JP7402123B2 - Rotor, axial gap type transverse flux type rotating electric machine, and assembly method - Google Patents

Rotor, axial gap type transverse flux type rotating electric machine, and assembly method Download PDF

Info

Publication number
JP7402123B2
JP7402123B2 JP2020098327A JP2020098327A JP7402123B2 JP 7402123 B2 JP7402123 B2 JP 7402123B2 JP 2020098327 A JP2020098327 A JP 2020098327A JP 2020098327 A JP2020098327 A JP 2020098327A JP 7402123 B2 JP7402123 B2 JP 7402123B2
Authority
JP
Japan
Prior art keywords
diameter side
magnetic core
magnet
support
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020098327A
Other languages
Japanese (ja)
Other versions
JP2021192562A (en
Inventor
稔 近藤
洋 堺谷
啓悟 浮田
隆行 柏木
泰之 渡邊
友貴 澤上
圭史 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Railway Technical Research Institute
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Toshiba Infrastructure Systems and Solutions Corp filed Critical Railway Technical Research Institute
Priority to JP2020098327A priority Critical patent/JP7402123B2/en
Publication of JP2021192562A publication Critical patent/JP2021192562A/en
Application granted granted Critical
Publication of JP7402123B2 publication Critical patent/JP7402123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、アキシャルギャップ型トランスバースフラックス式回転電機の回転子等に関する。 The present invention relates to a rotor, etc. of an axial gap type transverse flux type rotating electric machine.

回転電機であるモータの分類の1つとして、トランスバースフラックスモータ(TFM:Transverse Flux Motor)が知られる。トランスバースフラックスモータは、Wehにより1986年に提案された高トルク密度のモータである(例えば、非特許文献1を参照)。近年では、トルク密度が重視される分野において様々な研究開発が行われており、Wehが提案したモータを基に三巻線の三相モータを構成し、通常の三相インバータで駆動することができるラジアルギャップ型のトランスバースフラックスモータが提案されている(例えば、特許文献1及び特許文献2を参照)。 Transverse flux motors (TFM) are known as one of the classifications of motors that are rotating electric machines. A transverse flux motor is a high torque density motor proposed by Weh in 1986 (see, for example, Non-Patent Document 1). In recent years, various research and developments have been carried out in fields where torque density is important, and a three-phase motor with three windings was constructed based on the motor proposed by Weh, and it was possible to drive it with a normal three-phase inverter. A radial gap type transverse flux motor has been proposed (for example, see Patent Document 1 and Patent Document 2).

H. Weh and H. May, “Achievable force densities for permanent magnet excited machines in new configuration,” in International Conference on Electrical Machines - ICEM, Munchen, Sept. 1986, pp. 1107-1111.H. Weh and H. May, “Achievable force densities for permanent magnet excited machines in new configuration,” in International Conference on Electrical Machines - ICEM, Munchen, Sept. 1986, pp. 1107-1111.

特開2015-228730号公報JP2015-228730A 特開2019-129563号公報JP 2019-129563 Publication

アキシャルギャップ型トランスバースフラックスモータの回転子の基本構造は、永久磁石と磁心とを周方向へ交互に配置した構造となっている。永久磁石と磁心には、磁力や遠心力が作用するため、互いに強固に連結固定されている必要がある。 The basic structure of the rotor of an axial gap type transverse flux motor is such that permanent magnets and magnetic cores are alternately arranged in the circumferential direction. Since magnetic force and centrifugal force act on the permanent magnet and the magnetic core, they must be firmly connected and fixed to each other.

比較的小型のアキシャルギャップ型トランスバースフラックスモータであれば、永久磁石と磁心とを接着剤で固定する方法を採用できる。しかし、特に、アキシャルギャップ型トランスバースフラックスモータを鉄道車両用の主電動機として採用する場合、回転子が大型になるので、作用する磁力や遠心力も相対的に大きくなる。且つ、モータケース内が比較的高温になる。接着剤は一般的に高温環境下では劣化が促進され、長期間の使用には耐えられない可能性も高い。そのため、接着剤のみによらない永久磁石と磁心との新たな固定方法が望まれる。 For a relatively small axial gap type transverse flux motor, a method of fixing the permanent magnet and the magnetic core with adhesive can be adopted. However, especially when an axial gap type transverse flux motor is employed as a main electric motor for a railway vehicle, the rotor becomes large, so the magnetic force and centrifugal force that act on it also become relatively large. Moreover, the inside of the motor case becomes relatively hot. Adhesives generally deteriorate more quickly in high-temperature environments, and there is a high possibility that they will not be able to withstand long-term use. Therefore, a new method of fixing permanent magnets and magnetic cores that does not rely solely on adhesives is desired.

なお、こうした問題は、アキシャルギャップ型トランスバースフラックス式回転電機を電動機(電動モータ)として用いる場合に限らず、発電機として用いる場合についても同様である。 Note that these problems are not limited to the case where the axial gap type transverse flux type rotating electric machine is used as an electric motor (electric motor), but also apply when the axial gap type transverse flux type rotating electric machine is used as a generator.

本発明の課題は、アキシャルギャップ型トランスバースフラックス式回転電機の回転子に係る永久磁石と磁心との新しい固定技術を提供すること、である。 An object of the present invention is to provide a new technique for fixing permanent magnets and magnetic cores related to the rotor of an axial gap type transverse flux rotating electric machine.

上述した課題を解決するための第1の発明は、アキシャルギャップ型トランスバースフラックス式回転電機の回転子であって、円盤体と、前記円盤体の盤面周方向に間隔を空けて配置される永久磁石と、前記永久磁石を前記円盤体に固定する支持具と、前記盤面周方向に隣り合う前記永久磁石の間に配置される圧粉磁心と、を備え、前記永久磁石は、隣接する前記圧粉磁心への接触面として対磁心テーパ部を有し、前記圧粉磁心は、隣接する前記永久磁石への接触面として対磁石テーパ部を有し、前記永久磁石は、前記対磁心テーパ部を前記円盤体に向けた姿勢で配置され、前記圧粉磁心は、前記対磁石テーパ部を前記対磁心テーパ部に対向させる姿勢で配置される、回転子である。 A first invention for solving the above-mentioned problems is a rotor for an axial gap type transverse flux rotating electrical machine, which includes a disk body and a permanent rotor disposed at intervals in the circumferential direction of the disk surface of the disk body. A magnet, a support for fixing the permanent magnet to the disk body, and a dust core disposed between the permanent magnets adjacent to each other in the circumferential direction of the disk surface, and the permanent magnet The powder magnetic core has a tapered part to the magnetic core as a contact surface to the powder magnetic core, the powder magnetic core has a tapered part to the magnetic core as a contact surface to the adjacent permanent magnet, and the permanent magnet has the tapered part to the magnetic core as a contact surface to the adjacent permanent magnet. The powder magnetic core is a rotor that is arranged in an attitude toward the disk body, and the powder magnetic core is arranged in an attitude that the anti-magnet taper portion faces the anti-magnetic taper portion.

第1の発明の回転子によれば、円盤体を基本構造体とし、円盤体に永久磁石を支持具にて機械的に固定できる。そして、円盤体の盤面周方向に隣接する永久磁石と圧粉磁心との接触を、テーパ構造による接触面とし、隣接する2つの永久磁石で、それらに挟まれた1つの圧粉磁心を円盤体に向けて機械的に固定することができる。よって、接着剤のみによらない永久磁石と圧粉磁心との固定が実現できる。 According to the rotor of the first invention, the basic structure is a disc body, and the permanent magnets can be mechanically fixed to the disc body using a support. Then, the contact between the powder core and the permanent magnets adjacent to each other in the circumferential direction of the disk surface is made into a contact surface with a tapered structure, and one powder magnetic core sandwiched between two adjacent permanent magnets is connected to the disk body. It can be mechanically fixed towards the Therefore, it is possible to fix the permanent magnet and the powder magnetic core without using adhesive alone.

永久磁石は、支持具により強固に固定されるので、例えば当該回転子を大型化し、鉄道車両用の主電動機のような高回転且つ高温環境下での使用に供されるとしても、比較的強い磁力や遠心力と高温に耐え得る設計が可能になる。 Since permanent magnets are firmly fixed by a support, they are relatively strong, even if the rotor is enlarged and used in a high-rotation, high-temperature environment such as a main motor for a railway vehicle. This enables designs that can withstand magnetic force, centrifugal force, and high temperatures.

また、圧粉磁心は、容易に様々な形状に成型でき、高い周波数において低鉄損を実現できる優れた磁性特性を有していることからアキシャルギャップ型等の特殊な鉄心形状が必要な高効率・高出力のモータの磁心として用いられることが知られるところである。圧粉磁心は、絶縁被膜された磁性粒子がプレス成形されているので、引っ張り応力に対して脆性を示し、局所的な機械的結合(例えば、ボルト挿通孔を有する固定片部を設けてボルト締めするなど)を行うと応力集中により破損し易い。しかし、第1の発明の回転子では、圧粉磁心は、永久磁石との接触面(テーパ部の面)により押圧固定されるので、固定に係る応力集中が抑制される。よって、圧粉磁心の固定についても、永久磁石の固定と同様に、高回転且つ高温環境下で使用されたとしても耐え得る設計が可能になる。 In addition, powder magnetic cores can be easily molded into various shapes and have excellent magnetic properties that enable low iron loss at high frequencies. - It is known to be used as the magnetic core of high-output motors. Powder magnetic cores are press-molded magnetic particles covered with an insulating coating, so they are brittle against tensile stress and cannot be locally mechanically bonded (for example, by providing a fixing piece with a bolt insertion hole and tightening the bolts). (e.g.), it is easy to break due to stress concentration. However, in the rotor of the first invention, the powder magnetic core is fixed under pressure by the contact surface (the surface of the tapered part) with the permanent magnet, so that stress concentration related to fixation is suppressed. Therefore, similarly to the fixing of permanent magnets, it is possible to design the fixing of the powder magnetic core so that it can withstand use under high rotation and high temperature environments.

また、回転子の組立方法を考えるに、永久磁石となる素材と圧粉磁心とを予め連結固定して回転子としての形を形成した後に、永久磁石の素材に対して着磁を行って回転子を完成させる組立方法も考え得るが、当該方法では着磁のための装置も複雑となり作業の難度が高くなる。対して、第1の発明の回転子では、予め着磁された永久磁石を支持具で円盤体に個別に固定できるのでそうした着磁に係る困難な工程を経なくて済む。また、2つの永久磁石で挟むようにして1つの圧粉磁心を円盤体に押さえつけて固定する構造となる。このため、例えば、永久磁石を先に固定した後、これに挟まれる圧粉磁心を、テーパ構造を合わせるようにして結合させるといった、あたかもブロックを組み合わせるように永久磁石と圧粉磁心とを交互に組み付けて行く組立工程が可能になる。組立後に着磁を行う組立方法よりも遥かに製作が簡単になる。 In addition, when considering the method of assembling the rotor, the material that will become the permanent magnet and the powder magnetic core are connected and fixed in advance to form the shape of the rotor, and then the material that will become the permanent magnet is magnetized and rotated. Although it is possible to consider an assembly method in which the child is completed, this method requires a complicated magnetizing device and increases the difficulty of the work. On the other hand, in the rotor of the first aspect of the invention, the permanent magnets that have been magnetized in advance can be individually fixed to the disc body using a support, so there is no need to go through such a difficult process related to magnetization. Moreover, it has a structure in which one powder magnetic core is pressed and fixed to a disk body by sandwiching it between two permanent magnets. For this reason, for example, after fixing a permanent magnet first, the powder magnetic core sandwiched between the permanent magnets can be combined by aligning the tapered structures. The assembly process of assembling becomes possible. Manufacturing is much simpler than an assembly method in which magnetization is performed after assembly.

第2の発明は、前記支持具が、前記円盤体の内径側で前記永久磁石に当接した状態で前記円盤体に固定されることで前記永久磁石を固定する内径側支持具と、前記円盤体の外径側で前記永久磁石に当接した状態で前記円盤体に固定されることで前記永久磁石を固定する外径側支持具と、を有し、前記内径側支持具は、当接する前記永久磁石への接触面として内径側対磁石傾斜部を有し、前記外径側支持具は、当接する前記永久磁石への接触面として外径側対磁石傾斜部を有し、前記永久磁石は、当接する前記内径側支持具への接触面として内径側対支持具傾斜部と、当接する前記外径側支持具への接触面として外径側対支持具傾斜部とを有し、前記内径側支持具は、前記内径側対磁石傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、前記外径側支持具は、前記外径側対磁石傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、前記永久磁石は、前記内径側対支持具傾斜部を前記内径側対磁石傾斜部に対向させ、前記外径側対支持具傾斜部を前記外径側対磁石傾斜部に対向させる姿勢で配置される、第1の発明の回転子である。 A second aspect of the present invention provides an inner diameter side support that fixes the permanent magnet by being fixed to the disc body in a state in which the support is in contact with the permanent magnet on the inner diameter side of the disc body; an outer diameter side support that fixes the permanent magnet by being fixed to the disc body while in contact with the permanent magnet on the outer diameter side of the body, and the inner diameter side support is in contact with the permanent magnet. The outer diameter side support has an outer diameter side magnet slope part as a contact surface to the permanent magnet, and the outer diameter side support has an outer diameter side magnet slope part as a contact surface to the permanent magnet. has an inner diameter side supporting device inclined portion as a contact surface to the inner diameter side support that comes into contact, and an outer diameter side supporting device inclined portion as a contact surface to the outer diameter side support that comes into contact, The inner diameter side support is fixed to the disk body in such a manner that the inner diameter side magnet inclined part is directed toward the disk body, and the outer diameter side support is fixed to the disk body in such a manner that the outer diameter side magnet inclined part is directed toward the disk body. The permanent magnet is fixed to the disc body with the inner diameter side supporting device inclined portion facing the inner diameter side opposing magnet inclined portion, and the outer diameter side supporting device inclined portion facing the outer diameter side. This is a rotor according to a first aspect of the invention, which is disposed in a position facing the anti-magnet inclined portion.

第2の発明の回転子は、永久磁石についても、支持具との傾斜面による面接触により、円盤体に向けて押しつけるように固定する。このため、局所的な機械的結合に見られるような応力集中を抑制して固定できる。よって、例えば当該回転子を大型化し、鉄道車両用の主電動機のような高回転且つ高温環境下での使用に供されるとしても、より強固に耐え得る設計が可能になる。 In the rotor of the second aspect of the invention, the permanent magnets are also fixed so as to be pressed against the disk body through surface contact with the support by the inclined surfaces. For this reason, it is possible to suppress the stress concentration seen in local mechanical bonding and fix it. Therefore, for example, even if the rotor is enlarged and used in a high-speed, high-temperature environment such as a main motor for a railway vehicle, it becomes possible to design the rotor to be more durable.

第3の発明は、前記内径側支持具が、前記円盤体の内径側で前記圧粉磁心に当接した状態で前記円盤体に固定されることで前記圧粉磁心を固定し、前記外径側支持具は、前記円盤体の外径側で前記圧粉磁心に当接した状態で前記円盤体に固定されることで前記圧粉磁心を固定し、前記内径側支持具は、当接する前記圧粉磁心への接触面として内径側対磁心傾斜部を有し、前記外径側支持具は、当接する前記圧粉磁心への接触面として外径側対磁心傾斜部を有し、前記圧粉磁心は、当接する前記内径側支持具への接触面として内径側対支持具傾斜部と、当接する前記外径側支持具への接触面として外径側対支持具傾斜部とを有し、前記内径側支持具は、前記内径側対磁心傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、前記外径側支持具は、前記外径側対磁心傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、前記圧粉磁心は、当該圧粉磁心の内径側対支持具傾斜部を前記内径側対磁心傾斜部に対向させ、当該圧粉磁心の外径側対支持具傾斜部を前記外径側対磁心傾斜部に対向させる姿勢で配置される、第1又は第2の発明の回転子である。 A third aspect of the present invention is that the inner diameter side support fixes the powder magnetic core by being fixed to the disk body in a state in which it is in contact with the powder magnetic core on the inner diameter side of the disk body, and The side support fixes the powder magnetic core by being fixed to the disk in a state in which it is in contact with the powder magnetic core on the outer diameter side of the disk; The outer diameter side support has an inner diameter side inclined part toward the magnetic core as a contact surface to the powder magnetic core, and the outer diameter side support has an outer diameter side inclined part towards the magnetic core as a contact surface to the powder magnetic core that comes into contact with the powder magnetic core. The powder magnetic core has an inner diameter side supporting device inclined portion as a contact surface to the inner diameter side support device that comes into contact with the powder magnetic core, and an outer diameter side supporting device inclined portion as a contact surface to the outer diameter side support device that comes into contact with the inner diameter side support device. , the inner diameter side support is fixed to the disk body in a posture with the inner diameter side magnetic core inclined portion facing the disk body, and the outer diameter side support tool is fixed to the disk body with the inner diameter side magnetic core inclined portion facing the disk body. The powder magnetic core is fixed to the disk body in a posture facing the body, and the powder magnetic core is arranged such that the inner diameter side-to-support slope part of the powder magnetic core faces the inner diameter side to the magnetic core slope part, and the outer diameter of the powder magnetic core is The rotor according to the first or second aspect of the present invention is arranged in such a manner that the side supporting device inclined portion faces the outer diameter side magnetic core inclined portion.

第3の発明の回転子は、圧粉磁心の内径側と外径側についても、支持具の傾斜面との面接触により強固に固定できる。 In the rotor of the third aspect of the invention, the inner diameter side and the outer diameter side of the powder magnetic core can also be firmly fixed by surface contact with the inclined surface of the support.

第4の発明は、前記永久磁石が、内径側で前記盤面周方向に配置される内径側磁石と、外径側で前記盤面周方向に配置される外径側磁石とがあり、隣り合う前記内径側磁石と前記外径側磁石とが間隔を空けて配置され、隣り合う前記内径側磁石と前記外径側磁石との間に配置されて当該内径側磁石及び当該外径側磁石を前記円盤体に固定する中間支持具を更に備える、第1~第3の何れかの発明の回転子である。 A fourth aspect of the present invention is that the permanent magnet includes an inner diameter magnet disposed on the inner diameter side in the circumferential direction of the disc surface, and an outer diameter magnet disposed on the outer diameter side in the circumferential direction of the disc surface, and The inner diameter magnet and the outer diameter magnet are arranged at intervals, and the inner diameter magnet and the outer diameter magnet are arranged between the adjacent inner diameter magnet and the outer diameter magnet, so that the inner diameter magnet and the outer diameter magnet can be connected to the disk. The rotor according to any one of the first to third inventions, further comprising an intermediate support that is fixed to the body.

第4の発明の回転子では、永久磁石を2ピース構造とし、径方向の中間位置に固定箇所を増やすことができるので、永久磁石を更に強固に固定できる。 In the rotor of the fourth aspect of the invention, the permanent magnets have a two-piece structure, and the number of fixing points can be increased at radially intermediate positions, so that the permanent magnets can be fixed even more firmly.

第5の発明は、前記圧粉磁心が、前記盤面周方向に隣り合う永久磁石のうちの一方側に当接する一方側磁心と、他方側に当接する他方側磁心とがあり、同じ永久磁石を一方側磁心及び他方側磁心で挟むように配置される、第1~第4の何れかの発明の回転子である。 In a fifth aspect of the present invention, the powder magnetic core includes a one-side magnetic core that abuts on one side of the permanent magnets adjacent in the circumferential direction of the disk surface, and a second-side magnetic core that abuts on the other side, and the powder magnetic core includes the same permanent magnets. A rotor according to any one of the first to fourth inventions, which is arranged to be sandwiched between a magnetic core on one side and a magnetic core on the other side.

また、第6の発明は、前記一方側磁心と、前記他方側磁心と、当該一方側磁心及び当該他方側磁心で挟む前記永久磁石とが、一体のユニットを構成する、第5の発明の回転子である。 Further, a sixth invention is the rotation of the fifth invention, wherein the one-side magnetic core, the other-side magnetic core, and the permanent magnet sandwiched between the one-side magnetic core and the other-side magnetic core constitute an integrated unit. It is a child.

第5又は第6の発明の固定子では、圧粉磁心が盤面周方向に分割された一方側磁心と他方側磁心の2ピース構成となる。予め永久磁石の盤面周方向の一方側磁心と他方側磁心とを接着するなどして先行組立しておけば、永久磁石を円盤体に固定する工程で、圧粉磁心の固定もまかなう事が可能となる。よって、回転子の製作が簡単になる。 In the stator of the fifth or sixth aspect of the invention, the powder magnetic core has a two-piece configuration of one side magnetic core and the other side magnetic core divided in the circumferential direction of the disk surface. If the permanent magnet is assembled in advance by gluing the magnetic core on one side and the magnetic core on the other side in the circumferential direction of the disk surface, it is possible to fix the powder magnetic core in the process of fixing the permanent magnet to the disk body. becomes. Therefore, manufacturing of the rotor becomes easy.

第7の発明は、第1~第6の何れかの発明の回転子を備えるアキシャルギャップ型トランスバースフラックス式回転電機である。 A seventh invention is an axial gap type transverse flux type rotating electric machine comprising the rotor according to any one of the first to sixth inventions.

第7の発明によれば、第1~第6の何れかの発明と同様の効果を有するアキシャルギャップ型トランスバースフラックス式回転電機を実現できる。 According to the seventh invention, it is possible to realize an axial gap type transverse flux type rotating electric machine having the same effects as any of the first to sixth inventions.

第8の発明は、第1~第4の何れかの発明の回転子の組立方法であって、前記円盤体に、前記永久磁石の代用となる非磁性のダミー磁石と、前記圧粉磁心と、前記支持具とを組み付ける第1工程と、前記圧粉磁心を前記円盤体に接着して固定する第2工程と、前記第2工程の後に、前記ダミー磁石を前記永久磁石に組み換える第3工程と、を含む組立方法である An eighth invention is the method for assembling a rotor according to any one of the first to fourth inventions, wherein a non-magnetic dummy magnet serving as a substitute for the permanent magnet and a powder magnetic core are provided in the disk body. , a first step of assembling the support, a second step of adhering and fixing the powder magnetic core to the disc body, and a third step of recombining the dummy magnet with the permanent magnet after the second step. It is an assembly method that includes a process and

高出力・高効率な回転電機を作成する場合、磁力が強力な永久磁石が必要とされ、永久磁石同士の吸引力や反発力が大きくなる。回転子の組立の際には、多数の永久磁石を取り付けることになるが、こうした強力な吸引力や反発力は、組付け作業の観点からは阻害要素になる。また、適切な組み立て性を実現するためには、永久磁石や圧粉磁心の間に接着剤等で充填される適切な隙間が生じるように寸法公差が管理され、隙間は各部において均等に分散されるのが望ましい。しかし、永久磁石の強力な吸引力に任せて組み立てしてしまうと、隙間が均等にならずに偏りが生じ、回転子の構造として好ましくない状態となる場合がある。 When creating a rotating electric machine with high output and high efficiency, permanent magnets with strong magnetic force are required, and the attraction and repulsion between the permanent magnets becomes large. When assembling a rotor, a large number of permanent magnets are attached, but these strong attractive forces and repulsive forces become a hindrance from the perspective of assembly work. In addition, in order to achieve proper assembly, dimensional tolerances are controlled so that appropriate gaps are created between the permanent magnets and powder cores, which are filled with adhesive, etc., and the gaps are evenly distributed in each part. It is desirable to However, if the assembly is left to the strong attractive force of the permanent magnets, the gaps may not be uniform and unevenness may occur, resulting in an unfavorable rotor structure.

しかし、第8の発明によれば、非磁性のダミー磁石と圧粉磁心と支持具とで仮組み立てして、一旦、永久磁石と圧粉磁心との適切な位置関係を実現した後に、圧粉磁心を円盤体に固定し、その後にダミー磁石を1つずつ永久磁石に組み換えることで、永久磁石と圧粉磁心との適切な位置関係を成した回転子の組み立てを実現することができる。 However, according to the eighth invention, after temporarily assembling the non-magnetic dummy magnet, the powder magnetic core, and the support, and once realizing an appropriate positional relationship between the permanent magnet and the powder magnetic core, By fixing the magnetic core to the disk body and then replacing the dummy magnets one by one with permanent magnets, it is possible to assemble a rotor in which the permanent magnets and the powder magnetic core have an appropriate positional relationship.

アキシャルギャップ型トランスバースフラックス式回転電機の構成例及び使用例を説明するための図。FIG. 2 is a diagram for explaining a configuration example and usage example of an axial gap type transverse flux type rotating electric machine. 駆動ユニットの構成例を示す側面図。FIG. 3 is a side view showing a configuration example of a drive unit. 回転子の構成例を示す斜視図。The perspective view which shows the example of a structure of a rotor. 回転子の一部を車軸の軸方向から見た拡大図。An enlarged view of a part of the rotor viewed from the axial direction of the axle. 図4のV-V断面図。FIG. 5 is a sectional view taken along line V-V in FIG. 4. 図4のVI-VI断面図。FIG. 5 is a sectional view taken along VI-VI in FIG. 4. 図4のVII-VII断面図。VII-VII sectional view of FIG. 4. 図4のVIII-VIII断面図。VIII-VIII sectional view of FIG. 4. 回転子の組立方法のうち第1工程を説明するための図。FIG. 3 is a diagram for explaining the first step of the rotor assembly method. 回転子の組立方法のうち第2工程を説明するための図。FIG. 7 is a diagram for explaining a second step in the rotor assembly method. 回転子の組立方法のうち第3工程を説明するための図(その1)。FIG. 3 is a diagram (part 1) for explaining the third step in the rotor assembly method. 回転子の組立方法のうち第3工程を説明するための図(その2)。FIG. 2 is a diagram (part 2) for explaining the third step in the rotor assembly method. 回転子の組立方法を説明するための図であって、第3工程終了後の状態を示す図。FIG. 7 is a diagram for explaining the rotor assembly method and shows the state after the third step. 組付ユニットの構成例を示す図。The figure which shows the example of a structure of an assembly unit. 組付ユニットを用いた回転子の組立方法を説明するための図。FIG. 3 is a diagram for explaining a rotor assembly method using an assembly unit. 回転子と車軸の連結構造の変形例を説明するための図。FIG. 7 is a diagram for explaining a modification of the rotor-axle coupling structure. 連結基体の変形例を説明するための図(その1)。FIG. 7 is a diagram (part 1) for explaining a modification of the connecting base. 連結基体の変形例を説明するための図(その2)。FIG. 7 is a diagram (part 2) for explaining a modification of the connecting base.

以下、本発明の実施形態を説明するが、本発明を適用可能な形態が以下の実施形態に限られないことは勿論である。 Embodiments of the present invention will be described below, but it goes without saying that the forms to which the present invention can be applied are not limited to the following embodiments.

図1は、本実施形態のアキシャルギャップ型トランスバースフラックス式回転電機(以下、略して「ATF回転電機」と言う。)の構成例及び使用例を説明するための図である。なお、構成の理解を容易にするために、ATF回転電機については、一部切り取って内部構造を明らかにしている。 FIG. 1 is a diagram for explaining a configuration example and an example of use of an axial gap type transverse flux type rotating electrical machine (hereinafter referred to as "ATF rotating electrical machine" for short) according to the present embodiment. Note that in order to facilitate understanding of the configuration, the ATF rotating electric machine is partially cut out to clarify the internal structure.

ATF回転電機100は、回転軸(出力軸)が鉄道車両用の輪軸3の車軸3jに直結されたいわゆる「直接駆動式主電動機」である。
具体的には、ATF回転電機100は、モータケース101が反力受け部4を介して、鉄道車両用の台車枠5の横梁部に連結されている。そして、鉄道車両の車体側に固定されているモータ制御装置(不図示)と、ATF回転電機100との間が、三相交流線7・センサ信号線8・接地線9で接続されている。三相交流線7によってモータ制御装置からATF回転電機100へ駆動電流が供給され、センサ信号線8によって回転センサ10の検出信号がモータ制御装置に入力される。接地線9は、ATF回転電機100に設けられた接地装置12によって車軸3jに摺接され、輪軸3を介したレールとの電気的な接地を実現する。また、モータ制御装置には、架線電力(或いは主回路構成に応じて構成される電力変換器等を介した給電電力)を供給する電力線が接続される。
The ATF rotating electrical machine 100 is a so-called "direct drive main motor" whose rotating shaft (output shaft) is directly connected to the axle 3j of the wheel set 3 for a railway vehicle.
Specifically, in the ATF rotating electric machine 100, a motor case 101 is connected to a cross beam part of a bogie frame 5 for a railway vehicle via a reaction force receiving part 4. A motor control device (not shown) fixed to the body of the railway vehicle and the ATF rotating electric machine 100 are connected by a three-phase AC line 7, a sensor signal line 8, and a ground line 9. Drive current is supplied from the motor control device to the ATF rotating electric machine 100 through the three-phase AC line 7, and a detection signal from the rotation sensor 10 is input to the motor control device through the sensor signal line 8. The grounding wire 9 is brought into sliding contact with the axle 3j by a grounding device 12 provided on the ATF rotating electric machine 100, and achieves electrical grounding with the rail via the wheel axle 3. Further, a power line that supplies overhead line power (or power supplied via a power converter or the like configured according to the main circuit configuration) is connected to the motor control device.

輪軸3では、車軸3j上で、モータケース101がベアリング102によって支持されている。そして、モータケース101の主内部空間では、3つの駆動ユニット110(110a,110b,110c)の回転子が車軸3jに固定されている。 In the wheel axle 3, a motor case 101 is supported by a bearing 102 on the axle 3j. In the main internal space of the motor case 101, rotors of three drive units 110 (110a, 110b, 110c) are fixed to the axle 3j.

図2は、駆動ユニット110(110a,110b,110c)の構成例を示す側面図である。1つの駆動ユニット110は、回転子固定部材112を介して車軸3jに固定される2つの回転子120(120a,120b)と、これら2つの回転子120との間の位置でモータケース101内に固定される固定子170と、を有する。 FIG. 2 is a side view showing a configuration example of the drive unit 110 (110a, 110b, 110c). One drive unit 110 is installed in the motor case 101 at a position between two rotors 120 (120a, 120b) fixed to the axle 3j via the rotor fixing member 112 and these two rotors 120. and a fixed stator 170.

回転子固定部材112は、車軸3jの外周に嵌合する円管部113と、その軸方向端部に設けられたフランジ部114と、を有する。円管部113は、車軸3jに圧入されて固定される。フランジ部114は回転子120とボルトで固定される。 The rotor fixing member 112 includes a circular tube portion 113 that fits around the outer periphery of the axle 3j, and a flange portion 114 provided at an axial end of the circular tube portion 113. The circular tube portion 113 is press-fitted into the axle 3j and fixed. The flange portion 114 is fixed to the rotor 120 with bolts.

図3は、回転子120の構成例を示す斜視図である。
図4は、回転子120の一部を車軸3jの軸方向(ATF回転電機100の回転軸方向に同じ)から見た拡大図である。
図5~図8は、回転子120の盤面方向に沿って切った部分断面図であって、それぞれ図4におけるV-V断面図、VI-VI断面図、VII-VII断面図、VIII-VIII断面図である。なお、図5~図8においては各図の(1)は組立状態における当該断面図を示し、各図の(2)は分解状態の当該断面図を示している。
FIG. 3 is a perspective view showing a configuration example of the rotor 120.
FIG. 4 is an enlarged view of a part of the rotor 120 viewed from the axial direction of the axle 3j (same as the rotating shaft direction of the ATF rotating electric machine 100).
5 to 8 are partial cross-sectional views taken along the disk surface direction of the rotor 120, and are a VV cross-sectional view, a VI-VI cross-sectional view, a VII-VII cross-sectional view, and an VIII-VIII cross-sectional view in FIG. 4, respectively. FIG. In FIGS. 5 to 8, (1) in each figure shows the sectional view in the assembled state, and (2) in each figure shows the sectional view in the disassembled state.

図3に示すように、回転子120は、車軸3jの軸方向AX方向から見て中空円板形(平たい円環形)を有している。そして、回転子120は、円盤体121と、連結基体160と、永久磁石130(130a、130b)と、圧粉磁心140と、永久磁石130及び圧粉磁心140を円盤体121へ固定するための支持具150と、を有する。 As shown in FIG. 3, the rotor 120 has a hollow disk shape (flat annular shape) when viewed from the axial direction AX of the axle 3j. The rotor 120 includes a disk body 121, a connecting base 160, permanent magnets 130 (130a, 130b), a powder magnetic core 140, and a structure for fixing the permanent magnet 130 and the powder magnetic core 140 to the disk body 121. It has a support 150.

円盤体121は、回転子120の基本構造体の1つであって、円環を成した盤面に垂直な方向(厚み方向)が薄い非磁性体(例えば、FRP(繊維強化プラスチック:Fiber Reinforced Plastics)製)の中空円板体である。中空部の径は、車軸3jを挿通可能に設定されている。円盤体121は、中空部の縁部122に、複数の貫通孔123を有し、回転子固定部材112のフランジ部114(図2参照)にボルト固定するための取付部を形成している。 The disk body 121 is one of the basic structures of the rotor 120, and the direction perpendicular to the circular disk surface (thickness direction) is made of a thin non-magnetic material (for example, FRP (Fiber Reinforced Plastics). It is a hollow disc body made by ). The diameter of the hollow portion is set such that the axle 3j can be inserted therethrough. The disc body 121 has a plurality of through holes 123 in the edge 122 of the hollow part, and forms a mounting part for bolting to the flange part 114 (see FIG. 2) of the rotor fixing member 112.

連結基体160は、回転子120の基本構造体を成すもう1つの要素であって、円盤体121と同形の円環を成した盤面に垂直な方向(厚み方向)が薄い非磁性のステンレス鋼板又はアルミ板である。また、連結基体160の中空部の縁部には、円盤体121の貫通孔123に対応する孔部164(図5参照)が設けられている。 The connection base 160 is another element forming the basic structure of the rotor 120, and is made of a non-magnetic stainless steel plate or a thin non-magnetic stainless steel plate in the direction perpendicular to the disk surface (thickness direction), which has the same shape as the disk body 121. It is an aluminum plate. Furthermore, a hole 164 (see FIG. 5) corresponding to the through hole 123 of the disk body 121 is provided at the edge of the hollow portion of the connection base 160.

なお、円盤体121と連結基体160には、適宜、位置決めピンを嵌める穴部を設けておき、組み立て時の相対位置関係を高い精度で確保すると好適である。 Note that it is preferable that the disk body 121 and the connection base 160 be provided with holes into which positioning pins are fitted, as appropriate, to ensure a high degree of relative positional relationship during assembly.

永久磁石130には、着磁方向が違う第1種永久磁石130aと第2種永久磁石130bとがある。具体的には、第1種永久磁石130aは、永久磁石130を正面にして盤面方向視(図3の右斜め上から見た場合に)おいて時計回りとなる向きに着磁されているが、第2種永久磁石130bは、盤面方向視において反時計回りとなる向きに着磁されている。そして、第1種永久磁石130aと第2種永久磁石130bは、円盤体121の同一盤面において盤面周方向に間隔を空けて交互に配置されて固定される。 The permanent magnets 130 include a first type permanent magnet 130a and a second type permanent magnet 130b, which have different magnetization directions. Specifically, the first type permanent magnet 130a is magnetized in a clockwise direction when viewed from the direction of the board (when viewed diagonally from the upper right in FIG. 3) with the permanent magnet 130 in front. , the second type permanent magnet 130b is magnetized in a counterclockwise direction when viewed from the direction of the board. The first type permanent magnets 130a and the second type permanent magnets 130b are alternately arranged and fixed on the same disk surface of the disk body 121 at intervals in the circumferential direction of the disk surface.

図4に示すように、1つの永久磁石130は、内径側磁石131と、外径側磁石132との2ピースで構成される。1つの永久磁石130を構成する内径側磁石131と外径側磁石132は、回転子120の径方向に沿って所定間隔を開けて直線状に隣り合わせて配置されて固定される。 As shown in FIG. 4, one permanent magnet 130 is composed of two pieces: an inner magnet 131 and an outer magnet 132. The inner diameter magnet 131 and the outer diameter magnet 132 constituting one permanent magnet 130 are arranged and fixed in a straight line next to each other with a predetermined interval apart along the radial direction of the rotor 120.

内径側磁石131は、図5に示すように、内径側に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である内径側対支持具傾斜部133を有し、外径側面に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である対中間支持傾斜部134を有する。 As shown in FIG. 5, the inner diameter side magnet 131 has an inner diameter side supporting device inclined portion 133 on the inner diameter side, which is an inclined surface whose normal line faces outward with respect to the disk surface when it is fixed to the disk body 121. On the outer diameter side surface thereof, there is provided an intermediate support inclined portion 134 which is an inclined surface whose normal line is directed outward with respect to the disk surface when it is fixed to the disk body 121.

外径側磁石132は、内径側に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である対中間支持傾斜部134を有し、外径側に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である外径側対支持具傾斜部135を有する。 The outer diameter side magnet 132 has, on the inner diameter side, an intermediate support inclined portion 134, which is an inclined surface whose normal line faces outward with respect to the disk surface when it is fixed to the disk body 121, and on the outer diameter side, It has an outer diameter side supporting device inclined portion 135 which is an inclined surface whose normal line is directed outward with respect to the disk surface when it is fixed to the disk body 121.

また、図7に示すように、外径側磁石132は、盤面周方向の両側面に、円盤体121に固定された状態において法線が盤面向きになる傾斜面である対磁心テーパ部136を有する。図示されていないが、同様にして、内径側磁石131も、盤面周方向の両側面に、円盤体121に固定された状態において法線が盤面向きになる傾斜面である対磁心テーパ部136を有する。つまり、外径側磁石132と外径側磁石132は、ともに回転子120が組み立てられると、対磁心テーパ部136を円盤体121に向けた姿勢で配置される。 In addition, as shown in FIG. 7, the outer diameter side magnet 132 has a core-to-core taper portion 136 on both sides in the circumferential direction of the disk surface, which is an inclined surface whose normal line is directed toward the disk surface when it is fixed to the disk body 121. have Although not shown, the inner diameter side magnet 131 also has core-to-core taper portions 136 on both side surfaces in the circumferential direction of the disk surface, which are inclined surfaces whose normal lines face the disk surface when fixed to the disk body 121. have That is, when the rotor 120 is assembled, both the outer diameter side magnets 132 and the outer diameter side magnets 132 are arranged with the core-to-core taper portions 136 facing the disk body 121.

図3及び図4に戻って、圧粉磁心140は、円盤体121の盤面周方向に隣り合う永久磁石130の間に配置される。 Returning to FIGS. 3 and 4, the powder magnetic core 140 is arranged between the permanent magnets 130 adjacent to each other in the circumferential direction of the disk surface of the disk body 121.

そして、圧粉磁心140は、図8に示すように、内径側に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である内径側対支持具傾斜部142を有し、外径側面に、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である外径側対支持具傾斜部143を有する。 As shown in FIG. 8, the powder magnetic core 140 has an inclined surface on the inner diameter side where the normal line faces outward with respect to the disk surface when the powder core 140 is fixed to the disk body 121. 142, and has an outer diameter side supporting device inclined portion 143 on the outer diameter side surface, which is an inclined surface whose normal line is directed outward with respect to the disk surface when it is fixed to the disk body 121.

また、図7に示すように、圧粉磁心140は、盤面周方向の側面が、円盤体121に固定された状態において法線が盤面に対して外向きになる傾斜面である対磁石テーパ部144を形成している。対磁石テーパ部144は、永久磁石130の対磁心テーパ部136と対応関係を成し、相互に面接触するように円盤体121の盤面に対して同じ傾斜角に設定されている。回転子120が組み立てられると、圧粉磁心140は、対磁石テーパ部144を対磁心テーパ部136に対向させる姿勢で配置される。 Further, as shown in FIG. 7, the powder magnetic core 140 has an anti-magnet tapered portion whose side surface in the circumferential direction of the disk surface is an inclined surface whose normal line faces outward with respect to the disk surface when it is fixed to the disk body 121. 144 is formed. The magnet-to-magnet taper portion 144 corresponds to the core-to-core taper portion 136 of the permanent magnet 130, and is set at the same inclination angle with respect to the disk surface of the disk body 121 so that they are in surface contact with each other. When the rotor 120 is assembled, the powder magnetic core 140 is arranged in such a manner that the anti-magnet tapered portion 144 faces the anti-magnetic tapered portion 136.

図3及び図4に戻って、支持具150は、永久磁石130及び圧粉磁心140を円盤体121に固定する部材である。具体的には、支持具150は、内径側支持具151と、中間支持具152と、外径側支持具153と、を有する。そして、図5に示すように、内径側支持具151・中間支持具152・外径側支持具153は、取付ボルト159によって連結基体160に固定される。具体的には、取付ボルト159は、円盤体121の挿通孔124に挿通されて、連結基体160の雌ネジ部162に螺合し、内径側支持具151・中間支持具152・外径側支持具153それぞれが、連結基体160との間に円盤体121を挟むようにして固定される。 Returning to FIGS. 3 and 4, the support 150 is a member that fixes the permanent magnet 130 and the powder magnetic core 140 to the disk body 121. Specifically, the support 150 includes an inner support 151, an intermediate support 152, and an outer support 153. As shown in FIG. 5, the inner support 151, the intermediate support 152, and the outer support 153 are fixed to the connection base 160 with mounting bolts 159. Specifically, the mounting bolt 159 is inserted into the insertion hole 124 of the disk body 121, screwed into the female threaded portion 162 of the connection base 160, and is connected to the inner support 151, the intermediate support 152, and the outer support. Each of the tools 153 is fixed to the connecting base 160 so that the disk body 121 is sandwiched therebetween.

内径側支持具151は、円盤体121の内径側で永久磁石130(内径側磁石131)に当接した状態で円盤体121に固定されて、当接する永久磁石130を円盤体121に固定する。 The inner diameter side support 151 is fixed to the disk body 121 in a state in which it is in contact with the permanent magnet 130 (inner diameter side magnet 131) on the inner diameter side of the disk body 121, and fixes the abutting permanent magnet 130 to the disk body 121.

具体的には、内径側支持具151は、図5に示すように、円盤体121に固定された状態において外径側となる側面に、永久磁石130(内径側磁石131)と当接する接触面として内径側対磁石傾斜部154を有する。内径側支持具151は、この内径側対磁石傾斜部154を円盤体121に向けた姿勢で円盤体121に固定される。そして、固定されると、内径側対磁石傾斜部154が、永久磁石130の内径側対支持具傾斜部133に対向し、これを円盤体121へ向けて押さえつけることになる。 Specifically, as shown in FIG. 5, the inner diameter support 151 has a contact surface that comes into contact with the permanent magnet 130 (inner diameter magnet 131) on the side surface that becomes the outer diameter side when fixed to the disc body 121. It has an inner radially opposite magnet inclined portion 154 as an inner diameter side. The inner support 151 is fixed to the disc body 121 with the inner diameter side anti-magnet inclined portion 154 facing the disc body 121. Then, when fixed, the inner diameter side opposite magnet inclined part 154 opposes the inner diameter side opposite supporter inclined part 133 of the permanent magnet 130 and presses it toward the disc body 121.

また、内径側対磁石傾斜部154の盤面周方向に沿った長さに着目すると、図4及び図8に示すように、内径側対磁石傾斜部154は、永久磁石130の内径側対支持具傾斜部133に対応する長さを超えて、圧粉磁心140の内径側対支持具傾斜部142に対向する位置まで達している。ゆえに、内径側対磁石傾斜部154は、内径側対磁心傾斜部としても機能することになる。 Moreover, when paying attention to the length of the inner diameter side magnet inclined part 154 along the circumferential direction of the board surface, as shown in FIGS. It extends beyond the length corresponding to the sloped portion 133 and reaches a position opposite to the support sloped portion 142 on the inner diameter side of the powder magnetic core 140 . Therefore, the radially inner magnet inclined portion 154 also functions as the inner radially inclined portion toward the magnetic core.

よって、内径側対磁石傾斜部154は、内径側磁石131の内径側対支持具傾斜部133及び圧粉磁心140の内径側対支持具傾斜部142と対応関係を成し、これらと相互に面接触するように円盤体121の盤面に対して同じ傾斜角に設定されている。 Therefore, the inner-diameter-side magnet inclined portion 154 corresponds to the inner-diameter-side supporter inclined portion 133 of the inner-diameter magnet 131 and the inner-diameter supporter inclined portion 142 of the powder magnetic core 140, and is in a plane with each other. The angle of inclination is set to be the same with respect to the disk surface of the disk body 121 so that they are in contact with each other.

中間支持具152は、図4に示すように、回転子120の径方向に隣り合う内径側磁石131と外径側磁石132との間に配置されて内径側磁石131及び外径側磁石132を円盤体121に固定する部材である。 As shown in FIG. 4, the intermediate support 152 is disposed between the inner diameter side magnet 131 and the outer diameter side magnet 132 that are adjacent to each other in the radial direction of the rotor 120. This is a member fixed to the disc body 121.

具体的には、中間支持具152は、図5に示すように、円盤体121に固定された状態において内径側及び外径側となる両側面に、それぞれ内径側磁石131・外径側磁石132と当接する接触面として対磁石傾斜部156を有する。この対磁石傾斜部156は、対中間支持傾斜部134と対応関係を成し、相互に面接触するように円盤体121の盤面に対して同じ傾斜角に設定されている。 Specifically, as shown in FIG. 5, the intermediate support 152 has an inner diameter magnet 131 and an outer diameter magnet 132 on both sides, which are the inner diameter side and the outer diameter side, respectively, when fixed to the disc body 121. It has an anti-magnet inclined portion 156 as a contact surface that comes into contact with the magnet. The anti-magnet inclined portion 156 corresponds to the intermediate support inclined portion 134, and is set at the same inclination angle with respect to the disk surface of the disk body 121 so that they are in surface contact with each other.

また、中間支持具152は、図6に示すように、円盤体121に固定された状態において盤面周方向側面に、圧粉磁心140と当接する接触面として対磁心傾斜部157を有する。対磁心傾斜部157は、対磁石テーパ部144と対応関係を成し、相互に面接触するように円盤体121の盤面に対して同じ傾斜角に設定されている。 Further, as shown in FIG. 6, the intermediate support 152 has a magnetic core inclined portion 157 on the side surface in the circumferential direction of the disk surface as a contact surface that comes into contact with the powder magnetic core 140 when it is fixed to the disk body 121. The anti-magnetic core inclined portion 157 corresponds to the anti-magnet tapered portion 144, and is set at the same inclination angle with respect to the disk surface of the disk body 121 so that they are in surface contact with each other.

外径側支持具153は、図4に示すように、円盤体121の外径側で永久磁石130(外径側磁石132)に当接した状態で円盤体121に固定されて、当接する永久磁石130を円盤体121に固定する。 As shown in FIG. 4, the outer diameter side support 153 is fixed to the disk body 121 in a state in which it is in contact with the permanent magnet 130 (outer diameter side magnet 132) on the outer diameter side of the disk body 121. A magnet 130 is fixed to the disc body 121.

具体的には、外径側支持具153は、図5に示すように、円盤体121に固定された状態において内径側となる側面に、永久磁石130(外径側磁石132)と当接する接触面として外径側対磁石傾斜部158を有する。外径側支持具153は、この外径側対磁石傾斜部158を円盤体121に向けた姿勢で円盤体121に固定される。そして、固定されると、外径側対磁石傾斜部158が、永久磁石130の外径側対支持具傾斜部135に対向し、これを円盤体121へ向けて押さえつけることになる。 Specifically, as shown in FIG. 5, the outer diameter side support 153 has a contact surface that comes into contact with the permanent magnet 130 (outer diameter side magnet 132) on the inner diameter side side when it is fixed to the disc body 121. It has an outer diameter side magnet inclined portion 158 as a surface. The outer diameter side support member 153 is fixed to the disk body 121 with the outer diameter side anti-magnet inclined portion 158 facing the disk body 121. When fixed, the outer-diameter-side magnet inclined portion 158 faces the outer-diameter-side supporter inclined portion 135 of the permanent magnet 130 and presses it toward the disc body 121.

また、外径側支持具153の盤面周方向に沿った長さに着目すると、図4及び図8に示すように、外径側対磁石傾斜部158は、永久磁石130の外径側対支持具傾斜部135に対応する長さを超えて、圧粉磁心140の外径側対支持具傾斜部143に対向する位置まで達している。よって、外径側対磁石傾斜部158は、外径側磁石132の外径側対支持具傾斜部135(図5参照)及び圧粉磁心140の外径側対支持具傾斜部143(図8参照)と対応関係を成し、これらと相互に面接触するように円盤体121の盤面に対して同じ傾斜角に設定されている。ゆえに、外径側対磁石傾斜部158は、外径側対磁心傾斜部としても機能することになる。 Further, when paying attention to the length of the outer diameter side supporting member 153 along the circumferential direction of the board surface, as shown in FIGS. It extends beyond the length corresponding to the tool inclined portion 135 and reaches a position opposite to the support tool inclined portion 143 on the outer diameter side of the powder magnetic core 140 . Therefore, the outer diameter side magnet slope portion 158 is the outer diameter side support slope portion 135 of the outer diameter side magnet 132 (see FIG. 5) and the outer diameter side support slope portion 143 of the powder magnetic core 140 (see FIG. 8). (see), and are set at the same inclination angle with respect to the disk surface of the disk body 121 so as to be in surface contact with them. Therefore, the outer diameter side magnet inclined part 158 also functions as an outer diameter side inclined part towards the magnetic core.

次に、図9~図13を参照しながら、回転子120の組立方法について説明する。
図9に示すように、回転子120の第1工程では、作業者は、連結基体160を、円盤体121の一方の盤面に接着やネジ止めなどの方法で固定する。そして、円盤体121に、永久磁石130の代用となる非磁性のダミー磁石130Dと、圧粉磁心140と、内径側支持具151及び中間支持具152とを組み付ける。ダミー磁石130Dを構成するダミー内径側磁石131D及びダミー外径側磁石132Dと、中間支持具152とは、予め接着して一体にしておくと、組み立てがし易くて好適である。
Next, a method for assembling the rotor 120 will be described with reference to FIGS. 9 to 13.
As shown in FIG. 9, in the first step of the rotor 120, an operator fixes the connecting base 160 to one surface of the disk body 121 by adhesive, screwing, or the like. Then, a non-magnetic dummy magnet 130D, which is a substitute for the permanent magnet 130, a powder magnetic core 140, an inner support 151, and an intermediate support 152 are assembled to the disk body 121. It is preferable that the dummy inner diameter side magnet 131D and the dummy outer diameter side magnet 132D constituting the dummy magnet 130D and the intermediate support 152 are bonded together in advance to facilitate assembly.

もし、ダミー磁石130Dを用いずに組み立てるとなると、磁力による吸引力や反発力の影響を受けて、吸引力が作用するところでは、設計に従った所定位置よりも接近した位置で、所定の隙間関係よりも小さい隙間関係で組み立てられてしまう。反発力が作用するところではこの逆となる。そのために、本来分散されるべき隙間関係に偏りが生じ、例えば回転子120として好ましからざる状態になってしまう可能性がある。 If it is assembled without using the dummy magnet 130D, it will be affected by the attractive force and repulsive force caused by the magnetic force, and the places where the attractive force acts will be closer than the specified position according to the design, and the predetermined gap will be removed. It is assembled with a gap relationship that is smaller than the relationship. The opposite is true where a repulsive force acts. Therefore, there is a possibility that the gap relationship that should be originally distributed becomes biased, resulting in an unfavorable state for the rotor 120, for example.

しかし、ダミー磁石130Dは非磁性なので、作業員は、磁力による吸引力や反発力の影響を受けること無く、簡単にそして永久磁石130と圧粉磁心140と支持具150とが、設計に従った所定位置に所定の隙間関係を有するように簡単に組み立てることができる。隙間関係の偏りは生じ難く、ダミーを使用しない場合よりも適切な位置で組み立てられる。 However, since the dummy magnet 130D is non-magnetic, the worker can easily align the permanent magnet 130, powder magnetic core 140, and support 150 according to the design without being affected by magnetic attraction or repulsion. It can be easily assembled to have a predetermined gap relationship at a predetermined position. Unbalanced gaps are less likely to occur, and the assembly can be performed at a more appropriate position than when no dummy is used.

第1工程の後に実行する第2工程では、作業員は、圧粉磁心140を一本ずつ抜き、図10に示すように、抜いた圧粉磁心140の円盤体121と接する面に接着剤を塗布した上で、抜いた場所に圧粉磁心140を差し込んで接着により固定する。全ての圧粉磁心140を接着すると第3工程に移る。 In the second step performed after the first step, the worker pulls out the powder magnetic cores 140 one by one and applies adhesive to the surface of the extracted powder magnetic core 140 that contacts the disc body 121, as shown in FIG. After applying the powder, a powder magnetic core 140 is inserted into the removed place and fixed by adhesive. After all powder magnetic cores 140 are bonded, the process moves to the third step.

第3工程では、図11に示すように、1つのダミー磁石130Dについて、中間支持具152を外してダミー磁石130D(ダミー内径側磁石131D及びダミー外径側磁石132D)を外し、図12に示すように、永久磁石130(内径側磁石131及び外径側磁石132)に組み換え、中間支持具152及び外径側支持具153を取り付ける。1つずつ全てのダミー磁石130Dを永久磁石130に組み換える。永久磁石130を構成する内径側磁石131及び外径側磁石132と、中間支持具152とを、予め接着して一体にしておくと、作業性が向上するので好適である。 In the third step, as shown in FIG. 11, for one dummy magnet 130D, the intermediate support 152 is removed and the dummy magnet 130D (dummy inner diameter side magnet 131D and dummy outer diameter side magnet 132D) is removed. The permanent magnet 130 (the inner magnet 131 and the outer magnet 132) is reassembled, and the intermediate support 152 and the outer support 153 are attached. All the dummy magnets 130D are replaced with permanent magnets 130 one by one. It is preferable to bond the inner diameter side magnet 131 and the outer diameter side magnet 132 constituting the permanent magnet 130 and the intermediate support member 152 together in advance to improve workability.

全てのダミー磁石130Dの組み換えが終了すると、図13に示すように、回転子120の組立が完了となる。組立が完了すると、永久磁石130は、内径側端部と外径側端部とこれらの中間位置のそれぞれにおいて、内径側支持具151・中間支持具152・外径側支持具153により、円盤体121に向けて押さえつけられ、機械的に固定される。また、組立が完了すると、圧粉磁心140は、内径側端部と外径側端部とが、それぞれ内径側支持具151・外径側支持具153により、円盤体121に向けて押さえつけられ、機械的に固定される。また、盤面周方向に着目すれば、圧粉磁心140は、隣接する2つの永久磁石130(具体期には、内径側磁石131,外径側磁石132)及び中間支持具152により、円盤体121に向けて押さえつけられ、機械的に固定される。 When all the dummy magnets 130D have been reassembled, assembly of the rotor 120 is completed, as shown in FIG. 13. When the assembly is completed, the permanent magnet 130 is attached to a disc body by the inner diameter side support 151, the intermediate support 152, and the outer diameter side support 153 at the inner diameter side end, the outer diameter side end, and an intermediate position between these. 121 and mechanically fixed. Further, when the assembly is completed, the powder magnetic core 140 has its inner diameter side end and outer diameter side end pressed toward the disc body 121 by the inner diameter side supporter 151 and the outer diameter side supporter 153, respectively. Mechanically fixed. In addition, if we pay attention to the circumferential direction of the disk surface, the powder magnetic core 140 is supported by the disk body 121 by the two adjacent permanent magnets 130 (specifically, the inner diameter side magnet 131 and the outer diameter side magnet 132) and the intermediate support 152. It is pressed down and mechanically fixed.

組立完了した回転子120は、適宜、回転バランス調整を行う。この際、連結基体160を、重心位置を適切に補正するためのバランスウェイトの取付構造部として用いてもよい。或いは、連結基体160に十分な厚さを設定しているならば、連結基体160を削って補正を行うとしてもよい。 The assembled rotor 120 undergoes rotational balance adjustment as appropriate. At this time, the connecting base 160 may be used as a mounting structure for a balance weight to appropriately correct the center of gravity position. Alternatively, if the connection base 160 is set to have a sufficient thickness, the correction may be made by cutting the connection base 160.

なお、固定子170(図2参照)は、公知のアキシャルギャップ型トランスバースフラックスモータと同様にして実現することができる。例えば、特許文献3の固定子を用いることができる。 Note that the stator 170 (see FIG. 2) can be realized in the same manner as a known axial gap type transverse flux motor. For example, the stator disclosed in Patent Document 3 can be used.

以上、本実施形態によれば、アキシャルギャップ型トランスバースフラックス式回転電機(ATF回転電機)の回転子に係る永久磁石と磁心との新しい固定技術を提供することができる。 As described above, according to the present embodiment, it is possible to provide a new technique for fixing a permanent magnet and a magnetic core related to a rotor of an axial gap type transverse flux type rotating electrical machine (ATF rotating electrical machine).

ATF回転電機100では、円盤体121を回転子120の基本構造体とし、これに永久磁石130を支持具150にて機械的に固定する。そして、盤面周方向に隣接する永久磁石130と圧粉磁心140との接触をテーパ構造による面接触とし、隣接する2つの永久磁石130で、それらに挟まれた1つの圧粉磁心140を円盤体121に向けて機械的に固定することができる。よって、接着剤のみによらない永久磁石と圧粉磁心との固定が実現できる。 In the ATF rotating electrical machine 100, a disk body 121 is used as the basic structure of the rotor 120, and a permanent magnet 130 is mechanically fixed to this with a support 150. Then, the contact between the permanent magnets 130 and the powder magnetic core 140 that are adjacent to each other in the circumferential direction of the disk surface is a surface contact with a tapered structure, and one powder magnetic core 140 sandwiched between two adjacent permanent magnets 130 is connected to the disk. 121 and can be mechanically fixed. Therefore, it is possible to fix the permanent magnet and the powder magnetic core without using adhesive alone.

永久磁石130は、支持具150により強固に固定されるので、当該回転子を大型化し、鉄道車両用の主電動機のような高回転且つ高温環境下での使用に供されるとしても、比較的強い遠心力にも耐え得る設計が可能になる。 Since the permanent magnet 130 is firmly fixed by the support 150, even if the rotor is enlarged and used in a high-rotation, high-temperature environment such as a main motor for a railway vehicle, it is relatively small. This enables designs that can withstand strong centrifugal force.

また、圧粉磁心140は、そもそも絶縁被膜された磁性粒子がプレス成形されているので、引っ張り応力に対して脆性を示し、局所的な機械的結合を行うと応力集中により破損し易い。しかし、ATF回転電機100では、圧粉磁心140は、永久磁石130により面により押圧固定されるので、固定に係る応力集中が抑制される。よって、圧粉磁心140の固定についても、永久磁石130の固定と同様に、高回転且つ高温環境下で使用されたとしても耐え得る設計が可能になる。 Moreover, since the powder magnetic core 140 is originally press-molded from magnetic particles coated with an insulating film, it exhibits brittleness against tensile stress and is likely to be damaged due to stress concentration if local mechanical bonding is performed. However, in the ATF rotary electric machine 100, the powder magnetic core 140 is fixed by pressing against the surface of the permanent magnet 130, so that stress concentration related to fixing is suppressed. Therefore, similarly to the fixing of the permanent magnet 130, the fixing of the powder magnetic core 140 can be designed to withstand even if used in a high rotation and high temperature environment.

また、回転子120の組立工程においても、ATF回転電機100は、非磁性のダミー磁石130Dを使って仮組みすることで、永久磁石130と圧粉磁心140との適切な位置関係を実現した後に、ダミー磁石130Dを1つずつ永久磁石に組み換えることで、永久磁石130と圧粉磁心140との適切な位置関係を成した組み立てを実現できる。 In addition, in the assembly process of the rotor 120, the ATF rotating electric machine 100 is temporarily assembled using the non-magnetic dummy magnet 130D, after achieving an appropriate positional relationship between the permanent magnet 130 and the powder magnetic core 140. By replacing the dummy magnets 130D one by one with permanent magnets, it is possible to assemble the permanent magnets 130 and the powder magnetic core 140 in an appropriate positional relationship.

〔変形例〕
以上、本発明を適用した実施形態の一例について説明したが、本発明を適用可能な実施形態は、上記実施形態に限定されるものではなく、適宜構成要素の省略・追加・変更を行うことができる。
[Modified example]
Although an example of an embodiment to which the present invention is applied has been described above, the embodiment to which the present invention is applicable is not limited to the above embodiment, and components may be omitted, added, or changed as appropriate. can.

(変形例その1)
上記実施形態では、ATF回転電機100を、鉄道車両用の「直接駆動式主電動機」として使用した例を示したが、ATF回転電機100の用途はこれに限定されるものではない。例えば、運搬車両の原動機、ポンプなどの産業機械類の原動機、そして発電機としても使用可能である。ATF回転電機100を鉄道車両用の主電動機として使用する場合でも、回生ブレーキとしても機能し、その時は発電機となる。
(Modification 1)
In the above embodiment, an example was shown in which the ATF rotating electric machine 100 was used as a "direct drive type main motor" for a railway vehicle, but the use of the ATF rotating electric machine 100 is not limited to this. For example, it can be used as a prime mover for transportation vehicles, a prime mover for industrial machinery such as pumps, and a generator. Even when the ATF rotating electric machine 100 is used as a main electric motor for a railway vehicle, it also functions as a regenerative brake, and at that time becomes a generator.

(変形例その2)
また、上記実施形態では、1つのATF回転電機100が、3つの駆動ユニット110を備えた構成を例示したが、駆動ユニット110が例えば「3」の整数倍であれば1つのATF回転電機100に備える駆動ユニット110の数は、適宜設定可能である。
(Modification 2)
Further, in the above embodiment, one ATF rotating electrical machine 100 has been illustrated as having three drive units 110, but if the number of drive units 110 is an integral multiple of "3", for example, one ATF rotating electrical machine 100 has three drive units 110. The number of drive units 110 provided can be set as appropriate.

(変形例その3)
また、上記実施形態の圧粉磁心140を、盤面周方向に分割構成し、複数の磁心パーツで1つの圧粉磁心140とする構成も可能である。
具体的には、図14に示すように、圧粉磁心140を、盤面周方向に隣り合う永久磁石130のうちの一方側に当接する一方側磁心140Lと、他方側に当接する他方側磁心140Rとの2ピース構造とする。図14中、破線は上記実施形態における圧粉磁心140の大きさを示している。そして、予め、同じ1つの永久磁石130の盤面周方向の一方側に一方側磁心140Lを取り付け、盤面周方向の他方側に他方側磁心140Rを取り付けて、一方側磁心140Lと他方側磁心140Rで1つの永久磁石130を挟んだ組付ユニット180を作成しておく。
(Modification 3)
Further, it is also possible to configure the powder magnetic core 140 of the above embodiment to be divided in the circumferential direction of the disk surface, so that a plurality of magnetic core parts constitute one powder magnetic core 140.
Specifically, as shown in FIG. 14, the powder magnetic core 140 is divided into one side magnetic core 140L that abuts one side of the permanent magnets 130 adjacent in the circumferential direction of the disk surface, and the other side magnetic core 140R that abuts the other side. It has a two-piece structure. In FIG. 14, the broken line indicates the size of the powder magnetic core 140 in the above embodiment. Then, in advance, one side magnetic core 140L is attached to one side of the same permanent magnet 130 in the circumferential direction of the disk surface, and the other side magnetic core 140R is attached to the other side of the disk surface circumferential direction, so that the one side magnetic core 140L and the other side magnetic core 140R are connected. An assembly unit 180 sandwiching one permanent magnet 130 is created in advance.

勿論、上記実施形態におけるダミー磁心140Dも同様にして2ピース構成として、ダミー磁石130Dとともにダミー組付ユニット180Dを作成しておく。 Of course, the dummy magnetic core 140D in the above embodiment has a two-piece configuration in the same manner, and a dummy assembly unit 180D is created together with the dummy magnet 130D.

そして、図15に示すように、当該構成を採用した場合の回転子120Bの組立工程では、第1工程として、ダミー組付ユニット180Dで組み立てを行い、第2工程として、ダミー組付ユニット180Dを1つずつ組付ユニット180に交換する。つまり、組付ユニット180を作成することで、上記実施形態の第2工程と第3工程とを纏めて、1つの工程とすることができる。 As shown in FIG. 15, in the assembly process of the rotor 120B when this configuration is adopted, the first process is to assemble the dummy assembly unit 180D, and the second process is to assemble the dummy assembly unit 180D. The assembly units 180 are replaced one by one. That is, by creating the assembly unit 180, the second process and the third process of the above embodiment can be combined into one process.

(変形例その4)
また、支持具150と、これに支持される部材との関係は上記実施形態に限定されない。例えば、図15示すように、(1)上記実施形態におけるn個(nは2以上の整数;図15ではn=3の例)の内径側支持具151を1つの集約型内径側支持具151Eとする、(2)上記実施形態におけるm個(mは2以上の整数;図15ではm=3の例)の外径側支持具153を1つの集約型外径側支持具153Eとする、の何れか又は両方の構成も可能である。
(Modification example 4)
Further, the relationship between the support 150 and the members supported by it is not limited to the above embodiment. For example, as shown in FIG. 15, (1) n pieces (n is an integer of 2 or more; n=3 in FIG. 15) of the inner diameter side supports 151 in the above embodiment are combined into one integrated inner diameter side support 151E. (2) The m outer diameter side supports 153 in the above embodiment (m is an integer of 2 or more; in the example of m=3 in FIG. 15) are made into one integrated outer diameter side support 153E, Either or both configurations are also possible.

(変形例その5)
第1工程と第2工程の内容は、上記実施形態の例に限らない。
例えば、円盤体121の盤面に圧粉鉄心140の取付位置を示すマーキング(又は、圧粉鉄心140の盤面が浅く嵌まる窪みの作成)を行っておくこととする。そして、第1工程において、盤面側に接着剤を塗布した圧粉鉄心140を、けがきされた取付位置にそれぞれ貼り付け、接着剤が乾く前にダミー磁石130・内径側支持具151・中間支持具152を、設計された適切な隙間関係を成すように組み付けるとしてもよい。つまり、第1工程は、圧粉鉄心140の円盤体121に固定する第2工程を兼ねている構成も可能である。
(Modification example 5)
The contents of the first step and the second step are not limited to those in the above embodiment.
For example, markings are made on the surface of the disk body 121 to indicate the mounting position of the powder core 140 (or a recess is created into which the surface of the powder core 140 is shallowly fitted). Then, in the first step, the powder cores 140 coated with adhesive on the board side are pasted on the marked mounting positions, and before the adhesive dries, the dummy magnet 130, inner support 151, and intermediate support are attached. The fixtures 152 may be assembled with the appropriate designed gap relationship. That is, the first step may also be configured to serve as the second step of fixing the powder core 140 to the disc body 121.

或いは、圧粉磁心140の盤面側に別途予め溝を設けておく。また、円盤体121及び連結基体160に、圧粉磁心140を円盤体121の盤面に取り付けたときに、圧粉磁心140の溝に達する接着剤の注入路を設けておく。そして、第2工程を、この注入路に接着剤を注入して圧粉磁心140を円盤体121に対して固定する工程とするとしてもよい。 Alternatively, grooves are separately provided in advance on the plate side of the powder magnetic core 140. In addition, an adhesive injection path is provided in the disk body 121 and the connection base 160 to reach the groove of the powder magnetic core 140 when the powder magnetic core 140 is attached to the disk surface of the disk body 121. Then, the second step may be a step of injecting adhesive into this injection path to fix the powder magnetic core 140 to the disc body 121.

(変形例その6)
また、上記実施形態では、回転子120と車軸3jとの連結は、連結基体160と円盤体121とフランジ114とを、ボルトとナットで挟んで締め付けて固定する構成としたがこれに限らない。例えば図16は、回転子固定部材112Bの変形例を示す径方向断面における部分断面図である。回転子固定部材112Bのように、フランジ部114と連結基体160とで挟んで固定するとしてもよい。具体的には、固定ボルト116を、連結基体160の孔部164および円盤体121の貫通孔123に挿通し、フランジ部114の雌ネジ部115に螺合させて締め付ける。フランジ部114を、車軸3jの軸方向から見ると円環状になっているので、固定ボルト116の締め付け軸荷重がフランジ部114と円盤体121の縁部122とに広く分散され、貫通孔123周りへの締め付け軸荷重の応力を分散できる。
(Modification 6)
Further, in the embodiment described above, the rotor 120 and the axle 3j are connected by fixing the connection base 160, the disk body 121, and the flange 114 by sandwiching and tightening them with bolts and nuts, but the present invention is not limited to this. For example, FIG. 16 is a partial cross-sectional view in the radial direction showing a modified example of the rotor fixing member 112B. It may be fixed by being sandwiched between the flange portion 114 and the connection base 160 like the rotor fixing member 112B. Specifically, the fixing bolt 116 is inserted into the hole 164 of the connection base 160 and the through hole 123 of the disc body 121, and is screwed into the female screw portion 115 of the flange portion 114 and tightened. Since the flange portion 114 has an annular shape when viewed from the axial direction of the axle 3j, the tightening axial load of the fixing bolt 116 is widely distributed between the flange portion 114 and the edge 122 of the disk body 121, and is distributed around the through hole 123. The stress of the tightening axial load can be dispersed.

(変形例その7)
また、上記実施形態では、連結基体160の形状を、車軸の軸方向AXから見ると円盤体121と略同形の円環を有する薄板としたが、これに限らない。例えば、図17に示す連結基体160Bのように、車軸の軸方向AXから見ると、取付ボルト159に対応する雌ネジ部162を有する3つのリング部165(165a,165b,165c)と、スポーク部166とを組み合わせた編み目状の形状としてもよい。また例えば、図18の連結基体160Cのように、1つの永久磁石130に係る3つの雌ネジ部162を径方向に繋ぐ連結ロッド167を放射状に備えた構成とすることもできる。これらの形状とすることで、回転子120としての結合強度を維持しつつ、回転子120の軽量化と、渦電流の発生にともなう損失の軽減を図ることができる。
(Modification example 7)
Further, in the above embodiment, the shape of the connecting base 160 is a thin plate having a circular ring having substantially the same shape as the disk body 121 when viewed from the axial direction AX of the axle, but the shape is not limited to this. For example, like the connection base 160B shown in FIG. 17, when viewed from the axial direction AX of the axle, there are three ring parts 165 (165a, 165b, 165c) having female threaded parts 162 corresponding to the mounting bolts 159, and spoke parts. 166 may be used in a mesh-like shape. Furthermore, for example, like the connection base 160C in FIG. 18, it is also possible to have a configuration in which connection rods 167 radially connect the three female threaded portions 162 of one permanent magnet 130 in the radial direction. By adopting these shapes, it is possible to reduce the weight of the rotor 120 and reduce loss due to generation of eddy currents while maintaining the coupling strength of the rotor 120.

100…ATF回転電機
110…駆動ユニット
120,120B…回転子
121…円盤体
130…永久磁石
131…内径側磁石
132…外径側磁石
133…内径側対支持具傾斜部
134…対中間支持傾斜部
135…外径側対支持具傾斜部
136…対磁心テーパ部
140…圧粉磁心
140L…一方側磁心
140R…他方側磁心
142…内径側対支持具傾斜部
143…外径側対支持具傾斜部
144…対磁石テーパ部
150…支持具
151…内径側支持具
152…中間支持具
153…外径側支持具
154…内径側対磁石傾斜部
156…対磁石傾斜部
157…対磁心傾斜部
158…外径側対磁石傾斜部
160…連結基体
180…組付ユニット
100...ATF rotating electric machine 110...Drive unit 120, 120B...Rotor 121...Disc body 130...Permanent magnet 131...Inner diameter side magnet 132...Outer diameter side magnet 133...Inner diameter side support tool inclined part 134...Intermediate support inclined part 135... Outer diameter side supporting tool inclined part 136... Core tapered part 140... Powder magnetic core 140L... One side magnetic core 140R... Other side magnetic core 142... Inner diameter side supporting tool inclined part 143... Outer diameter side supporting tool inclined part 144... Magnet taper part 150... Support tool 151... Inner diameter side support tool 152... Intermediate support tool 153... Outer diameter side support tool 154... Inner diameter side magnet inclined part 156... Magnet inclined part 157... Magnetic core inclined part 158... Outer diameter side magnet inclined portion 160...Connection base 180...Assembly unit

Claims (8)

アキシャルギャップ型トランスバースフラックス式回転電機の回転子であって、
円盤体と、
前記円盤体の盤面周方向に間隔を空けて配置される永久磁石と、
前記永久磁石を前記円盤体に固定する支持具と、
前記盤面周方向に隣り合う前記永久磁石の間に配置される圧粉磁心と、
を備え、
前記永久磁石は、隣接する前記圧粉磁心への接触面として対磁心テーパ部を有し、
前記圧粉磁心は、隣接する前記永久磁石への接触面として対磁石テーパ部を有し、
前記永久磁石は、前記対磁心テーパ部を前記円盤体に向けた姿勢で配置され、
前記圧粉磁心は、前記対磁石テーパ部を前記対磁心テーパ部に対向させる姿勢で配置される、
回転子。
A rotor of an axial gap type transverse flux type rotating electrical machine,
A disk body,
Permanent magnets arranged at intervals in the circumferential direction of the disc surface of the disc body;
a support for fixing the permanent magnet to the disc body;
a powder magnetic core disposed between the permanent magnets adjacent in the circumferential direction of the disk surface;
Equipped with
The permanent magnet has a core-to-core taper portion as a contact surface to the adjacent powder magnetic core,
The powder magnetic core has an anti-magnet tapered portion as a contact surface to the adjacent permanent magnet,
The permanent magnet is arranged with the tapered portion facing the magnetic core facing the disk body,
The powder magnetic core is arranged in such a manner that the anti-magnet tapered portion faces the anti-magnetic tapered portion,
rotor.
前記支持具は、前記円盤体の内径側で前記永久磁石に当接した状態で前記円盤体に固定されることで前記永久磁石を固定する内径側支持具と、前記円盤体の外径側で前記永久磁石に当接した状態で前記円盤体に固定されることで前記永久磁石を固定する外径側支持具と、を有し、
前記内径側支持具は、当接する前記永久磁石への接触面として内径側対磁石傾斜部を有し、
前記外径側支持具は、当接する前記永久磁石への接触面として外径側対磁石傾斜部を有し、
前記永久磁石は、当接する前記内径側支持具への接触面として内径側対支持具傾斜部と、当接する前記外径側支持具への接触面として外径側対支持具傾斜部とを有し、
前記内径側支持具は、前記内径側対磁石傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、
前記外径側支持具は、前記外径側対磁石傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、
前記永久磁石は、前記内径側対支持具傾斜部を前記内径側対磁石傾斜部に対向させ、前記外径側対支持具傾斜部を前記外径側対磁石傾斜部に対向させる姿勢で配置される、
請求項1に記載の回転子。
The support includes an inner support that fixes the permanent magnet by being fixed to the disk while being in contact with the permanent magnet on the inner diameter side of the disk, and an inner support that fixes the permanent magnet by contacting the permanent magnet on the inner diameter side of the disk. an outer diameter side support that fixes the permanent magnet by being fixed to the disc body while in contact with the permanent magnet;
The inner diameter side support has an inner diameter side facing magnet slope portion as a contact surface to the permanent magnet that comes into contact with it,
The outer-diameter side support has an outer-diameter side-to-magnet slope portion as a contact surface to the permanent magnet that comes into contact with it,
The permanent magnet has an inner-diameter side-to-support slope part as a contact surface to the inner-diameter-side support to which it abuts, and an outer-diameter side-to-support slope part as a contact surface to the outer-diameter side support to which it abuts. death,
The inner diameter side support is fixed to the disc body with the inner diameter side magnet inclined portion facing the disc body,
The outer diameter side support is fixed to the disc body with the outer diameter side magnet inclined portion facing the disc body,
The permanent magnet is arranged in such a manner that the inner diameter side supporting device inclined portion faces the inner diameter side supporting device inclined portion, and the outer diameter side supporting device inclined portion faces the outer diameter side supporting device inclined portion. Ru,
A rotor according to claim 1.
前記内径側支持具は、前記円盤体の内径側で前記圧粉磁心に当接した状態で前記円盤体に固定されることで前記圧粉磁心を固定し、
前記外径側支持具は、前記円盤体の外径側で前記圧粉磁心に当接した状態で前記円盤体に固定されることで前記圧粉磁心を固定し、
前記内径側支持具は、当接する前記圧粉磁心への接触面として内径側対磁心傾斜部を有し、
前記外径側支持具は、当接する前記圧粉磁心への接触面として外径側対磁心傾斜部を有し、
前記圧粉磁心は、当接する前記内径側支持具への接触面として内径側対支持具傾斜部と、当接する前記外径側支持具への接触面として外径側対支持具傾斜部とを有し、
前記内径側支持具は、前記内径側対磁心傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、
前記外径側支持具は、前記外径側対磁心傾斜部を前記円盤体に向けた姿勢で前記円盤体に固定され、
前記圧粉磁心は、当該圧粉磁心の内径側対支持具傾斜部を前記内径側対磁心傾斜部に対向させ、当該圧粉磁心の外径側対支持具傾斜部を前記外径側対磁心傾斜部に対向させる姿勢で配置される、
請求項2に記載の回転子。
The inner diameter side support fixes the powder magnetic core by being fixed to the disk body while being in contact with the powder magnetic core on the inner diameter side of the disk body,
The outer diameter side support fixes the powder magnetic core by being fixed to the disk body while being in contact with the powder magnetic core on the outer diameter side of the disk body,
The inner diameter side support has an inner diameter side magnetic core inclined portion as a contact surface to the powder magnetic core that comes into contact with it,
The outer diameter side support has an outer diameter side inclined part toward the magnetic core as a contact surface to the powder magnetic core that comes into contact with it,
The powder magnetic core has an inner-diameter side-to-support slope part as a contact surface to the inner-diameter-side support to which it abuts, and an outer-diameter side-to-support slope part as a contact surface to the outer-diameter side support to which it abuts. have,
The inner diameter side support is fixed to the disc body with the inner diameter side magnetic core inclined portion facing the disc body,
The outer diameter side support is fixed to the disc body with the outer diameter side magnetic core inclined portion facing the disc body,
The powder magnetic core has an inner diameter side supporting device inclined portion of the powder magnetic core opposed to the inner diameter side supporting device inclined portion, and an outer diameter side supporting device inclined portion of the powder magnetic core is opposed to the outer diameter side supporting device inclined portion. Placed in a position facing the slope,
A rotor according to claim 2 .
前記永久磁石は、内径側で前記盤面周方向に配置される内径側磁石と、外径側で前記盤面周方向に配置される外径側磁石とがあり、
隣り合う前記内径側磁石と前記外径側磁石とは、間隔を空けて配置され、
隣り合う前記内径側磁石と前記外径側磁石との間に配置されて当該内径側磁石及び当該外径側磁石を前記円盤体に固定する中間支持具を更に備える、
請求項1~3の何れか一項に記載の回転子。
The permanent magnets include an inner diameter magnet arranged on the inner diameter side in the circumferential direction of the board surface, and an outer diameter side magnet arranged on the outer diameter side in the circumferential direction of the board surface,
The adjacent inner diameter side magnet and the outer diameter side magnet are arranged with an interval,
further comprising an intermediate support disposed between the adjacent inner diameter magnet and the outer diameter magnet to fix the inner diameter magnet and the outer diameter magnet to the disc body;
A rotor according to any one of claims 1 to 3.
前記圧粉磁心は、前記盤面周方向に隣り合う永久磁石のうちの一方側に当接する一方側磁心と、他方側に当接する他方側磁心とがあり、同じ永久磁石を一方側磁心及び他方側磁心で挟むように配置される、
請求項1~4の何れか一項に記載の回転子。
The powder magnetic core has one side magnetic core that contacts one side of the permanent magnets adjacent in the circumferential direction of the disk surface, and the other side magnetic core that contacts the other side, and the same permanent magnet is connected to the one side magnetic core and the other side magnetic core. placed between magnetic cores,
A rotor according to any one of claims 1 to 4.
前記一方側磁心と、前記他方側磁心と、当該一方側磁心及び当該他方側磁心で挟む前記永久磁石とが、一体のユニットを構成する、
請求項5に記載の回転子。
The one-side magnetic core, the other-side magnetic core, and the permanent magnet sandwiched between the one-side magnetic core and the other-side magnetic core constitute an integrated unit;
A rotor according to claim 5.
請求項1~6の何れか一項に記載の回転子を備えるアキシャルギャップ型トランスバースフラックス式回転電機。 An axial gap type transverse flux type rotating electric machine comprising the rotor according to any one of claims 1 to 6. 請求項1~4の何れか一項に記載の回転子の組立方法であって、
前記円盤体に、前記永久磁石の代用となる非磁性のダミー磁石と、前記圧粉磁心と、前記支持具とを組み付ける第1工程と、
前記圧粉磁心を前記円盤体に固定する第2工程と、
前記第2工程の後に、前記ダミー磁石を前記永久磁石に組み換える第3工程と、
を含む組立方法。
A method for assembling a rotor according to any one of claims 1 to 4, comprising:
a first step of assembling a non-magnetic dummy magnet, the powder magnetic core, and the support tool to the disk body;
a second step of fixing the powder magnetic core to the disc body;
a third step of recombining the dummy magnet with the permanent magnet after the second step;
Assembly method including.
JP2020098327A 2020-06-05 2020-06-05 Rotor, axial gap type transverse flux type rotating electric machine, and assembly method Active JP7402123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020098327A JP7402123B2 (en) 2020-06-05 2020-06-05 Rotor, axial gap type transverse flux type rotating electric machine, and assembly method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098327A JP7402123B2 (en) 2020-06-05 2020-06-05 Rotor, axial gap type transverse flux type rotating electric machine, and assembly method

Publications (2)

Publication Number Publication Date
JP2021192562A JP2021192562A (en) 2021-12-16
JP7402123B2 true JP7402123B2 (en) 2023-12-20

Family

ID=78890657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098327A Active JP7402123B2 (en) 2020-06-05 2020-06-05 Rotor, axial gap type transverse flux type rotating electric machine, and assembly method

Country Status (1)

Country Link
JP (1) JP7402123B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3138015A1 (en) * 2022-07-13 2024-01-19 Michel Raoul Asynchronous axial magnetic flux electric machine.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304539A (en) 2005-04-22 2006-11-02 Nissan Motor Co Ltd Rotor structure of axial gap rotating electric machine
JP2009072009A (en) 2007-09-14 2009-04-02 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
US20100090555A1 (en) 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
JP2015228730A (en) 2014-05-30 2015-12-17 株式会社東芝 Rotary electric machine
WO2017029926A1 (en) 2015-08-18 2017-02-23 株式会社神戸製鋼所 Axial gap type dynamo-electric machine
JP2019129563A (en) 2018-01-23 2019-08-01 公益財団法人鉄道総合技術研究所 Axial gap type transverse flux rotary electric machine
CN111010008A (en) 2019-12-13 2020-04-14 南京理工大学 Surface-mounted permanent magnet rotor disc of high-strength axial magnetic field motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006304539A (en) 2005-04-22 2006-11-02 Nissan Motor Co Ltd Rotor structure of axial gap rotating electric machine
JP2009072009A (en) 2007-09-14 2009-04-02 Shin Etsu Chem Co Ltd Permanent magnet rotating machine
US20100090555A1 (en) 2008-10-09 2010-04-15 Honda Motor Co., Ltd. Axial gap type motor
JP2015228730A (en) 2014-05-30 2015-12-17 株式会社東芝 Rotary electric machine
WO2017029926A1 (en) 2015-08-18 2017-02-23 株式会社神戸製鋼所 Axial gap type dynamo-electric machine
JP2019129563A (en) 2018-01-23 2019-08-01 公益財団法人鉄道総合技術研究所 Axial gap type transverse flux rotary electric machine
CN111010008A (en) 2019-12-13 2020-04-14 南京理工大学 Surface-mounted permanent magnet rotor disc of high-strength axial magnetic field motor

Also Published As

Publication number Publication date
JP2021192562A (en) 2021-12-16

Similar Documents

Publication Publication Date Title
US7990011B2 (en) Rotor for electric motor
KR101747975B1 (en) Electric machine - cooling
JP4613599B2 (en) Rotor structure of axial gap type rotating electrical machine
KR101654392B1 (en) Electric machine - modular
US6396182B1 (en) Motor including embedded permanent-magnet and method for making the same
JP5068951B2 (en) Method and apparatus for manufacturing motor rotor
JP2011509064A (en) Rotor for electric machine
US20040021386A1 (en) Axial gap motor-generator for high speed operation
US20060097595A1 (en) Rotor for an electric motor and corresponding electric motor
WO1995018484A1 (en) Permanent magnet axial air gap electric machine
JP6253520B2 (en) Rotating electric machine
CN111884456B (en) Rotor assembly and axial magnetic field motor
US20220190652A1 (en) Stator and motor comprising said stator
JPWO2013129022A1 (en) Hybrid excitation type rotating electric machine
JP2008061312A (en) Stator and motor equipped with the same
JP7402123B2 (en) Rotor, axial gap type transverse flux type rotating electric machine, and assembly method
JP2009517989A (en) Rotor hub and assembly of permanent magnet powered electric machine
JP5320987B2 (en) Axial gap type rotating electrical machine
KR102527294B1 (en) Axial field flow rotating machine
JP2001518277A (en) Rotor shaft of synchronous electric device
JP2008289286A (en) Permanent magnet type electric rotating machine, rotor, and manufacturing method for rotor
JP2020137387A (en) Rotary motor and linear motor
JP2014073011A (en) Stator for rotary electric machine and rotary electric machine
JP6429400B2 (en) Stator core, stator and rotating electric machine
WO2012086613A1 (en) Rotating electrical machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231208

R150 Certificate of patent or registration of utility model

Ref document number: 7402123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150