中的に導かれ、切削加工時に生じる先端面付近の切り屑詰まりを抑制することができる。 The bottom side 241B has a wall and a bottom that change angles in a concave R shape. The gash bottom 242B is a plane that opens halfway in the inner terminal end of the flank 22C of the blade part (long blade) 21C at the front in the tool rotation direction, and slopes at a uniform slope from the opening part to the rear end 245B ( (FIG. 9), its terminal end 245B is continuous with the flute groove 26B on the tool proximal end side. The inclination angle of the gash bottom 242B with respect to the reference line L1 (the angle with respect to a plane including the central axis O1 seen from the rear in the tool rotation direction) is larger than the inclination angle of the blade portion 21B. Therefore, air currents and chips generated during cutting are guided intensively to the gash bottom 242B, and clogging of chips near the tip surface that occurs during cutting can be suppressed.

ギャッシュ底242Bの一底辺241Bと対向する他底辺からは、ギャッシュ壁243Bが外周方向に形成され、底刃3番面(底刃逃げ面よりも傾斜角を大きくした逃がし面又はさらい面、以下同じ)25Bに連なっている。上記基準線L1に対する底刃3番面25Bの工具基端側方向の角度は、ギャッシュ底242Bよりも小さい。そのため、上記気流が、上記角度でない場合に比べてギャッシュ底242Bに、より容易に導かれることとなる。底刃3番面25Bは、回転方向前方(長刃)21Cの逃げ面22Cに連なっている。 A gash wall 243B is formed in the outer peripheral direction from the other bottom side opposite to one bottom side 241B of the gash bottom 242B, and a gash wall 243B is formed in the outer circumferential direction, and a gash wall 243B is formed on the third side of the bottom blade (a relief surface or a sweeping surface with a larger inclination angle than the bottom blade relief surface, the same applies hereinafter). ) is connected to 25B. The angle of the third surface 25B of the bottom blade in the tool proximal direction with respect to the reference line L1 is smaller than that of the gash bottom 242B. Therefore, the airflow is more easily guided to the gash bottom 242B than when the angle is not the above. The third surface 25B of the bottom blade is connected to the flank 22C of the forward (long blade) 21C in the rotational direction.

[フルート溝]
フルート溝26Bは、ギャッシュ底242Bの終端245Bと回転方向前方の刃部(長刃)21Cのギャッシュ面とに連なる切り屑排出機構の一部である。フルート溝26Bは、工具本体10の基端側へ向かうに従って、工具回転方向とは反対の方向に捻れ、深さはt61まで一定で、それ以降は徐々に深さを浅くしながら切り上がり、やがてその終端が工具本体10の外周と同化する。
[Flute groove]
The flute groove 26B is part of a chip discharge mechanism that is connected to the terminal end 245B of the gash bottom 242B and the gash surface of the blade portion (long blade) 21C at the front in the rotational direction. The flute groove 26B twists in the direction opposite to the tool rotation direction as it goes toward the proximal end of the tool body 10, and the depth remains constant until t61, after which it gradually becomes shallower and cuts upward. Its terminal end blends into the outer periphery of the tool body 10.

フルート溝26Bには、ギャッシュ面23Bと、ギャッシュ底242Bの終端245Bから連なる部分と、ギャッシュ面23Bとは基準線L1に対する傾斜角度が異なる底刃3番面25Bから連なる部分があり、それぞれが合流する接点がある。
この接点と基準線L1との長さが最適フルート長t61(図3)となる。最適フルート長t61は、切刃部20の剛性を実用レベルに確保する観点からは、外径Dの60%~80%、特に約70%が好ましい。
The flute groove 26B has a part that continues from the gash surface 23B and the terminal end 245B of the gash bottom 242B, and a part that continues from the third face 25B of the bottom blade which has a different angle of inclination with respect to the reference line L1 than the gash surface 23B. There is a point of contact.
The length between this contact point and the reference line L1 is the optimum flute length t61 (FIG. 3). The optimum flute length t61 is preferably 60% to 80%, particularly about 70%, of the outer diameter D from the viewpoint of ensuring the rigidity of the cutting edge portion 20 at a practical level.

刃部21Bの底刃(第1底刃部21B1、第2底刃部21B2)と、工具回転方向前方の刃部21Cの底刃あるいは工具回転方向後方の刃部21Aの底刃とのなす角度A21(図3)は、43°~47°が好ましい。この範囲の角度であれば、被切削物の切削加工時の摩擦抵抗が小さく、切り屑詰まりが生じにくく、工具先端部の損傷が生じにくい構造となることが確認されている。 The angle between the bottom edge of the blade portion 21B (first bottom edge portion 21B1, second bottom edge portion 21B2) and the bottom edge of the blade portion 21C at the front in the tool rotation direction or the bottom edge of the blade portion 21A at the rear in the tool rotation direction. A21 (FIG. 3) is preferably 43° to 47°. It has been confirmed that if the angle is within this range, the frictional resistance during cutting of the workpiece is small, chip clogging is less likely to occur, and the tool tip is less likely to be damaged.

「他の短刃」
刃部21Bに対して中心軸線O1を中心に180°回転させたもう一つの刃部21Dについても、同様の形状、構造、作用となる。刃部21Dと刃部21Bとの対応関係は、以下の通りとなる。
第1底刃部21D1・・・第1底刃部21B1、第2底刃部21D2・・・第2底刃部21B2、R刃21D3・・・R刃21B3、外周刃21B4・・・外周刃21B4、逃げ面22D・・・逃げ面22B、底刃逃げ面22D1・・・底刃逃げ面22B1、R刃逃げ面22D3・・・R刃逃げ面22B3、外周刃逃げ面22D4・・・外周刃逃げ面22B4、切刃端218D・・・切刃端218B、ギャッシュ面23D・・・ギャッシュ面23B、ギャッシュ底242D・・・ギャッシュ底242B、ギャッシュ底の一底辺241B・・・同底辺241D、ギャッシュ底の始端244D・・・同始端244B、ギャッシュ底の終端245D・・・同終端245B、底刃3番面25D・・・底刃3番面25B、フルート溝26D・・・フルート溝26B。
"Other short blades"
The other blade portion 21D, which is rotated by 180 degrees around the central axis O1 with respect to the blade portion 21B, has a similar shape, structure, and function. The correspondence relationship between the blade portion 21D and the blade portion 21B is as follows.
First bottom blade part 21D1...First bottom blade part 21B1, Second bottom blade part 21D2...Second bottom blade part 21B2, R blade 21D3...R blade 21B3, Peripheral blade 21B4...Peripheral blade 21B4, flank face 22D...flank face 22B, bottom blade flank 22D1...bottom blade flank 22B1, R blade flank 22D3...R blade flank 22B3, peripheral blade flank 22D4...peripheral blade Flank surface 22B4, cutting edge 218D...cutting edge 218B, gash surface 23D...gash surface 23B, gash bottom 242D...gash bottom 242B, bottom side 241B of gash bottom 241D, gash Starting end 244D of the bottom 244B, terminal end 245D of the gash bottom 245B, third surface 25D of the bottom blade 25B, flute groove 26D... flute groove 26B.

「長刃概要」
次に、図5等に表示されている刃部(長刃)21Aについて説明する。刃部(長刃)21Aは、切刃部20の先端面中央付近の構造が刃部(短刃)21Bと異なるだけで、その他の部分の形状等は、刃部(短刃)21Bと同じである。そこで、以下は、刃部(短刃)21Bと異なる部分を中心に説明する。なお、刃部(短刃)21Bの対応構成については、符号添え字(B→A)だけを代え、当該構成についての重複説明については省略する。
“Long blade overview”
Next, the blade portion (long blade) 21A shown in FIG. 5 and the like will be explained. The blade part (long blade) 21A differs from the blade part (short blade) 21B only in the structure near the center of the tip surface of the cutting blade part 20, and the shape of other parts is the same as the blade part (short blade) 21B. It is. Therefore, the following description will focus on the parts that are different from the blade portion (short blade) 21B. Note that regarding the corresponding configuration of the blade portion (short blade) 21B, only the reference suffix (B→A) is changed, and a redundant explanation of the configuration will be omitted.

刃部21Aは、工具先端部の外表面及び先端面と工具回転方向の切削空間を臨むギャッシュ面23Aとの交差稜線を切刃とする第1底刃部21A1、第2底刃部21A2、R刃21A3及び外周刃21A4を有する。第1底刃部22A1と第2底刃部22A2は、刃部21Aの「底刃」を構成する。R刃21A3及び外周刃21A4の形状、構造、外周刃21A4のねじれ角、切刃長は、刃部21Bと同じである。 The blade portion 21A has a first bottom blade portion 21A1, a second bottom blade portion 21A2, and R, each having a cutting edge that is an intersecting ridgeline between the outer surface and tip surface of the tool tip and the gash surface 23A facing the cutting space in the tool rotation direction. It has a blade 21A3 and a peripheral blade 21A4. The first bottom blade portion 22A1 and the second bottom blade portion 22A2 constitute a “bottom blade” of the blade portion 21A. The shape and structure of the R blade 21A3 and the peripheral blade 21A4, the helix angle of the peripheral blade 21A4, and the cutting edge length are the same as those of the blade portion 21B.

刃部21Aは、また、第1底刃部21A1、第2底刃部21A2、R刃21A3及び外周刃21A4の各々から工具回転方向後方に所定幅(周方向の長さ)t21をもつ逃げ面22Aを有する(図6(a))。この幅t21は刃部21Bの逃げ面22Bの幅t22と同じであってもよいが、異なる幅であってもよい。第1底刃部21A1及び第2底刃部21A2の逃げ面が底刃逃げ面22A1、R刃21A3の逃げ面がR刃逃げ面22A3、外周刃21A4の逃げ面が外周刃逃げ面22A4である。逃げ面22Aは、工具回転方向後方に向かうにつれて基端側に低くなるように傾斜している。傾斜角度、各逃げ面の幅、第1底刃角θ1、第2底刃角θ2は、刃部21Bのものと同じであり、底刃逃げ面22A1の内終端が中心軸線O1付近まで至る点が異なる。 The blade portion 21A also has a flank surface having a predetermined width (length in the circumferential direction) t21 rearward in the tool rotation direction from each of the first bottom blade portion 21A1, the second bottom blade portion 21A2, the R blade 21A3, and the outer peripheral blade 21A4. 22A (FIG. 6(a)). This width t21 may be the same as the width t22 of the flank 22B of the blade portion 21B, but may be a different width. The flanks of the first bottom blade part 21A1 and the second bottom blade part 21A2 are the bottom blade flank 22A1, the flank of the R blade 21A3 is the R blade flank 22A3, and the flank of the peripheral blade 21A4 is the peripheral blade flank 22A4. . The flank 22A is inclined so as to become lower toward the base end as it goes rearward in the tool rotation direction. The inclination angle, the width of each flank, the first bottom edge angle θ1, and the second bottom edge angle θ2 are the same as those of the blade part 21B, and the inner end of the bottom edge flank 22A1 reaches near the central axis O1. are different.

[長刃のギャッシュ]
ギャッシュ底242Aは、底面の始端244Aが工具回転方向前方の刃部(短刃)21Bの内終端よりも中心軸線O1を超える長さの部位で開口することで、第2底刃部21A2の内周端と中心軸線O1との間に窪み空間21AXを形成している点が異なる(図3、図8)。この窪み空間は、先端面に流れ込むクーラント、あるいは切り屑排出時の入口となっている。ギャッシュ底242Aの終端245Aは、工具基端側のフルート溝26Aに連なっている。フルート溝26Aは、刃部(短刃)21Bのフルート溝26Bと同じである。
[Long-blade gash]
The gash bottom 242A opens at a position where the starting end 244A of the bottom surface is longer than the inner end of the cutting edge (short blade) 21B in the forward direction of tool rotation and extends beyond the central axis O1, thereby opening the inner end of the second bottom cutting edge 21A2. The difference is that a recessed space 21AX is formed between the peripheral end and the central axis O1 (FIGS. 3 and 8). This recessed space serves as an inlet for coolant flowing into the tip surface or for discharging chips. A terminal end 245A of the gash bottom 242A is connected to a flute groove 26A on the tool base end side. The flute groove 26A is the same as the flute groove 26B of the blade portion (short blade) 21B.

ギャッシュ底242Aの始端244Aから終端245Aに至るまで均一勾配で傾斜する平面の長さは、刃部21Bのギャッシュ底242Bのものより長い。ただし、長さは異なるが、角度は同じである。 The length of the plane of the gash bottom 242A that slopes at a uniform slope from the starting end 244A to the terminal end 245A is longer than that of the gash bottom 242B of the blade portion 21B. However, although the lengths are different, the angles are the same.

刃部21Aのギャッシュ面23Aは、刃部21Bのギャッシュ面23Bと同じ形状のスパイラルギャッシュである。ただし、ギャッシュ底242Aが上記のようにギャッシュ底242Bよりも長いことから、ギャッシュ壁となる部分の形状がギャッシュ面23Bと異なるものとなる。ギャッシュ面23Aと対向するギャッシュ壁243Aについても同様である。 The gash surface 23A of the blade portion 21A is a spiral gash having the same shape as the gash surface 23B of the blade portion 21B. However, since the gash bottom 242A is longer than the gash bottom 242B as described above, the shape of the portion that becomes the gash wall is different from the gash surface 23B. The same applies to the gash wall 243A facing the gash surface 23A.

[他の長刃]
刃部21Aに対して中心軸線O1を中心に180°回転させたもう一つの刃部21Cについても、同様の形状、構造、作用となる。刃部21Cと刃部21Aとの対応関係は、以下の通りとなる。
第1底刃部21C1・・・第1底刃部21A1、第2底刃部21C2・・・第2底刃部21A2、R刃21C3・・・R刃21A3、外周刃21C4・・・外周刃21A4、逃げ面22C・・・逃げ面22A、底刃逃げ面22C1・・・底刃逃げ面22A1、R刃逃げ面22C3・・・R刃逃げ面22A3、外周刃逃げ面22C4・・・外周刃逃げ面22A4、切刃端218C・・・切刃端218A、ギャッシュ面23C・・・ギャッシュ面23A、ギャッシュ底242C・・・ギャッシュ底242A、ギャッシュ底の一底辺241C・・・同底辺241A、ギャッシュ底の始端244C・・・同始端244A、ギャッシュ底の終端245C・・・同終端245A、底刃3番面25C・・・底刃3番面25A、フルート溝26C・・・フルート溝26A。
[Other long blades]
The other blade portion 21C, which is rotated by 180 degrees around the central axis O1 with respect to the blade portion 21A, has a similar shape, structure, and function. The correspondence relationship between the blade portion 21C and the blade portion 21A is as follows.
First bottom blade part 21C1...First bottom blade part 21A1, Second bottom blade part 21C2...Second bottom blade part 21A2, R blade 21C3...R blade 21A3, Peripheral blade 21C4... Peripheral blade 21A4, flank face 22C... flank face 22A, bottom blade flank 22C1... bottom blade flank 22A1, R blade flank 22C3... R blade flank 22A3, peripheral blade flank 22C4... peripheral blade Flank surface 22A4, cutting edge 218C...cutting edge 218A, gash surface 23C...gash surface 23A, gash bottom 242C...gash bottom 242A, bottom side 241C of gash bottom 241A, gash Bottom starting end 244C...same starting end 244A, gash bottom ending end 245C... same ending end 245A, bottom blade 3rd surface 25C...bottom blade 3rd surface 25A, flute groove 26C... flute groove 26A.

[使用態様]
次に、エンドミル1の使用態様例を図12を参照して説明する。エンドミル1は、シャンク部の外径毎に異なる内径のコレットを使用して工作機械MCの主軸のミーリングチャックにセットされる。その後、切刃部20の先端面を被切削物500に対向させ、切り込みを開始する。被切削物500は、例えば四角柱状の合金工具鋼(SKD11)や粉末高速度工具鋼(SKH55等)である。工作機械MCを操作することで、フライス加工、穴あけ加工、中ぐり加工などを1本のエンドミル1で使い分けて行うことで、被切削物500を図示のような複雑な形状に加工することができる。
[How to use]
Next, an example of how the end mill 1 is used will be described with reference to FIG. 12. The end mill 1 is set in a milling chuck of the main shaft of a machine tool MC using collets with different inner diameters for each outer diameter of the shank portion. Thereafter, the tip end surface of the cutting edge portion 20 is made to face the object to be cut 500, and cutting is started. The workpiece 500 is, for example, a rectangular columnar alloy tool steel (SKD11) or powdered high-speed tool steel (SKH55, etc.). By operating the machine tool MC, the workpiece 500 can be machined into a complex shape as shown in the figure by selectively performing milling, drilling, boring, etc. with one end mill 1. .

[変形例]
本実施形態では、被覆切削工具としてエンドミル1を例に挙げて説明したが、硬質膜で被覆された切削工具であれば、エンドミルに限らず、切刃部を有する他の穴あけ工具にも同様に適用が可能である。本実施形態では、また、ラジアスエンドミルを例示して説明したが、スクエアエンドミルにも同様に適用が可能である。また、本実施形態では、4枚刃のエンドミルを例に挙げたが、刃部の数は任意であってよい。
[Modified example]
In this embodiment, the end mill 1 has been described as an example of a coated cutting tool, but as long as it is a cutting tool coated with a hard film, it is not limited to an end mill, but can be similarly applied to other drilling tools having a cutting edge. Applicable. Although the present embodiment has been described using a radius end mill as an example, it can be similarly applied to a square end mill. Further, in this embodiment, a four-blade end mill is taken as an example, but the number of blade portions may be arbitrary.

本実施形態による開示は、以下の各態様の発明を含んでいる。
[態様1]
態様1の発明は、工具本体の先端側に形成された切刃部が硬質膜で覆われており、前記切刃部を覆った前記硬質膜のうち、被切削物を切削する部分が、成膜後にホーニングされていることを特徴とする被覆切削工具である。
態様1の発明によれば、硬質膜の成膜前ではなく、成膜後にホーニングすることで、工具初期摩耗、硬質膜の剥がれ及び工具先端部の損傷を抑制することができ、加工初期から安定した加工精度、加工面を維持することができる。また、 ホーニングを行うことで工具表面のドロップレットを除去し、工具の輪郭精度を高めることができる。
なお、ホーニングによっても、切刃部が露出しないことが望ましいが、工具先端部の輪郭精度を維持できる範囲であれば、切刃部の一部が露出していてもよい。
The disclosure according to this embodiment includes inventions of the following aspects.
[Aspect 1]
In the invention of aspect 1, the cutting edge formed on the tip side of the tool body is covered with a hard film, and the part of the hard film covering the cutting edge that cuts the object to be cut is formed. This is a coated cutting tool characterized by being honed after coating.
According to the invention of aspect 1, by honing after the hard film is formed, rather than before, it is possible to suppress initial wear of the tool, peeling of the hard film, and damage to the tip of the tool, resulting in stable machining from the initial stage. The machining accuracy and machined surface can be maintained. In addition, honing can remove droplets on the tool surface and improve tool contour accuracy.
Although it is desirable that the cutting edge portion not be exposed by honing, a portion of the cutting edge portion may be exposed as long as the contour accuracy of the tool tip can be maintained.

[態様2]
態様2の発明は、態様1の発明において、前記工具本体が中心軸線回りに回転可能であり、前記切刃部は、先端面からみて前記中心軸線側から外周側に向けて当間隔で配置された複数の刃部を備え、前記複数の刃部の各々は、底刃と、該底刃の外周側側面に形成された外周刃と、前記底刃と前記外周刃とを凸R状に繋ぐR刃とを有し、前記底刃のうち前記R刃と繋がる所定長の部分が前記中心軸線に対して直交していることを特徴とする被覆切削工具である。
態様2の発明によれば、当該部分がさらい刃として機能し、スクレーパ効果を奏することができる。そのため、加工面の平坦度(平滑度)を向上させることができる。
[Aspect 2]
In a second aspect of the invention, in the first aspect, the tool body is rotatable around a central axis, and the cutting blades are arranged at regular intervals from the central axis side toward the outer circumferential side when viewed from the tip surface. each of the plurality of blade parts includes a bottom blade, a peripheral blade formed on an outer peripheral side surface of the bottom blade, and connects the bottom blade and the peripheral blade in a convex R shape. The coated cutting tool has a R blade, and a portion of the bottom blade having a predetermined length that is connected to the R blade is perpendicular to the center axis.
According to the second aspect of the invention, the portion functions as a wiper blade and can produce a scraper effect. Therefore, the flatness (smoothness) of the processed surface can be improved.

[態様3]
態様3の発明は、態様2の発明において、前記R刃のギャッシュ面が工具回転方向後方に捻れるスパイラルギャッシュ形状であることを特徴とする被覆切削工具である。
態様3の発明によれば、R刃のギャッシュ面をつなぎ目のないシームレス形状にすることで、工具輪郭精度、特にR輪郭精度を高めることができる。これにより、被切削物の高精度な加工が可能となる。また、直刃のギャッシュ形状に比べ、スパイラルギャッシュ形状にすることで切削性を高めることができ、また、R刃の欠損を抑制することができる。
[Aspect 3]
A third aspect of the invention is the coated cutting tool according to the second aspect, wherein the gash surface of the R blade has a spiral gash shape twisted backward in the tool rotation direction.
According to the third aspect of the invention, by forming the gash surface of the R blade into a seamless shape without any joints, it is possible to improve the tool contour accuracy, particularly the R contour accuracy. This enables highly accurate machining of the workpiece. Furthermore, compared to a gash shape with a straight edge, a spiral gash shape can improve cutting performance and can suppress chipping of the R blade.

[態様4]
態様4の発明は、態様2の発明において、前記R刃は、1/4円弧を超える長さを有し、該1/4円弧を超えた位置で前記外周刃と一体に繋がることを特徴とする被覆切削工具である。
態様4の発明によれば、R刃から外周刃の加工切り替わりが1/4円弧を越えた位置で行われることから、1/4円弧の始端と終端はすべてR刃のR輪郭となり、R輪郭精度を高めることができる。
[Aspect 4]
The invention according to aspect 4 is characterized in that, in the invention according to aspect 2, the R blade has a length exceeding a quarter arc, and is integrally connected to the peripheral blade at a position beyond the quarter arc. This is a coated cutting tool.
According to the invention of aspect 4, since the machining switching from the R blade to the peripheral blade is performed at a position beyond the 1/4 arc, the starting and ending ends of the 1/4 arc all become the R contour of the R blade, and the R contour Accuracy can be increased.

[態様5]
態様5の発明は、態様2の発明において、前記複数の刃部は、その内終端が前記中心軸線又は当該中心軸線付近まで延びる一対の長刃と、その内終端が前記中心軸線の途中で止まる一対の短刃とで構成され、前記長刃と前記短刃とは、工具回転方向に交互に配置されており、前記長刃のギャッシュの一部は、工具回転方向前方の前記短刃の内終端と前記中心軸線との間に窪み空間を形成し、前記短刃のギャッシュは、工具回転方向前方の前記長刃の逃げ面の内終端途中で止まることを特徴とする被覆切削工具である。
態様5の発明によれば、切削抵抗が短刃よりも大きい長刃の強度を低下させることなく、窪み空間を通じて切削時のクーラントや切り屑を効果的に排出することができる。
[Aspect 5]
In the invention according to aspect 5, in the invention according to aspect 2, the plurality of blade parts include a pair of long blades whose inner terminal ends extend to or near the central axis, and whose inner terminal ends stop midway along the central axis. The long blade and the short blade are arranged alternately in the tool rotation direction, and a part of the gash of the long blade is located inside the short blade in front of the tool rotation direction. The coated cutting tool is characterized in that a recessed space is formed between the terminal end and the central axis, and the gash of the short blade stops midway at the inner terminal end of the flank of the long blade forward in the tool rotation direction.
According to the invention of aspect 5, coolant and chips during cutting can be effectively discharged through the recessed space without reducing the strength of the long blade whose cutting resistance is greater than that of the short blade.

[態様6]
態様6の発明は、態様5の発明において、前記一対の長刃のギャッシュは、前記中心軸線付近で交差することを特徴とする被覆切削工具である。
態様6の発明によれば、隣り合う短刃のギャッシュとの連通性を高めることができ、切り屑詰まりをより効果的に防止することができる。
[Aspect 6]
A sixth aspect of the invention is the coated cutting tool according to the fifth aspect, wherein the pair of long blade gashes intersect near the central axis.
According to the invention of aspect 6, communication between adjacent short blades and gashes can be improved, and chip clogging can be more effectively prevented.

[態様7]
態様7の発明は、態様1から態様6の発明のいずれかにおいて、ホーニング前の前記硬質膜が、刃部基材の表面に積層された第一層と、前記第一層の表面に積層された第二層と、前記第二面の表面に積層された第三層とを有し、前記第一層、前記第二層及び前記第三層が、それぞれの下層においては隣接した上層の結晶の成長を抑制する膜質を含んで構成されることを特徴とする被覆切削工具である。
態様7の発明によれば、結晶を微細化することができ、単層または2層構造の場合に比べて、硬質膜の硬度をより高めることができる。そのため、各層の特徴を組み合わせることで高硬度材への加工を長寿命で安定した加工が可能となる。
なお、第三層は、第一層及び第2層に比べて最も靱性が高い膜種を用いてもよい。これにより、工具先端部の欠損をより効果的に抑制することができる。
[Aspect 7]
Aspect 7 of the invention is characterized in that, in any one of aspects 1 to 6, the hard film before honing includes a first layer laminated on a surface of a blade base material and a surface of the first layer. a second layer laminated on the surface of the second surface, and a third layer laminated on the surface of the second surface, wherein each of the first layer, the second layer, and the third layer has crystals of the adjacent upper layer in the lower layer. This is a coated cutting tool characterized by comprising a film that suppresses the growth of.
According to the invention of aspect 7, the crystals can be made finer, and the hardness of the hard film can be further increased than in the case of a single-layer or two-layer structure. Therefore, by combining the characteristics of each layer, it is possible to process high-hardness materials stably with a long life.
Note that a film type having the highest toughness compared to the first layer and the second layer may be used for the third layer. Thereby, chipping of the tool tip can be more effectively suppressed.

Claims (6)

中心軸線回りに回転可能な工具本体の先端側に切刃部が形成され、前記切刃部は、底刃、該底刃の外周側側面に形成された外周刃、および、前記底刃と前記外周刃とを凸R状に繋ぐR刃を有する刃部を1つ以上備え、
前記底刃はその一部が前記中心軸線に対して直交し、該底刃から前記R刃に繋がる部分のギャッシュ面が工具回転方向後方にシームレスに捻れた曲面をなすスパイラルギャッシュ形状であり、前記刃部が硬質膜で覆われており、前記刃部のうち被切削物を切削する部分が、前記硬質膜の成膜後にホーニングされていることを特徴とする、
被覆切削工具。
A cutting edge portion is formed on the tip side of the tool body that is rotatable around the center axis, and the cutting edge portion includes a bottom blade, an outer peripheral edge formed on the outer peripheral side surface of the bottom blade, and a bottom blade and the One or more blade portions having an R blade that connects the outer peripheral blade in a convex R shape,
The bottom blade has a spiral gash shape in which a part thereof is orthogonal to the central axis, and a gash surface of a portion connecting the bottom blade to the R blade is a curved surface seamlessly twisted backward in the tool rotation direction , and The blade part is covered with a hard film, and the part of the blade part that cuts the object to be cut is honed after the hard film is formed.
Coated cutting tools.
前記切刃部は、先端面からみて前記中心軸線側から外周側に向けて等間隔で配置された複数の刃部を備え、
前記複数の刃部の各々は、前記底刃のうち前記R刃と繋がる所定長の部分が前記中心軸線に対して直交していることを特徴とする、
請求項1に記載の被覆切削工具。
The cutting edge portion includes a plurality of blade portions arranged at equal intervals from the central axis side toward the outer circumferential side when viewed from the tip surface,
Each of the plurality of blade portions is characterized in that a portion of the bottom blade having a predetermined length connected to the R blade is orthogonal to the central axis,
A coated cutting tool according to claim 1.
前記R刃は、1/4円弧を超える長さを有し、該1/4円弧を超えた位置で前記外周刃と一体に繋がることを特徴とする、
請求項2に記載の被覆切削工具。
The R blade has a length exceeding 1/4 arc, and is integrally connected to the peripheral blade at a position beyond the 1/4 arc.
A coated cutting tool according to claim 2.
前記複数の刃部は、その内終端が前記中心軸線又は当該中心軸線付近まで延びる一対の長刃と、その内終端が前記中心軸線の途中で止まる一対の短刃とで構成され、
前記長刃と前記短刃とは、工具回転方向に交互に配置されており、
前記長刃のギャッシュの一部は、工具回転方向前方の前記短刃の内終端と前記中心軸線との間に窪み空間を形成し、
前記短刃のギャッシュは、工具回転方向前方の前記長刃の逃げ面の内終端途中で止まることを特徴とする、
請求項2に記載の被覆切削工具。
The plurality of blade parts are composed of a pair of long blades whose inner terminal ends extend to or near the central axis, and a pair of short blades whose inner terminal ends stop midway along the central axis,
The long blades and the short blades are arranged alternately in the tool rotation direction,
A part of the gash of the long blade forms a recessed space between the inner end of the short blade at the front in the tool rotation direction and the central axis,
The gash of the short blade is characterized in that it stops midway at the inner end of the flank of the long blade forward in the tool rotation direction,
A coated cutting tool according to claim 2.
前記一対の長刃のギャッシュは、前記中心軸線付近で交差することを特徴とする、
請求項4に記載の被覆切削工具。
The pair of long blade gashes intersect near the central axis,
The coated cutting tool according to claim 4.
前記長刃のギャッシュは、ギャッシュ底が隣り合う前記短刃の内終端よりも中心軸線を超える長さの部位で開口することで、前記窪み空間を形成する、
請求項4に記載の被覆切削工具。
The gash of the long blade forms the recessed space by opening at a portion where the gash bottom extends beyond the central axis of the inner end of the adjacent short blade.
The coated cutting tool according to claim 4.
JP2022177480A 2022-11-04 2022-11-04 coated cutting tools Active JP7403610B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022177480A JP7403610B1 (en) 2022-11-04 2022-11-04 coated cutting tools
JP2023209477A JP2024068211A (en) 2022-11-04 2023-12-12 Coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022177480A JP7403610B1 (en) 2022-11-04 2022-11-04 coated cutting tools

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023209477A Division JP2024068211A (en) 2022-11-04 2023-12-12 Coated cutting tool

Publications (2)

Publication Number Publication Date
JP7403610B1 true JP7403610B1 (en) 2023-12-22
JP2024067422A JP2024067422A (en) 2024-05-17

Family

ID=89307796

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022177480A Active JP7403610B1 (en) 2022-11-04 2022-11-04 coated cutting tools
JP2023209477A Pending JP2024068211A (en) 2022-11-04 2023-12-12 Coated cutting tool

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023209477A Pending JP2024068211A (en) 2022-11-04 2023-12-12 Coated cutting tool

Country Status (1)

Country Link
JP (2) JP7403610B1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283951A (en) 2003-03-20 2004-10-14 Kyocera Corp End mill
JP2007030074A (en) 2005-07-25 2007-02-08 Mitsubishi Materials Kobe Tools Corp Radius end mill and cutting method
JP2011212836A (en) 2010-03-19 2011-10-27 Hitachi Tool Engineering Ltd Ball end mill and manufacturing method of the same
JP2013018110A (en) 2011-06-17 2013-01-31 Hitachi Tool Engineering Ltd Multi-edge endmill
JP2015166113A (en) 2014-03-03 2015-09-24 三菱マテリアル株式会社 end mill
JP2016190300A (en) 2015-03-31 2016-11-10 三菱マテリアル株式会社 Roughing end mill
JP2017159380A (en) 2016-03-07 2017-09-14 三菱マテリアル株式会社 Radial end mill
WO2018198445A1 (en) 2017-04-25 2018-11-01 住友電工ハードメタル株式会社 Cutting insert
JP2020196119A (en) 2019-05-31 2020-12-10 株式会社タンガロイ Cutting insert
JP2021010957A (en) 2019-07-04 2021-02-04 株式会社Moldino Radius end mill
JP2020510541A5 (en) 2018-02-07 2021-02-04
JP2021104573A (en) 2019-12-27 2021-07-26 日進工具株式会社 Ball end mill

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170633A (en) * 1992-09-16 1994-06-21 Hitachi Tool Eng Ltd End mill for longitudinal and lateral cutting
JPH11216609A (en) * 1998-01-30 1999-08-10 Hitachi Tool Eng Ltd Radius cutter end mill
US9884379B1 (en) 2017-03-07 2018-02-06 Iscar, Ltd. Ceramic face mill with circular arc profile for machining Inconel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004283951A (en) 2003-03-20 2004-10-14 Kyocera Corp End mill
JP2007030074A (en) 2005-07-25 2007-02-08 Mitsubishi Materials Kobe Tools Corp Radius end mill and cutting method
JP2011212836A (en) 2010-03-19 2011-10-27 Hitachi Tool Engineering Ltd Ball end mill and manufacturing method of the same
JP2013018110A (en) 2011-06-17 2013-01-31 Hitachi Tool Engineering Ltd Multi-edge endmill
JP2015166113A (en) 2014-03-03 2015-09-24 三菱マテリアル株式会社 end mill
JP2016190300A (en) 2015-03-31 2016-11-10 三菱マテリアル株式会社 Roughing end mill
JP2017159380A (en) 2016-03-07 2017-09-14 三菱マテリアル株式会社 Radial end mill
WO2018198445A1 (en) 2017-04-25 2018-11-01 住友電工ハードメタル株式会社 Cutting insert
JP2020510541A5 (en) 2018-02-07 2021-02-04
JP2020196119A (en) 2019-05-31 2020-12-10 株式会社タンガロイ Cutting insert
JP2021010957A (en) 2019-07-04 2021-02-04 株式会社Moldino Radius end mill
JP2021104573A (en) 2019-12-27 2021-07-26 日進工具株式会社 Ball end mill

Also Published As

Publication number Publication date
JP2024067422A (en) 2024-05-17
JP2024068211A (en) 2024-05-17

Similar Documents

Publication Publication Date Title
WO2015008724A1 (en) Cutting insert, cutting tool, and method for manufacturing cut product
JP5614511B2 (en) Ball end mill and insert
JP6652496B2 (en) Drill and method for manufacturing cut workpiece using the same
JP2005001088A (en) Member coated with hard coating film and its manufacturing method
JP6462845B2 (en) Insert, drill, and method of manufacturing a cut product using the same
JP4975395B2 (en) Ball end mill
JPWO2019244796A1 (en) Manufacturing method for rotary tools and cuttings
JP6788032B2 (en) Rotating tool
JP7481617B2 (en) Processing method and mold manufacturing method
JP2004141975A (en) Radius end mill
JP5974695B2 (en) Drill and method for manufacturing drill tip
JP7020162B2 (en) Square end mill
JP7403610B1 (en) coated cutting tools
JP6255925B2 (en) drill
JP4443177B2 (en) Throwaway tip
JP7417112B2 (en) end mill
JP7526894B2 (en) Method for manufacturing rotary tools and machined products
JP6941047B2 (en) Manufacturing method for rotary tools and cuttings
JP7417707B2 (en) End mill and method for manufacturing cut products
JP4370966B2 (en) Grooved tool
JP7140786B2 (en) Rotary cutting tool for cutting hard brittle materials
JP2003165016A (en) Formed cutter for machining turbine blade mounting part
JP5906838B2 (en) Square end mill
JP3639227B2 (en) Drilling tools for brittle materials
JP2002172506A (en) Covered twist drill

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R150 Certificate of patent or registration of utility model

Ref document number: 7403610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150