JP7396328B2 - Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet - Google Patents

Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet Download PDF

Info

Publication number
JP7396328B2
JP7396328B2 JP2021082146A JP2021082146A JP7396328B2 JP 7396328 B2 JP7396328 B2 JP 7396328B2 JP 2021082146 A JP2021082146 A JP 2021082146A JP 2021082146 A JP2021082146 A JP 2021082146A JP 7396328 B2 JP7396328 B2 JP 7396328B2
Authority
JP
Japan
Prior art keywords
zinc
steel sheet
emissivity
based hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021082146A
Other languages
Japanese (ja)
Other versions
JP2022175598A (en
Inventor
希望 久嶋
紘明 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021082146A priority Critical patent/JP7396328B2/en
Publication of JP2022175598A publication Critical patent/JP2022175598A/en
Application granted granted Critical
Publication of JP7396328B2 publication Critical patent/JP7396328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、亜鉛系溶融めっき鋼板の温度測定方法、温度測定装置、及び製造方法に関する。 The present invention relates to a temperature measuring method, a temperature measuring device, and a manufacturing method for zinc-based hot-dip coated steel sheets.

鉄鋼プロセスにおける亜鉛系溶融めっきラインでは、材質の作り込み及びめっきの品質管理において鋼板温度の管理が非常に重要な作業である。特に亜鉛系溶融めっき付着後に鋼板を加熱する合金化過程では、鋼板温度が高すぎるとパウダリングが発生し、鋼板温度が低すぎると合金化が不十分になる。このため、亜鉛系溶融めっきラインでは、非常に厳格な鋼板温度管理が求められている。 In zinc-based hot-dip plating lines in the steel process, control of steel sheet temperature is a very important task in material preparation and plating quality control. Particularly in the alloying process in which the steel sheet is heated after the zinc-based hot-dip plating has been deposited, if the steel sheet temperature is too high, powdering will occur, and if the steel sheet temperature is too low, alloying will be insufficient. For this reason, extremely strict steel sheet temperature control is required in zinc-based hot-dip plating lines.

ここで、鋼板の加熱方法としては、電磁誘導加熱(以下、IHと表記)がある。また、その温度管理の方法としては、IHの出力と鋼板の搬送速度とを用いた電熱計算やシミュレーションにより加熱直後の鋼板温度を計算する方法がある。ところが、この方法では、鋼板の厚みやパスラインのわずかなばらつきによって鋼板温度の計算結果がばらつくことがある。このため、やはり重要なのが鋼板温度を直接測定することである。 Here, as a method of heating a steel plate, there is electromagnetic induction heating (hereinafter referred to as IH). Further, as a method of temperature control, there is a method of calculating the temperature of the steel plate immediately after heating by electric heating calculation or simulation using the output of the IH and the conveyance speed of the steel plate. However, with this method, the calculation results of the steel plate temperature may vary due to slight variations in the thickness of the steel plate or the pass line. Therefore, it is important to directly measure the steel plate temperature.

しかしながら、合金化過程の亜鉛系溶融めっき鋼板の表面には溶融した亜鉛系めっきが付着していることがあり、搬送中の鋼板に接触して鋼板温度を測定することは困難であるために、非接触で鋼板温度を測定することが求められる。そこで、一般に、鋼板温度の測定には放射測温法が用いられている。放射測温法とは、測定対象物が放射する赤外線を用いて測定対象物の温度を測定する方法である。 However, since molten zinc plating may adhere to the surface of zinc-based hot-dip coated steel sheets during the alloying process, it is difficult to contact the steel sheets during transportation and measure the temperature of the steel sheets. It is required to measure the steel plate temperature without contact. Therefore, radiation thermometry is generally used to measure the temperature of the steel sheet. The radiation thermometry method is a method of measuring the temperature of a measurement object using infrared rays emitted by the measurement object.

但し、放射測温法を用いて温度を測定する場合、測定対象物の放射率の設定が重要となる。ここで、放射率とは、測定対象物が赤外線を放射する割合である。測定対象物毎に正しい放射率を設定しないと測定対象物の温度を精度よく測定することができない。このような背景から、放射率の補正方法が提案されている。 However, when measuring temperature using radiation thermometry, it is important to set the emissivity of the object to be measured. Here, the emissivity is the rate at which an object to be measured emits infrared rays. Unless the correct emissivity is set for each object to be measured, the temperature of the object to be measured cannot be measured accurately. Against this background, emissivity correction methods have been proposed.

具体的には、特許文献1には、環境放射温度をステップ状に変化させながら撮影した画像を用いて、各画素の放射率及び放射率補正された表面温度を算出する方法が記載されている。また、特許文献2には、試料を異なる2つの温度に加熱し温度が安定したときの過去温度データを使用して放射率を測定して表面温度に反映させる方法が記載されている。また、特許文献3には、測定した温度に応じて予め設定した複数の指定温度範囲に区切って放射率を補正する方法が記載されている。 Specifically, Patent Document 1 describes a method of calculating the emissivity of each pixel and the emissivity-corrected surface temperature using images taken while changing the environmental radiant temperature in a stepwise manner. . Further, Patent Document 2 describes a method in which a sample is heated to two different temperatures and the emissivity is measured using past temperature data when the temperature becomes stable, and the emissivity is reflected in the surface temperature. Further, Patent Document 3 describes a method of correcting emissivity by dividing the temperature into a plurality of specified temperature ranges set in advance according to the measured temperature.

特開平5-296846号公報Japanese Patent Application Publication No. 5-296846 特許第2895587号公報Patent No. 2895587 特開平1-314930号公報Japanese Patent Application Publication No. 1-314930

鉄と鋼 79(7),772-778,1993Tetsu to Hagane 79(7), 772-778, 1993 鉄と鋼 86(3),160-165,2000Iron and Steel 86(3), 160-165, 2000

図7を参照して、合金化過程における鋼板の表面形状の変化について説明する(詳しくは非特許文献1,2参照)。図7(a)に示すように、加熱前の鋼板は地鉄100と亜鉛系めっき101との2層から構成されている。この状態で鋼板の表面が加熱されると、図7(b)に示すように、亜鉛系めっき101の最表面が溶融する。これにより、鋼板表面の正反射率は増加するのに対して、鋼板表面の拡散反射率は低下する。次に、図7(c)に示すように、地鉄100と亜鉛系めっき101の界面付近に合金化結晶102が生成されることによって鋼板表面が押し上げられて微細化する。これにより、鋼板表面の正反射率は低下するのに対して、鋼板表面の拡散反射率が増加する。そして最後に、図7(d)に示すように、合金化結晶がさらに形成され、表面を含む亜鉛系めっき全体が合金化される。これにより、鋼板表面の拡散反射率は低下する。このように鋼板表面に合金化結晶102が生成されるまでの間は、表面に微細凹凸が形成されることによって放射率が変化する。従って、鋼板温度を精度よく測定するためには放射率をリアルタイムで補正する必要がある。 With reference to FIG. 7, changes in the surface shape of a steel plate during the alloying process will be described (see Non-Patent Documents 1 and 2 for details). As shown in FIG. 7(a), the steel plate before heating is composed of two layers: base steel 100 and zinc-based plating 101. When the surface of the steel plate is heated in this state, the outermost surface of the zinc-based plating 101 melts, as shown in FIG. 7(b). As a result, the specular reflectance of the steel plate surface increases, while the diffuse reflectance of the steel plate surface decreases. Next, as shown in FIG. 7(c), alloyed crystals 102 are generated near the interface between the base steel 100 and the zinc-based plating 101, thereby pushing up the surface of the steel sheet and making it finer. As a result, the specular reflectance of the steel plate surface decreases, whereas the diffuse reflectance of the steel plate surface increases. Finally, as shown in FIG. 7(d), alloyed crystals are further formed, and the entire zinc-based plating including the surface is alloyed. This reduces the diffuse reflectance of the steel plate surface. In this way, until the alloyed crystals 102 are generated on the surface of the steel sheet, the emissivity changes due to the formation of fine irregularities on the surface. Therefore, in order to accurately measure the steel plate temperature, it is necessary to correct the emissivity in real time.

しかしながら、特許文献1~3に記載の方法では、放射率をリアルタイムで補正することは困難である。すなわち、特許文献1に記載の方法では、環境放射温度をステップ状に変化させる必要がある。ところが、亜鉛系溶融めっき鋼板の合金化過程では、鋼板温度はIHの熱量及び搬送速度に依存する。従って、単一の項目を変化させるだけで放射率を測定することは困難であり、変化させる項目を多くする必要がある。そのため、合金化過程の温度測定の補正には不向きである。一方、特許文献2に記載の方法では、同視野で2種類以上の異なる温度で試料を測定する必要がある。しかしながら、搬送されている鋼板を測定する視野内に同じ試料を設置することは困難である。さらに、搬送速度を再現して測定対象物と温度のみが異なる条件を作成することは困難である。また、特許文献3に記載の方法では、測定範囲内の放射率ムラや測定対象の放射率が既知であることを前提としている。ところが、合金過程における鋼板の放射率は、前述の通り合金化の進捗によって時々刻々と変化しており、予め放射率を決め打ちして補正することは困難である。 However, with the methods described in Patent Documents 1 to 3, it is difficult to correct the emissivity in real time. That is, in the method described in Patent Document 1, it is necessary to change the environmental radiation temperature in steps. However, in the alloying process of zinc-based hot-dip coated steel sheets, the steel sheet temperature depends on the amount of heat of IH and the conveyance speed. Therefore, it is difficult to measure the emissivity by changing a single item, and it is necessary to increase the number of items to be changed. Therefore, it is not suitable for correcting temperature measurements during alloying process. On the other hand, in the method described in Patent Document 2, it is necessary to measure a sample at two or more different temperatures in the same field of view. However, it is difficult to place the same sample within the field of view for measuring the steel plate being transported. Furthermore, it is difficult to reproduce the conveyance speed and create conditions where only the temperature of the object to be measured differs. Further, the method described in Patent Document 3 assumes that the emissivity unevenness within the measurement range and the emissivity of the measurement target are known. However, the emissivity of the steel plate during the alloying process changes from moment to moment depending on the progress of alloying as described above, and it is difficult to determine and correct the emissivity in advance.

なお、鉄鋼プロセスで用いられる放射温度計の多くは、スポット式であり、鋼板上の一点の温度を測定する仕様である。ところが、鋼板温度は幅方向に一様ではなく、加熱状況によって幅方向に温度ムラが発生する。このため、広範囲の鋼板温度を測定したい需要もある。 Note that most of the radiation thermometers used in the steel process are spot type, and are designed to measure the temperature at a single point on a steel plate. However, the temperature of the steel sheet is not uniform in the width direction, and temperature unevenness occurs in the width direction depending on the heating conditions. For this reason, there is a demand for measuring steel plate temperatures over a wide range.

本発明は、上記課題に鑑みてなされたものであって、その目的は、放射率をリアルタイムで補正しながら合金化過程の鋼板の表面温度を広範囲で測定可能な亜鉛系溶融めっき鋼板の温度測定方法及び温度測定装置を提供することにある。また、本発明の他の目的は、鋼板の表面温度を精度よく管理しながら歩留まりよく亜鉛系溶融めっき鋼板を製造可能な亜鉛系溶融めっき鋼板の製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and its purpose is to measure the temperature of zinc-based hot-dip coated steel sheets, making it possible to measure the surface temperature of steel sheets in the alloying process over a wide range while correcting emissivity in real time. An object of the present invention is to provide a method and a temperature measuring device. Another object of the present invention is to provide a method for manufacturing a zinc-based hot-dip plated steel sheet that can be manufactured with high yield while accurately controlling the surface temperature of the steel plate.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、亜鉛系溶融めっき鋼板の表面に正反射条件で光を照射したときの正反射光量と前記亜鉛系溶融めっき鋼板の表面に拡散反射条件で光を照射したときの拡散反射光量とに基づいて前記亜鉛系溶融めっき鋼板の表面の放射率を算出する放射率算出ステップと、前記亜鉛系溶融めっき鋼板の表面の赤外線画像を撮影する撮像ステップと、前記放射率算出ステップにおいて算出された放射率と前記撮像ステップにおいて撮影された赤外線画像とを用いて、前記亜鉛系溶融めっき鋼板の表面温度を測定する温度測定ステップと、を含むことを特徴とする。 The method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention is based on the amount of specularly reflected light when the surface of the zinc-based hot-dipped steel plate is irradiated with light under specular reflection conditions, and the amount of specularly reflected light on the surface of the zinc-based hot-dip coated steel sheet under diffuse reflection conditions. an emissivity calculating step of calculating the emissivity of the surface of the zinc-based hot-dip coated steel sheet based on the amount of diffusely reflected light when irradiated with light; and an imaging step of taking an infrared image of the surface of the zinc-based hot-dip coated steel sheet. , a temperature measuring step of measuring the surface temperature of the zinc-based hot-dipped steel sheet using the emissivity calculated in the emissivity calculating step and the infrared image taken in the imaging step. do.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、上記発明において、前記温度測定ステップは、前記亜鉛系溶融めっき鋼板の幅方向の表面温度分布を測定するステップを含むことを特徴とする。 The method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention is characterized in that, in the above invention, the temperature measuring step includes a step of measuring a surface temperature distribution in the width direction of the zinc-based hot-dip coated steel sheet.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、上記発明において、前記放射率算出ステップは、前記亜鉛系溶融めっき鋼板の幅方向の複数個所の放射率を算出するステップを含むことを特徴とする。 The method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention is characterized in that, in the above invention, the emissivity calculation step includes a step of calculating emissivity at a plurality of locations in the width direction of the zinc-based hot-dip coated steel sheet. shall be.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、上記発明において、前記放射率算出ステップは、前記亜鉛系溶融めっき鋼板の幅方向に沿って測定装置を走査させることにより前記亜鉛系溶融めっき鋼板の幅方向の複数個所の放射率を算出するステップを含むことを特徴とする。 In the method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention, in the above invention, the emissivity calculation step includes scanning the temperature of the zinc-based hot-dip coated steel sheet by scanning a measuring device along the width direction of the zinc-based hot-dip coated steel sheet. The method is characterized by including the step of calculating emissivity at multiple locations in the width direction of the steel plate.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、上記発明において、前記温度測定ステップは、前記亜鉛系溶融めっき鋼板の搬送速度を用いて前記亜鉛系溶融めっき鋼板の表面温度を測定するステップを含むことを特徴とする。 In the method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention, in the above-mentioned invention, the temperature measuring step is a step of measuring the surface temperature of the zinc-based hot-dip coated steel sheet using a conveyance speed of the zinc-based hot-dip coated steel sheet. It is characterized by including.

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法は、上記発明において、前記亜鉛系溶融めっき鋼板は、合金化溶融亜鉛めっき鋼板であることを特徴とする。 The method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention is characterized in that, in the above invention, the zinc-based hot-dip coated steel sheet is an alloyed hot-dip galvanized steel sheet.

本発明に係る亜鉛系溶融めっき鋼板の温度測定装置は、亜鉛系溶融めっき鋼板の表面に正反射条件で光を照射したときの正反射光量と前記亜鉛系溶融めっき鋼板の表面に拡散反射条件で光を照射したときの拡散反射光量とに基づいて前記亜鉛系溶融めっき鋼板の表面の放射率を算出する放射率測定手段と、前記亜鉛系溶融めっき鋼板の表面の赤外線画像を撮影する撮像手段と、前記放射率測定手段によって算出された放射率と前記撮像手段によって撮影された赤外線画像とを用いて、前記亜鉛系溶融めっき鋼板の表面温度を測定する温度測定手段と、を備えることを特徴とする。 The temperature measuring device for a zinc-based hot-dip coated steel sheet according to the present invention measures the amount of specularly reflected light when the surface of the zinc-based hot-dipped steel plate is irradiated with light under specular reflection conditions, and the amount of specularly reflected light on the surface of the zinc-based hot-dip coated steel sheet under diffuse reflection conditions. emissivity measuring means for calculating the emissivity of the surface of the zinc-based hot-dip coated steel sheet based on the amount of diffusely reflected light when irradiated with light; and an imaging means for taking an infrared image of the surface of the zinc-based hot-dip coated steel sheet. , temperature measuring means for measuring the surface temperature of the zinc-based hot-dipped steel sheet using the emissivity calculated by the emissivity measuring means and the infrared image taken by the imaging means. do.

本発明に係る亜鉛系溶融めっき鋼板の製造方法は、本発明に係る亜鉛系溶融めっき鋼板の温度測定方法を用いて亜鉛系溶融めっき鋼板の表面温度を測定しながら亜鉛系溶融めっき鋼板を製造する製造ステップを含むことを特徴とする。 The method for manufacturing a zinc-based hot-dip coated steel sheet according to the present invention includes manufacturing a zinc-based hot-dip coated steel sheet while measuring the surface temperature of the zinc-based hot-dip coated steel sheet using the method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention. It is characterized by including a manufacturing step.

本発明に係る亜鉛系溶融めっき鋼板の製造方法は、上記発明において、前記製造ステップは、亜鉛系溶融めっき鋼板の表面温度に基づき該亜鉛系溶融めっき鋼板を加熱する電磁誘導加熱装置の出力を制御するステップを含むことを特徴とする。 In the method for manufacturing a zinc-based hot-dip coated steel sheet according to the present invention, in the above invention, the manufacturing step controls the output of an electromagnetic induction heating device that heats the zinc-based hot-dip coated steel sheet based on the surface temperature of the zinc-based hot-dip coated steel sheet. The method is characterized by including the step of:

本発明に係る亜鉛系溶融めっき鋼板の温度測定方法及び温度測定装置によれば、放射率をリアルタイムで補正しながら合金化過程の鋼板の表面温度を広範囲で測定することができる。また、本発明に係る亜鉛系溶融めっき鋼板の製造方法によれば、鋼板の表面温度を精度よく管理しながら歩留まりよく亜鉛系溶融めっき鋼板を製造することができる。 According to the method and apparatus for measuring the temperature of a zinc-based hot-dip coated steel sheet according to the present invention, it is possible to measure the surface temperature of a steel sheet in the alloying process over a wide range while correcting the emissivity in real time. Further, according to the method for manufacturing a zinc-based hot-dip coated steel sheet according to the present invention, a zinc-based hot-dip coated steel sheet can be manufactured with high yield while accurately controlling the surface temperature of the steel sheet.

図1は、本発明の一実施形態である亜鉛系溶融めっき鋼板の温度測定装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a temperature measuring device for a zinc-based hot-dip coated steel sheet, which is an embodiment of the present invention. 図2は、放射率を用いた表面温度の測定方法を説明するための図である。FIG. 2 is a diagram for explaining a method of measuring surface temperature using emissivity. 図3は、図1に示す放射率測定装置の構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of the emissivity measuring device shown in FIG. 1. 図4は、鋼板の放射率と正反射率及び拡散反射率との関係を求めるための実験装置の構成を示す模式図である。FIG. 4 is a schematic diagram showing the configuration of an experimental apparatus for determining the relationship between emissivity, specular reflectance, and diffuse reflectance of a steel plate. 図5は、鋼板の放射率と正反射率及び拡散反射率との関係の一例を示す図である。FIG. 5 is a diagram showing an example of the relationship between emissivity, specular reflectance, and diffuse reflectance of a steel plate. 図6は、本発明の実施例を示す模式図である。FIG. 6 is a schematic diagram showing an embodiment of the present invention. 図7は、合金化過程における鋼板の表面形状の変化を説明するための図である。FIG. 7 is a diagram for explaining changes in the surface shape of a steel plate during the alloying process.

以下、図面を参照して、本発明の一実施形態である亜鉛系溶融めっき鋼板の温度測定方法、温度測定装置、及び製造方法について説明する。 EMBODIMENT OF THE INVENTION Hereinafter, with reference to drawings, the temperature measurement method, temperature measurement apparatus, and manufacturing method of the zinc-based hot-dip galvanized steel sheet which is one Embodiment of this invention are demonstrated.

〔温度測定装置の構成〕
まず、図1及び図2を参照して、本発明の一実施形態である亜鉛系溶融めっき鋼板の温度測定装置の構成について説明する。
[Configuration of temperature measuring device]
First, with reference to FIGS. 1 and 2, the configuration of a temperature measuring device for a zinc-based hot-dipped steel sheet, which is an embodiment of the present invention, will be described.

図1は、本発明の一実施形態である亜鉛系鍍金鋼板の温度測定装置の構成を示す模式図である。図1に示すように、本発明の一実施形態である亜鉛系溶融めっき鋼板の温度測定装置1は、合金化過程における亜鉛系溶融めっき鋼板(以下、鋼板と略記)Sの表面温度を測定する装置であり、放射率測定装置2、サーモグラフィ3、演算装置4、及び表示装置5を主な構成要素として備えている。放射率測定装置2、サーモグラフィ3、及び演算装置4はそれぞれ、本発明に係る放射率測定手段、撮像手段、及び温度測定手段として機能する。 FIG. 1 is a schematic diagram showing the configuration of a temperature measuring device for a zinc-based plated steel sheet, which is an embodiment of the present invention. As shown in FIG. 1, a temperature measuring device 1 for a zinc-based hot-dip coated steel sheet, which is an embodiment of the present invention, measures the surface temperature of a zinc-based hot-dip coated steel sheet (hereinafter abbreviated as steel sheet) S during the alloying process. The device includes an emissivity measurement device 2, a thermography 3, a calculation device 4, and a display device 5 as main components. The emissivity measuring device 2, the thermography 3, and the arithmetic device 4 function as an emissivity measuring means, an imaging means, and a temperature measuring means according to the present invention, respectively.

放射率測定装置2は、合金化過程における鋼板Sの放射率をリアルタイムで測定し、測定された放射率を示す電気信号を演算装置4に出力する。本実施形態では、図2(a)に示すように、放射率測定装置2は、搬送されてくる鋼板Sの幅方向1点の放射率を測定し、測定された放射率を示す電気信号を演算装置4に出力する。放射率測定装置2の詳細については後述する。 The emissivity measurement device 2 measures the emissivity of the steel plate S during the alloying process in real time, and outputs an electric signal indicating the measured emissivity to the calculation device 4. In this embodiment, as shown in FIG. 2(a), the emissivity measuring device 2 measures the emissivity at one point in the width direction of the steel plate S being conveyed, and outputs an electrical signal indicating the measured emissivity. Output to the arithmetic device 4. Details of the emissivity measuring device 2 will be described later.

サーモグラフィ3は、鋼板Sの赤外線画像を撮影し、画像信号をデジタル変換した後に演算装置4に出力する。合金化過程における鋼板Sの温度は450~550℃程度であるため、サーモグラフィ3としては高波長の信号を検出可能な素子を有するものが望ましい。サーモグラフィ3によれば、鋼板表面の広範囲の赤外線画像を撮影することができる。 The thermography 3 takes an infrared image of the steel plate S, converts the image signal into a digital signal, and then outputs it to the arithmetic device 4 . Since the temperature of the steel plate S during the alloying process is about 450 to 550° C., it is desirable that the thermography 3 has an element capable of detecting high wavelength signals. According to the thermography 3, it is possible to take infrared images over a wide range of the steel plate surface.

演算装置4は、放射率測定装置2から出力された鋼板Sの放射率及びサーモグラフィ3によって撮影された鋼板Sの赤外線画像を用いて鋼板Sの表面温度を算出する。例えば鋼板Sの搬送速度が60mpmである場合、演算装置4は、鋼板Sが1m進む毎に鋼板Sの表面温度を算出する。また、図2(a)に示すように放射率測定装置2が鋼板Sの幅方向1点の放射率を測定する場合、演算装置4は、放射率を測定した点Anについては測定された放射率を用いて表面温度を算出し、放射率を測定していない点An’については同じ幅方向位置の点Anの放射率を用いて表面温度を算出する。これにより、リアルタイムに測定した放射率を用いて鋼板Sの幅方向の表面温度分布を測定できる。そして、演算装置4は、算出された鋼板Sの表面温度に関する情報を液晶ディスプレイ等の表示装置5に可視表示する。 The calculation device 4 calculates the surface temperature of the steel plate S using the emissivity of the steel plate S output from the emissivity measurement device 2 and the infrared image of the steel plate S taken by the thermography 3. For example, when the conveyance speed of the steel plate S is 60 mpm, the calculation device 4 calculates the surface temperature of the steel plate S every time the steel plate S advances by 1 m. Furthermore, when the emissivity measuring device 2 measures the emissivity at one point in the width direction of the steel plate S as shown in FIG. The surface temperature is calculated using the emissivity, and for points An' whose emissivity is not measured, the surface temperature is calculated using the emissivity of the point An at the same position in the width direction. Thereby, the surface temperature distribution in the width direction of the steel plate S can be measured using the emissivity measured in real time. Then, the calculation device 4 visually displays information regarding the calculated surface temperature of the steel plate S on a display device 5 such as a liquid crystal display.

なお、表面温度の測定箇所によっては、放射率測定装置2とサーモグラフィ3との間に距離があるため、即時の出力を用いて表面温度を計算した距離の違いによる温度差が発生することがある。そこで、鋼板Sの搬送速度に応じて表面温度の計算位置を補正することが望ましい。具体的には、予め放射率測定装置2とサーモグラフィ3との間の距離Lを設定しておき、演算装置4は、以下に示す数式(1)を用いて距離Lと鋼板Sの搬送速度LSから補正時間tを計算する。そして、演算装置4は、補正時間tに応じた放射率を用いて赤外線画像から鋼板Sの表面温度を計算する。但し、鋼板Sの搬送速度と装置間の距離を用いた補正方法は他にも多数提案されているので、正しく計算位置が決まる方法であればどのような方法でも構わない。 Note that depending on the location where the surface temperature is measured, there is a distance between the emissivity measurement device 2 and the thermography 3, so a temperature difference may occur due to the difference in distance when the surface temperature is calculated using the immediate output. . Therefore, it is desirable to correct the calculated position of the surface temperature according to the conveyance speed of the steel plate S. Specifically, the distance L between the emissivity measurement device 2 and the thermography 3 is set in advance, and the calculation device 4 calculates the distance L and the conveyance speed LS of the steel plate S using the following formula (1). Calculate the correction time t from . Then, the calculation device 4 calculates the surface temperature of the steel plate S from the infrared image using the emissivity according to the correction time t. However, since many other correction methods using the transport speed of the steel plate S and the distance between the devices have been proposed, any method may be used as long as it determines the calculated position correctly.

Figure 0007396328000001
Figure 0007396328000001

また、図1に示す構成では、放射率測定装置2の鋼板Sの搬送方向下流側にサーモグラフィ3が設置されているが。放射率測定装置2の鋼板Sの搬送方向上流側にサーモグラフィ3を設置する場合も同様の方法で鋼板Sの表面温度を測定できる。また、放射率測定装置2の台数を増やしても構わない。図2(b)に示すように鋼板Sの幅方向に放射率測定装置2を2台(放射率測定装置A,B)設置する場合、2点の放射率を測定する。この際、予めサーモグラフィ3の測定幅内でどちらの放射率測定装置2の測定結果を使用するか定めておく。例として、鋼板中心から右手側は右側に設置した放射率測定装置2によって測定された放射率を用い、左手側は左側に設置した放射率測定装置2によって測定された放射率を用いるようにする。さらに必要に応じて、放射率測定装置を幅方向に走査させてもよい。その場合は放射率測定装置の測定位置に応じて、放射率を変更する。例として、図2(c)に示すように放射率測定装置2は幅方向の5点のデータを測定し、測定点以外の放射率は同じ幅方向位置の放射率を用いる。 Furthermore, in the configuration shown in FIG. 1, the thermograph 3 is installed on the downstream side of the emissivity measuring device 2 in the conveying direction of the steel plate S. Even when the thermography 3 is installed on the upstream side of the emissivity measuring device 2 in the conveyance direction of the steel plate S, the surface temperature of the steel plate S can be measured in the same manner. Further, the number of emissivity measuring devices 2 may be increased. As shown in FIG. 2(b), when two emissivity measuring devices 2 (emissivity measuring devices A and B) are installed in the width direction of the steel plate S, the emissivity at two points is measured. At this time, it is determined in advance which emissivity measurement device 2 to use the measurement results within the measurement width of the thermography 3. For example, for the right-hand side from the center of the steel plate, use the emissivity measured by the emissivity measuring device 2 installed on the right side, and for the left-hand side, use the emissivity measured by the emissivity measuring device 2 installed on the left side. . Furthermore, if necessary, the emissivity measuring device may scan in the width direction. In that case, the emissivity is changed depending on the measurement position of the emissivity measuring device. As an example, as shown in FIG. 2C, the emissivity measuring device 2 measures data at five points in the width direction, and uses the emissivity at the same position in the width direction as the emissivity at other points than the measurement points.

〔放射率測定装置の構成〕
次に、図3及び図4を参照して、放射率測定装置2の構成について詳しく説明する。
[Configuration of emissivity measuring device]
Next, the configuration of the emissivity measuring device 2 will be described in detail with reference to FIGS. 3 and 4.

図3は、図1に示す放射率測定装置2の構成を示す模式図である。図3に示すように、放射率測定装置2は、正反射用光源21、拡散反射用光源22、放射温度計23、及び演算装置24を備えている。 FIG. 3 is a schematic diagram showing the configuration of the emissivity measuring device 2 shown in FIG. 1. As shown in FIG. 3, the emissivity measuring device 2 includes a specular reflection light source 21, a diffuse reflection light source 22, a radiation thermometer 23, and an arithmetic unit 24.

正反射用光源21は、鋼板Sの表面に正反射条件で照明光L1を照射する。拡散反射用光源22は、鋼板Sの表面に拡散反射条件で照明光L2を照射する。なお、拡散反射条件は正反射条件から45°以上異なる角度にすることが望ましい。また、正反射用光源21及び拡散反射用光源22の点灯/消灯を電源又はシャッター25等で切り替えできるようにするとよい。 The specular reflection light source 21 irradiates the surface of the steel plate S with illumination light L1 under specular reflection conditions. The diffuse reflection light source 22 irradiates the surface of the steel plate S with illumination light L2 under diffuse reflection conditions. Note that it is desirable that the diffuse reflection condition be set at an angle that differs from the specular reflection condition by 45° or more. Further, it is preferable that the light source 21 for specular reflection and the light source 22 for diffuse reflection be switched on/off using a power source, the shutter 25, or the like.

放射温度計23は、鋼板Sの表面画像を撮影し、画像信号を演算装置24に出力する。なお、放射温度計23は、正反射用光源21の投光角と放射温度計23の受光角とを一致させるために鋼板Sの表面に対して垂直になるように設置することはできないが、設置できる範囲内でなるべく鋼板Sの表面に対して垂直になるように設置することが望ましい。 The radiation thermometer 23 takes a surface image of the steel plate S and outputs an image signal to the calculation device 24. Note that the radiation thermometer 23 cannot be installed perpendicular to the surface of the steel plate S in order to match the projection angle of the specular reflection light source 21 and the reception angle of the radiation thermometer 23; It is desirable to install it perpendicularly to the surface of the steel plate S as much as possible within the installation range.

演算装置24は、放射温度計23から出力された鋼板の表面画像を用いて鋼板Sの放射率を算出し、算出された放射率を示す電気信号を演算装置4に出力する。具体的には、放射率の算出にあたっては、まず、鋼板Sの放射率と正反射率及び拡散反射率との関係を予めモデル化しておく。鋼板Sの放射率と正反射率及び拡散反射率との関係は、例えば図4に示すような実験装置により実際に鋼板Sを加熱した時の正反射光量及び拡散反射光量を計測することによってモデル化できる。以下、図4に示す実験装置の構成とモデル化の手順について述べる。 The calculation device 24 calculates the emissivity of the steel plate S using the surface image of the steel plate output from the radiation thermometer 23, and outputs an electric signal indicating the calculated emissivity to the calculation device 4. Specifically, in calculating the emissivity, first, the relationship between the emissivity, specular reflectance, and diffuse reflectance of the steel plate S is modeled in advance. The relationship between the emissivity, specular reflectance, and diffuse reflectance of the steel plate S can be modeled by measuring the amount of specularly reflected light and the amount of diffusely reflected light when the steel plate S is actually heated using an experimental device such as the one shown in Fig. 4, for example. can be converted into The configuration of the experimental apparatus shown in FIG. 4 and the modeling procedure will be described below.

図4に示す実験装置を用いて鋼板Sの放射率と正反射率及び拡散反射率との関係をモデル化する際は、まず、合金化前の鋼板Sの表面に熱電対31を溶接し、さらに鋼板Sの表面の一部に黒体スプレー32を塗布する。次に、鋼板S全体を均一に加熱可能なヒーター33の上に鋼板Sを載置する。鋼板Sの加熱方法は鋼板Sを均一に加熱できれば伝熱、IH加熱、及び通電加熱のいずれでもよいが、熱電対31を溶接している場合にはIH加熱時や通電加熱時に温度計測に影響が出ないように工夫する必要がある。 When modeling the relationship between the emissivity, specular reflectance, and diffuse reflectance of the steel plate S using the experimental apparatus shown in FIG. 4, first, a thermocouple 31 is welded to the surface of the steel plate S before alloying. Furthermore, a black body spray 32 is applied to a part of the surface of the steel plate S. Next, the steel plate S is placed on a heater 33 that can uniformly heat the entire steel plate S. The heating method for the steel plate S may be heat transfer, IH heating, or electrical heating as long as the steel plate S can be heated uniformly, but if the thermocouple 31 is welded, temperature measurement may be affected during IH heating or electrical heating. It is necessary to devise measures to prevent this from occurring.

次に、鋼板Sの放射率と拡散反射率及び正反射率との関係を示すモデルを生成する。具体的には、鋼板Sを徐々に加熱しながら以下の過程(a)~(e)を繰り返し実行する。取得したデータはロガー34に記録する。 Next, a model showing the relationship between the emissivity, diffuse reflectance, and specular reflectance of the steel plate S is generated. Specifically, the following steps (a) to (e) are repeatedly performed while gradually heating the steel plate S. The acquired data is recorded in the logger 34.

(a)正反射用光源21及び拡散反射用光源22を消灯又はシャッターを閉じて鋼板Sの表面画像を撮像することにより鋼板Sの放射光量を算出する。
(b)正反射用光源21のみ点灯又はシャッターを開けて鋼板Sの表面画像を撮像することにより鋼板Sの正反射光量と放射光量との和を取得する。
(c)拡散反射用光源22のみ点灯又はシャッターを開けて鋼板Sの表面画像を撮像することにより鋼板Sの拡散反射光量と放射光量との和を取得する。
(d)過程(b),(c)で取得したそれぞれの光量から過程(a)で取得した光量を減算することにより鋼板Sの正反射光量及び拡散反射光量を算出する。この時、表面画像の撮像毎で露光時間が異なる場合には、露光時間の違いによる光量の差を加味して補正を実施する。
(e)熱電対31によって計測された表面温度と校正された放射温度計23によって計測された表面温度とを比較する、もしくは、放射温度計23がラインセンサ又はエリアセンサであれば放射率成分を黒体スプレー32を塗布した箇所の放射率と比較することにより、鋼板Sの放射率を算出する。そして、過程(d)において算出された鋼板Sの正反射光量及び拡散反射光量と過程(e)において算出された鋼板Sの放射率とを関連付けする。
(a) The amount of emitted light from the steel plate S is calculated by taking a surface image of the steel plate S with the specular reflection light source 21 and the diffuse reflection light source 22 turned off or the shutter closed.
(b) By lighting only the specular reflection light source 21 or opening the shutter to capture a surface image of the steel plate S, the sum of the specularly reflected light amount and the emitted light amount of the steel plate S is obtained.
(c) By lighting only the light source 22 for diffuse reflection or opening the shutter to capture a surface image of the steel plate S, the sum of the amount of diffusely reflected light and the amount of emitted light of the steel plate S is obtained.
(d) Calculate the specularly reflected light amount and diffusely reflected light amount of the steel plate S by subtracting the light amount obtained in step (a) from the respective light amounts obtained in steps (b) and (c). At this time, if the exposure time differs each time the surface image is captured, correction is performed taking into account the difference in light amount due to the difference in exposure time.
(e) Compare the surface temperature measured by the thermocouple 31 with the surface temperature measured by the calibrated radiation thermometer 23, or compare the emissivity component if the radiation thermometer 23 is a line sensor or an area sensor. The emissivity of the steel plate S is calculated by comparing it with the emissivity of the area where the black body spray 32 is applied. Then, the amount of specularly reflected light and the amount of diffusely reflected light of the steel plate S calculated in step (d) are associated with the emissivity of the steel plate S calculated in step (e).

なお、露光時間と計測時間を加味して、過程(a)~(c)において概同一の鋼板Sの表面状態を撮像できるように加熱速度を設定することが好ましい。これにより、例えば図5(a),(b)に示すような、鋼板Sの加熱温度の範囲内において、鋼板Sの表面の放射率と正反射率及び拡散反射率との関係を示すモデルを作成することができる。 Note that it is preferable to set the heating rate so that approximately the same surface state of the steel plate S can be imaged in steps (a) to (c), taking into account the exposure time and measurement time. As a result, a model showing the relationship between the emissivity, specular reflectance, and diffuse reflectance of the surface of the steel plate S within the heating temperature range of the steel plate S, as shown in FIGS. 5(a) and 5(b), for example, can be created. can be created.

図5(a),(b)はそれぞれ、上記のモデル化の手順によって得られた鋼板Sの放射率と正反射率(正反射輝度値)及び拡散反射率(拡散反射輝度値)との関係の一例を示す。図5(a),(b)に示すように、鋼板Sの表面状態は、加熱に応じて徐々に鏡面性が低下しほぼ完全拡散面まで拡散性が高くなるステップS1と、完全拡散面になった状態から徐々に拡散反射率が低下していくステップS2との2つの過程で構成されていることがわかる。このモデルによれば、鋼板Sの表面の正反射率と拡散反射率を計測することによって鋼板Sの放射率を精度よく推定できることがわかる。 Figures 5(a) and (b) show the relationship between the emissivity, specular reflectance (specular reflection brightness value), and diffuse reflectance (diffuse reflection brightness value) of the steel plate S obtained by the above modeling procedure, respectively. An example is shown below. As shown in FIGS. 5(a) and 5(b), the surface state of the steel plate S is such that the specularity gradually decreases as it is heated and the diffusivity increases to an almost completely diffused surface in step S1, and the step S1 in which the diffusivity increases to an almost completely diffused surface. It can be seen that the process is comprised of two processes: step S2, in which the diffuse reflectance gradually decreases from the state where it has become. According to this model, it can be seen that the emissivity of the steel plate S can be estimated with high accuracy by measuring the specular reflectance and diffuse reflectance of the surface of the steel plate S.

鋼板Sの放射率の推定方法の具体例としては、次のような方法がある。まず、鋼板Sの表面状態がステップS1とステップS2のどちらの過程に分類されるかを決定し、その後各過程内でモデル(図5(a),(b)に示す特性曲線)上の座標位置を算出する。例えば最も簡単な方法としては、正反射率に閾値を設け、正反射率が閾値以上であればステップS1の過程、閾値以下であればステップS2の過程に分類する。そして、ステップS1の過程であれば、放射率はほとんど変動しないので放射率を固定値(およそ0.2)とし、ステップS2の過程であれば、拡散反射光量の値からモデル上の座標位置及び放射率を推定する。その他、モデル上の最適な座標位置を決定する手法は数多く提案されているので、正しく合金化過程の座標位置が求まるのであればどのような手法でもよい。実際の製造ラインでも同様に正反射率(正反射輝度値)及び拡散反射率(拡散反射輝度値)を連続的に計測することにより、リアルタイムに放射率を推定することができる。 Specific examples of methods for estimating the emissivity of the steel plate S include the following methods. First, it is determined whether the surface condition of the steel sheet S is classified into step S1 or step S2, and then the coordinates on the model (characteristic curves shown in FIGS. 5(a) and 5(b)) within each process are determined. Calculate the position. For example, the simplest method is to set a threshold value for the specular reflectance, and if the specular reflectance is greater than or equal to the threshold value, the process is classified into step S1, and if it is less than the threshold value, the process is classified into step S2. Then, in the process of step S1, the emissivity is set to a fixed value (approximately 0.2) because it hardly changes, and in the process of step S2, the coordinate position on the model is determined from the value of the amount of diffusely reflected light. Estimate emissivity. In addition, many methods have been proposed for determining the optimal coordinate position on the model, and any method may be used as long as the coordinate position of the alloying process can be determined correctly. Similarly, on an actual manufacturing line, emissivity can be estimated in real time by continuously measuring the specular reflectance (specular reflection brightness value) and diffuse reflectance (diffuse reflection brightness value).

以上の説明から明らかなように、本発明の一実施形態である亜鉛系溶融めっき鋼板の温度測定装置によれば、亜鉛系溶融めっき鋼板の表面に正反射条件で光を照射したときの正反射光量と亜鉛系溶融めっき鋼板の表面に拡散反射条件で光を照射したときの拡散反射光量とに基づいて亜鉛系溶融めっき鋼板の表面の放射率を算出し、亜鉛系溶融めっき鋼板の表面の赤外線画像を撮影し、放射率と撮赤外線画像とを用いて、亜鉛系溶融めっき鋼板の表面温度を測定する。これにより、放射率をリアルタイムで補正しながら合金化過程の亜鉛系溶融めっき鋼板の表面温度を広範囲で測定することができる。また、この温度測定方法を用いて亜鉛系溶融めっき鋼板の表面温度を測定しながら亜鉛系溶融めっき鋼板を製造することにより、鋼板温度を精度よく管理しながら歩留まりよく亜鉛系溶融めっき鋼板を製造することができる。なお、亜鉛系溶融めっき鋼板の表面温度に基づき亜鉛系溶融めっき鋼板を加熱する電磁誘導加熱装置の出力(IH出力)を制御することが望ましい。具体的には、亜鉛系溶融めっき鋼板の合金化温度とIH出力との関係を示すモデルを予め作成、設定しておき、測定された合金化温度に対応するモデルのIH出力に従って電磁誘導加熱装置を制御するとよい。これにより、さらに歩留まりよく亜鉛系溶融めっき鋼板を製造することができる。 As is clear from the above description, according to the temperature measuring device for a zinc-based hot-dip coated steel sheet, which is an embodiment of the present invention, the specular reflection when the surface of the zinc-based hot-dip coated steel sheet is irradiated with light under specular reflection conditions. The emissivity of the surface of the zinc-based hot-dipped steel sheet is calculated based on the amount of light and the amount of diffusely reflected light when the surface of the zinc-based hot-dipped steel sheet is irradiated with light under diffuse reflection conditions, and the infrared rays of the surface of the zinc-based hot-dipped steel sheet are calculated. An image is taken, and the surface temperature of the zinc-based hot-dip plated steel sheet is measured using emissivity and an infrared image. This makes it possible to measure the surface temperature of a zinc-based hot-dipped steel sheet in the alloying process over a wide range while correcting the emissivity in real time. In addition, by manufacturing zinc-based hot-dip coated steel sheets while measuring the surface temperature of the zinc-based hot-dip-coated steel sheets using this temperature measurement method, it is possible to manufacture zinc-based hot-dip coated steel sheets with high yield while accurately controlling the steel plate temperature. be able to. Note that it is desirable to control the output (IH output) of the electromagnetic induction heating device that heats the zinc-based hot-dip-coated steel sheet based on the surface temperature of the zinc-based hot-dip-coated steel sheet. Specifically, a model showing the relationship between the alloying temperature and IH output of zinc-based hot-dip galvanized steel sheets is created and set in advance, and the electromagnetic induction heating device is heated according to the IH output of the model corresponding to the measured alloying temperature. It is good to control. Thereby, zinc-based hot-dip galvanized steel sheets can be manufactured with higher yield.

図6に本発明の実施例を示す。本実施例では、亜鉛系溶融めっきラインの合金化炉の出側に放射率測定装置2とサーモグラフィ3を設置した。放射率測定装置2は鋼板Sの幅方向中央部1点の放射率を測定するように設置した。サーモグラフィ3は放射率測定装置2より鋼板Sの搬送方向下流側約3mの場所に設置した。測定対象の鋼板温度は約400~600℃程度である。そこで、サーモグラフィ3の測定波長は1~1.5μmの範囲とした。また、測定範囲は横幅約1000mm×長手約1500mmとした。放射率測定装置2は、図3の構成に基づいた装置を使用した。放射率を固定値として鋼板Sの表面温度を測定した場合、搬送中に鋼板Sの放射率が変化することによって鋼板Sの表面温度を精度よく測定できなかった。これに対して、本発明のように放射率をリアルタイムで補正しながら鋼板Sの表面温度を測定することにより、鋼板Sの表面温度を精度よく測定できた。 FIG. 6 shows an embodiment of the present invention. In this example, an emissivity measuring device 2 and a thermograph 3 were installed on the outlet side of an alloying furnace of a zinc-based hot-dip plating line. The emissivity measuring device 2 was installed so as to measure the emissivity at one point in the center of the steel plate S in the width direction. The thermograph 3 was installed at a location approximately 3 m downstream from the emissivity measurement device 2 in the conveyance direction of the steel plate S. The temperature of the steel plate to be measured is approximately 400 to 600°C. Therefore, the measurement wavelength of thermography 3 was set in the range of 1 to 1.5 μm. Moreover, the measurement range was about 1000 mm in width x about 1500 mm in length. As the emissivity measuring device 2, a device based on the configuration shown in FIG. 3 was used. When the surface temperature of the steel plate S was measured with the emissivity as a fixed value, the surface temperature of the steel plate S could not be accurately measured because the emissivity of the steel plate S changed during transportation. On the other hand, by measuring the surface temperature of the steel plate S while correcting the emissivity in real time as in the present invention, the surface temperature of the steel plate S could be measured with high accuracy.

以上、本発明者らによってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。 Although embodiments to which the invention made by the present inventors is applied have been described above, the present invention is not limited to the description and drawings that form part of the disclosure of the present invention according to the present embodiments. That is, all other embodiments, examples, operational techniques, etc. made by those skilled in the art based on this embodiment are included in the scope of the present invention.

1 亜鉛系溶融めっき鋼板の温度測定装置
2 放射率測定装置
3 サーモグラフィ
4 演算装置
5 表示装置
21 正反射用光源
22 拡散反射用光源
23 放射温度計
24 演算装置
25 シャッター
31 熱電対
32 黒体スプレー
33 ヒーター
34 ロガー
100 地鉄
101 亜鉛系めっき
102 合金化結晶
L1,L2 照明光
S 鋼板
1 Temperature measuring device for zinc-based hot-dip coated steel sheet 2 Emissivity measuring device 3 Thermography 4 Arithmetic device 5 Display device 21 Light source for specular reflection 22 Light source for diffuse reflection 23 Radiation thermometer 24 Arithmetic device 25 Shutter 31 Thermocouple 32 Black body spray 33 Heater 34 Logger 100 Substrate 101 Zinc plating 102 Alloyed crystal L1, L2 Illumination light S Steel plate

Claims (9)

亜鉛系溶融めっき鋼板の表面に正反射条件で光を照射したときの正反射光量と前記亜鉛系溶融めっき鋼板の表面に拡散反射条件で光を照射したときの拡散反射光量とに基づいて前記亜鉛系溶融めっき鋼板の表面の放射率を算出する放射率算出ステップと、
前記亜鉛系溶融めっき鋼板の表面の赤外線画像を撮影する撮像ステップと、
前記放射率算出ステップにおいて算出された放射率と前記撮像ステップにおいて撮影された赤外線画像とを用いて、前記亜鉛系溶融めっき鋼板の表面温度を測定する温度測定ステップと、を含み、
前記放射率算出ステップは、正反射率が閾値以上である場合、放射率を固定値とし、正反射率が閾値以下である場合には、放射率と拡散反射率及び正反射率との関係を示すモデルと拡散反射光量を用いて放射率を推定する、ことを特徴とする亜鉛系溶融めっき鋼板の温度測定方法。
The amount of zinc based on the amount of specularly reflected light when the surface of the zinc-based hot-dip coated steel sheet is irradiated with light under specular reflection conditions and the amount of diffusely reflected light when the surface of the zinc-based hot-dipped steel sheet is irradiated with light under diffuse reflection conditions. an emissivity calculation step of calculating the emissivity of the surface of the hot-dip galvanized steel sheet;
an imaging step of taking an infrared image of the surface of the zinc-based hot-dip coated steel sheet;
a temperature measuring step of measuring the surface temperature of the zinc-based hot-dip plated steel sheet using the emissivity calculated in the emissivity calculating step and the infrared image taken in the imaging step,
In the emissivity calculation step, when the specular reflectance is above a threshold value, the emissivity is set to a fixed value, and when the specular reflectance is below the threshold value, the relationship between the emissivity, the diffuse reflectance, and the specular reflectance is calculated. A method for measuring the temperature of a zinc-based hot-dip coated steel sheet , characterized in that emissivity is estimated using a model shown in FIG .
前記温度測定ステップは、前記亜鉛系溶融めっき鋼板の幅方向の表面温度分布を測定するステップを含むことを特徴とする請求項1に記載の亜鉛系溶融めっき鋼板の温度測定方法。 2. The method for measuring temperature of a zinc-based hot-dip coated steel sheet according to claim 1, wherein the temperature measuring step includes a step of measuring a surface temperature distribution in the width direction of the zinc-based hot-dip coated steel sheet. 前記放射率算出ステップは、前記亜鉛系溶融めっき鋼板の幅方向の複数個所の放射率を算出するステップを含むことを特徴とする請求項2に記載の亜鉛系溶融めっき鋼板の温度測定方法。 3. The temperature measuring method for a zinc-based hot-dip coated steel sheet according to claim 2, wherein the emissivity calculation step includes a step of calculating emissivity at a plurality of locations in the width direction of the zinc-based hot-dip coated steel sheet. 前記放射率算出ステップは、前記亜鉛系溶融めっき鋼板の幅方向に沿って測定装置を走査させることにより前記亜鉛系溶融めっき鋼板の幅方向の複数個所の放射率を算出するステップを含むことを特徴とする請求項3に記載の亜鉛系溶融めっき鋼板の温度測定方法。 The emissivity calculation step includes a step of calculating emissivity at a plurality of locations in the width direction of the zinc-based hot-dip coated steel sheet by scanning a measuring device along the width direction of the zinc-based hot-dip coated steel sheet. The method for measuring the temperature of a zinc-based hot-dipped steel sheet according to claim 3. 前記温度測定ステップは、前記亜鉛系溶融めっき鋼板の搬送速度を用いて前記亜鉛系溶融めっき鋼板の表面温度を測定するステップを含むことを特徴とする請求項1~4のうち、いずれか1項に記載の亜鉛系溶融めっき鋼板の温度測定方法。 Any one of claims 1 to 4, wherein the temperature measuring step includes a step of measuring the surface temperature of the zinc-based hot-dip coated steel sheet using a conveyance speed of the zinc-based hot-dip coated steel sheet. A method for measuring the temperature of a zinc-based hot-dip coated steel sheet as described in . 前記亜鉛系溶融めっき鋼板は、合金化溶融亜鉛めっき鋼板であることを特徴とする請求項1~5のうち、いずれか1項に記載の亜鉛系溶融めっき鋼板の温度測定方法。 The method for measuring the temperature of a zinc-based hot-dip coated steel sheet according to any one of claims 1 to 5, wherein the zinc-based hot-dip coated steel sheet is an alloyed hot-dip galvanized steel plate. 亜鉛系溶融めっき鋼板の表面に正反射条件で光を照射したときの正反射光量と前記亜鉛系溶融めっき鋼板の表面に拡散反射条件で光を照射したときの拡散反射光量とに基づいて前記亜鉛系溶融めっき鋼板の表面の放射率を算出する放射率測定手段と、
前記亜鉛系溶融めっき鋼板の表面の赤外線画像を撮影する撮像手段と、
前記放射率測定手段によって算出された放射率と前記撮像手段によって撮影された赤外線画像とを用いて、前記亜鉛系溶融めっき鋼板の表面温度を測定する温度測定手段と、
を備え
前記放射率測定手段は、正反射率が閾値以上である場合、放射率を固定値とし、正反射率が閾値以下である場合には、放射率と拡散反射率及び正反射率との関係を示すモデルと拡散反射光量を用いて放射率を推定する、ことを特徴とする亜鉛系溶融めっき鋼板の温度測定装置。
The amount of zinc based on the amount of specularly reflected light when the surface of the zinc-based hot-dip coated steel sheet is irradiated with light under specular reflection conditions and the amount of diffusely reflected light when the surface of the zinc-based hot-dipped steel sheet is irradiated with light under diffuse reflection conditions. emissivity measuring means for calculating the emissivity of the surface of the hot-dip galvanized steel sheet;
an imaging means for taking an infrared image of the surface of the zinc-based hot-dipped steel sheet;
temperature measuring means for measuring the surface temperature of the zinc-based hot-dipped steel sheet using the emissivity calculated by the emissivity measuring means and the infrared image taken by the imaging means;
Equipped with
The emissivity measuring means fixes the emissivity when the specular reflectance is above the threshold value, and determines the relationship between the emissivity, the diffuse reflectance, and the specular reflectance when the specular reflectance is below the threshold value. 1. A temperature measuring device for a zinc-based hot-dip coated steel sheet , characterized in that the emissivity is estimated using a model shown in FIG .
請求項1~6のうち、いずれか1項に記載の亜鉛系溶融めっき鋼板の温度測定方法を用いて亜鉛系溶融めっき鋼板の表面温度を測定しながら亜鉛系溶融めっき鋼板を製造する製造ステップを含むことを特徴とする亜鉛系溶融めっき鋼板の製造方法。 A manufacturing step of manufacturing a zinc-based hot-dip coated steel sheet while measuring the surface temperature of the zinc-based hot-dip coated steel plate using the method for measuring the temperature of a zinc-based hot-dip coated steel plate according to any one of claims 1 to 6. A method for producing a zinc-based hot-dip galvanized steel sheet. 前記製造ステップは、亜鉛系溶融めっき鋼板の表面温度に基づき該亜鉛系溶融めっき鋼板を加熱する電磁誘導加熱装置の出力を制御するステップを含むことを特徴とする請求項8に記載の亜鉛系溶融めっき鋼板の製造方法。 The zinc-based hot-dipped steel sheet according to claim 8, wherein the manufacturing step includes a step of controlling the output of an electromagnetic induction heating device that heats the zinc-based hot-dipped steel sheet based on the surface temperature of the zinc-based hot-dipped steel sheet. Method of manufacturing plated steel sheets.
JP2021082146A 2021-05-14 2021-05-14 Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet Active JP7396328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021082146A JP7396328B2 (en) 2021-05-14 2021-05-14 Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021082146A JP7396328B2 (en) 2021-05-14 2021-05-14 Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet

Publications (2)

Publication Number Publication Date
JP2022175598A JP2022175598A (en) 2022-11-25
JP7396328B2 true JP7396328B2 (en) 2023-12-12

Family

ID=84145643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021082146A Active JP7396328B2 (en) 2021-05-14 2021-05-14 Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet

Country Status (1)

Country Link
JP (1) JP7396328B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029231A1 (en) * 2022-08-05 2024-02-08 日本製鉄株式会社 Temperature measurement device and temperature measurement method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053845A (en) 2001-12-24 2003-07-02 주식회사 포스코 Apparatus and method for measuring the curl of gavanized strip in continuous galvanizing line
JP2005233731A (en) 2004-02-18 2005-09-02 Nippon Steel Corp Method and apparatus for measuring temperature of sheet steel
JP2008255431A (en) 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program
JP2011231397A (en) 2010-04-06 2011-11-17 Nippon Steel Corp Method, device and program for deciding alloying position

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053845A (en) 2001-12-24 2003-07-02 주식회사 포스코 Apparatus and method for measuring the curl of gavanized strip in continuous galvanizing line
JP2005233731A (en) 2004-02-18 2005-09-02 Nippon Steel Corp Method and apparatus for measuring temperature of sheet steel
JP2008255431A (en) 2007-04-05 2008-10-23 Nippon Steel Corp Plate temperature control method in continuous treatment line, apparatus, and computer program
JP2011231397A (en) 2010-04-06 2011-11-17 Nippon Steel Corp Method, device and program for deciding alloying position

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福高善己 他,放射率自動補正型放射温度計の開発,川崎製鉄技報,1992年,Vol.24, No.1, pp.63-67

Also Published As

Publication number Publication date
JP2022175598A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
JP4913264B2 (en) Material defect detection method and system
ITTO930654A1 (en) METHOD AND EQUIPMENT FOR SURVEILLANCE AND CONTROL OF THE THICKNESS OF A THIN FILM
JP7396328B2 (en) Temperature measurement method, temperature measurement device, and manufacturing method for zinc-based hot-dip coated steel sheet
KR101057237B1 (en) Temperature measuring method and temperature measuring apparatus of steel sheet, and temperature control method of steel sheet
WO2013030904A1 (en) Alloying location determination method, alloying location determination device, and recording medium
JP7276515B2 (en) Surface temperature measuring method, surface temperature measuring device, manufacturing method of zinc-based hot-dip galvanized steel sheet, and manufacturing equipment for zinc-based hot-dip galvanizing steel sheet
JP2011231397A (en) Method, device and program for deciding alloying position
JP5768477B2 (en) Method for measuring temperature of workpiece, method for manufacturing workpiece, and heating device for workpiece
JP6570059B2 (en) Non-contact temperature measurement method and measurement system
JP2014215084A (en) Method for measuring temperature of heated object
JP2023120491A (en) Calibration method and calibration device for radiation thermometer
JP2005233790A (en) Method and apparatus for measuring temperature of sheet steel
KR101237958B1 (en) Simultaneous measurement method for infrared properties of materials
JP2002045961A (en) Heating evaluating method for heating furnace, and method for estimating temperature of body to be heated using the method
JP2005188994A (en) Measuring method for thickness of liniment on die, and the control method for coverage of liniment on die
JP6409734B2 (en) Steel plate temperature measuring method, temperature measuring device, and steel plate manufacturing method
JP2593016B2 (en) Method for measuring alloying degree of hot-dip galvanized steel strip
JP2001272341A (en) Measuring method for uneven brightness of metal plate
JP5767606B2 (en) Temperature measuring device for measuring plate and measuring temperature correction method
AU685840B2 (en) Determination of coating thickness and temperature of thinly coated substrates
JP2000297330A (en) Method for measuring strip temperature in strip continuous annealing furnace and instrument therefor
JPH05312650A (en) Welding part detector for metal
KR20240030629A (en) Temperature measuring device for hot-rolled material for electrical steel sheet and method for measuring temperature of hot-rolled material for electrical steel sheet using the same
US20180106741A1 (en) Inspecting method for heatsink and manufacturing method for heatsink
JPH07270241A (en) Measuring method for surface temperature distribution of object in furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7396328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150