JP7398783B2 - How to dispose of buried pipes - Google Patents

How to dispose of buried pipes Download PDF

Info

Publication number
JP7398783B2
JP7398783B2 JP2019191316A JP2019191316A JP7398783B2 JP 7398783 B2 JP7398783 B2 JP 7398783B2 JP 2019191316 A JP2019191316 A JP 2019191316A JP 2019191316 A JP2019191316 A JP 2019191316A JP 7398783 B2 JP7398783 B2 JP 7398783B2
Authority
JP
Japan
Prior art keywords
weight
parts
scraps
sand
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019191316A
Other languages
Japanese (ja)
Other versions
JP2021067021A (en
Inventor
清二 菊池
英之 臼井
Original Assignee
株式会社八幡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社八幡 filed Critical 株式会社八幡
Priority to JP2019191316A priority Critical patent/JP7398783B2/en
Publication of JP2021067021A publication Critical patent/JP2021067021A/en
Application granted granted Critical
Publication of JP7398783B2 publication Critical patent/JP7398783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、地下に埋設された水道管、ガス管等のパイプを廃棄処理するための方法に関する。 The present invention relates to a method for disposing of underground pipes such as water pipes and gas pipes.

水道管やガス管が一定の年月を経て、その役割が終了したときは、それを廃棄処分するため、埋設されたパイプを掘り起こして、撤去処分するのが原則である。
しかし、そのパイプが例えば道路の下に埋設されている場合等には、それを掘り起こすには、一旦道路の通交を遮断し、短時間のうちに迅速に撤去を完了させねばならないが、これはなかなか困難な作業となる。
そこで、従来パイプを撤去させることなく、埋設されたパイプ内に残土等を流し込み、それをそのままパイプ内で固化させてしまおうとする解決手段がある。
しかし、この処理にあたっては、狭い埋設パイプ内を流動土で完全に充填させることは困難で、一部に空洞の残る虞がある。
この空洞がパイプ内に残ると、例えば、年月を経て管体が腐食して一部に水が侵入する等の事態となると、その上の土が陥落し、表面を覆う舗装道路にも大きな陥没部が生じてしまう危険がある。この陥没部ができるときは一瞬である為、車両の走行する頻度の高い道路では、重大な事故を招く虞がある。
尚、特許文献1には、廃棄管内に残土を充填させようとする技術が開示されているが、バキューム車を用いた残土の充填方法に関するものである。
When water pipes and gas pipes reach the end of their useful life after a certain period of time, the general rule is to dig up the buried pipes and remove them for disposal.
However, if the pipe is buried under a road, for example, in order to dig it up, the road must be blocked from traffic and the removal must be completed quickly within a short period of time. is quite a difficult task.
Therefore, there is a solution that attempts to pour the remaining soil into the buried pipe and solidify it inside the pipe without removing the conventional pipe.
However, in this process, it is difficult to completely fill the inside of the narrow buried pipe with fluidized soil, and there is a risk that some cavities may remain.
If this cavity remains inside the pipe, for example if the pipe body corrodes over the years and water intrudes into a part of the pipe, the soil above it will collapse and the paved road covering the surface will become large. There is a risk that a cave-in will occur. Since this depression only occurs in an instant, it may cause a serious accident on roads where vehicles frequently travel.
Incidentally, Patent Document 1 discloses a technique for filling a waste pipe with residual soil, but it relates to a method of filling residual soil using a vacuum truck.

特許第4098675号公報Patent No. 4098675

本発明は、上記問題を解決しようとしてなされたもので、上記埋設されたパイプ内に流動土を流し込む際に、空洞のできないよう充分な流動性を与える一方で、その流動性が過剰となって逆に密な充填が阻害されることのないよう、より完全で且つ作業性に富んだ埋設パイプ内への流動土充填方法を提供しようとするものである。 The present invention was made in an attempt to solve the above problem, and while it provides sufficient fluidity to prevent the formation of cavities when pouring fluidized soil into the buried pipe, it also prevents the fluidity from becoming excessive. On the other hand, the present invention aims to provide a method for filling fluidized soil into buried pipes that is more complete and more workable so that dense filling is not hindered.

請求項1記載の埋設パイプの廃棄処理方法は、直径が40mmΦ~200mmΦとなる埋設パイプを対象とし、5mmアンダーとした粒径の砂/土100重量部に対し、5.3~16.0重量部の消石灰と、53.3~65.7重量部の水分を加えて成り、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを0.5~2.0N/mm2 とした流動土を作製し、該流動土を、圧送ポンプの加圧のもとで、先端部から崩れることのない10m3/h~40m3/hの速度でパイプ内に流し込んで充填することを特徴とする。
The method for disposing of buried pipes according to claim 1 is aimed at buried pipes having a diameter of 40 mm Φ to 200 mm Φ, and uses 5.3 to 16.0 parts by weight of sand/soil with a particle size of 5 mm or less. of slaked lime and 53.3 to 65.7 parts by weight of water, the flow value is 200 to 400 mm, and the unconfined compression strength after 28 days of hardening is 0.5 to 2. Prepare fluidized soil with a pressure of 0N/ mm2 , and pour the fluidized soil into the pipe at a speed of 10m3 /h to 40m3 /h without collapsing from the tip under pressure from a pressure pump. It is characterized by being filled with.

請求項2記載の埋設パイプの廃棄処理方法は、直径が40mmΦ~200mmΦとなる埋設パイプを対象とし、5mmアンダーとした粒径の砂/土100重量部に対し、4.8~15.4重量部のセメントと、42.1~64.7重量部の水分を加えて成り、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを1.0~3.0N/mm2 とした流動土を作製し、該流動土を、圧送ポンプの加圧のもとで、先端部から崩れることのない10m3/h~40m3/hの速度でパイプ内に流し込んで充填することを特徴とする。
The buried pipe disposal method according to claim 2 is aimed at buried pipes having a diameter of 40 mm Φ to 200 mm Φ, and uses 4.8 to 15.4 parts by weight for 100 parts by weight of sand/soil with a particle size of 5 mm or less. % cement and 42.1 to 64.7 parts by weight of water, the flow value is 200 to 400 mm, and the uniaxial compression strength after 28 days of hardening is 1.0 to 3. Prepare fluidized soil with a pressure of 0N/ mm2 , and pour the fluidized soil into the pipe at a speed of 10m3 /h to 40m3 /h without collapsing from the tip under pressure from a pressure pump. It is characterized by being filled with.

上記埋設パイプの廃棄処理方法は、砂/土に用いる砂を、コンクリート屑、陶器屑、レンガ屑、瓦屑のいずれかを含んだ再生砂としたことを特徴とする。
The method for disposing of buried pipes is characterized in that the sand used for the sand/soil is recycled sand containing any one of concrete scraps, pottery scraps , brick scraps, and tile scraps.

本発明埋設パイプの廃棄処理方法によれば、例えば、道路下に埋設されたパイプで、直径が40mmΦ~200mmΦとなるパイプに対し、5mmアンダーとした砂/土100重量部に対し、5.3~16.0重量部の消石灰と、53.3~65.7重量部の水分を加えた流動土を、アジテータ車からの圧送ポンプの加圧下のもとで流入させる。
固化材にセメントを用いる場合には、同様の条件下で、4.8~15.4重量部のセメントと、42.1~64.7重量部の水分を加えた流動土とする。
すると、上記配合割合にもとづく本発明に用いる流動土は、そのフロー値を200~400mmとするので、充分な流動性を確保する。
従って、充分な流動性のある流動土は、パイプ内を移送される間にも、空洞をつくることがなく、確実に密な状態で充填される。
According to the buried pipe disposal method of the present invention, for example, for a pipe buried under a road with a diameter of 40 mm Φ to 200 mm Φ, 5.3 A fluidized soil containing ~16.0 parts by weight of slaked lime and 53.3 to 65.7 parts by weight of water is introduced under pressure from a pressure pump from an agitator car.
When cement is used as the solidifying material, fluidized soil is prepared by adding 4.8 to 15.4 parts by weight of cement and 42.1 to 64.7 parts by weight of water under the same conditions.
Then, the fluidized soil used in the present invention based on the above-mentioned mixing ratio has a flow value of 200 to 400 mm, thereby ensuring sufficient fluidity.
Therefore, fluidized soil with sufficient fluidity does not create cavities while being transferred through the pipe, and is reliably filled in a dense state.

一方、あまりに大きな流動性は、流動土がパイプ内を移送される際、土粒子相互の動きが過剰となり、先端部から一種の型崩れを起こし、それが内部にまで及んで密な充填を困難にしてしまう虞がある。
しかし、上記配合割合にもとづく本発明に用いる流動土によれば、過剰な流動性を避けて、一定の粘性を保ち、且つ、それが圧送ポンプの加圧のもとで、直径が40mmΦ~200mmΦとなるパイプ内を、10m3/h~40m3/hの速度で移送されるから、一定の形を保った動きとなり、先端部からの崩れが防止され、密な充填が可能となる。
従って、上記空洞のない密度を保った流動土が全体的に形の崩れを起こすことなく、安定な状態でパイプ内を移動し、より完全な充填が促される。
On the other hand, if the fluidity is too high, when the fluidized soil is transferred through the pipe, the mutual movement of the soil particles will be excessive, causing a kind of loss of shape from the tip, which will extend to the inside, making it difficult to fill the soil densely. There is a risk that you may end up
However, the fluidized soil used in the present invention based on the above-mentioned mixing ratio avoids excessive fluidity, maintains a constant viscosity, and has a diameter of 40 mm Φ to 200 mm Φ under the pressure of a pressure pump. Since the material is transferred through the pipe at a speed of 10 m 3 /h to 40 m 3 /h, it moves in a constant shape, prevents collapse from the tip, and allows dense filling.
Therefore, the fluidized soil, which has no voids and maintains its density, moves inside the pipe in a stable state without causing the entire shape to collapse, thereby promoting more complete filling.

その際、アジテータ車からのポンプ圧送によれば、自動的で且つバラツキのない状態での充填が可能となる。 At this time, by pumping pressure from the agitator car, filling can be done automatically and without variation.

充填作業が終了したら、そのまま消石灰またはセメントによる硬化が自動的に進行し、材齢28日後の一軸圧縮強さが少なくとも0.5N/mm2 以上(セメントでは1.0N/mm2 以上)を維持するものとなるので、例えば10トン車程度の車両の走行があっても、何らの影響を受けない。
この間、すべてが道路下のパイプ内で作業が完了するから、道路上側には何らの影響を与えることがなく、道路の一時閉鎖や、交通制限等を行う必要もない。
Once the filling work is completed, hardening with slaked lime or cement will proceed automatically, and the unconfined compressive strength after 28 days will maintain at least 0.5 N/mm 2 or more (1.0 N/mm 2 or more for cement). Therefore, even if a vehicle of about 10 tons, for example, is running, there will be no influence.
During this time, all work will be completed within the pipes under the road, so there will be no impact on the upper side of the road, and there will be no need to temporarily close the road or restrict traffic.

廃棄処理工事を完了させた後、一定年月を経て、再度の掘り起こし等が求められた場合には、硬化後の一軸圧縮の強さを3.0N/mm2 以下(消石灰では2.0N/mm2 以下)としたから、バックホーで取り壊すことができる程度の過剰な強度を残さないものとなる。 If re-excavation is required after a certain period of time has passed after the disposal work has been completed, the strength of uniaxial compression after hardening should be 3.0N/ mm2 or less (2.0N/mm2 for slaked lime). mm 2 or less), so it does not have excessive strength to the extent that it can be demolished with a backhoe.

用いる土砂に、コンクリート屑、陶器屑、レンガ屑、瓦屑のいずれかを含んだ再生砂を用いれば、廃棄物となった土砂を資源として有効に活用することができる。
If recycled sand containing any of concrete scraps, pottery scraps , brick scraps, and tile scraps is used as the earth and sand, the earth and sand that has become waste can be effectively utilized as a resource.

本発明による埋設パイプ内に流動土を充填する一例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an example of filling a buried pipe with fluidized soil according to the present invention.

本発明埋設パイプの廃棄処理方法は、例えば、水道管、ガス管、電気配管等の土中に埋設されたパイプであって、それが一定年月を経て、廃棄管として処分されるものに対しての処理を目的とするものである。
そのなかにあって、本発明の対象とするのは、直径が40mmΦ~200mmΦとなる埋設パイプであるが、その理由は後述する流動性と充填性との均衡を保つべき関係による。
The buried pipe disposal method of the present invention is applicable to pipes buried underground, such as water pipes, gas pipes, and electric pipes, which are disposed of as waste pipes after a certain period of time. It is intended for the processing of
Among these, the object of the present invention is a buried pipe having a diameter of 40 mmΦ to 200 mmΦ, and the reason for this is due to the relationship that should be maintained between fluidity and filling performance, which will be described later.

本発明に用いる流動土の砂には、瓦礫類を砕いたコンクリート屑、陶器屑、レンガ屑、瓦屑等を含んだ再生砂を利用することができる。
又、その建設現場で、穴、溝等を掘ったときに発生した残土を用いることもできる。
この土砂のうち5mmアンダーとした粒径の土砂を選ぶ。5mmアンダーとするのは、想定する埋設パイプ内を、一定のポンプ圧力の下で流動可能とするためである。
As the sand for the fluidized soil used in the present invention, recycled sand containing concrete scraps obtained by crushing rubble, ceramic scraps , brick scraps, tile scraps, etc. can be used.
Further, it is also possible to use the remaining soil generated when holes, trenches, etc. are dug at the construction site.
Among these earth and sand, choose earth and sand with a particle size of 5 mm or less. The reason why it is under 5 mm is to enable flow under a constant pump pressure in the assumed buried pipe.

次に、本発明に用いる流動土の固化材には、消石灰又はセメントを利用する。
消石灰は、化学式Ca(OH)2で示される二酸化カルシウムの粉のものをいい、上記土砂に水と共に混合させて流動性を保つものである。
施工後には、空気中の二酸化炭素との反応で硬化し、炭酸カルシウムの固化物となる。
そして、その配合割合を5.3~16.0重量部とするが、それはカルシウム結合による一定の硬度を発揮する一方で、水和物ほどの強い結合ではなく、その硬化後の強度は一定範囲に抑えられるものとするためである。
Next, slaked lime or cement is used as a solidifying agent for the fluidized soil used in the present invention.
Slaked lime is powdered calcium dioxide having the chemical formula Ca(OH) 2 and is mixed with water to maintain fluidity.
After construction, it hardens by reaction with carbon dioxide in the air, becoming a solidified product of calcium carbonate.
The blending ratio is 5.3 to 16.0 parts by weight, but while it exhibits a certain hardness due to calcium binding, it does not have as strong a bond as hydrate, and its strength after curing is within a certain range. This is to ensure that it can be suppressed to

上記土砂及び消石灰の混合物に水分を加えて撹拌するものとし、その水分割合を、土砂100重量部に対し53.3~65.7重量部とするが、この53.3~65.7重量部としたのは、流動性を配慮したものであり、53.0重量部以下では水分割合が低くて粘性が高く、65.7重量部以上では過剰な流動性となるからである。 Water is added to the above mixture of earth and sand and slaked lime and stirred, and the water ratio is 53.3 to 65.7 parts by weight per 100 parts by weight of earth and sand. The reason for this is to take fluidity into consideration, and if it is less than 53.0 parts by weight, the water content will be low and the viscosity will be high, and if it is more than 65.7 parts by weight, it will have excessive fluidity.

上記の如く、10mmアンダーとした砂/土100重量部に対し、5.3~16.0重量部の消石灰と、53.3~65.7重量部の水分を加えてなる流動土は、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを0.5~2.0N/mm2 とする。 As mentioned above, the fluidized soil made by adding 5.3 to 16.0 parts by weight of slaked lime and 53.3 to 65.7 parts by weight of water to 100 parts by weight of sand/soil under 10 mm is The flow value is 200 to 400 mm, and the uniaxial compression strength after 28 days of hardening is 0.5 to 2.0 N/mm 2 .

又、本発明に用いる流動土の固化材には、セメントを利用することもできる。
5mmアンダーとした砂/土100重量部に対し、4.8~15.4重量部のセメントと、42.1~64.7重量部の水分を加えて成り、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを1.0~3.0N/mm2 とする。
セメントは、ケイ酸カルシウム、アルミン酸カルシウム、石膏等の粉状の混合物をいい、上記土砂に水と共に混合させて流動性を保つものである。
施工後には、水分との反応で硬化し、水酸化カルシウム等の水和化合物を形成して固化物となる。
そして、その配合割合を4.8~15.4重量部とするが、それは水酸化カルシウム等の水和生成物は比較的強い結合性を発揮することから、その配合割合を少なめに抑えて、後述する所定範囲でフロー値及び一軸圧縮強度が発揮できるようにするためである。
上記土砂及びセメントの混合物に水分を加えて撹拌するものとし、その水分割合を、土砂100重量部に対し42.1~64.7重量部とする。
この42.1~64.7重量部としたのは、流動性を配慮したものであり、42.1重量部以下では水分割合が低くて粘性が高く、64.7重量部以上では過剰な流動性となるからである。
上記の如く、本発明に用いる流動土を、10mmアンダーとした砂/土100重量部に対し、4.8~15.4重量部のセメントと、42.1~64.7重量部の水分を加えて成るものとしたとき、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを1.0~3.0N/mm2 とする。
Furthermore, cement can also be used as a solidifying agent for the fluidized soil used in the present invention.
It is made by adding 4.8 to 15.4 parts by weight of cement and 42.1 to 64.7 parts by weight of water to 100 parts by weight of sand/soil with a flow value of 200 to 400 mm. , the uniaxial compression strength after 28 days of hardening is 1.0 to 3.0 N/mm 2 .
Cement is a powdered mixture of calcium silicate, calcium aluminate, gypsum, etc., and is mixed with water to maintain fluidity.
After construction, it hardens by reacting with moisture, forming hydrated compounds such as calcium hydroxide, and becoming a solidified product.
The blending ratio is set at 4.8 to 15.4 parts by weight, but since hydration products such as calcium hydroxide exhibit relatively strong binding properties, the blending ratio is kept low. This is to enable the flow value and unconfined compressive strength to be exhibited within a predetermined range, which will be described later.
Water is added to the mixture of earth and sand and cement and stirred, and the water ratio is 42.1 to 64.7 parts by weight per 100 parts by weight of earth and sand.
The range of 42.1 to 64.7 parts by weight was chosen in consideration of fluidity; below 42.1 parts by weight, the moisture content is low and the viscosity is high, while above 64.7 parts by weight, excessive fluidity may result. This is because it becomes a matter of gender.
As mentioned above, the fluidized soil used in the present invention contains 4.8 to 15.4 parts by weight of cement and 42.1 to 64.7 parts by weight of water to 100 parts by weight of sand/soil made under 10 mm. When the material is added, the flow value is 200 to 400 mm, and the uniaxial compression strength after 28 days of hardening is 1.0 to 3.0 N/mm 2 .

上記フロー値を200mm以上とするのは、パイプ内に空洞をつくらせないためである。
空洞は、土砂の粘度が高く、粒子相互の移動性が悪い場合に、混入した空気のたまり場ができることで起きやすくなる。
そこで該流動土は、上記直径が40mmΦ~200mmΦとした埋設パイプ内を圧送ポンプで移送される条件下で、200mm以上のフロー値とする。
充分な流動性を保たせることで、土砂相互の移動性を確保し、空気のたまり場となる空洞をつくらせない為である。
The reason why the flow value is set to 200 mm or more is to prevent the formation of cavities within the pipe.
Cavities are more likely to occur when the viscosity of the soil is high and the mutual mobility of particles is poor, creating a place where trapped air can accumulate.
Therefore, the fluidized soil has a flow value of 200 mm or more under the condition that it is transferred by a pressure pump through the buried pipe having a diameter of 40 mm Φ to 200 mm Φ.
By maintaining sufficient fluidity, mutual mobility of earth and sand is ensured, and cavities where air accumulates are not created.

一方、流動土の流動性が過剰となると、パイプ内に送り込まれた流動土の移送の先端部で、一方が解放された端部となることから、一定の形を保つべき支持力を失い、より先へと流れ出してしまう現象(以下、これを型崩れという)が起こり易い。
そこで、本発明に用いる流動土はそのフロー値を400mm以下の流動性を一定の値以下に抑えるものとし、且つ、その流し込みの際の圧送ポンプの加圧のもとでの移動の速度を、10m3/h~40m3/hの範囲とする。
On the other hand, if the fluidity of the fluidized soil becomes excessive, one end becomes open at the tip of the fluidized soil sent into the pipe, and the supporting force needed to maintain a certain shape is lost. A phenomenon in which the material flows further forward (hereinafter referred to as "shape loss") is likely to occur.
Therefore, the fluidized soil used in the present invention should have a flow value of 400 mm or less and its fluidity should be kept below a certain value, and the speed of movement under the pressure of the pressure pump during pouring should be: The range is 10m 3 /h to 40m 3 /h.

上記流動土をパイプ内で移送させるには、圧送ポンプ等による加圧が必要で、その圧力の下で、10m3/h~40m3/hのした速度でパイプ内を移動させる。
すると、空気溜まりのできにくい流動性と一定の形を保った状態でパイプ内を移動するものとなり、目的とする密な状態での充填か促される。
即ち、フロー値200mm~400mmにある流動土はパイプ内に空洞をつくらせない流動性を備える一方で、そのままでは上記型崩れの虞があるところ、これを圧送ポンプの加圧のもとで10m3/h~40m3/hの速度で移動させると、型崩れを起こす一歩手前で相が押し出され、その押し出された相は背後からの圧力で型崩れを防止できる状態を維持するものとなり、これが移動とともに連続的に繰り返されて、遂にはパイプ内全体に密な充填が完了するものとなる。
In order to transfer the fluidized soil within the pipe, it is necessary to apply pressure using a pressure pump or the like, and under this pressure, the fluidized soil is moved within the pipe at a speed of 10 m 3 /h to 40 m 3 /h.
This allows the material to move through the pipe while maintaining its fluidity and constant shape, which prevents the formation of air pockets, thereby facilitating the desired dense filling.
In other words, while fluidized soil with a flow value of 200 mm to 400 mm has fluidity that does not create cavities in the pipe, there is a risk of it losing its shape if left as is, but it is When moving at a speed of 3 /h to 40m 3 /h, the phase is pushed out one step before it loses its shape, and the extruded phase maintains a state that can prevent it from losing its shape by applying pressure from behind. This is continuously repeated as the pipe moves, and the entire pipe is finally filled densely.

このとき、上記の如く、本発明の対象を直径が40mmΦ~200mmΦとなる埋設パイプとしたのは、本発明に用いる流動土が10m3/h~40m3/hの速度で移動できる条件は、パイプ直径が40mmΦ~200mmΦの範囲が適合したものとなるからである。
200mmΦ以上では口径が大きすぎて型崩れが起こり易く、40mmΦ以下ではポンプへの負荷が過大となる。
At this time, as mentioned above, the reason why the object of the present invention is a buried pipe with a diameter of 40 mm Φ to 200 mm Φ is that the conditions under which the fluidized soil used in the present invention can move at a speed of 10 m 3 /h to 40 m 3 /h are as follows. This is because a pipe diameter range of 40 mmΦ to 200 mmΦ is suitable.
If the diameter is 200 mm or more, the diameter will be too large and the shape will easily collapse, and if the diameter is 40 mm or less, the load on the pump will be excessive.

上記施工を例えば、図1に示す如く、道路下を横切るように埋設されたパイプを対象として行う場合には、予めその道路の投入側となる一端部と、終端となる他端部のパイプ端を開放状態にしておく。そして、流動土作製プラントからアジテータ車を走らせて現場に到着したら、該アジテータ車の圧送ポンプを稼働させて、誘導ホースから流動土を圧送し、投入側の端部から流出側の端部へ向けて、密なる充填を行う。 For example, when performing the above construction on a pipe buried so as to cross under a road as shown in Figure 1 , one end of the pipe that will be the entry side of the road and the other end that will be the end of the road are prepared in advance. Leave it open. Then, when an agitator vehicle arrives at the site by running an agitator vehicle from the fluidized soil preparation plant, the pressure pump of the agitator vehicle is operated to force fluidized soil through the induction hose and direct it from the input end to the outflow end. to perform dense filling.

さて、上記充填が終了し、埋設工事を完了させた後、一定年月を経て、舗装のやり直しや道路変更等で再度の掘り起こし等が求められる場合がある。そこで、本発明に用いる流動土は、硬化後の一軸圧縮の強さを3.0N/mm2 以下とする。
バックホーで取り壊すことができる程度の硬さとなり、上記掘り起こしを求められても、これに対応が可能となる。
Now, after the above-mentioned filling is completed and the burial work is completed, after a certain period of time, it may be necessary to excavate again due to resurfacing, road changes, etc. Therefore, the fluidized soil used in the present invention has a uniaxial compression strength of 3.0 N/mm 2 or less after hardening.
It is hard enough to be demolished with a backhoe, and even if the above-mentioned digging is required, it can be done.

本発明は、主に水道管、ガス管、電気配管等に適用されるが、これに限らず、条件を満たすなら地下に埋設されたパイプの廃棄処理に広く適用が可能である。 The present invention is mainly applied to water pipes, gas pipes, electrical pipes, etc., but is not limited thereto, and can be widely applied to disposal of pipes buried underground if conditions are met.

Claims (2)

直径が40mmΦ~200mmΦとなる埋設パイプを対象とし、
砂/土に用いる砂を、コンクリート屑、陶器屑、ガラス屑、レンガ屑、瓦屑のいずれかを含んだ再生砂として
5mmアンダーとした粒径の砂/土100重量部に対し、5.3~16.0重量部の消石灰と、53.3~65.7重量部の水分を加えて成り、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを0.5~2.0N/mm2 とした流動土を作製し、
該流動土を、圧送ポンプの加圧のもとで、先端部から崩れることのない10m3/h~40m3/hの速度でパイプ内に流し込んで充填する、
ことを特徴とする埋設パイプの廃棄処理方法。
Targeting buried pipes with a diameter of 40mmΦ to 200mmΦ,
The sand used for sand/soil is recycled sand containing any of concrete scraps, pottery scraps, glass scraps, brick scraps, and tile scraps .
5.3 to 16.0 parts by weight of slaked lime and 53.3 to 65.7 parts by weight of water are added to 100 parts by weight of sand/soil with a particle size under 5 mm, and the flow value is increased to 200 parts by weight. ~400mm, and the strength of uniaxial compression after 28 days after hardening was 0.5~2.0N/ mm2 ,
Filling the pipe by pouring the fluidized soil under pressure from a pressure pump at a speed of 10 m 3 /h to 40 m 3 /h without collapsing from the tip.
A method for disposing of buried pipes, characterized by:
直径が40mmΦ~200mmΦとなる埋設パイプを対象とし、
砂/土に用いる砂を、コンクリート屑、陶器屑、ガラス屑、レンガ屑、瓦屑のいずれかを含んだ再生砂として
5mmアンダーとした粒径の砂/土100重量部に対し、4.8~15.4重量部のセメントと、42.1~64.7重量部の水分を加えて成り、そのフロー値を200~400mmとし、硬化後の材齢28日後の一軸圧縮の強さを1.0~3.0N/mm2 とした流動土を作製し、
該流動土を、圧送ポンプの加圧のもとで、先端部から崩れることのない10m3/h~40m3/hの速度でパイプ内に流し込んで充填する、
ことを特徴とする埋設パイプの廃棄処理方法。
Targeting buried pipes with a diameter of 40mmΦ to 200mmΦ,
The sand used for sand/soil is recycled sand containing any of concrete scraps, pottery scraps, glass scraps, brick scraps, and tile scraps .
4.8 to 15.4 parts by weight of cement and 42.1 to 64.7 parts by weight of water are added to 100 parts by weight of sand/soil with a particle size under 5 mm, and the flow value is increased to 200 parts by weight. ~400mm, and the strength of uniaxial compression after 28 days after hardening was 1.0~3.0N/ mm2 ,
Filling the pipe by pouring the fluidized soil under pressure from a pressure pump at a speed of 10 m 3 /h to 40 m 3 /h without collapsing from the tip.
A method for disposing of buried pipes, characterized by:
JP2019191316A 2019-10-18 2019-10-18 How to dispose of buried pipes Active JP7398783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191316A JP7398783B2 (en) 2019-10-18 2019-10-18 How to dispose of buried pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191316A JP7398783B2 (en) 2019-10-18 2019-10-18 How to dispose of buried pipes

Publications (2)

Publication Number Publication Date
JP2021067021A JP2021067021A (en) 2021-04-30
JP7398783B2 true JP7398783B2 (en) 2023-12-15

Family

ID=75637794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191316A Active JP7398783B2 (en) 2019-10-18 2019-10-18 How to dispose of buried pipes

Country Status (1)

Country Link
JP (1) JP7398783B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316143A (en) 2003-04-14 2004-11-11 Fujino Kogyo Kk Fluidization treatment method and soil improvement method, using glass product, and fluidized soil for use in fluidization treatment method
JP2007051232A (en) 2005-08-19 2007-03-01 Gaiatech:Kk Low-strength cavity filler and method for filling cavity in low-strength ground
JP2007077796A (en) 2005-08-18 2007-03-29 Kyokado Eng Co Ltd Reinforced earth method
JP2009264026A (en) 2008-04-25 2009-11-12 Daiki Kensetsu Kk Buried pipe inside filling method and trap used for the same
JP4823387B1 (en) 2011-03-01 2011-11-24 株式会社山▲崎▼砂利商店 Material recycling system for producing sand products from mineral mixtures
JP2012016946A (en) 2010-06-09 2012-01-26 Sekisui Chem Co Ltd Method for regenerating existing pipe, piping handling machine, pressure pump, and device for supplying back-filling material
JP2013100190A (en) 2011-11-07 2013-05-23 Fumihiro Mitamura Method for producing concrete composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316143A (en) 2003-04-14 2004-11-11 Fujino Kogyo Kk Fluidization treatment method and soil improvement method, using glass product, and fluidized soil for use in fluidization treatment method
JP2007077796A (en) 2005-08-18 2007-03-29 Kyokado Eng Co Ltd Reinforced earth method
JP2007051232A (en) 2005-08-19 2007-03-01 Gaiatech:Kk Low-strength cavity filler and method for filling cavity in low-strength ground
JP2009264026A (en) 2008-04-25 2009-11-12 Daiki Kensetsu Kk Buried pipe inside filling method and trap used for the same
JP2012016946A (en) 2010-06-09 2012-01-26 Sekisui Chem Co Ltd Method for regenerating existing pipe, piping handling machine, pressure pump, and device for supplying back-filling material
JP4823387B1 (en) 2011-03-01 2011-11-24 株式会社山▲崎▼砂利商店 Material recycling system for producing sand products from mineral mixtures
JP2013100190A (en) 2011-11-07 2013-05-23 Fumihiro Mitamura Method for producing concrete composition

Also Published As

Publication number Publication date
JP2021067021A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2017185817A1 (en) Construction method for on-site mixing cement-soil pile overground
CN101391902A (en) Foaming concrete made by waste and old concrete and production method thereof and use
KR102185405B1 (en) SGM(Soil Geolead Mixed) METHOD FOR SOLIDIFYING GROUND FOR SURFACE LAYER
JP6370614B2 (en) Underground continuous wall construction system
JP3144321B2 (en) Fluidization method
CN106939165A (en) A kind of soil body curing agent and its preparation method and its gunnite method
JP7398783B2 (en) How to dispose of buried pipes
KR102503145B1 (en) Expandable mortar composition and pile construction method
JP5533690B2 (en) Granular materials for civil engineering work
KR102464905B1 (en) Method of Ground Reinforcement using silica sol
CN111908853A (en) Self-compacting soil, preparation method thereof and construction method for backfilling municipal cavity
JP2001200537A (en) Soil improving method and support pile for soil improvement
KR20200090356A (en) Construction method of improvement of soft ground having surface processing, soil improving and soil accumulation effects through improvement of natural soil of soft ground or outside soil
JP2007131805A (en) Improved ground material
JP2004345885A (en) Hydraulic composition, backfill material for ground using the same, non-high strength hardened part structural material and backfill process for excavated ground
JP4743679B2 (en) Water-improving soil-improving solidified material, method for producing water-improving improved soil, and water-sealing
JP4112667B2 (en) Solidification material for fluidization backfill
KR100483492B1 (en) Manufacturing Method of Lightweight Foam Concrete for Backfilling of Cavities in Tunnel/Underground Structure using Stone Dust in Cake State
JP2004217870A (en) Soil-stabilized soil and method for producing the same
JP3230147B2 (en) Fluidized soil construction structure and its construction method
JP4644646B2 (en) Construction method of porous concrete retaining wall
JP4977818B1 (en) Filler, method for producing the same, and filling method using the filler
KR102325213B1 (en) Field hardening pile composition for soft soil stabilization and field hardening pile construction method using the same
JP2004183364A (en) Underground continuous cut off wall structure in land
JPH0449315A (en) Effective use of construction surplus soil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231128

R150 Certificate of patent or registration of utility model

Ref document number: 7398783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150