JP7400786B2 - Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace - Google Patents

Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace Download PDF

Info

Publication number
JP7400786B2
JP7400786B2 JP2021155369A JP2021155369A JP7400786B2 JP 7400786 B2 JP7400786 B2 JP 7400786B2 JP 2021155369 A JP2021155369 A JP 2021155369A JP 2021155369 A JP2021155369 A JP 2021155369A JP 7400786 B2 JP7400786 B2 JP 7400786B2
Authority
JP
Japan
Prior art keywords
furnace
bath surface
vibration
metal smelting
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021155369A
Other languages
Japanese (ja)
Other versions
JP2022059579A (en
Inventor
雅規 勝山
裕美 村上
剛 村井
勝太 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022059579A publication Critical patent/JP2022059579A/en
Application granted granted Critical
Publication of JP7400786B2 publication Critical patent/JP7400786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、金属精錬炉内の耐火物の残存状況を推定する方法、その装置および金属精錬炉に関する。 The present invention relates to a method for estimating the residual state of refractories in a metal smelting furnace, an apparatus therefor, and a metal smelting furnace.

製鉄所の製鋼工程は、高炉から出銑した銑鉄を(以下、「溶銑」という。)を溶銑予備処理工程で硫黄、リン等の不純物を除去した後、転炉において精錬を行うことにより溶銑に含まれる炭素を除去し、微量成分を添加し、所定の溶鋼とする工程である。製鋼工程において用いられる転炉の炉内には、高温の溶鉄から転炉の炉体を保護するために耐火物が積まれている。かかる耐火物は、転炉が操業している間に起こる様々な要因により、全体的な損耗、局所的な損耗、脱落等を生じる。このため、製鋼工程において、転炉の炉内に残存している耐火物の残存状況をリアルタイムで把握することがきわめて重要となる。 The steelmaking process at a steelworks involves removing impurities such as sulfur and phosphorus from pig iron tapped from a blast furnace (hereinafter referred to as "hot metal") in a hot metal pretreatment process, and then refining it in a converter to convert it into hot metal. This is a process in which carbon contained in the steel is removed, trace elements are added, and the desired molten steel is produced. Refractories are loaded inside the converter furnace used in the steelmaking process to protect the converter body from high-temperature molten iron. Such refractories undergo general wear, local wear, falling off, etc. due to various factors that occur during the operation of the converter. For this reason, in the steelmaking process, it is extremely important to grasp in real time the state of the refractories remaining in the converter furnace.

炉内の耐火物損耗状態を測定する方法として、耐火物に対して測定光を照射することにより炉内の2次元形状を測定する測定手段と、移動手段によって、炉内で移動させつつ複数回測定することにより炉内の3次元形状を求め、求めた3次元形状に基づいて耐火物の損耗状態を測定する方法が提案されている(例えば、特許文献1)。 As a method for measuring the state of wear and tear on refractories in a furnace, there is a measuring means that measures the two-dimensional shape inside the furnace by irradiating the refractory with measurement light, and a moving means that measures the two-dimensional shape of the refractory in the furnace multiple times while moving it within the furnace. A method has been proposed in which the three-dimensional shape inside the furnace is determined by measurement and the state of wear of the refractory is measured based on the determined three-dimensional shape (for example, Patent Document 1).

また、多くの労力及び時間を要することなく、耐火物の溶損箇所を検出可能な溶融金属収容容器の検査方法が提案されている(例えば、特許文献2)。この溶融金属収容容器の検査方法は、複数の撮影手段を利用して鉄皮全体の熱画像を撮影するステップと、撮影ステップにおいて測定された鉄皮全体の熱画像から鉄皮全体の温度分布関数の極大値を算出し、算出された極大値が所定値以上である場合、前記耐火物が溶損している可能性があると判断し、所定の情報を出力するステップとを含んでいる。 Furthermore, a method for inspecting a molten metal storage container has been proposed that allows detection of melted parts of refractories without requiring much labor and time (for example, Patent Document 2). This method of inspecting a molten metal container includes the steps of taking a thermal image of the entire shell using multiple imaging means, and the temperature distribution function of the entire shell from the thermal image of the entire shell measured in the imaging step. , and if the calculated maximum value is equal to or greater than a predetermined value, it is determined that there is a possibility that the refractory has been eroded, and predetermined information is output.

さらに、耐火物の劣化状態をリアルタイムで連続的に耐火物厚みを検出することができる耐火物の厚み検出方法が提案されている(例えば、特許文献3)。この耐火物の厚み検出方法は、熱電素子のもつ発電機能とその特性に着目し、熱間で使用される炉または容器の耐火物で構成された壁に設置し、該炉または容器を熱間で使用して発電させ、そのときの電力量の値に基づき、耐火物の劣化状況をリアルタイムで連続的に耐火物厚みを検出するものである。 Furthermore, a method for detecting the thickness of a refractory has been proposed that can continuously detect the deterioration state of the refractory in real time (for example, Patent Document 3). This refractory thickness detection method focuses on the power generation function and characteristics of thermoelectric elements, and is installed on the refractory wall of a furnace or container used in hot conditions. The deterioration status of the refractory is continuously detected in real time based on the value of the amount of electricity generated at that time.

特開2015-052555号公報Japanese Patent Application Publication No. 2015-052555 特開2016-056398号公報Japanese Patent Application Publication No. 2016-056398 特開2008-275203号公報Japanese Patent Application Publication No. 2008-275203

しかしながら、前記従来の技術には、未だ解決すべき以下のような問題があった。すなわち、特許文献1に記載された炉内耐火物損耗状態の測定方法は、転炉の炉内に測定機器を挿入する、ないし転炉の炉口に測定機器を近づけなければならないという不都合を有する。また、上記炉内耐火物損耗状態の測定方法は、炉内が空の状態で測定を行わなければならないため、転炉の操業中にリアルタイムで転炉の炉内に残存する耐火物の残厚を測定することは不可能である。 However, the conventional technology has the following problems that still need to be solved. That is, the method for measuring the state of wear and tear of refractories in a furnace described in Patent Document 1 has the inconvenience of having to insert a measuring device into the furnace of a converter or bring the measuring device close to the mouth of the converter. . In addition, the above method for measuring the state of wear and tear on refractories in the furnace requires measurement when the furnace is empty, so the remaining thickness of the refractories remaining in the converter can be measured in real time during operation of the converter. is impossible to measure.

また、特許文献2に記載された溶融金属収容容器の検査方法は、サーモビュアが取鍋の鉄皮全体の熱画像を撮影し、耐火物検査装置がサーモビュアによって測定された鉄皮全体の熱画像から鉄皮全体の温度分布関数の極大値を算出し、算出された極大値が所定値以上である場合、耐火物が溶損している可能性があると判断する。このため、上記溶融金属収容容器の検査方法は、溶融金属収容容器の操業中にリアルタイムで容器内に存在する耐火物の状況を把握することができないという不都合を有する。 In addition, in the inspection method for a molten metal storage container described in Patent Document 2, a thermoviewer takes a thermal image of the entire steel shell of the ladle, and a refractory inspection device uses the thermal image of the entire steel shell measured by the thermoviewer. The maximum value of the temperature distribution function of the entire steel shell is calculated, and if the calculated maximum value is greater than or equal to a predetermined value, it is determined that the refractory may have been eroded. For this reason, the above method for inspecting a molten metal storage container has the disadvantage that it is not possible to grasp the status of the refractories present in the molten metal storage container in real time during the operation of the molten metal storage container.

さらに、特許文献3に記載された耐火物の厚み検出方法は、転炉の操業中にリアルタイムで転炉の炉内に残存する耐火物の厚みを測定することができるが、転炉の炉体に無数の測定用素子を設置しなければならない。このため、耐火物の厚み検出方法は、必要な素子、部材の導入及びこれらの維持をしなければならず、負担が大きいという問題点があった。 Furthermore, the refractory thickness detection method described in Patent Document 3 can measure the thickness of the refractory remaining in the converter furnace in real time during the operation of the converter; Innumerable measuring elements must be installed in the For this reason, the method for detecting the thickness of refractories has the problem of requiring the introduction and maintenance of necessary elements and members, which is a heavy burden.

本発明は上記事情に鑑みてなされたものであり、金属精錬炉の操業中に炉内に存在する耐火物の残存状況をリアルタイムで推定することができる耐火物残存状況推定方法を提案することを目的とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to propose a method for estimating the residual state of refractories that can estimate in real time the residual state of refractories present in the furnace during the operation of a metal smelting furnace. purpose.

発明者らは、上記課題を解決すべく、種々実験を重ねた結果、金属精錬炉内溶融物の浴面振動に起因する炉体の振動に着目し、金属精錬炉に設置された加速度センサを用いて炉内溶融物の撹拌中において加速度センサの設置個所の浴面振動に起因する炉体の振動を測定し、測定された固有振動の強度および振動数の変動に基づいて耐火物の残存状態をリアルタイムで容易に推定できることを知見した。つまり、炉内に存在する耐火物の残存状況に応じ、底吹きプルームと最近接炉体壁とを振動端とした浴面振動に起因する炉体の振動、底吹きガスおよび上吹きガスによって引き起こされる浴面振動に起因する炉体の振動、上吹きガス衝突部の外周を振動端とした周方向の浴面振動に起因する炉体の振動の強度および周波数が変動することに着目した。本発明は、上記知見に基づきなされたものであり、その要旨は以下のとおりである。 In order to solve the above problem, the inventors conducted various experiments and focused on the vibration of the furnace body caused by the vibration of the bath surface of the molten material in the metal smelting furnace, and developed an acceleration sensor installed in the metal smelting furnace. The vibration of the furnace body caused by the bath surface vibration at the location where the acceleration sensor is installed is measured while stirring the molten material in the furnace, and the remaining state of the refractory is determined based on the intensity and frequency fluctuations of the measured natural vibrations. We found that it is easy to estimate in real time. In other words, depending on the remaining state of the refractories present in the furnace, the vibrations of the furnace body caused by bath surface vibration with the bottom blowing plume and the nearest furnace wall as vibration ends, bottom blowing gas, and top blowing gas. We focused on the fluctuation of the intensity and frequency of the vibration of the furnace body caused by the vibration of the bath surface in the circumferential direction with the outer periphery of the top-blown gas collision part as the vibration end. The present invention has been made based on the above findings, and the gist thereof is as follows.

上記課題を有利に解決する本発明の耐火物残存状況推定方法は、金属精錬炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定方法であって、加速度センサを用いて、前記金属精錬炉内溶融物の浴面振動に起因する振動を測定し、前記振動の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定するものである。 The method for estimating the residual state of refractories of the present invention, which advantageously solves the above problems, is a method for estimating the residual state of refractories in a metal smelting furnace in real time during furnace operation. is used to measure vibrations caused by bath surface vibrations of the molten material in the metal smelting furnace, and estimate the remaining state of the refractory based on fluctuations in either one or two of the intensity and frequency of the vibrations. be.

なお、本発明にかかる耐火物残存状況推定方法は、
(a)前記加速度センサを用いて底吹きガスによって引き起こされる前記金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、底吹きプルームと最近接炉体壁とを振動端とした前記浴面振動fAまたはその倍音fA nの、強度および周波数のうちいずれか一または二の変動に基づいて前記金属精錬炉内の耐火物残存状況を推定すること、
(b)前記加速度センサを用いて底吹きガスおよび上吹きガスによって引き起こされる前記金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、上吹きガス衝突部の外周を振動端とした周方向の前記浴面振動fBまたはその倍音fB nの、強度および周波数のうちいずれか一または二の変動に基づいて耐火物残存状況を推定すること、
(c)前記加速度センサを用いて底吹きガスおよび上吹きガスによって引き起こされる前記金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、前記金属精錬炉内溶融物の浴面振動f0またはその倍音f0 nの、強度および周波数のうちいずれか一または二の変動に基づいて耐火物残存状況を推定すること、
(d)前記金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材に設置した1個以上の前記加速度センサにより、前記金属精錬炉内溶融物の浴面振動に起因する振動を測定すること、
(e)前記金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材いずれかの箇所のそれぞれ異なる位置、かつ互いに異なる軸方向に設置した2個以上の前記加速度センサにより、前記金属精錬炉内溶融物の浴面振動に起因する振動を測定すること、
などがより好ましい解決手段になり得るものと考えられる。
Note that the method for estimating the refractory remaining status according to the present invention is as follows:
(a) using the acceleration sensor to measure vibrations during furnace operation caused by bath surface vibrations of the molten material in the metal smelting furnace caused by bottom-blown gas;
Among the measured vibrations, fluctuations in either one or two of the intensity and frequency of the bath surface vibration f A or its overtone f A n with the bottom blowing plume and the nearest furnace wall as vibration ends estimating the residual state of refractories in the metal smelting furnace based on the method;
(b) using the acceleration sensor to measure vibrations during furnace operation caused by bath surface vibrations of the molten material in the metal smelting furnace caused by bottom-blown gas and top-blown gas;
Among the measured vibrations, fluctuations in either one or two of the intensity and frequency of the bath surface vibration f B or its overtone f B n in the circumferential direction with the outer periphery of the top-blown gas collision part as the vibration end estimating the remaining refractory status based on
(c) using the acceleration sensor to measure vibrations during furnace operation caused by bath surface vibrations of the molten material in the metal smelting furnace caused by bottom-blown gas and top-blown gas;
Of the measured vibrations, the remaining state of the refractory is estimated based on fluctuations in either one or two of the intensity and frequency of the bath surface vibration f 0 or its overtone f 0 n of the molten material in the metal smelting furnace. to do,
(d) Vibration caused by bath surface vibration of the molten material in the metal smelting furnace is measured by one or more of the acceleration sensors installed on the furnace body of the metal smelting furnace or a plurality of peripheral members provided outside the furnace body. to do,
(e) The metal refining process is carried out by the two or more acceleration sensors installed at different positions in the furnace body of the metal refining furnace or in any one of a plurality of peripheral members provided outside the furnace body and in mutually different axial directions. Measuring vibrations caused by bath surface vibrations of the molten material in the furnace;
It is thought that this could be a more preferable solution.

上記課題を有利に解決する本発明の耐火物残存状況推定装置は、金属精錬炉の炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定装置であって、金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉操業時の炉内溶融物の浴面振動に起因する設置個所の振動を測定する加速度センサと、前記加速度センサによって測定された前記振動の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する推定装置と、を有するものである。 The refractory residual status estimation device of the present invention, which advantageously solves the above problems, is a refractory residual status estimation device that estimates the refractory residual status in a metal refining furnace in real time during furnace operation. An acceleration sensor that is attached to a furnace body of a refining furnace or any one of a plurality of peripheral members provided outside the furnace body and measures vibrations at the installation point caused by vibrations of the bath surface of molten material in the furnace during furnace operation; and an estimating device that estimates the remaining state of the refractory based on a change in one or two of the intensity and frequency of the vibration measured by the acceleration sensor.

上記課題を有利に解決する本発明の耐火物残存状況推定装置は、炉体と、前記炉体または炉体外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉操業時の炉内溶融物の浴面振動に起因する振動を測定する加速度センサと、前記加速度センサによって測定された前記振動の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する推定装置と、を有するものである。 The refractory remaining state estimating device of the present invention, which advantageously solves the above problems, is attached to a furnace body and any one of a plurality of peripheral members provided on the furnace body or outside the furnace body, and is installed in a furnace during operation of the furnace. an acceleration sensor that measures vibrations caused by bath surface vibrations of the internal molten material, and estimates the remaining state of the refractory based on fluctuations in one or two of the intensity and frequency of the vibrations measured by the acceleration sensor; and an estimation device that performs.

本発明によれば、底吹きガスによる底吹きプルームと最近接炉体壁とを振動端とした浴面振動、底吹きガスおよび上吹きガスによる上吹きガス衝突部の外周を振動端とした周方向の浴面振動、あるいは底吹きガスおよび上吹きガスによる金属精錬炉内溶融物の浴面振動が変動することに着目することで、金属精製炉の操業中にリアルタイムで耐火物の残存状況を推定することが可能となった。 According to the present invention, the bath surface vibration has the bottom-blown plume caused by the bottom-blown gas and the nearest furnace body wall as the vibration end, and the bottom-blown gas and the top-blown gas have the bath surface vibration with the outer periphery of the top-blown gas collision part as the vibration end. By focusing on the fluctuation of the bath surface vibration of the molten material in the metal refining furnace due to the directional bath surface vibration or the bottom blowing gas and top blowing gas, it is possible to check the remaining status of refractories in real time during the operation of the metal refining furnace. It became possible to estimate.

本発明の金属精錬炉の概略図である。FIG. 1 is a schematic diagram of a metal refining furnace of the present invention. 本発明の原理を確認するための転炉を模した水モデル装置の概略図であって、(a)は、垂直断面図を示し、(b)は、底吹きガスの配置を表す模式平面図を示す。FIG. 2 is a schematic diagram of a water model device imitating a converter for confirming the principle of the present invention, in which (a) shows a vertical sectional view, and (b) a schematic plan view showing the arrangement of bottom-blown gas. shows. 加速度センサで測定した、底吹きガス吹込み時の浴面振動スペクトルを示すグラフであって、発泡スチロール厚み0mm(無)の場合と、発泡スチロール厚み15mmの場合とを示す。It is a graph showing a bath surface vibration spectrum measured with an acceleration sensor when bottom blowing gas is blown, and shows a case where the Styrofoam thickness is 0 mm (nothing) and a case where the Styrofoam thickness is 15 mm. 加速度センサで測定した、底吹きガスおよび上吹きガスによって引き起こされる浴面振動スペクトルを示すグラフであって、発泡スチロール厚み0mm(無)の場合と、発泡スチロール厚み15mmの場合とを示す。It is a graph showing bath surface vibration spectra caused by bottom-blown gas and top-blown gas measured by an acceleration sensor, and shows a case where the Styrofoam thickness is 0 mm (nothing) and a case where the Styrofoam thickness is 15 mm.

本発明の詳細を以下に説明する。なお、本実施形態では、金属精錬炉として溶鉄を精錬する転炉を適用した場合を例にしているが、鉄皮内部に耐火物を有する金属精錬炉であれば、その用途により本発明の制限を受けるものではない。また、以下の実施形態では、加速度センサをトラニオンのトラニオン軸に設置しているが、炉内溶鉄(炉内溶融物)の浴面振動を間接的に測定することができる場所であれば加速度センサは炉体ないし炉体外に設けられた複数の周辺部材、たとえば、トラニオンのトラニオンリング、傾動軸受け、傾動装置などのいずれの個所に設置されていてもよい。また、複数設置し、測定する加速度の方向も、個々の加速度センサで異なっていてもよい。まず、本発明にかかる耐火物残存状況推定方法および装置について説明する。 The details of the invention will be explained below. In this embodiment, a converter for refining molten iron is used as an example of a metal refining furnace, but if the metal refining furnace has a refractory inside the shell, the limitations of the present invention may apply depending on the application. It is not something that is received. In addition, in the following embodiments, the acceleration sensor is installed on the trunnion shaft of the trunnion, but the acceleration sensor can be used at any location where the bath surface vibration of the molten iron in the furnace (molten material in the furnace) can be indirectly measured. may be installed at any of a plurality of peripheral members provided in the furnace body or outside the furnace body, such as a trunnion ring of a trunnion, a tilting bearing, a tilting device, etc. Further, a plurality of acceleration sensors may be installed and the direction of acceleration to be measured may be different for each acceleration sensor. First, a method and apparatus for estimating the remaining state of refractories according to the present invention will be explained.

<金属精錬炉>
図1は、本発明の耐火物残存状況推定方法が適用される金属精錬炉の概略図である。
図1に示すように、本実施形態の金属精錬炉100は、鉄製の炉体101を備えている。具体的には、金属精錬炉100は、炉体101と、炉体101または炉体101外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉操業時の、すなわち炉内溶融物精錬中の炉内溶融物102の浴面振動に起因する振動を測定する加速度センサ105と、加速度センサ105によって測定された振動の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する推定装置108とを備えている。炉体101の内壁には、高温の炉内溶融物102から炉体101を保護するために耐火物103が炉体101の内壁に沿って設けられている。
<Metal smelting furnace>
FIG. 1 is a schematic diagram of a metal smelting furnace to which the method for estimating the residual state of refractories of the present invention is applied.
As shown in FIG. 1, the metal refining furnace 100 of this embodiment includes a furnace body 101 made of iron. Specifically, the metal refining furnace 100 is attached to a furnace body 101 and any one of a plurality of peripheral members provided on the furnace body 101 or outside the furnace body 101, and is installed during furnace operation, that is, in-furnace melting. An acceleration sensor 105 measures vibrations caused by bath surface vibrations of the molten material 102 in the furnace during refining, and fire resistance is determined based on fluctuations in one or two of the intensity and frequency of the vibrations measured by the acceleration sensor 105. and an estimation device 108 for estimating the remaining status of the object. A refractory 103 is provided along the inner wall of the furnace body 101 in order to protect the furnace body 101 from the high-temperature melt 102 in the furnace.

炉体101の外壁面には、炉体101に突設された複数のトラニオン軸141と、炉体101を囲うリング状のトラニオンリング(図示省略)と、によって構成されたトラニオン104が設けられている。複数のトラニオン軸141のうちの少なくとも1つのトラニオン軸には、トラニオン軸141の軸方向151の振動を測定する加速度センサ105が取り付けられている。加速度センサ105は、例えば半導体式のセンサであり、トラニオン軸141の軸方向151の振動を測定することにより、炉内溶融物精錬中の炉内溶融物102の浴面振動に起因する振動を測定する。 A trunnion 104 is provided on the outer wall surface of the furnace body 101 and includes a plurality of trunnion shafts 141 protruding from the furnace body 101 and a ring-shaped trunnion ring (not shown) surrounding the furnace body 101. There is. An acceleration sensor 105 that measures vibrations in the axial direction 151 of the trunnion shaft 141 is attached to at least one of the plurality of trunnion shafts 141 . The acceleration sensor 105 is, for example, a semiconductor type sensor, and by measuring the vibration in the axial direction 151 of the trunnion shaft 141, it measures the vibration caused by the bath surface vibration of the melt in the furnace 102 during the refining of the melt in the furnace. do.

本実施形態のように、加速度センサ105を金属精錬炉100の炉体101外に設けられたトラニオン104のトラニオン軸141に設置することで、炉体101ないし炉体101内に加速度センサを設置する構成と比べて、加速度センサを冷却するための冷却装置等の設置が不要となり、金属精錬炉の構成を簡略化することができる。 As in this embodiment, by installing the acceleration sensor 105 on the trunnion shaft 141 of the trunnion 104 provided outside the furnace body 101 of the metal refining furnace 100, the acceleration sensor is installed in the furnace body 101 or inside the furnace body 101. Compared to the above configuration, it is not necessary to install a cooling device or the like for cooling the acceleration sensor, and the configuration of the metal refining furnace can be simplified.

本実施形態の金属精錬炉100は、加速度センサ105が炉体101の外側に取り付けられている点に技術的特徴を有する。本実施形態の金属精錬炉100は、加速度センサ105が炉体101内に取り付けられていない。このため、加速度センサ105は、炉体101の内部に存在する高温の炉内溶融物102から直接的に熱を受けることがなく、高温とならない。なお、本実施形態の金属精錬炉100において、加速度センサ105は、炉体101の外部であって、例えば、以下の実施の形態1~4において測定される浴面振動が伝わる複数の周辺部材のいずれかの箇所に取り付けられていればよい。 The metal refining furnace 100 of this embodiment has a technical feature in that the acceleration sensor 105 is attached to the outside of the furnace body 101. In the metal refining furnace 100 of this embodiment, the acceleration sensor 105 is not installed inside the furnace body 101. Therefore, the acceleration sensor 105 does not receive heat directly from the high-temperature in-furnace melt 102 existing inside the furnace body 101, and does not reach a high temperature. In the metal refining furnace 100 of this embodiment, the acceleration sensor 105 is located outside the furnace body 101, for example, in a plurality of peripheral members to which bath surface vibrations measured in the first to fourth embodiments below are transmitted. It only needs to be attached to any location.

また、加速度センサ105には推定装置108が接続されており、この推定装置108は、加速度センサ105によって測定された振動の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する。なお、推定装置の具体的な構成については後に詳述する。 Further, an estimating device 108 is connected to the acceleration sensor 105, and this estimating device 108 calculates the remaining amount of refractories based on fluctuations in either one or two of the vibration intensity and frequency measured by the acceleration sensor 105. Estimate the situation. Note that the specific configuration of the estimation device will be described in detail later.

<実施の形態1>
第一の実施形態では、転炉底吹き羽口106からの底吹きガスによる炉内溶鉄(炉内溶融物102)の撹拌中にトラニオン軸141に設置した1個の加速度センサ105によってセンサ設置位置、すなわちトラニオン軸141の振動を測定する。測定された振動のうち、炉内溶鉄(炉内溶融物102)の浴面振動を耐火物103の残存状況の推定に用いる。この際、下記数式1の(1)式に示す、底吹きプルームと最近接炉体壁とを振動端とした炉内溶鉄浴面の固有振動fAおよびその倍音fA nの、強度および周波数の変動に着目する。ここで、底吹きプルームとは、底吹ガスが形成する浴面の盛り上がりの頂点部をいい、最近接炉体壁とは、底吹きプルームから最も近い距離にある炉体壁(炉体の内壁)をいう。また、(1)式中、gは重力加速度、πは円周率、LAは底吹プルームと最近接炉体壁との距離、Hは浴深を表す。炉内の耐火物103の全体的な損耗が進行すると、底吹プルームと最近接炉体壁とを振動端とした固有振動fAおよびその倍音fA nは、強度は増大し、周波数のピーク位置が高周波側にシフトすることから、これを検知することで耐火物103の全体的な損耗の度合を推定することができる。なお、上記実施形態では、浴面振動fAおよびその倍音fA nの両方の強度および周波数の変動を検知する構成としたが、浴面振動fAまたはその倍音fA nの、強度および周波数のうちいずれか一または二の変動を検知する構成としてもよい。この場合にも、耐火物103の全体的な損耗の度合を推定することが可能である。
<Embodiment 1>
In the first embodiment, the sensor installation position is determined by one acceleration sensor 105 installed on the trunnion shaft 141 during stirring of the molten iron in the furnace (in-furnace molten material 102) by the bottom-blown gas from the bottom-blowing tuyere 106 of the converter. That is, the vibration of the trunnion shaft 141 is measured. Among the measured vibrations, the bath surface vibration of the molten iron in the furnace (the molten material in the furnace 102) is used to estimate the remaining state of the refractory 103. At this time, the intensity and frequency of the natural vibration f A of the molten iron bath surface in the furnace and its harmonics f A n with the bottom-blowing plume and the nearest furnace wall as vibration ends, as shown in Equation (1 ) of Equation 1 below. We focus on changes in Here, the bottom blowing plume refers to the apex of the bulge on the bath surface formed by the bottom blowing gas, and the closest furnace wall refers to the furnace wall (inner wall of the furnace body) closest to the bottom blowing plume. ). In the formula (1), g represents gravitational acceleration, π represents pi, L A represents the distance between the bottom blowing plume and the nearest wall of the reactor body, and H represents the bath depth. As the overall wear and tear of the refractory 103 in the furnace progresses, the natural vibration f A and its overtones f A n with the bottom blowing plume and the nearest furnace wall as vibration ends increase in intensity and reach a peak frequency. Since the position shifts to the high frequency side, by detecting this, the overall degree of wear and tear on the refractory 103 can be estimated. In the above embodiment, the structure is such that the intensity and frequency fluctuations of both the bath surface vibration f A and its overtone f A n are detected . It may be configured to detect fluctuations in one or two of the above. In this case as well, it is possible to estimate the overall degree of wear and tear on the refractory 103.

Figure 0007400786000001
Figure 0007400786000001

<実施の形態2>
第二の実施形態では、転炉底吹き羽口106からの底吹ガスならびに上吹ランス107からの上吹きガスによる炉内溶鉄(炉内溶融物102)の撹拌中に、トラニオン軸141に設置した1個の加速度センサ105によってセンサ設置位置、すなわちトラニオン軸141の振動を測定する。測定された振動のうち、炉内溶鉄(炉内溶融物102)の浴面振動を測定する。この際、下記数式2の(2)式に示す、上吹きガス衝突部の外周を振動端とした周方向の浴面振動fBおよびその倍音fB nの、強度の変動に着目する。ここで、上吹きガス衝突部とは、火点とも呼び、噴流衝突径、すなわち上吹きガスの衝突による浴面の凹部をいう。また、(2)式中、gは重力加速度、πは円周率、Lは上吹きガス衝突部の直径(噴流衝突径)、Hは浴深を表す。炉内耐火物103の全体的な損耗が進行すると、上吹きガス衝突部の外周と最近接炉体壁とを振動端とした周方向の浴面振動の強度は増大し、周波数はそのピーク位置が低周波側にシフトすることから、これを検知することで耐火物103の全体的な損耗の度合を推定することができる。なお、上記実施形態では、浴面振動fBおよびその倍音fB nの両方の強度および周波数の変動を検知する構成としたが、浴面振動fBまたはその倍音fB nの、強度および周波数のうちいずれか一または二の変動を検知する構成としてもよい。この場合にも、耐火物103の全体的な損耗の度合を推定することが可能である。
<Embodiment 2>
In the second embodiment, during stirring of the molten iron in the furnace (in-furnace molten material 102) by bottom-blown gas from the converter bottom- blowing tuyere 106 and top-blown gas from the top-blowing lance 107, the trunnion shaft 141 Vibration of the sensor installation position, that is, the trunnion shaft 141, is measured by one installed acceleration sensor 105. Among the measured vibrations, the bath surface vibration of the molten iron in the furnace (the molten material in the furnace 102) is measured. At this time, attention is paid to the fluctuation in the intensity of the bath surface vibration f B and its harmonics f B n in the circumferential direction with the outer periphery of the top-blown gas collision part as the vibration end, as shown in Equation (2 ) of Equation 2 below. Here, the top-blown gas collision area is also called the fire point and refers to the jet impact diameter, that is, the concave part of the bath surface caused by the collision of the top-blown gas. In the formula (2), g is the gravitational acceleration, π is the circumference, L B is the diameter of the top-blown gas collision part (jet collision diameter), and H is the bath depth. As the overall wear and tear of the furnace refractories 103 progresses, the intensity of bath surface vibration in the circumferential direction with vibration ends at the outer periphery of the top-blown gas collision area and the nearest furnace wall increases, and the frequency decreases to its peak position. is shifted to the lower frequency side, and by detecting this, the overall degree of wear and tear on the refractory 103 can be estimated. In addition, in the above embodiment, the structure is such that fluctuations in the intensity and frequency of both the bath surface vibration f B and its overtone f B n are detected . It may be configured to detect fluctuations in one or two of the above. In this case as well, it is possible to estimate the overall degree of wear and tear on the refractory 103.

Figure 0007400786000002
Figure 0007400786000002

<実施の形態3>
第三の実施形態では、転炉底吹き羽口106からの底吹ガスならびに上吹ランス107からの上吹きガスによる炉内溶鉄(炉内溶融物102)の撹拌中に、トラニオン軸141に設置した1個の加速度センサ105によってセンサ設置位置、すなわちトラニオン軸141の振動を測定する。測定された振動のうち、炉内溶鉄(炉内溶融物102)の浴面振動を耐火物103の残存状況の推定に用いる。この際、下記数式3の(3)式に示す、炉内溶鉄の浴面振動f0およびその倍音f0 nの、強度および周波数の変動に着目する。ここで、(3)式中、πは円周率、gは重力加速度、κは定数、Dは炉内径、Hは浴深を表す。炉内耐火物103の全体的な損耗が進行すると、炉内溶鉄の浴面振動f0およびその倍音f0 nは、強度は増大し、周波数はそのピーク位置が低周波側にシフトすることから、これを検知することで耐火物103の全体的な損耗の度合を推定することができる。なお、上記実施形態では、浴面振動f0およびその倍音f0 nの両方の強度および周波数の変動を検知する構成としたが、浴面振動f0またはその倍音f0 nの、強度および周波数のうちいずれか一または二の変動を検知する構成としてもよい。この場合にも、耐火物103の全体的な損耗の度合を推定することが可能である。
<Embodiment 3>
In the third embodiment, during stirring of the molten iron in the furnace (in-furnace molten material 102) by the bottom blowing gas from the converter bottom blowing tuyere 106 and the top blowing gas from the top blowing lance 107, the trunnion shaft 141 is Vibration of the sensor installation position, that is, the trunnion shaft 141, is measured by one installed acceleration sensor 105. Among the measured vibrations, the bath surface vibration of the molten iron in the furnace (the molten material in the furnace 102) is used to estimate the remaining state of the refractory 103. At this time, attention is paid to the fluctuations in the intensity and frequency of the bath surface vibration f 0 of the molten iron in the furnace and its overtone f 0 n , as shown in equation (3) of Equation 3 below. Here, in formula (3), π represents pi, g represents gravitational acceleration, κ represents a constant, D represents the furnace inner diameter, and H represents the bath depth. As the overall wear and tear of the refractory 103 in the furnace progresses, the bath surface vibration f 0 of the molten iron in the furnace and its overtones f 0 n increase in intensity, and the peak position of the frequency shifts to the lower frequency side. By detecting this, the overall degree of wear and tear on the refractory 103 can be estimated. Note that in the above embodiment, the structure is such that fluctuations in the intensity and frequency of both the bath surface vibration f 0 and its overtone f 0 n are detected ; It may be configured to detect fluctuations in one or two of the above. In this case as well, it is possible to estimate the overall degree of wear and tear on the refractory 103.

Figure 0007400786000003
Figure 0007400786000003

<実施の形態4>
上記の実施の形態以外にも、例えばトラニオン104のトラニオン軸141に2個以上の加速度センサ105を設置する構成としてもよい。2個以上の加速度センサ105をそれぞれ異なる位置、かつ互いに異なる軸方向に設置し、各々の加速度センサ105の測定結果を比較することで、耐火物103の局所的な損耗や脱落の度合及び位置を推定することが可能である。
<Embodiment 4>
In addition to the embodiment described above, for example, a configuration may be adopted in which two or more acceleration sensors 105 are installed on the trunnion shaft 141 of the trunnion 104. By installing two or more acceleration sensors 105 at different positions and in different axial directions and comparing the measurement results of each acceleration sensor 105, it is possible to determine the degree and position of local wear and fall of the refractory 103. It is possible to estimate.

<耐火物残存状況推定装置>
本発明にかかる耐火物残存状況推定装置は、上記耐火物残存状況推定方法に用いた、好適な装置であって、金属精錬炉100の炉体101ないし炉体101外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉内溶融物精錬中の炉内溶融物102の浴面振動に起因する設置個所の振動を測定する加速度センサ105と、その加速度センサ105によって測定された炉内溶融物102の浴面振動の強度および周波数のうちいずれかの変動に基づいて耐火物103の残存状況を推定する推定装置108と、を有する。
<Refractory remaining status estimation device>
The apparatus for estimating the residual state of refractories according to the present invention is a suitable apparatus used in the method for estimating the residual state of refractories described above, and includes a plurality of surroundings provided in the furnace body 101 of the metal refining furnace 100 or outside the furnace body 101. An acceleration sensor 105 that is attached to any part of the member and measures vibrations at the installation location caused by bath surface vibrations of the molten material 102 in the furnace during refining of the molten material in the furnace, and a furnace that is measured by the acceleration sensor 105. and an estimating device 108 that estimates the remaining state of the refractory 103 based on fluctuations in either the intensity or the frequency of the bath surface vibration of the internal molten material 102.

耐火物残存状況推定装置(推定装置108)は、たとえば、転炉の操業状況を管理するプロセスコンピュータから、転炉の操業状況を受け取る。耐火物残存状況推定装置(推定装置108)は、耐火物103の残存状況を推定する指示を外部から受け取った場合、上記実施の形態1ないし実施の形態4に基づき、最適な耐火物残存状況推定方法を選択する。そして、推定した耐火物残存状況を出力し、または、プロセスコンピュータに送ることが好ましい。得られた、耐火物残存状況に応じて、耐火物の補充を図るなどの対策を施すことができる。 The refractory remaining status estimation device (estimation device 108) receives the operating status of the converter from, for example, a process computer that manages the operating status of the converter. When the refractory remaining status estimating device (estimating device 108) receives an instruction to estimate the remaining refractory status of the refractory 103 from the outside, the refractory remaining status estimating device (estimating device 108) estimates the optimal refractory remaining status based on the first to fourth embodiments described above. Choose a method. Then, it is preferable to output the estimated refractory remaining status or send it to the process computer. Depending on the obtained refractory residual status, measures such as replenishment of refractories can be taken.

<実施例1>
水モデルを用いて、本発明の原理を確認した。ここで、水モデルを用いたのは、下記理由による。溶鋼は水に比べて重いが粘性も大きく、溶鋼と水とは動粘度がほぼ同じである。したがって、相似形の容器を用いることで無次元数であるレイノルズ数を一致させることができる。あわせて、いわゆる、修正フルード数を用いることで、水モデルにより、重力と慣性力および粘性力に関し、溶鋼の流動を再現できることによる。
<Example 1>
The principle of the present invention was confirmed using a water model. The water model was used here for the following reasons. Although molten steel is heavier than water, it is also more viscous, and molten steel and water have almost the same kinematic viscosity. Therefore, by using containers of similar shapes, the Reynolds number, which is a dimensionless number, can be matched. In addition, by using the so-called modified Froude number, it is possible to reproduce the flow of molten steel with respect to gravity, inertial force, and viscous force using a water model.

図2に用いた水モデル装置200の概要を示す。図2(a)は垂直断面図であり、(b)は平面図である。本実施例では、底吹き羽口206およびトラニオン軸204を有する転炉を模した円筒容器201の内壁に、模擬耐火物203として耐火物を模した発泡スチロールを設置した後、溶鉄を模した水202を円筒容器201に入れて底吹きガスにて円筒容器201内の撹拌を行った。底吹きガスとして、圧縮空気を15.7L/min吹き込み、容器内の撹拌を行うこととした。円筒容器201は内径φ350mm、底吹き羽口206はP.C.D(ピッチ円直径)170mmとなる円周上にφ2mmの孔を4か所設けた。ここで、トラニオン軸204に加速度センサ205を1個設置して、軸方向251における浴面振動を測定する(図2)。なお、上記底吹きガスにより水202の内部には、気泡261が形成される。 An overview of the water model device 200 used in FIG. 2 is shown. FIG. 2(a) is a vertical sectional view, and FIG. 2(b) is a plan view. In this example, after installing Styrofoam simulating a refractory as a simulating refractory 203 on the inner wall of a cylindrical container 201 simulating a converter having a bottom blowing tuyere 206 and a trunnion shaft 204, water 202 simulating molten iron is installed. was placed in a cylindrical container 201, and the inside of the cylindrical container 201 was stirred using bottom-blown gas. Compressed air was blown at 15.7 L/min as bottom-blown gas to stir the inside of the container. The cylindrical container 201 has an inner diameter of 350 mm, and the bottom blowing tuyere 206 has a P. C. Four holes each having a diameter of 2 mm were provided on a circumference of D (pitch circle diameter) of 170 mm. Here, one acceleration sensor 205 is installed on the trunnion shaft 204 to measure bath surface vibration in the axial direction 251 (FIG. 2). Note that bubbles 261 are formed inside the water 202 by the bottom-blown gas.

容器内残留する耐火物が振動へ与える影響を見るため、浴面振動の計測に際して、円筒容器201の内壁に設置する模擬耐火物203である発泡スチロールの厚さを変更(0mm、15mm)し、発泡スチロールの厚さの変更に伴う浴面振動の変化を計測し、各耐火物の全体的な損耗を模擬した。実験結果を図3に示す。図3は、加速度センサ205で測定した、底吹きガス吹込み時の浴面振動スペクトルを示すグラフであって、発泡スチロール厚さ0mm(無)の場合と、発泡スチロール厚さ15mmの場合とを示す。図3からも明らかなように、発泡スチロールの厚さを減少させると、底吹きプルームと最近接炉体壁とを振動端とした固有振動fAおよびその倍音fA nの強度が増大し、周波数のピーク位置が低周波側へシフトした。以上に着目すれば、固有振動fAおよびその倍音fA nの検知により耐火物の全体的な消耗の度合を推定することができる。 In order to see the influence of the refractory remaining inside the container on vibration, when measuring the bath surface vibration, we changed the thickness of the Styrofoam that is the simulated refractory 203 installed on the inner wall of the cylindrical container 201 (0 mm, 15 mm), and The changes in bath surface vibration due to changes in the thickness of the refractories were measured to simulate the overall wear and tear of each refractory. The experimental results are shown in Figure 3. FIG. 3 is a graph showing bath surface vibration spectra during bottom-blown gas injection measured by the acceleration sensor 205, and shows the cases where the foamed polystyrene thickness is 0 mm (nothing) and the foamed polystyrene thickness is 15 mm. As is clear from Fig. 3, when the thickness of Styrofoam is reduced, the intensity of the natural vibration f A and its overtone f A n with the bottom-blowing plume and the nearest wall of the reactor body as vibration ends increases, and the frequency The peak position of has shifted to the lower frequency side. Focusing on the above, it is possible to estimate the overall degree of wear of the refractory by detecting the natural vibration f A and its overtone f A n .

<実施例2>
実施例1と同様、図2に示す水モデル装置200を用い、底吹き羽口206およびトラニオン軸204を有する転炉を模した円筒容器201の内壁に、模擬耐火物203である発泡スチロールを設置した後、溶鉄を模した水202を円筒容器201に入れて底吹きガス及び上吹きガスにて円筒容器201内の撹拌を行った。本実施例では、上吹きランス207として、出口径φ6.6mmのものを用い、浴面からの距離HL=160mmから、上吹きガス流量を300L/minとした噴流271を上記浴面に噴き付けた。また、底吹きガスとして、圧縮空気を15.7L/min吹込み、容器内の撹拌を行う。円筒容器201は内径φ350mm、底吹き羽口206はP.C.D(ピッチ円直径)170mmとなる円周上にφ2mmの孔を4か所設けた。ここで、トラニオン軸204に加速度センサ205を1個設置し振動を測定する。
<Example 2>
As in Example 1, using the water model device 200 shown in FIG. 2, Styrofoam as a simulated refractory 203 was installed on the inner wall of a cylindrical container 201 imitating a converter having a bottom blowing tuyere 206 and a trunnion shaft 204. After that, water 202 imitating molten iron was placed in the cylindrical container 201, and the inside of the cylindrical container 201 was stirred using bottom-blown gas and top-blown gas. In this example, a top blowing lance 207 with an outlet diameter of 6.6 mm is used, and a jet stream 271 with a top blowing gas flow rate of 300 L/min is sprayed onto the bath surface from a distance HL = 160 mm from the bath surface. Ta. In addition, compressed air is blown in at 15.7 L/min as bottom-blown gas to stir the inside of the container. The cylindrical container 201 has an inner diameter of 350 mm, and the bottom blowing tuyere 206 has a P. C. Four holes each having a diameter of 2 mm were provided on a circumference of D (pitch circle diameter) of 170 mm. Here, one acceleration sensor 205 is installed on the trunnion shaft 204 to measure vibration.

容器内残留する耐火物が振動へ与える影響を見るため、浴面振動の計測に際して、円筒容器201の内壁に設置する模擬耐火物203である発泡スチロールの厚さを変更(0mm、15mm)し、発泡スチロールの厚さの変更に伴う浴面振動の変化を計測し、各耐火物の全体的な損耗を模擬した。実験結果を図4に示す。図4は、加速度センサ205で測定した、底吹きガスおよび上吹きガスによって引き起こされる浴面振動スペクトルを示すグラフであって、発泡スチロール厚み0mm(無)の場合と、発泡スチロール厚み15mmの場合とを示す。図4からも明らかなように、発泡スチロールの厚さを減少させると、上吹きガス衝突部の外周を振動端とした周方向の浴面振動fBおよびその倍音fB nの強度が増大し、周波数のピーク位置が低周波側へシフトした。以上に着目すれば、上吹きガス衝突部の外周を振動端とした周方向の浴面振動fBおよびその倍音fB nの検知により耐火物の全体的な消耗の度合を推定することができる。 In order to see the influence of the refractory remaining inside the container on vibration, when measuring the bath surface vibration, we changed the thickness of the Styrofoam that is the simulated refractory 203 installed on the inner wall of the cylindrical container 201 (0 mm, 15 mm), and The changes in bath surface vibration due to changes in the thickness of the refractories were measured to simulate the overall wear and tear of each refractory. The experimental results are shown in Figure 4. FIG. 4 is a graph showing bath surface vibration spectra caused by bottom-blown gas and top-blown gas measured by the acceleration sensor 205, and shows the cases where the Styrofoam thickness is 0 mm (nothing) and the case where the Styrofoam thickness is 15 mm. . As is clear from FIG. 4, when the thickness of the polystyrene foam is reduced, the intensity of the bath surface vibration f B in the circumferential direction with the outer periphery of the top-blown gas collision part as the vibration end and its overtone f B n increases, The frequency peak position has shifted to the lower frequency side. Focusing on the above, it is possible to estimate the overall degree of wear of the refractory by detecting the circumferential bath surface vibration f B and its overtones f B n with the outer periphery of the top-blown gas collision part as the vibration end. .

<実施例3>
実施例2の装置、実験条件にて得た振動スペクトルのうち、円筒容器201内の水202の浴面振動(浴面全体の固有振動)f0およびその倍音f0 nは、図4に示すとおり、発泡スチロールの厚さを減少させると、その強度が増大し、周波数のピーク位置が低周波側へシフトすることから、これを検知することで耐火物の残存の有無を推定することができる。以上に着目すれば、円筒容器201内の水202の浴面振動(浴面全体の固有振動)f0およびその倍音f0 nの検知により耐火物の全体的な消耗の度合を推定することができる。
<Example 3>
Among the vibration spectra obtained using the apparatus and experimental conditions of Example 2, the bath surface vibration (natural vibration of the entire bath surface) f 0 and its overtone f 0 n of the water 202 in the cylindrical container 201 are shown in FIG. As stated above, when the thickness of Styrofoam is reduced, its strength increases and the frequency peak position shifts to the lower frequency side, so by detecting this, it is possible to estimate whether there is any remaining refractory material. Focusing on the above, it is possible to estimate the overall degree of wear of the refractory by detecting the bath surface vibration (natural vibration of the entire bath surface) f 0 of the water 202 in the cylindrical container 201 and its overtone f 0 n . can.

本発明にかかる耐火物残存状況推定技術によれば、リアルタイムで金属精錬中の耐火物の残存状況が推定できるので、金属精錬炉の安定操業に寄与し、産業上有用である。 According to the technology for estimating the residual state of refractories according to the present invention, the residual state of refractories during metal refining can be estimated in real time, which contributes to stable operation of metal refining furnaces and is industrially useful.

100 金属精錬炉
101 炉体
102 炉内溶融物
103 耐火物
104 トラニオン
141 トラニオン軸
105 加速度センサ
151 軸方向
106 転炉底吹き羽口
107 上吹きランス
108 推定装置
200 水モデル装置
201 円筒容器
202 水
203 模擬耐火物(発泡スチロール)
204 トラニオン軸
205 加速度センサ
251 軸方向
206 底吹き羽口
261 気泡
207 上吹きランス
271 噴流
100 Metal refining furnace 101 Furnace body 102 Melt in the furnace 103 Refractory 104 Trunnion 141 Trunnion shaft 105 Acceleration sensor 151 Axial direction 106 Converter bottom blowing tuyere 107 Top blowing lance 108 Estimating device 200 Water model device 201 Cylindrical container 202 Water 203 Simulated refractory (styrofoam)
204 Trunnion shaft 205 Acceleration sensor 251 Axial direction 206 Bottom blowing tuyere 261 Air bubble 207 Top blowing lance 271 Jet stream

Claims (7)

金属精錬炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定方法であって、
加速度センサを用いて、底吹きガスによって引き起こされる金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、底吹きプルームと最近接炉体壁とを振動端とした前記浴面振動f A またはその倍音f A n の、強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する、
耐火物残存状況推定方法。
A refractory residual status estimation method for estimating the residual status of refractories in a metal smelting furnace in real time during furnace operation, the method comprising:
Using an acceleration sensor, we measure the vibrations during furnace operation caused by the bath surface vibration of the molten material in the metal smelting furnace caused by bottom blowing gas ,
Among the measured vibrations, fluctuations in one or two of the intensity and frequency of the bath surface vibration f A or its overtone f A n with the bottom blowing plume and the nearest furnace wall as the vibration ends Estimate the remaining status of refractories based on
Method for estimating the residual status of refractories.
金属精錬炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定方法であって、
速度センサを用いて、底吹きガスおよび上吹きガスによって引き起こされる金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、上吹きガス衝突部の外周を振動端とした周方向の前記浴面振動fBまたはその倍音fB nの、強度および周波数のうちいずれか一または二の変動に基づいて耐火物残存状況を推定する
火物残存状況推定方法。
A refractory residual status estimation method for estimating the residual status of refractories in a metal smelting furnace in real time during furnace operation, the method comprising:
Using an acceleration sensor , we measure the vibrations during furnace operation caused by the bath surface vibration of the molten material in the metal smelting furnace caused by bottom-blown gas and top- blown gas,
Among the measured vibrations, fluctuations in either one or two of the intensity and frequency of the bath surface vibration f B or its overtone f B n in the circumferential direction with the outer periphery of the top-blown gas collision part as the vibration end Estimate the remaining refractory status based on
Method for estimating the residual status of refractories .
金属精錬炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定方法であって、
速度センサを用いて、底吹きガスおよび上吹きガスによって引き起こされる金属精錬炉内溶融物の浴面振動に起因する炉操業時の振動を測定し、
測定された前記振動のうち、前記金属精錬炉内溶融物の浴面振動f0またはその倍音f0 nの、強度および周波数のうちいずれか一または二の変動に基づいて耐火物残存状況を推定する
火物残存状況推定方法。
A refractory residual status estimation method for estimating the residual status of refractories in a metal smelting furnace in real time during furnace operation, the method comprising:
Using an acceleration sensor , we measure the vibrations during furnace operation caused by the bath surface vibration of the molten material in the metal smelting furnace caused by bottom-blown gas and top- blown gas,
Of the measured vibrations, the remaining state of the refractory is estimated based on fluctuations in either one or two of the intensity and frequency of the bath surface vibration f 0 or its overtone f 0 n of the molten material in the metal smelting furnace. do ,
Method for estimating the residual status of refractories .
前記金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材に設置した1個以上の前記加速度センサにより、前記金属精錬炉内溶融物の浴面振動に起因する振動を測定する、請求項1~のいずれか1項に記載の耐火物残存状況推定方法。 Vibration caused by bath surface vibration of the molten material in the metal smelting furnace is measured by one or more of the acceleration sensors installed on a furnace body of the metal smelting furnace or a plurality of peripheral members provided outside the furnace body. The method for estimating the residual state of refractories according to any one of Items 1 to 3 . 前記金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材いずれかの箇所のそれぞれ異なる位置、かつ互いに異なる軸方向に設置した2個以上の前記加速度センサにより、前記金属精錬炉内溶融物の浴面振動に起因する振動を測定する、請求項1~のいずれか1項に記載の耐火物残存状況推定方法。 The two or more acceleration sensors installed at different positions in the furnace body of the metal smelting furnace or in any one of a plurality of peripheral members provided outside the furnace body and in mutually different axial directions are used to detect melting in the metal smelting furnace. The method for estimating the refractory remaining status according to any one of claims 1 to 3 , which comprises measuring vibrations caused by vibrations of the bath surface of objects. 金属精錬炉の炉内の耐火物の残存状況を炉操業中にリアルタイムで推定する耐火物残存状況推定装置であって、
金属精錬炉の炉体ないし炉体外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉操業時の金属精錬炉内溶融物の底吹きガス、又は前記底吹きガスおよび上吹きガスによって引き起こされる浴面振動に起因する設置個所の振動を測定する加速度センサと、
前記加速度センサによって測定された前記振動のうち、底吹きプルームと最近接炉体壁とを振動端とした前記浴面振動f A またはその倍音f A n 、上吹きガス衝突部の外周を振動端とした周方向の前記浴面振動f B またはその倍音f B n 、及び前記金属精錬炉内溶融物の浴面振動f 0 またはその倍音f 0 n 、の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する推定装置と、
を有する耐火物残存状況推定装置。
A refractory residual status estimating device that estimates the residual status of refractories in a metal smelting furnace in real time during furnace operation,
A bottom-blown gas of the molten material in the metal smelting furnace, or the bottom-blown gas and top-blown gas, which is attached to the furnace body of a metal smelting furnace or any one of a plurality of peripheral members provided outside the furnace body, and is used for bottom-blown gas of the molten material in the metal smelting furnace during furnace operation. an acceleration sensor that measures vibrations at the installation location caused by bath surface vibrations caused by
Among the vibrations measured by the acceleration sensor, the bath surface vibration f A or its overtone f A n has the bottom-blowing plume and the nearest furnace wall as the vibration end , and the vibration end has the outer periphery of the top-blowing gas collision area. Any one or two of the intensity and frequency of the bath surface vibration f B or its overtone f B n in the circumferential direction , and the bath surface vibration f 0 of the molten material in the metal smelting furnace or its overtone f 0 n an estimation device for estimating the remaining state of refractories based on fluctuations in the
A device for estimating the remaining state of refractories.
炉体と、
前記炉体または炉体外に設けられた複数の周辺部材のいずれかの箇所に取り付けられ、炉操業時の金属精錬炉内溶融物の底吹きガス、又は前記底吹きガスおよび上吹きガスによって引き起こされる浴面振動に起因する振動を測定する加速度センサと、
前記加速度センサによって測定された前記振動のうち、底吹きプルームと最近接炉体壁とを振動端とした前記浴面振動f A またはその倍音f A n 、上吹きガス衝突部の外周を振動端とした周方向の前記浴面振動f B またはその倍音f B n 、及び前記金属精錬炉内溶融物の浴面振動f 0 またはその倍音f 0 n 、の強度および周波数のうちいずれか一または二の変動に基づいて耐火物の残存状況を推定する推定装置と、
を有する金属精錬炉。
Furnace body and
Attached to any part of the furnace body or a plurality of peripheral members provided outside the furnace body, and caused by bottom blowing gas of the molten material in the metal refining furnace during furnace operation, or the bottom blowing gas and top blowing gas. an acceleration sensor that measures vibrations caused by bath surface vibration;
Among the vibrations measured by the acceleration sensor, the bath surface vibration f A or its overtone f A n has the bottom-blowing plume and the nearest furnace wall as the vibration end , and the vibration end has the outer periphery of the top-blowing gas collision area. Any one or two of the intensity and frequency of the bath surface vibration f B or its overtone f B n in the circumferential direction , and the bath surface vibration f 0 of the molten material in the metal smelting furnace or its overtone f 0 n an estimation device for estimating the remaining state of refractories based on fluctuations in the
Metal smelting furnace with.
JP2021155369A 2020-10-01 2021-09-24 Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace Active JP7400786B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167133 2020-10-01
JP2020167133 2020-10-01

Publications (2)

Publication Number Publication Date
JP2022059579A JP2022059579A (en) 2022-04-13
JP7400786B2 true JP7400786B2 (en) 2023-12-19

Family

ID=81124319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021155369A Active JP7400786B2 (en) 2020-10-01 2021-09-24 Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace

Country Status (1)

Country Link
JP (1) JP7400786B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504133A (en) 2004-07-02 2008-02-14 アルセロール・フランス Method for controlling molten metal bath bubbling in a metallurgical vessel and apparatus for carrying out said method
WO2015079646A1 (en) 2013-11-28 2015-06-04 Jfeスチール株式会社 Converter operation monitoring method and converter operation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136426A (en) * 1992-10-29 1994-05-17 Kawasaki Steel Corp Management method for converter lining refractories
JP3039308B2 (en) * 1995-02-16 2000-05-08 住友金属工業株式会社 Refractory thickness measurement method using elastic waves
JP3379386B2 (en) * 1996-12-05 2003-02-24 住友金属工業株式会社 Refractory wear evaluation method and apparatus, and refractory management method and apparatus
US6264716B1 (en) * 1999-03-19 2001-07-24 Nupro Corporation Process for controlling the stirring energy delivered by a gas flowing through a liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504133A (en) 2004-07-02 2008-02-14 アルセロール・フランス Method for controlling molten metal bath bubbling in a metallurgical vessel and apparatus for carrying out said method
WO2015079646A1 (en) 2013-11-28 2015-06-04 Jfeスチール株式会社 Converter operation monitoring method and converter operation method

Also Published As

Publication number Publication date
JP2022059579A (en) 2022-04-13

Similar Documents

Publication Publication Date Title
Mazumdar et al. Modeling of steelmaking processes
JP5620030B2 (en) Method and control system for controlling a melting process
Jalkanen et al. Converter steelmaking
JP4974351B2 (en) Melting equipment
KR20150140305A (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
Toulouevski et al. Fuel Arc Furnace (FAF) for Effective Scrap Melting: From EAF to FAF
CA3150476C (en) Predictive refractory performance measurement system
CN212432282U (en) Molten iron tank liquid level detection system
KR20120137351A (en) System for furnace slopping prediction and lance optimization
JP7400786B2 (en) Refractory residual status estimation method, refractory residual status estimation device, and metal smelting furnace
CN107110604B (en) Sensor device for determining operating states in a molten bath of a top-submerged oxygen lance reactor system
JP2022059473A (en) Cold iron source melting state estimation method, cold iron source melting state estimation unit, metal smelting furnace and manufacturing method of molten iron
EP1963541B1 (en) An improved lance for ld steelmaking
JPS62278217A (en) Lance inlaying thermocouple for controlling slag level
Ruuska Special measurements and control models for a basic oxygen furnace (BOF)
Odenthal et al. Applied numerical simulation for safe and efficient process conditions of metallurgical plants
TWI844872B (en) Cold iron source melting rate estimation device, converter type refining furnace control device, cold iron source melting rate estimation method and molten iron refining treatment method
JPH10330824A (en) Operation of electric furnace
WO2020104903A1 (en) Gas or mist cooled system for slag door
Conejo Hot Heel, Tapping and Energy Recovery
Sabah Droplet generation in oxygen steelmaking
JP2012237036A (en) Method for operating bottom-blowing converter
JP2024115816A (en) Arc-type electric furnace and method for melting reduced iron
Bol’shakov et al. New methods for monitoring the technical state of blast furnace enclosure without stopping the technological process
Visuri OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7400786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150