JP7398925B2 - Resin current collector for lithium ion batteries - Google Patents

Resin current collector for lithium ion batteries Download PDF

Info

Publication number
JP7398925B2
JP7398925B2 JP2019192883A JP2019192883A JP7398925B2 JP 7398925 B2 JP7398925 B2 JP 7398925B2 JP 2019192883 A JP2019192883 A JP 2019192883A JP 2019192883 A JP2019192883 A JP 2019192883A JP 7398925 B2 JP7398925 B2 JP 7398925B2
Authority
JP
Japan
Prior art keywords
conductive filler
dispersant
block
current collector
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192883A
Other languages
Japanese (ja)
Other versions
JP2021068587A (en
Inventor
亮介 草野
峻 工藤
靖泰 都藤
一彰 大西
健大 礒
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
+APB CORPORATION
Gunze Ltd
Sanyo Chemical Industries Ltd
Original Assignee
+APB CORPORATION
Gunze Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by +APB CORPORATION, Gunze Ltd, Sanyo Chemical Industries Ltd filed Critical +APB CORPORATION
Priority to JP2019192883A priority Critical patent/JP7398925B2/en
Publication of JP2021068587A publication Critical patent/JP2021068587A/en
Application granted granted Critical
Publication of JP7398925B2 publication Critical patent/JP7398925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン電池用樹脂集電体に関する。 The present invention relates to a resin current collector for lithium ion batteries.

リチウムイオン電池は、高電圧、高エネルギー密度という特徴を持つことから、近年様々な用途に多用されている。
リチウムイオン電池においては、従来、集電体として金属箔(金属集電箔)が用いられてきた。近年、金属箔に代わって金属粉が添加された樹脂から構成される、いわゆる樹脂集電体が提案されている(例えば、特許文献1参照)。このような樹脂集電体は、金属集電箔と比較して軽量であり、電池の単位重量あたりの出力向上が期待される。
Lithium ion batteries have been widely used in a variety of applications in recent years due to their high voltage and high energy density characteristics.
In lithium ion batteries, metal foil (metal current collector foil) has conventionally been used as a current collector. In recent years, a so-called resin current collector made of resin to which metal powder is added instead of metal foil has been proposed (see, for example, Patent Document 1). Such a resin current collector is lighter than a metal current collector foil, and is expected to improve the output per unit weight of the battery.

しかしながら、従来の樹脂集電体では導電性フィラーの分散性が不十分であり、充放電特性といった電池としての性能が低下する等の課題があった。この課題に対して、樹脂集電体を構成するマトリックス樹脂、導電性フィラー及び導電性フィラー用分散剤の最適化の努力がなされてきた(例えば、特許文献2参照)。 However, in conventional resin current collectors, the dispersibility of the conductive filler is insufficient, resulting in problems such as a decrease in performance as a battery such as charge/discharge characteristics. To address this problem, efforts have been made to optimize the matrix resin, conductive filler, and dispersant for the conductive filler that constitute the resin current collector (see, for example, Patent Document 2).

特開2012-150896号公報Japanese Patent Application Publication No. 2012-150896 国際公開第2015/005116号International Publication No. 2015/005116

樹脂集電体には、電気抵抗値が低く、出来るだけ薄い性質が求められている。しかし、特許文献2等に記載の樹脂集電体用材料は、薄膜化するとピンホール等の欠陥が生じやすい。そのため、ピンホールの無い薄い樹脂集電体を得るためには、未だ改善の余地があると言える。
本発明は、電気抵抗値が低く、かつ薄膜成形性に優れたリチウムイオン電池用樹脂集電体を提供することを目的とする。
Resin current collectors are required to have low electrical resistance and be as thin as possible. However, when the resin current collector material described in Patent Document 2 and the like is made into a thin film, defects such as pinholes are likely to occur. Therefore, it can be said that there is still room for improvement in order to obtain a thin resin current collector without pinholes.
An object of the present invention is to provide a resin current collector for lithium ion batteries that has a low electrical resistance value and excellent thin film formability.

本発明者らは、これらの課題を解決するべく鋭意検討した結果、本発明に到達した。すなわち本発明は、マトリックス樹脂、導電性フィラー及び導電性フィラー用分散剤を含む導電性樹脂層を有するリチウムイオン電池用樹脂集電体であって、前記導電性フィラー用分散剤が、ブロック(A1)とブロック(A2)とを有する共重合体であり、前記ブロック(A1)が、エチレン及びプロピレンを必須構成単量体とするブロックであり、前記ブロック(A2)が、カルボキシル基を有するエチレン性不飽和モノマー(a)を必須構成単量体とするブロックであり、前記導電性フィラー用分散剤の酸価が15~55mgKOH/gであり、前記導電性フィラー用分散剤の融点が120~145℃であるリチウムイオン電池用樹脂集電体である。 The present inventors have made extensive studies to solve these problems, and as a result, have arrived at the present invention. That is, the present invention provides a resin current collector for a lithium ion battery having a conductive resin layer containing a matrix resin, a conductive filler, and a dispersant for the conductive filler, wherein the dispersant for the conductive filler is a block (A1 ) and a block (A2), the block (A1) is a block containing ethylene and propylene as essential constituent monomers, and the block (A2) is an ethylenic copolymer having a carboxyl group. A block having an unsaturated monomer (a) as an essential constituent monomer, the acid value of the dispersant for conductive filler is 15 to 55 mgKOH/g, and the melting point of the dispersant for conductive filler is 120 to 145. This is a resin current collector for lithium ion batteries with a temperature of ℃.

本発明によれば、電気抵抗値が低く、かつ薄膜成形性に優れたリチウムイオン電池用樹脂集電体を得ることができる。 According to the present invention, it is possible to obtain a resin current collector for a lithium ion battery that has a low electrical resistance value and excellent thin film formability.

以下、本発明を詳細に説明する。
本発明は、マトリックス樹脂、導電性フィラー及び導電性フィラー用分散剤を含む導電性樹脂層を有するリチウムイオン電池用樹脂集電体であって、前記導電性フィラー用分散剤が、ブロック(A1)とブロック(A2)とを有する共重合体であり、前記ブロック(A1)が、エチレン及びプロピレンを必須構成単量体とするブロックであり、前記ブロック(A2)が、カルボキシル基を有するエチレン性不飽和モノマー(a)を必須構成単量体とするブロックであり、前記導電性フィラー用分散剤の酸価が15~55mgKOH/gであり、前記導電性フィラー用分散剤の融点が120~145℃であるリチウムイオン電池用樹脂集電体である。
The present invention will be explained in detail below.
The present invention is a resin current collector for a lithium ion battery having a conductive resin layer containing a matrix resin, a conductive filler, and a dispersant for the conductive filler, wherein the dispersant for the conductive filler forms a block (A1). and a block (A2), the block (A1) is a block containing ethylene and propylene as essential constituent monomers, and the block (A2) is a copolymer having an ethylenic monomer having a carboxyl group. A block having saturated monomer (a) as an essential constituent monomer, the acid value of the dispersant for conductive filler is 15 to 55 mgKOH/g, and the melting point of the dispersant for conductive filler is 120 to 145 ° C. This is a resin current collector for lithium ion batteries.

本発明のリチウムイオン電池用樹脂集電体は、マトリックス樹脂、導電性フィラー及び導電性フィラー用分散剤を含む導電性樹脂層を有する。なお、本発明でいうマトリックス樹脂は、導電性樹脂層の基材となる樹脂を指す。 The resin current collector for a lithium ion battery of the present invention has a conductive resin layer containing a matrix resin, a conductive filler, and a dispersant for the conductive filler. Note that the term "matrix resin" as used in the present invention refers to a resin that serves as a base material for the conductive resin layer.

(マトリックス樹脂)
前記マトリックス樹脂としては、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリシクロオレフィン、ポリエチレンテレフタレート、ポリエーテルニトリル、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリアクリロニトリル、ポリメチルアクリレート、ポリメチルメタクリレート、ポリフッ化ビニリデン、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。
電気的安定性の観点から、ポリエチレン、ポリプロピレン、ポリメチルペンテン及びポリシクロオレフィンが好ましく、さらに好ましくはポリエチレン、ポリプロピレン及びポリメチルペンテンである。
(matrix resin)
Examples of the matrix resin include polyethylene, polypropylene, polymethylpentene, polycycloolefin, polyethylene terephthalate, polyether nitrile, polytetrafluoroethylene, styrene butadiene rubber, polyacrylonitrile, polymethyl acrylate, polymethyl methacrylate, polyvinylidene fluoride, and epoxy. Examples include resins, silicone resins, and mixtures thereof.
From the viewpoint of electrical stability, polyethylene, polypropylene, polymethylpentene and polycycloolefin are preferred, and polyethylene, polypropylene and polymethylpentene are more preferred.

前記マトリックス樹脂の含有量は、樹脂強度の観点から、前記導電性樹脂層の重量を基準として、20~98重量%が好ましく、さらに好ましくは40~95重量%であり、特に好ましくは60~92重量%である。 From the viewpoint of resin strength, the content of the matrix resin is preferably 20 to 98% by weight, more preferably 40 to 95% by weight, particularly preferably 60 to 92% by weight, based on the weight of the conductive resin layer. Weight%.

(導電性フィラー)
前記導電性フィラーとしては、導電性を有する材料であれば特に制限はなく、具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。
これらの導電性フィラーは1種単独で用いられてもよいし、2種以上併用してもよい。
また、これらの合金又は金属酸化物が用いられてもよい。
前記導電性フィラーとしては、電気的安定性の観点から、好ましくはニッケル、アルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、さらに好ましくはニッケル、銀、アルミニウム、ステンレス及びカーボンであり、特に好ましくはニッケル及びカーボンである。またこれらの導電性フィラーは、粒子系セラミック材料や樹脂材料の周りに導電性材料(前記した導電性フィラーのうち金属のもの)をめっき等でコーティングしたものでもよい。
(conductive filler)
The conductive filler is not particularly limited as long as it is a conductive material, and specific examples include metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black]. (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), mixtures thereof, etc., but are not limited thereto.
These conductive fillers may be used alone or in combination of two or more.
Also, alloys or metal oxides of these may be used.
From the viewpoint of electrical stability, the conductive filler is preferably nickel, aluminum, stainless steel, carbon, silver, copper, titanium, and mixtures thereof, and more preferably nickel, silver, aluminum, stainless steel, and carbon. Among them, nickel and carbon are particularly preferred. Further, these conductive fillers may be formed by coating a particulate ceramic material or a resin material with a conductive material (metal among the conductive fillers described above) by plating or the like.

前記導電性フィラーの形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノチューブなど、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive filler is not limited to the particle form, and may be a form other than the particle form, such as a carbon nanotube, which is a form that has been put into practical use as a so-called filler-based conductive resin composition. Good too.

前記導電性フィラーの平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電性フィラーの輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle diameter of the conductive filler is not particularly limited, but from the viewpoint of the electrical characteristics of the battery, it is preferably about 0.01 to 10 μm. In addition, in this specification, "particle diameter" means the maximum distance L among the distances between any two points on the outline of the conductive filler. The value of "average particle diameter" is the average value of the particle diameter of particles observed in several to several dozen fields of view using observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.

前記導電性フィラーの含有量は、導電性フィラーの分散性の観点から、前記導電性樹脂層の重量を基準として、1~79重量%が好ましく、さらに好ましくは2~30重量%、特に好ましくは5~25重量%である。 From the viewpoint of dispersibility of the conductive filler, the content of the conductive filler is preferably 1 to 79% by weight, more preferably 2 to 30% by weight, particularly preferably 2 to 30% by weight, based on the weight of the conductive resin layer. It is 5 to 25% by weight.

(導電性フィラー用分散剤)
前記導電性樹脂層は、前記マトリックス樹脂、前記導電性フィラー及び導電性フィラー用分散剤を含む。前記導電性フィラー用分散剤は前記マトリックス樹脂中に前記導電性フィラーを分散させるものである。
前記導電性フィラー用分散剤は、ブロック(A1)とブロック(A2)とを有する共重合体であり、前記ブロック(A1)が、エチレン及びプロピレンを必須構成単量体とするブロックであり、前記ブロック(A2)が、カルボキシル基を有するエチレン性不飽和モノマー(a)を必須構成単量体とするブロックである。
(Dispersant for conductive filler)
The conductive resin layer includes the matrix resin, the conductive filler, and a dispersant for the conductive filler. The conductive filler dispersant is used to disperse the conductive filler in the matrix resin.
The dispersant for a conductive filler is a copolymer having a block (A1) and a block (A2), the block (A1) is a block containing ethylene and propylene as essential constituent monomers, and the above-mentioned Block (A2) is a block in which the ethylenically unsaturated monomer (a) having a carboxyl group is an essential constituent monomer.

前記ブロック(A1)は、エチレン及びプロピレンを必須構成単量体とするブロックである。具体的には、エチレンとプロピレンとを共重合したブロック、エチレン及びプロピレンと炭素数4~30のα-オレフィン及び/又は他の単量体とを共重合したブロック等が挙げられる。
前記α-オレフィンとしては、例えば、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、1-テトラコセン、1-トリアコンテン等が挙げられる。
前記他の単量体としては、例えば、オレフィンとの反応性を有する炭素数4~30であってオレフィンを除く不飽和単量体(酢酸ビニル等)等が挙げられる。
The block (A1) is a block containing ethylene and propylene as essential constituent monomers. Specific examples include blocks obtained by copolymerizing ethylene and propylene, blocks obtained by copolymerizing ethylene and propylene, and α-olefins having 4 to 30 carbon atoms and/or other monomers.
Examples of the α-olefin include 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1 -octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 1-tetracosene, 1-triacontene and the like.
Examples of the other monomers include unsaturated monomers having 4 to 30 carbon atoms and excluding olefins (vinyl acetate, etc.) that are reactive with olefins.

前記ブロック(A1)は、例えば、従来のオレフィン重合体を製造する方法(例えばバルク法、溶液法、スラリー法及び気相法等)で製造したオレフィン重合体(A’1)(例えば、エチレンとプロピレンの共重合体)に、熱減成反応等で二重結合を導入したものであることが好ましい。 The block (A1) is, for example, an olefin polymer (A'1) produced by a conventional method for producing an olefin polymer (for example, a bulk method, a solution method, a slurry method, a gas phase method, etc.) (for example, ethylene and It is preferable that a double bond is introduced into a propylene copolymer by a thermal degradation reaction or the like.

前記熱減成法には、前記オレフィン重合体(A’1)を窒素通気下で、(1)有機過酸化物(ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド等)不存在下、300~450℃で0.5~10時間、連続的又は非連続的に熱減成する方法、及び(2)有機過酸化物存在下、180~300℃で0.5~10時間、連続的又は非連続的に熱減成する方法等が含まれる。
これらの前記(1)、(2)の方法のうち好ましいのは、前記ブロック(A1)の分子末端及び/又はポリマー鎖中の二重結合数のより多いものが得やすい(1)の方法である。
In the thermal degradation method, the olefin polymer (A'1) is heated at 300 °C under nitrogen gas flow in the absence of (1) an organic peroxide (dicumyl peroxide, di-t-butyl peroxide, etc.). (2) continuous or discontinuous thermal degradation at 180 to 300°C for 0.5 to 10 hours in the presence of an organic peroxide; This includes methods of discontinuous thermal degradation.
Among these methods (1) and (2), preferred is method (1), which facilitates obtaining a block (A1) with a larger number of double bonds at the molecular end and/or in the polymer chain. be.

前記ブロック(A1)の分子末端及び/又はポリマー鎖中の二重結合数は、前記導電性フィラー用分散剤の酸価を好適に調整する観点から、好ましくは0.4~2.0であり、さらに好ましくは0.8~2.0であり、特に好ましくは1.2~2.0である。
前記ブロック(A1)における二重結合数の測定は、1H-NMR(核磁気共鳴)分光法のスペクトルから求めることができる。すなわち、前記測定で得られたスペクトル中のピークを帰属し、4.5~6.0ppmにおける二重結合由来の積分値と、0.5~2.0ppmにおける飽和炭化水素基由来のピークの積分値との比率から算出する。後述の実施例における二重結合数の測定は当該方法に従った。
The number of double bonds in the molecular terminal and/or polymer chain of the block (A1) is preferably 0.4 to 2.0 from the viewpoint of suitably adjusting the acid value of the dispersant for the conductive filler. , more preferably 0.8 to 2.0, particularly preferably 1.2 to 2.0.
The number of double bonds in the block (A1) can be determined from the spectrum of 1H-NMR (nuclear magnetic resonance) spectroscopy. That is, the peaks in the spectrum obtained in the above measurement are assigned, and the integral value derived from the double bond at 4.5 to 6.0 ppm and the integral value derived from the saturated hydrocarbon group at 0.5 to 2.0 ppm are calculated. Calculated from the ratio with the value. The number of double bonds in the Examples described below was measured according to the method.

前記ブロック(A1)の重量平均分子量[以下、Mwと略記する。測定は後述するゲルパーミエイションクロマトグラフィー(GPC)法による。]は、13,000~58,000が好ましく、さらに好ましくは15,000~50,000である。 The weight average molecular weight of the block (A1) [hereinafter abbreviated as Mw]. The measurement is based on the gel permeation chromatography (GPC) method described below. ] is preferably 13,000 to 58,000, more preferably 15,000 to 50,000.

本明細書において、GPCによるMwの測定条件は以下のとおりである。
装置:高温ゲルパーミエイションクロマトグラフ[「Alliance GPC V2000」、Waters(株)製]
溶媒:オルトジクロロベンゼン
基準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列[ポリマーラボラトリーズ(株)製]
カラム温度:135℃
なお、後述の実施例におけるMwの測定は当該方法に従った。
In this specification, the conditions for measuring Mw by GPC are as follows.
Equipment: High temperature gel permeation chromatograph [“Alliance GPC V2000”, manufactured by Waters Co., Ltd.]
Solvent: Orthodichlorobenzene Reference material: Polystyrene Sample concentration: 3mg/ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series [manufactured by Polymer Laboratories Co., Ltd.]
Column temperature: 135℃
In addition, the measurement of Mw in the Examples described later was carried out according to the method.

前記ブロック(A2)は、カルボキシル基を有するエチレン性不飽和モノマー(a)を必須構成単量体とするブロックである。
前記エチレン性不飽和モノマー(a)としては、不飽和モノカルボン酸[炭素数3~15、例えば、(メタ)アクリル酸、クロトン酸及び桂皮酸等]、不飽和ジカルボン酸[脂肪族化合物(炭素数4~24、例えばマレイン酸、フマル酸、イタコン酸、シトラコン酸及びメサコン酸)、芳香族化合物(炭素数10~24、例えばジカルボキシスチレン)及び脂環式化合物(炭素数8~24、例えばジカルボキシシクロヘキセン及びジカルボキシシクロヘプテン)、並びに、これらの酸無水物等]、3価~4価又はそれ以上のポリカルボン酸[脂肪族化合物(炭素数6~24、例えばアコニット酸)及び脂環式(炭素数7~24、例えばトリカルボキシシクロペンテン、トリカルボキシシクロヘキセン及びトリカルボキシシクロオクテン)等]、多価カルボン酸の部分アルキル(炭素数1~18)エステル(マレイン酸モノメチルエステル、フマル酸モノエチルエステル、イタコン酸モノ-t-ブチルエステル、メサコン酸モノデシルエステル、ジカルボキシシクロヘプテンジドデシルエステル等)及びその塩(アルカリ金属塩及びアンモニウム塩)等が挙げられる。
なかでも、反応性の観点から、不飽和ジカルボン酸(又はその酸無水物)が好ましく、さらに好ましくは不飽和ジカルボン酸の酸無水物であり、特に好ましくは無水マレイン酸である。
The block (A2) is a block whose essential constituent monomer is the ethylenically unsaturated monomer (a) having a carboxyl group.
The ethylenically unsaturated monomer (a) includes unsaturated monocarboxylic acids [having 3 to 15 carbon atoms, such as (meth)acrylic acid, crotonic acid, and cinnamic acid], unsaturated dicarboxylic acids [aliphatic compounds (carbon from 4 to 24, such as maleic acid, fumaric acid, itaconic acid, citraconic acid and mesaconic acid), aromatic compounds (from 10 to 24 carbon atoms, such as dicarboxystyrene) and alicyclic compounds (from 8 to 24 carbon atoms, such as dicarboxystyrene); dicarboxycyclohexene and dicarboxycycloheptene) and their acid anhydrides], trivalent to tetravalent or higher polycarboxylic acids [aliphatic compounds (having 6 to 24 carbon atoms, e.g. aconitic acid) and fatty acids] cyclic (7 to 24 carbon atoms, such as tricarboxycyclopentene, tricarboxycyclohexene, and tricarboxycyclooctene), partial alkyl (1 to 18 carbon atoms) esters of polyhydric carboxylic acids (monomethyl maleate, monomethyl fumarate, etc.) ethyl ester, itaconic acid mono-t-butyl ester, mesaconic acid monodecyl ester, dicarboxycycloheptenedidodecyl ester, etc.) and salts thereof (alkali metal salts and ammonium salts).
Among these, from the viewpoint of reactivity, unsaturated dicarboxylic acids (or their acid anhydrides) are preferred, more preferred are unsaturated dicarboxylic acid anhydrides, and maleic anhydride is particularly preferred.

前記ブロック(A2)を構成する、前記エチレン性不飽和モノマー(a)の割合は、前記導電性フィラーの分散性の観点から、前記ブロック(A2)の重量を基準として、50~100重量%が好ましく、さらに好ましくは60~100重量%であり、特に好ましくは70~100重量%である。 From the viewpoint of dispersibility of the conductive filler, the proportion of the ethylenically unsaturated monomer (a) constituting the block (A2) is 50 to 100% by weight based on the weight of the block (A2). It is preferably 60 to 100% by weight, particularly preferably 70 to 100% by weight.

前記ブロック(A2)中のカルボキシル基の合計モル濃度は、前記導電性フィラーの分散性の観点から、0.0001~0.03モル/gが好ましく、さらに好ましくは0.001~0.028モル/gであり、特に好ましくは0.01~0.025モル/gである。
前記ブロック(A2)中の前記カルボキシル基の合計モル濃度は、前記導電性フィラー用分散剤を製造する際の前記エチレン性不飽和モノマー(a)の仕込み量から、下記数式により算出することができる。
合計モル濃度=Σ{(エチレン性不飽和モノマー(a)の仕込み量)/(エチレン性不飽和モノマー(a)の分子量)}/{エチレン性不飽和モノマー(a)の合計仕込み量}
なお、前記カルボキシル基の合計モル濃度の算出にあたっては、2個以上のカルボキシル基を有するエチレン性不飽和モノマー(a)を用いる場合は、前記エチレン性不飽和モノマー(a)の仕込み量に官能基の数をかけた値を「エチレン性不飽和モノマー(a)の仕込み量」として算出する。
The total molar concentration of carboxyl groups in the block (A2) is preferably 0.0001 to 0.03 mol/g, more preferably 0.001 to 0.028 mol/g, from the viewpoint of dispersibility of the conductive filler. /g, particularly preferably 0.01 to 0.025 mol/g.
The total molar concentration of the carboxyl groups in the block (A2) can be calculated by the following formula from the amount of the ethylenically unsaturated monomer (a) charged when producing the conductive filler dispersant. .
Total molar concentration = Σ {(amount of ethylenically unsaturated monomer (a) charged)/(molecular weight of ethylenically unsaturated monomer (a))}/{total amount of charged ethylenically unsaturated monomer (a)}
In addition, when calculating the total molar concentration of the carboxyl groups, if an ethylenically unsaturated monomer (a) having two or more carboxyl groups is used, the amount of the charged ethylenically unsaturated monomer (a) should be The value multiplied by the number of is calculated as the "charged amount of ethylenically unsaturated monomer (a)".

前記導電性フィラー用分散剤中のカルボキシル基の合計モル濃度は、導電性フィラーの分散性の観点から、0.00005~0.015モル/gが好ましく、さらに好ましくは0.0005~0.014モル/gである。
前記導電性フィラー用分散剤中のカルボキシル基の合計モル濃度は、前記導電性フィラー用分散剤について13C-NMR及びIR(赤外分光)を測定し、モル濃度の分かっている試料を用いて求めた検量線に当てはめることで算出できる。
また、前記導電性フィラー用分散剤中のカルボキシル基の合計モル濃度は、前記導電性フィラー用分散剤を製造する際の仕込み量から、下記数式により算出することもできる。
合計モル濃度=Σ{(エチレン性不飽和モノマー(a)の仕込み量)/(エチレン性不飽和モノマー(a)の分子量)}/(導電性フィラー用分散剤を構成するモノマーの合計仕込み量)
なお、前記カルボキシル基の合計モル濃度の算出にあたっては、2個以上のカルボキシル基を有するエチレン性不飽和モノマー(a)を用いる場合は、前記エチレン性不飽和モノマー(a)の仕込み量にカルボキシル基の数をかけた値を「エチレン性不飽和モノマー(a)の仕込み量」として算出する。
The total molar concentration of carboxyl groups in the conductive filler dispersant is preferably 0.00005 to 0.015 mol/g, more preferably 0.0005 to 0.014 from the viewpoint of dispersibility of the conductive filler. Mol/g.
The total molar concentration of carboxyl groups in the dispersant for conductive filler is determined by measuring 13 C-NMR and IR (infrared spectroscopy) of the dispersant for conductive filler, and using a sample whose molar concentration is known. It can be calculated by applying it to the obtained calibration curve.
Further, the total molar concentration of carboxyl groups in the dispersant for conductive filler can also be calculated from the amount charged in producing the dispersant for conductive filler using the following formula.
Total molar concentration = Σ {(amount of ethylenically unsaturated monomer (a) charged)/(molecular weight of ethylenically unsaturated monomer (a))}/(total amount of monomers constituting the dispersant for conductive filler)
In addition, when calculating the total molar concentration of carboxyl groups, when using an ethylenically unsaturated monomer (a) having two or more carboxyl groups, the carboxyl group is added to the charged amount of the ethylenically unsaturated monomer (a). The value multiplied by the number of is calculated as the "charged amount of ethylenically unsaturated monomer (a)".

前記導電性フィラー用分散剤は、前記ブロック(A1)と前記ブロック(A2)とを有する共重合体であるが、前記導電性フィラーの分散性の観点から、重量比{ブロック(A1)/ブロック(A2)}が好ましくは50/50~99/1であり、さらに好ましくは60/40~98/2であり、特に好ましくは70/30~95/5である。 The dispersant for the conductive filler is a copolymer having the block (A1) and the block (A2), but from the viewpoint of dispersibility of the conductive filler, the weight ratio {block (A1)/block (A2)} is preferably 50/50 to 99/1, more preferably 60/40 to 98/2, particularly preferably 70/30 to 95/5.

前記導電性フィラー用分散剤の製造方法としては、例えば、上述した熱減成反応等で二重結合を導入したブロック(A1)に、前記ブロック(A2)を付加する方法等が挙げられる。 Examples of the method for producing the conductive filler dispersant include a method in which the block (A2) is added to the block (A1) into which a double bond has been introduced by the above-mentioned thermal degradation reaction or the like.

前記導電性フィラー用分散剤は、例えば、前記ブロック(A1)と前記ブロック(A2)とをラジカル発生源[ラジカル開始剤(b)、熱、光等]の存在下で反応させることにより得られる。ここでいう反応とは、前記ブロック(A1)が有する二重結合への前記ブロック(A2)の付加反応を指す。反応の有無は、反応前後の混合物{ブロック(A1)とブロック(A2)との混合物}が有する二重結合の数の減少で判断する。
前記二重結合数の測定は、1H-NMR(核磁気共鳴)分光法のスペクトルから求めることができる。すなわち、前記測定で得られたスペクトル中のピークを帰属し、前記混合物の4.5~6.0ppmにおける二重結合由来の積分値及び前記混合物由来の積分値から、前記混合物の二重結合数と前記混合物の炭素数の相対値を求め、前記混合物の炭素1,000個当たりの該分子末端及び/又はポリマー鎖中の二重結合数を算出する。後述の実施例における分散剤を製造する際の反応の有無も同方法に従って確認した。
The conductive filler dispersant can be obtained, for example, by reacting the block (A1) and the block (A2) in the presence of a radical generating source [radical initiator (b), heat, light, etc.] . The reaction here refers to an addition reaction of the block (A2) to the double bond of the block (A1). The presence or absence of a reaction is determined by the decrease in the number of double bonds in the mixture before and after the reaction {the mixture of block (A1) and block (A2)}.
The number of double bonds can be determined from the spectrum of 1H-NMR (nuclear magnetic resonance) spectroscopy. That is, the peak in the spectrum obtained in the measurement is assigned, and the number of double bonds in the mixture is determined from the integral value derived from the double bond at 4.5 to 6.0 ppm of the mixture and the integral value derived from the mixture. The relative value of the number of carbon atoms in the mixture is calculated, and the number of double bonds in the molecular terminal and/or polymer chain per 1,000 carbon atoms in the mixture is calculated. The presence or absence of a reaction during the production of a dispersant in the Examples described below was also confirmed according to the same method.

前記ラジカル開始剤(b)としては、アゾ化合物[アゾビスイソブチロニトリル、アゾビスイソバレロニトリル等]、過酸化物〔単官能(分子内にパーオキシド基を1個有するもの)(ベンゾイルパーオキシド、ジ-t-ブチルパーオキシド、ラウロイルパーオキシド、ジクミルパーオキシド等)および多官能(分子内にパーオキシド基を2個以上有するもの)[2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、ジアリルパーオキシジカーボネート等]〕等が挙げられる。
これらのうち前記ブロック(A1)と前記ブロック(A2)との反応性の観点からラジカル開始剤(b)として好ましいのは、過酸化物、さらに好ましいのは単官能過酸化物、とくに好ましいのはジ-t-ブチルパーオキシド、ラウロイルパーオキシド、ジクミルパーオキシドである。
Examples of the radical initiator (b) include azo compounds [azobisisobutyronitrile, azobisisovaleronitrile, etc.], peroxides [monofunctional (one having one peroxide group in the molecule)] (benzoyl peroxide, , di-t-butyl peroxide, lauroyl peroxide, dicumyl peroxide, etc.) and polyfunctional (those having two or more peroxide groups in the molecule) [2,2-bis(4,4-di-t- butylperoxycyclohexyl)propane, di-t-butylperoxyhexahydroterephthalate, diallylperoxydicarbonate, etc.].
Among these, preferred as the radical initiator (b) from the viewpoint of reactivity between the block (A1) and the block (A2) are peroxides, more preferred are monofunctional peroxides, and particularly preferred are monofunctional peroxides. These are di-t-butyl peroxide, lauroyl peroxide, and dicumyl peroxide.

前記ラジカル開始剤(b)の使用量は、反応性及び副反応抑制の観点から、前記ブロック(A1)と前記ブロック(A2)の合計重量に基づいて好ましくは0.05~10重量%、さらに好ましくは0.2~5重量%、とくに好ましくは0.5~3重量%である。 The amount of the radical initiator (b) used is preferably 0.05 to 10% by weight based on the total weight of the block (A1) and the block (A2), from the viewpoint of reactivity and suppression of side reactions, and The amount is preferably 0.2 to 5% by weight, particularly preferably 0.5 to 3% by weight.

前記導電性フィラー用分散剤の酸価は、15~55mgKOH/gである。前記導電性フィラー用分散剤の酸価が15mgKOH/g未満であると前記マトリックス樹脂中の前記導電性フィラーの分散性が悪化して樹脂集電体の電気抵抗が大きくなり、前記導電性フィラー用分散剤の酸価が55mgKOH/gを超えると樹脂集電体の薄膜成形性が悪化する傾向がある。
前記分散剤の酸価は、35~55mgKOH/gであることが好ましい。
The acid value of the dispersant for the conductive filler is 15 to 55 mgKOH/g. If the acid value of the dispersant for the conductive filler is less than 15 mgKOH/g, the dispersibility of the conductive filler in the matrix resin will deteriorate and the electrical resistance of the resin current collector will increase, and the dispersant for the conductive filler If the acid value of the dispersant exceeds 55 mgKOH/g, the thin film formability of the resin current collector tends to deteriorate.
The acid value of the dispersant is preferably 35 to 55 mgKOH/g.

前記導電性フィラー用分散剤の酸価は、JIS K 0070に準じて以下の(i)~(iii)の手順で測定して得られる値である。
(i)100℃に温度調整したキシレン100gに前記導電性フィラー用分散剤1gを溶解させる。
(ii)フェノールフタレインを指示薬として、0.1mol/L水酸化カリウムエタノール溶液[商品名「0.1mol/Lエタノール性水酸化カリウム溶液」、富士フイルム和光純薬(株)製]で中和滴定を行う。
(iii)中和滴定に要した水酸化カリウム量をmgに換算して酸価(単位:mgKOH/g)を算出する。
なお、前記測定では1個の酸無水物基は1個のカルボキシル基と等価になる結果が得られる。後述の実施例における酸価は当該方法に従った。
The acid value of the conductive filler dispersant is a value obtained by measuring according to the following procedures (i) to (iii) in accordance with JIS K 0070.
(i) 1 g of the conductive filler dispersant is dissolved in 100 g of xylene whose temperature is adjusted to 100°C.
(ii) Using phenolphthalein as an indicator, neutralize with 0.1 mol/L potassium hydroxide ethanol solution [trade name "0.1 mol/L ethanolic potassium hydroxide solution", manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.] Perform titration.
(iii) Calculate the acid value (unit: mgKOH/g) by converting the amount of potassium hydroxide required for neutralization titration into mg.
In addition, in the above measurement, a result is obtained in which one acid anhydride group is equivalent to one carboxyl group. The acid values in the Examples described below were determined according to the method.

前記導電性フィラー用分散剤の酸価を前記範囲にする方法としては、前記導電性フィラー用分散剤中の前記エチレン性不飽和モノマー(a)の重量割合をコントロールすることで酸価を調整することができる。 As a method for setting the acid value of the dispersant for conductive filler in the above range, the acid value is adjusted by controlling the weight ratio of the ethylenically unsaturated monomer (a) in the dispersant for conductive filler. be able to.

前記導電性フィラー用分散剤の融点は120~145℃である。前記導電性フィラー用分散剤の融点が120℃未満又は145℃を超えると、前記マトリックス樹脂との粘度差が大きくなり過ぎるため前記導電性フィラーの分散性が悪化する。
前記導電性フィラーの分散性の観点から、前記導電性フィラー用分散剤の融点は135~145℃であることが好ましく、140~145℃であることがより好ましい。
なお、本発明において融点とはDSC(示差走査熱量測定)を用い、JIS K 7122(転移熱測定法)に準じて測定される融解ピーク温度を意味する。DSCに用いる装置としては、DSC2910[商品名、ティー・エイ・インスツルメント(株)製]等が挙げられる。後述の実施例における融点は当該方法、機器を用いて測定した。
The melting point of the conductive filler dispersant is 120 to 145°C. If the melting point of the conductive filler dispersant is less than 120° C. or higher than 145° C., the difference in viscosity from the matrix resin becomes too large, resulting in poor dispersibility of the conductive filler.
From the viewpoint of dispersibility of the conductive filler, the melting point of the dispersant for the conductive filler is preferably 135 to 145°C, more preferably 140 to 145°C.
In the present invention, the melting point refers to the melting peak temperature measured using DSC (differential scanning calorimetry) according to JIS K 7122 (transition heat measurement method). Examples of the device used for DSC include DSC2910 [trade name, manufactured by TA Instruments Co., Ltd.]. The melting points in the Examples described below were measured using the method and equipment described above.

前記導電性フィラー用分散剤の融点を前記範囲にする方法としては、前記熱減成法(1)の方法において加熱温度、加熱時間を調整すればよい。加熱温度は高いほど、加熱時間は長いほど、前記分散剤の融点は低くなる傾向にある。 As a method for bringing the melting point of the conductive filler dispersant into the range, the heating temperature and heating time may be adjusted in the thermal degradation method (1). The higher the heating temperature and the longer the heating time, the lower the melting point of the dispersant tends to be.

前記導電性フィラー用分散剤の重量平均分子量[以下、Mwと略記する。測定は後述するゲルパーミエイションクロマトグラフィー(GPC)法による。]は、20,000~60,000であることが好ましい。前記導電性フィラー用分散剤のMwが前記範囲であると樹脂集電体の機械的強度が良化する。
前記導電性フィラー用分散剤のMwは、さらに好ましくは20,000~50,000であり、特に好ましくは25,000~40,000である。
The weight average molecular weight of the conductive filler dispersant [hereinafter abbreviated as Mw]. The measurement is based on the gel permeation chromatography (GPC) method described below. ] is preferably 20,000 to 60,000. When the Mw of the conductive filler dispersant is within the above range, the mechanical strength of the resin current collector is improved.
The Mw of the conductive filler dispersant is more preferably 20,000 to 50,000, particularly preferably 25,000 to 40,000.

本発明におけるGPCによるMwの測定条件は以下のとおりである。
装置:高温ゲルパーミエイションクロマトグラフ[「Alliance GPC V2000」、Waters(株)製]
溶媒:オルトジクロロベンゼン
基準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列[ポリマーラボラトリーズ(株)製]
カラム温度:135℃
The conditions for measuring Mw by GPC in the present invention are as follows.
Equipment: High temperature gel permeation chromatograph [“Alliance GPC V2000”, manufactured by Waters Co., Ltd.]
Solvent: Orthodichlorobenzene Reference material: Polystyrene Sample concentration: 3mg/ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series [manufactured by Polymer Laboratories Co., Ltd.]
Column temperature: 135℃

前記導電性フィラー用分散剤のMwを前記範囲にする方法としては、前記熱減成法(1)の方法において加熱温度、加熱時間を調整すればよい。加熱温度は高いほど、加熱時間は長いほど、前記分散剤Mwは小さくなる傾向にある。 In order to bring the Mw of the conductive filler dispersant into the above range, the heating temperature and heating time may be adjusted in the thermal degradation method (1). The higher the heating temperature and the longer the heating time, the smaller the dispersant Mw tends to be.

前記導電性フィラー用分散剤の含有量は、前記導電性樹脂層の重量を基準として0.1~10重量%含有することが好ましく、より好ましくは1~7重量%、特に好ましくは3~5重量%である。前記導電性フィラー用分散剤の含有量が、前記導電性樹脂層の重量を基準として0.1~10重量%であると樹脂集電体の機械的強度が良化する。 The content of the conductive filler dispersant is preferably 0.1 to 10% by weight, more preferably 1 to 7% by weight, particularly preferably 3 to 5% by weight, based on the weight of the conductive resin layer. Weight%. When the content of the conductive filler dispersant is 0.1 to 10% by weight based on the weight of the conductive resin layer, the mechanical strength of the resin current collector is improved.

(リチウムイオン電池用樹脂集電体)
本発明のリチウムイオン電池用樹脂集電体は、例えば、以下の方法で製造することができる。
まず、マトリックス樹脂、導電性フィラー、導電性フィラー用分散剤及び、必要に応じてその他の成分を混合することにより、樹脂集電体用材料を得る。
混合の方法としては、導電性フィラーのマスターバッチを得てから、さらにマトリックス樹脂と混合する方法、マトリックス樹脂、導電性炭素フィラー、導電性フィラー用分散剤及び、必要に応じてその他の成分のマスターバッチを用いる方法、及び、全ての原料を一括して混合する方法等があり、その混合にはペレット状又は粉体状の成分を適切な公知の混合機、例えばニーダー、インターナルミキサー、バンバリーミキサー及びロールを用いることができる。
(Resin current collector for lithium ion batteries)
The resin current collector for lithium ion batteries of the present invention can be manufactured, for example, by the following method.
First, a resin current collector material is obtained by mixing a matrix resin, a conductive filler, a dispersant for conductive filler, and other components as necessary.
The mixing method is to obtain a master batch of the conductive filler and then mix it with the matrix resin, or to prepare a master batch of the matrix resin, conductive carbon filler, dispersant for the conductive filler, and other components as necessary. There are a batch method and a method of mixing all the raw materials at once.For mixing, pellet or powder components are mixed using an appropriate known mixer, such as a kneader, internal mixer, or Banbury mixer. and rolls can be used.

混合時の各成分の添加順序には特に限定はない。得られた混合物は、さらにペレタイザーなどによりペレット化又は粉末化してもよい。 There is no particular limitation on the order of addition of each component during mixing. The obtained mixture may be further pelletized or powdered using a pelletizer or the like.

得られた樹脂集電体用材料を例えばフィルム状に成形することにより、本発明のリチウムイオン電池用樹脂集電体が有する導電性樹脂層が得られる。フィルム状に成形する方法としては、Tダイ法、インフレーション法及びカレンダー法等の公知のフィルム成形法が挙げられる。なお、導電性樹脂層は、フィルム成形以外の成形方法によっても得ることができる。 By molding the obtained resin current collector material into a film shape, for example, a conductive resin layer included in the resin current collector for a lithium ion battery of the present invention can be obtained. Examples of methods for forming into a film include known film forming methods such as a T-die method, an inflation method, and a calendar method. Note that the conductive resin layer can also be obtained by a molding method other than film molding.

本発明のリチウムイオン電池用樹脂集電体としては、前記導電性樹脂層をそのまま集電体として使用することもできるし、他の導電性樹脂層や金属層と積層して使用してもよい。
前記金属層を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料等が挙げられる。また、前記導電性樹脂層の表面に金属めっき処理、蒸着処理、スパッタリング処理等によって導電膜を形成して集電体として供することもできる。
As the resin current collector for lithium ion batteries of the present invention, the conductive resin layer can be used as it is as a current collector, or it can be used by laminating it with other conductive resin layers or metal layers. .
Examples of the material constituting the metal layer include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof. Furthermore, a conductive film can be formed on the surface of the conductive resin layer by metal plating, vapor deposition, sputtering, etc., and can be used as a current collector.

次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 EXAMPLES Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited to the examples unless it departs from the gist of the present invention. In addition, unless otherwise specified, parts mean parts by weight, and % means weight %.

<製造例1:ブロック(A1-1)の製造>
反応容器に、プロピレン、エチレンを構成単位とするメタロセン触媒を使用したポリオレフィン(A0-1)[商品名「ウィンテックWFX6」、日本ポリプロ(株)製]100部を仕込み、気相部分に工業用窒素(純度99.999体積%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で18分間熱減成を行い、ブロック(A1-1)を得た。ブロック(A1-1)の炭素1000個当たりの分子末端の二重結合数は0.4個、Mwは50,000であった。
<Manufacture example 1: Manufacture of block (A1-1)>
A reaction vessel was charged with 100 parts of a polyolefin (A0-1) using a metallocene catalyst containing propylene and ethylene as constituent units (trade name: "Wintech WFX6", manufactured by Nippon Polypro Co., Ltd.), and industrial grade was added to the gas phase. While blowing nitrogen (purity 99.999% by volume), the mixture was heated and melted using a mantle heater, and heat degradation was performed at 360° C. for 18 minutes while stirring to obtain a block (A1-1). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-1) was 0.4, and the Mw was 50,000.

<製造例2:ブロック(A1-2)の製造>
反応容器に、プロピレン、エチレンを構成単位とするチーグラナッタ触媒を使用したポリオレフィン(A0-2)[商品名「サンアロマーPM854X」、サンアロマー(株)製]100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で37分間熱減成を行い、ブロック(A1-2)を得た。ブロック(A1-2)の炭素1000個当たりの分子末端の二重結合数は2.0個、Mwは15,000であった。
<Production example 2: Production of block (A1-2)>
A reaction vessel was charged with 100 parts of a polyolefin (A0-2) using a Ziegler-Natta catalyst containing propylene and ethylene as constituent units (trade name: "Sun Allomer PM854X", manufactured by Sun Allomer Co., Ltd.), and the gas phase was filled with industrial nitrogen ( (purity 99.999%) was heated and melted using a mantle heater while venting, and heat degradation was performed at 360° C. for 37 minutes while stirring to obtain a block (A1-2). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-2) was 2.0, and the Mw was 15,000.

<製造例3:ブロック(A1-3)の製造>
反応容器に、プロピレン、エチレンを構成単位とするチーグラナッタ触媒を使用したポリオレフィン(A0-3)[商品名「サンアロマーPZA-20A」、サンアロマー(株)製]100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で30分間熱減成を行い、ブロック(A1-3)を得た。ブロック(A1-3)の炭素1000個当たりの分子末端の二重結合数は1.2個、Mwは15,000であった。
<Manufacture example 3: Manufacture of block (A1-3)>
A reaction vessel was charged with 100 parts of a polyolefin (A0-3) using a Ziegler-Natta catalyst containing propylene and ethylene as constituent units (trade name: "Sun Allomer PZA-20A", manufactured by Sun Allomer Co., Ltd.), and industrial grade polyolefin was added to the gas phase. While blowing nitrogen (purity 99.999%), the mixture was heated and melted using a mantle heater, and heat degradation was performed at 360° C. for 30 minutes while stirring to obtain a block (A1-3). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-3) was 1.2, and the Mw was 15,000.

<製造例4:ブロック(A1-4)の製造>
反応容器に、プロピレン、エチレンを構成単位とするメタロセン触媒を使用したポリオレフィン(A0-4)[商品名「バーシファイ3000」、ダウケミカル(株)製]100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で37分間熱減成を行い、ブロック(A1-4)を得た。ブロック(A1-4)の炭素1000個当たりの分子末端の二重結合数は2.0個、Mwは16,000であった。
<Production example 4: Production of block (A1-4)>
A reaction vessel was charged with 100 parts of polyolefin (A0-4) using a metallocene catalyst containing propylene and ethylene as constituent units (trade name "Versify 3000", manufactured by Dow Chemical Co., Ltd.), and industrial nitrogen was added to the gas phase. (purity 99.999%) was heated and melted in a mantle heater while aerated, and thermally degraded at 360° C. for 37 minutes while stirring to obtain a block (A1-4). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-4) was 2.0, and the Mw was 16,000.

<製造例5:ブロック(A1-5)の製造>
反応容器に、前記ポリオレフィン(A0-2)100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で26分間熱減成を行い、ブロック(A1-5)を得た。ブロック(A1-5)の炭素1000個当たりの分子末端の二重結合数は0.8個、Mwは40,000であった。
<Manufacture example 5: Manufacture of block (A1-5)>
A reaction vessel was charged with 100 parts of the polyolefin (A0-2), and while industrial nitrogen (purity 99.999%) was introduced into the gas phase, it was heated and melted using a mantle heater, and then heated at 360°C for 26 hours while stirring. Thermal degradation was performed for a minute to obtain a block (A1-5). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-5) was 0.8, and the Mw was 40,000.

<製造例6:ブロック(A1-6)の製造>
反応容器に、前記ポリオレフィン(A0-1)100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で15分間熱減成を行い、ブロック(A1-6)を得た。ブロック(A1-6)の炭素1000個当たりの分子末端の二重結合数は0.2個、Mwは64,000であった。
<Production Example 6: Production of block (A1-6)>
100 parts of the polyolefin (A0-1) was charged into a reaction vessel, heated and melted with a mantle heater while blowing industrial nitrogen (purity 99.999%) into the gas phase, and heated at 360°C for 15 minutes while stirring. Thermal degradation was performed for a minute to obtain a block (A1-6). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-6) was 0.2, and the Mw was 64,000.

<製造例7:ブロック(A1-7)の製造>
反応容器に、前記ポリオレフィン(A0-3)100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で39分間熱減成を行い、ブロック(A1-7)を得た。ブロック(A1-7)の炭素1000個当たりの分子末端の二重結合数は2.2個、Mwは8,000であった。
<Production Example 7: Production of block (A1-7)>
100 parts of the polyolefin (A0-3) was charged into a reaction vessel, and heated and melted with a mantle heater while blowing industrial nitrogen (purity 99.999%) into the gas phase. Thermal degradation was performed for a minute to obtain a block (A1-7). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-7) was 2.2, and the Mw was 8,000.

<製造例8:ブロック(A1-8)の製造>
反応容器に、前記ポリオレフィン(A0-2)100部を仕込み、気相部分に工業用窒素(純度99.999%)を通気しながら、マントルヒーターにて加熱溶融し、攪拌しながら360℃で15分間熱減成を行い、ブロック(A1-8)を得た。ブロック(A1-8)の炭素1000個当たりの分子末端の二重結合数は0.2個、Mwは60,000であった。
<Production Example 8: Production of block (A1-8)>
100 parts of the polyolefin (A0-2) was charged into a reaction vessel, and heated and melted with a mantle heater while blowing industrial nitrogen (99.999% purity) into the gas phase, and heated at 360°C for 15 minutes while stirring. Thermal degradation was performed for a minute to obtain a block (A1-8). The number of double bonds at the end of the molecule per 1000 carbon atoms in block (A1-8) was 0.2, and the Mw was 60,000.

<製造例9:導電性フィラー用分散剤(1)の製造>
反応容器にブロック(A1-1)100部と、ブロック(A2)として無水マレイン酸3部を仕込み、工業用窒素(純度99.999%)通気下、200℃まで加熱昇温して10時間攪拌を続けた。その後、減圧下(1.5kPa、以下同じ)で未反応の無水マレイン酸を留去して、導電性フィラー用分散剤(1)を得た。導電性フィラー用分散剤(1)の酸価は15mgKOH/g、融点は120℃、Mwは52,000であった。
<Production Example 9: Production of dispersant (1) for conductive filler>
A reaction vessel was charged with 100 parts of block (A1-1) and 3 parts of maleic anhydride as block (A2), heated to 200°C under ventilation with industrial nitrogen (purity 99.999%), and stirred for 10 hours. continued. Thereafter, unreacted maleic anhydride was distilled off under reduced pressure (1.5 kPa, the same applies hereinafter) to obtain a dispersant for conductive filler (1). The dispersant for conductive filler (1) had an acid value of 15 mgKOH/g, a melting point of 120° C., and an Mw of 52,000.

<製造例10:導電性フィラー用分散剤(2)の製造>
製造例9のブロック(A1-1)をブロック(A1-2)に、無水マレイン酸の仕込み量を3部から11部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(2)を得た。導電性フィラー用分散剤(2)の酸価は55mgKOH/g、融点は145℃、Mwは28,000であった。
<Production Example 10: Production of dispersant (2) for conductive filler>
The same operation as in Production Example 9 was carried out except that the block (A1-1) in Production Example 9 was changed to block (A1-2) and the amount of maleic anhydride was changed from 3 parts to 11 parts. Agent (2) was obtained. The dispersant for conductive filler (2) had an acid value of 55 mgKOH/g, a melting point of 145° C., and an Mw of 28,000.

<製造例11:導電性フィラー用分散剤(3)の製造>
製造例9のブロック(A1-1)をブロック(A1-3)に、無水マレイン酸の仕込み量を3部から6.9部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(3)を得た。導電性フィラー用分散剤(3)の酸価は35mgKOH/g、融点は135℃、Mwは32,000であった。
<Production Example 11: Production of dispersant (3) for conductive filler>
Conductive filler A dispersant (3) for use was obtained. The dispersant for conductive filler (3) had an acid value of 35 mgKOH/g, a melting point of 135° C., and an Mw of 32,000.

<比較製造例1:導電性フィラー用分散剤(4)の製造>
製造例9のブロック(A1-1)をブロック(A1-4)に、無水マレイン酸の仕込み量を3部から11部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(4)を得た。導電性フィラー用分散剤(4)の酸価は55mgKOH/g、融点は115℃、Mwは30,000であった。
<Comparative Production Example 1: Production of dispersant (4) for conductive filler>
The same operation as in Production Example 9 was carried out except that the block (A1-1) in Production Example 9 was changed to block (A1-4) and the amount of maleic anhydride was changed from 3 parts to 11 parts. Agent (4) was obtained. The dispersant for conductive filler (4) had an acid value of 55 mgKOH/g, a melting point of 115° C., and an Mw of 30,000.

<比較製造例2:導電性フィラー用分散剤(5)の製造>
製造例9のブロック(A1-1)をブロック(A1-5)に、無水マレイン酸の仕込み量を3部から5.1部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(5)を得た。導電性フィラー用分散剤(5)の酸価は26mgKOH/g、融点は150℃、Mwは45,000であった。
<Comparative Production Example 2: Production of dispersant (5) for conductive filler>
Conductive filler A dispersant (5) for use was obtained. The dispersant for conductive filler (5) had an acid value of 26 mgKOH/g, a melting point of 150° C., and an Mw of 45,000.

<比較製造例3:導電性フィラー用分散剤(6)の製造>
製造例9のブロック(A1-1)をブロック(A1-6)に、無水マレイン酸の仕込み量を3部から2.3部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(6)を得た。導電性フィラー用分散剤(6)の酸価は11mgKOH/g、融点は124℃、Mwは70,000であった。
<Comparative Production Example 3: Production of dispersant (6) for conductive filler>
Conductive filler A dispersant (6) for use was obtained. The dispersant for conductive filler (6) had an acid value of 11 mgKOH/g, a melting point of 124° C., and an Mw of 70,000.

<比較製造例4:導電性フィラー用分散剤(7)の製造>
製造例9のブロック(A1-1)をブロック(A1-7)に、無水マレイン酸の仕込み量を3部から12.1部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(7)を得た。導電性フィラー用分散剤(7)の酸価は60mgKOH/g、融点は135℃、Mwは28,000であった。
<Comparative Production Example 4: Production of dispersant (7) for conductive filler>
Conductive filler A dispersant (7) was obtained. The dispersant for conductive filler (7) had an acid value of 60 mgKOH/g, a melting point of 135° C., and an Mw of 28,000.

<比較製造例5:導電性フィラー用分散剤(8)の製造>
製造例9のブロック(A1-1)をブロック(A1-8)に、無水マレイン酸の仕込み量を3部から2.3部に変更した以外は製造例9と同じ操作を行い、導電性フィラー用分散剤(8)を得た。導電性フィラー用分散剤(8)の酸価は11mgKOH/g、融点は150℃、Mwは65,000であった。
<Comparative Production Example 5: Production of dispersant (8) for conductive filler>
Conductive filler A dispersant (8) was obtained. The dispersant for conductive filler (8) had an acid value of 11 mgKOH/g, a melting point of 150° C., and an Mw of 65,000.

Figure 0007398925000001
Figure 0007398925000001

<実施例1>
2軸押出機にて、マトリックス樹脂としてポリプロピレン[商品名「サンアロマーPC684S」、サンアロマー(株)製]70部、導電性フィラーとしてファーネスブラック[商品名「#3030B」、三菱ケミカル(株)製]25部、導電性フィラー用分散剤(1)5部を180℃、100rpm、滞留時間5分の条件で溶融混錬して正極用樹脂集電体材料を得た。得られた正極用樹脂集電体材料を、熱プレス機により圧延して導電性樹脂層を形成し、これを正極用樹脂集電体(W-1)とした。
<Example 1>
In a twin-screw extruder, 70 parts of polypropylene [trade name "Sunallomer PC684S", manufactured by Sunallomer Co., Ltd.] as a matrix resin, and 25 parts of furnace black [trade name "#3030B", manufactured by Mitsubishi Chemical Corporation] as a conductive filler. A resin current collector material for a positive electrode was obtained by melting and kneading 5 parts of the conductive filler dispersant (1) at 180° C., 100 rpm, and residence time of 5 minutes. The obtained positive electrode resin current collector material was rolled using a hot press machine to form a conductive resin layer, which was used as a positive electrode resin current collector (W-1).

<実施例2、3及び比較例1~5>
表2に記載の組成に変更した他は実施例1と同様にして、正極用樹脂集電体材料を得て、熱プレス機により圧延して導電性樹脂層をそれぞれ形成し、これらを正極用樹脂集電体(W-2)、(W-3)及び(RW-1)~(RW-5)とした。
<Examples 2 and 3 and Comparative Examples 1 to 5>
A resin current collector material for a positive electrode was obtained in the same manner as in Example 1 except that the composition was changed to the one shown in Table 2, and conductive resin layers were formed by rolling with a hot press machine. Resin current collectors (W-2), (W-3), and (RW-1) to (RW-5) were used.

<実施例4>
2軸押出機にて、マトリックス樹脂としてポリプロピレン[商品名「サンアロマーPC684S」、サンアロマー(株)製]32部、導電性フィラーとしてニッケル粒子[Type255、ヴァーレ・ジャパン(株)製]65部、導電性フィラー用分散剤(1)3部を180℃、100rpm、滞留時間5分の条件で溶融混錬して負極用樹脂集電体材料を得た。得られた負極用樹脂集電体材料を、熱プレス機により圧延して導電性樹脂層をそれぞれ形成し、これを負極用樹脂集電体(Z-1)とした。
<Example 4>
In a twin-screw extruder, 32 parts of polypropylene [trade name "Sun Allomer PC684S", manufactured by Sun Allomer Co., Ltd.] as a matrix resin, 65 parts of nickel particles [Type 255, manufactured by Vale Japan Ltd.] as a conductive filler, and conductive A resin current collector material for a negative electrode was obtained by melting and kneading 3 parts of the filler dispersant (1) at 180° C., 100 rpm, and a residence time of 5 minutes. The obtained negative electrode resin current collector material was rolled using a hot press machine to form conductive resin layers, and this was used as a negative electrode resin current collector (Z-1).

<実施例5、6及び比較例6、7>
表3に記載の組成に変更した他は実施例4と同様にして、負極用樹脂集電体材料を得て、熱プレス機により圧延して導電性樹脂層をそれぞれ形成し、これらを負極用樹脂集電体(Z-2)、(Z-3)及び(RZ-1)、(RZ-2)とした。
<Examples 5 and 6 and Comparative Examples 6 and 7>
A resin current collector material for a negative electrode was obtained in the same manner as in Example 4 except that the composition was changed to the one shown in Table 3, and conductive resin layers were formed by rolling with a hot press machine. Resin current collectors (Z-2), (Z-3), (RZ-1), and (RZ-2) were used.

[薄膜成形性評価]
実施例1~6及び比較例1~7で得られた樹脂集電体材料を用いて、実施例1~6及び比較例1~7における熱プレスでの圧延条件を変えて膜厚調整を行った。下記ピンホール試験の結果、ピンホールがなく、最も薄く製造できた樹脂集電体の膜厚を薄膜成形性の指標とした。結果は表2及び3に記載した。
[Thin film formability evaluation]
Using the resin current collector materials obtained in Examples 1 to 6 and Comparative Examples 1 to 7, the film thickness was adjusted by changing the rolling conditions in the hot press in Examples 1 to 6 and Comparative Examples 1 to 7. Ta. As a result of the following pinhole test, the film thickness of the thinnest resin current collector without pinholes was used as an index of thin film formability. The results are listed in Tables 2 and 3.

<膜厚測定>
実施例1~6及び比較例1~7で得られた樹脂集電体の膜厚は、マイクロメーター[ミツトヨ製]を用いて、各サンプル5か所測定し、その平均値をそのサンプルの膜厚とした。結果は表2及び3に記載した。
<Film thickness measurement>
The film thickness of the resin current collectors obtained in Examples 1 to 6 and Comparative Examples 1 to 7 was measured at 5 locations for each sample using a micrometer [manufactured by Mitutoyo], and the average value was calculated as the film thickness of the sample. Made thick. The results are listed in Tables 2 and 3.

<ピンホール試験>
SUS製の容器にメタノールを厚さ1~2mm程度入れたものを準備し、そこに10cm×20cmに裁断した実施例1~6及び比較例1~7で得られた樹脂集電体を浮かせて、樹脂集電体が沈まないように注意しながら樹脂集電体の上面を軽くたたき、樹脂集電体の表面にメタノールが染み出てこないかを目視で確認した。1か所でもメタノールが染み出てきたらピンホールがあるとみなした。
<Pinhole test>
A SUS container filled with methanol with a thickness of about 1 to 2 mm was prepared, and the resin current collectors obtained in Examples 1 to 6 and Comparative Examples 1 to 7 cut into 10 cm x 20 cm were floated there. The top surface of the resin current collector was tapped lightly while being careful not to sink the resin current collector, and it was visually confirmed whether methanol oozed out onto the surface of the resin current collector. If methanol seeped out even in one place, it was assumed that there was a pinhole.

前記のピンホール試験においてピンホールがなく、最も薄く製造できた樹脂集電体の膜厚が50μm以下であった場合は◎(優)、50μmを超えてかつ80μm以下であった場合を○(良)、80μmを超えてかつ90μm以下であった場合を△(可)、90μmを超えた場合を×(不良)とした。結果は表2及び3に記載した。 In the above pinhole test, if there were no pinholes and the film thickness of the thinnest resin current collector produced was 50 μm or less, it would be ◎ (excellent), and if it was more than 50 μm and 80 μm or less, it would be rated ○ ( Good), cases exceeding 80 μm and 90 μm or less were evaluated as Δ (fair), and cases exceeding 90 μm were evaluated as × (poor). The results are listed in Tables 2 and 3.

[電気抵抗性評価]
前記薄膜成形性評価で得られた最も薄く製造できた樹脂集電体のそれぞれについて、電気抵抗性の指標として貫通抵抗値を測定した。貫通抵抗値は電池材料のバルク(厚み方向)の電気抵抗性の指標となる。結果は表2及び3に記載した。
[Electrical resistance evaluation]
For each of the thinnest resin current collectors obtained in the thin film moldability evaluation, the penetration resistance value was measured as an index of electrical resistance. The penetration resistance value is an index of the bulk (thickness direction) electrical resistance of the battery material. The results are listed in Tables 2 and 3.

<貫通抵抗値測定>
貫通抵抗値の測定は以下の通り行った。
前記薄膜成形性評価で得られた最も薄く製造できた樹脂集電体を3cm×10cm程度の短冊に裁断し、電気抵抗測定器[IMC-0240型、井元製作所(株)]及び抵抗器[RM3548、HIOKI製]を用いて各樹脂集電体の抵抗値を測定した。
電気抵抗測定器に2.16kgの荷重をかけた状態での樹脂集電体の抵抗値を測定し、2.16kgの荷重をかけてから60秒後の値をその樹脂集電体の抵抗値とした。下記の式に示すように、抵抗測定時の冶具の接触表面の面積(3.14cm)をかけた値を貫通抵抗値とした。結果は表2及び3に記載した。
貫通抵抗値(Ω・cm)=抵抗値(Ω)×3.14(cm
<Penetration resistance value measurement>
The penetration resistance value was measured as follows.
The thinnest resin current collector obtained in the above thin film formability evaluation was cut into strips of approximately 3 cm x 10 cm, and an electrical resistance measuring device [IMC-0240 model, Imoto Seisakusho Co., Ltd.] and a resistor [RM3548] were cut into strips of about 3 cm x 10 cm. , manufactured by HIOKI] was used to measure the resistance value of each resin current collector.
Measure the resistance value of the resin current collector with a load of 2.16 kg applied to an electrical resistance measuring device, and the value 60 seconds after applying the 2.16 kg load is the resistance value of the resin current collector. And so. As shown in the following formula, the value multiplied by the area (3.14 cm 2 ) of the contact surface of the jig at the time of resistance measurement was defined as the penetration resistance value. The results are listed in Tables 2 and 3.
Penetration resistance value (Ω・cm 2 ) = resistance value (Ω) × 3.14 (cm 2 )

<貫通抵抗値評価>
前記貫通抵抗値の測定で得られた貫通抵抗値が3.0Ω/cm以下であった場合を◎(優)、3.0Ω/cmを超えてかつ8.0Ω/cm以下であった場合を〇(良)、8.0Ω/cmを超えてかつ16.0Ω/cm以下であった場合を△(可)、16.0Ω/cmを超えた場合を×(不良)とした。結果は表2及び3に記載した。
<Penetration resistance value evaluation>
◎ (excellent) if the penetration resistance value obtained in the measurement of the penetration resistance value is 3.0Ω/ cm2 or less ; 〇 (good) if it exceeds 8.0 Ω/ cm2 and 16.0 Ω/ cm2 or less, △ (acceptable) if it exceeds 16.0 Ω/cm2, × (bad) if it exceeds 16.0 Ω/ cm2 And so. The results are listed in Tables 2 and 3.

Figure 0007398925000002
Figure 0007398925000002

Figure 0007398925000003
Figure 0007398925000003

実施例1~6で得られたリチウムイオン電池用樹脂集電体は、電気抵抗値が低く、かつ、薄膜成形性に優れることが確認された。
一方で、比較例1、2、5及び7で得られたリチウムイオン電池用樹脂集電体の結果から、導電性フィラー用分散剤の融点が120℃未満又は145℃を超えると電気抵抗性評価が悪化することが確認された。
また、比較例3~5、6及び7で得られたリチウムイオン電池用樹脂集電体の結果から、導電性フィラー用分散剤の酸価が15mgKOH/g未満であると電気抵抗性評価が悪化し、55mgKOH/gを超えると薄膜成形性評価が悪化することが確認された。
It was confirmed that the resin current collectors for lithium ion batteries obtained in Examples 1 to 6 had low electrical resistance values and excellent thin film formability.
On the other hand, from the results of the resin current collectors for lithium ion batteries obtained in Comparative Examples 1, 2, 5, and 7, it was found that when the melting point of the dispersant for conductive filler was lower than 120°C or higher than 145°C, the electrical resistance evaluation was poor. It was confirmed that the situation worsened.
Furthermore, from the results of the resin current collectors for lithium ion batteries obtained in Comparative Examples 3 to 5, 6, and 7, it was found that when the acid value of the dispersant for the conductive filler was less than 15 mgKOH/g, the electrical resistance evaluation deteriorated. However, it was confirmed that when it exceeds 55 mgKOH/g, the evaluation of thin film formability deteriorates.

本発明のリチウムイオン電池用樹脂集電体は、特に、携帯電話、パーソナルコンピューター及びハイブリッド自動車、電気自動車用に用いられるリチウムイオン電池用の集電体として有用である。 The resin current collector for lithium ion batteries of the present invention is particularly useful as a current collector for lithium ion batteries used for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Claims (2)

マトリックス樹脂、導電性フィラー及び導電性フィラー用分散剤を含む導電性樹脂層を有するリチウムイオン電池用樹脂集電体であって、
前記導電性フィラー用分散剤が、ブロック(A1)とブロック(A2)とを有する共重合体であり、
前記ブロック(A1)が、エチレン及びプロピレンを必須構成単量体とするブロックであり、
前記ブロック(A2)が、カルボキシル基を有するエチレン性不飽和モノマー(a)を必須構成単量体とするブロックであり、
前記導電性フィラー用分散剤の酸価が15~55mgKOH/gであり、
前記導電性フィラー用分散剤の融点が120~145℃であるリチウムイオン電池用樹脂集電体。
A resin current collector for a lithium ion battery having a conductive resin layer containing a matrix resin, a conductive filler, and a dispersant for the conductive filler,
The conductive filler dispersant is a copolymer having a block (A1) and a block (A2),
The block (A1) is a block containing ethylene and propylene as essential constituent monomers,
The block (A2) is a block whose essential constituent monomer is an ethylenically unsaturated monomer (a) having a carboxyl group,
The acid value of the dispersant for the conductive filler is 15 to 55 mgKOH/g,
A resin current collector for a lithium ion battery, wherein the conductive filler dispersant has a melting point of 120 to 145°C.
前記導電性フィラー用分散剤の重量平均分子量が、20,000~60,000である請求項1に記載のリチウムイオン電池用樹脂集電体。


The resin current collector for a lithium ion battery according to claim 1, wherein the weight average molecular weight of the conductive filler dispersant is 20,000 to 60,000.


JP2019192883A 2019-10-23 2019-10-23 Resin current collector for lithium ion batteries Active JP7398925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192883A JP7398925B2 (en) 2019-10-23 2019-10-23 Resin current collector for lithium ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192883A JP7398925B2 (en) 2019-10-23 2019-10-23 Resin current collector for lithium ion batteries

Publications (2)

Publication Number Publication Date
JP2021068587A JP2021068587A (en) 2021-04-30
JP7398925B2 true JP7398925B2 (en) 2023-12-15

Family

ID=75637443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192883A Active JP7398925B2 (en) 2019-10-23 2019-10-23 Resin current collector for lithium ion batteries

Country Status (1)

Country Link
JP (1) JP7398925B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005116A1 (en) 2013-07-08 2015-01-15 三洋化成工業株式会社 Dispersant for resin collectors, material for resin collectors, and resin collector
JP2016186917A (en) 2015-03-27 2016-10-27 日産自動車株式会社 Positive electrode for lithium battery
JP2019139914A (en) 2018-02-08 2019-08-22 三洋化成工業株式会社 Resin current collector, positive electrode for lithium ion battery, and lithium ion battery
JP2019153587A (en) 2018-03-05 2019-09-12 三洋化成工業株式会社 Resin current collector and lithium ion battery
JP2019169272A (en) 2018-03-22 2019-10-03 三洋化成工業株式会社 Resin current collector and lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005116A1 (en) 2013-07-08 2015-01-15 三洋化成工業株式会社 Dispersant for resin collectors, material for resin collectors, and resin collector
JP2016186917A (en) 2015-03-27 2016-10-27 日産自動車株式会社 Positive electrode for lithium battery
JP2019139914A (en) 2018-02-08 2019-08-22 三洋化成工業株式会社 Resin current collector, positive electrode for lithium ion battery, and lithium ion battery
JP2019153587A (en) 2018-03-05 2019-09-12 三洋化成工業株式会社 Resin current collector and lithium ion battery
JP2019169272A (en) 2018-03-22 2019-10-03 三洋化成工業株式会社 Resin current collector and lithium ion battery

Also Published As

Publication number Publication date
JP2021068587A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
KR102030299B1 (en) Dispersant for resin collectors, material for resin collectors, and resin collector
JP5768815B2 (en) All solid state secondary battery
JP5573082B2 (en) Secondary battery electrode binder, secondary battery electrode and secondary battery
WO2012091001A1 (en) Electrode binder composition for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
WO2008029502A1 (en) Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, secondary battery using the electrode, and capacitor using the electrode
KR20140142694A (en) Positive electrode for secondary battery, and secondary battery
JP2011204573A (en) Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, negative electrode for secondary battery, secondary battery, and manufacturing method of binder composition for secondary battery negative electrode
JP2018006337A (en) Conductive paste for positive electrode of lithium ion battery and composite material paste for positive electrode of lithium-ion battery
JP2017130443A (en) Conductive paste for lithium ion battery positive electrode and mixture paste for lithium ion battery positive electrode
JP7388506B2 (en) Non-aqueous secondary battery
JP2014063676A (en) Aqueous binder liquid for secondary battery positive electrode, aqueous paste for secondary battery positive electrode produced with aqueous binder liquid, secondary battery positive electrode, and secondary battery
WO2019188284A1 (en) Polyolefin-based adhesive composition
JP6297121B2 (en) Conductive paste for lithium ion battery positive electrode and composite paste for lithium ion battery positive electrode
JP7398925B2 (en) Resin current collector for lithium ion batteries
JP5682557B2 (en) Positive electrode for secondary battery and secondary battery
JP2015111575A (en) Binder composition for secondary battery negative electrodes, slurry composition for secondary battery negative electrodes, negative electrode for secondary batteries, secondary battery, and method for manufacturing binder composition for secondary battery negative electrodes
JP7089374B2 (en) Resin current collectors and lithium-ion batteries
JP7194048B2 (en) Resin current collector and lithium ion battery
JP2019009124A (en) Coating active material for lithium ion battery and negative electrode for lithium ion battery
JP7420067B2 (en) Polyolefin adhesive composition
JP7055694B2 (en) Resin collectors, electrodes for lithium-ion batteries, and lithium-ion batteries
JP2017228412A (en) Conductive paste for lithium ion battery positive electrode, and mixture material paste for lithium ion battery positive electrode
JP7312086B2 (en) All-solid-state lithium-ion secondary battery
JP7227760B2 (en) Resin current collector for positive electrode
JP2020102386A (en) Resin current collector for negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R150 Certificate of patent or registration of utility model

Ref document number: 7398925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150