JP7395175B2 - Bonding method of transparent resin using water plasma - Google Patents

Bonding method of transparent resin using water plasma Download PDF

Info

Publication number
JP7395175B2
JP7395175B2 JP2019179658A JP2019179658A JP7395175B2 JP 7395175 B2 JP7395175 B2 JP 7395175B2 JP 2019179658 A JP2019179658 A JP 2019179658A JP 2019179658 A JP2019179658 A JP 2019179658A JP 7395175 B2 JP7395175 B2 JP 7395175B2
Authority
JP
Japan
Prior art keywords
parylene
parylene layer
plasma
layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019179658A
Other languages
Japanese (ja)
Other versions
JP2021053951A5 (en
JP2021053951A (en
Inventor
弘和 寺井
幹雄 増市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP2019179658A priority Critical patent/JP7395175B2/en
Publication of JP2021053951A publication Critical patent/JP2021053951A/en
Publication of JP2021053951A5 publication Critical patent/JP2021053951A5/ja
Application granted granted Critical
Publication of JP7395175B2 publication Critical patent/JP7395175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micromachines (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、微少量の生体試料等を分析するために用いられるマイクロ流路チップ(μTASやLab-on-Chipとも呼ばれる。)やDNAナノポアデバイス(以下、これらをまとめてマイクロ流路デバイスと呼ぶ。)等、主に透明板状のデバイスを製造する方法に関する。 The present invention relates to microchannel chips (also called μTAS or Lab-on-Chip) and DNA nanopore devices (hereinafter collectively referred to as microchannel devices) used to analyze minute amounts of biological samples. ), etc., mainly relates to a method of manufacturing a transparent plate-like device.

半導体製造技術を応用したMEMS(Micro Electro Mechanical Systems、微小電気機械システム)技術を用いて製造されるマイクロ流路デバイスは、微少量の試料の分析を行う際等に広く用いられる。また、様々な形態の流路を形成することができることから、複雑な処理を含む分析にも対応することができる。 Microfluidic devices manufactured using MEMS (Micro Electro Mechanical Systems) technology, which is an application of semiconductor manufacturing technology, are widely used when analyzing minute amounts of samples. Furthermore, since channels of various shapes can be formed, it is possible to support analyzes involving complex processing.

マイクロ流路デバイスは一般に、一方の面に流路が形成された平板(流路板)と、その面(流路)を塞ぐ平板(閉鎖板)の少なくとも2枚の透明平板を接合することにより作製される。ポリジメチルシロキサン(PolyDiMethylSiloxane, PDMS)は光学特性に優れ、成形が容易なことから、これらの材料として広く用いられている。しかし、PDMSは通気性が高く、また、材料自体から低分子シロキサンを放出するため、流路に試料を流す際にこれらが試料に入り込み、観察や分析を阻害する。また、予め染色した細胞をPDMS流路に流すと、PDMSに拡散して不具合を起こすことなども明らかになってきた。 Microchannel devices are generally made by bonding at least two transparent flat plates: a flat plate with a channel formed on one side (channel plate) and a flat plate that closes that side (channel) (closure plate). will be produced. PolydiMethylSiloxane (PDMS) is widely used as such a material because it has excellent optical properties and is easy to mold. However, PDMS has high air permeability and also releases low-molecular-weight siloxane from the material itself, so when the sample is flowed through the channel, these enter the sample and interfere with observation and analysis. It has also become clear that when pre-stained cells are passed through a PDMS channel, they can diffuse into the PDMS and cause problems.

これらの問題に対して、特許文献1ではPDMSにバリア性の高いパリレン(ポリパラキシリレン, Poly-para-Xylylene。「パリレン」は日本パリレン合同会社の登録商標。)をコーティングすることで解決を図っている。 Patent Document 1 solves these problems by coating PDMS with parylene (Poly-para-Xylylene, "Parylene" is a registered trademark of Japan Parylene LLC), which has high barrier properties. I'm trying.

特開2013-188677号公報Japanese Patent Application Publication No. 2013-188677 特開2018-013473号公報Japanese Patent Application Publication No. 2018-013473 特表2011-520216号公報Special Publication No. 2011-520216

他の材料の表面にパリレンをコーティングする場合、パリレンモノマーを当該材料の表面に蒸着することにより行われる。このため、コーティングを行った後のパリレンの表面はパリレンモノマーの分子量が大きいことから、かなり粗な状態となる。従って、従来、パリレンでコーティングされた部材の表面同士は熱圧着(特許文献2)や接着剤で(特許文献3)接合されていた。 Coating parylene onto the surface of another material is accomplished by vapor depositing parylene monomer onto the surface of the material. For this reason, the surface of parylene after coating becomes quite rough because the molecular weight of the parylene monomer is large. Therefore, conventionally, the surfaces of members coated with parylene have been joined together by thermocompression bonding (Patent Document 2) or adhesive (Patent Document 3).

しかし、パリレンを熱圧着する場合、その処理温度は450℃近くが必要である。PDMSにパリレンをコーティングした材料の場合、その温度ではPDMSが変成してしまうため、熱圧着という方法は使えない。 However, when thermocompression bonding Parylene, the processing temperature needs to be close to 450°C. In the case of PDMS coated with parylene, thermocompression bonding cannot be used because the PDMS undergoes metamorphosis at that temperature.

また、マイクロ流路デバイスを作製する場合、接着剤による接合では、接着剤が多いと流路に接着剤がはみ出したり接着剤が溶出して流路を流れる試料を汚染したり、逆に接着剤が少ないと接合面間に隙間ができてしまう恐れがある。 In addition, when manufacturing microchannel devices, when bonding with adhesive, if there is too much adhesive, the adhesive may overflow into the channel, the adhesive may elute and contaminate the sample flowing through the channel, or conversely, the adhesive may If there is too little, there is a risk that a gap will be formed between the joint surfaces.

本発明はこのような課題を解決するために成されたものであり、その目的とするところは、表面をパリレンでコーティングした部材の該表面を熱圧着や接着剤ではない方法で接合することのできる方法を提供することである。 The present invention was made to solve these problems, and its purpose is to make it possible to join the surfaces of members whose surfaces are coated with parylene by a method other than thermocompression bonding or adhesives. The goal is to provide a way to do so.

上記課題を解決するために成された本発明は、
基材の表面に、平滑な平面部を有するパリレン層を備えた第1部材を作製し、
平滑な平面部を有する第2部材を作製し、
前記第1部材の前記平面部及び前記第2部材の前記平面部を共に水プラズマ(H2Oプラズマ)で処理し、
前記第1部材の前記平面部と前記第2部材の前記平面部を0.5MPa以下の圧力で合わせる
ことにより第1部材と第2部材を接合する方法である。
The present invention has been made to solve the above problems,
Producing a first member having a parylene layer having a smooth plane portion on the surface of the base material,
Producing a second member having a smooth plane part,
treating both the flat part of the first member and the flat part of the second member with water plasma (H 2 O plasma),
This is a method of joining the first member and the second member by bringing the flat part of the first member and the flat part of the second member together under a pressure of 0.5 MPa or less.

上記の方法において、「平滑な」とは、算術平均粗さRaが5nm以下であることを表す。 In the above method, "smooth" means that the arithmetic mean roughness Ra is 5 nm or less.

前記水プラズマの処理において、その水プラズマには酸素プラズマ(Oプラズマ)を含んでいてもよい。すなわち、プラズマの原料ガスにおいて、水蒸気(H20)と酸素(O2)の比率がH20:O2=100:0~H20:O2=20:80のものを使用することができる。なお、水プラズマには窒素やヘリウムやアルゴンを含んでいてもよい。 In the water plasma treatment, the water plasma may include oxygen plasma (O plasma). In other words, use a raw material gas for plasma in which the ratio of water vapor (H 2 0) to oxygen (O 2 ) is between H 2 0:O 2 =100:0 and H 2 0:O 2 =20:80. I can do it. Note that the water plasma may contain nitrogen, helium, or argon.

前記水プラズマの処理においては、処理対象である前記第1部材の前記平面部及び前記第2部材の前記平面部を共に40~100℃としておくことが望ましく、室温(25℃)としておくことがより望ましい。
また、水プラズマの圧力は0.1~400Paとしておくことが望ましい。
In the water plasma treatment, it is desirable that both the flat part of the first member and the flat part of the second member to be treated be kept at a temperature of 40 to 100°C, and preferably at room temperature (25°C). More desirable.
Furthermore, it is desirable that the pressure of the water plasma be between 0.1 and 400 Pa.

前記水プラズマの処理においては、プラズマ発生用の電極に供給する高周波電力は、処理対象の面積に関して0.3~3000mW/cm2の範囲内の値としておくことが望ましい。 In the water plasma treatment, the high frequency power supplied to the electrode for plasma generation is desirably set to a value within the range of 0.3 to 3000 mW/cm 2 with respect to the area to be treated.

前記水プラズマの処理時間は、1~8000秒の範囲内としておくことが望ましく、10~120秒としておくことがより望ましい。 The water plasma treatment time is preferably within a range of 1 to 8000 seconds, more preferably 10 to 120 seconds.

第1部材の前記基材としては、PDMSやその他のシリコーンを用いることができる。 As the base material of the first member, PDMS or other silicone can be used.

第2部材としては、前記第1部材と同様に、基材の表面にパリレンをコーティングしたものを用いることができる。その他に、ガラスやシクロオレフィンポリマー(Cycloolefin Polymer (COP)。ただし、その共重合体であるシクロオレフィンコポリマー(COC)やシクロブロックコポリマー(CBC)を含む。)を用いることができる。また、基材にはポリアミド、ポリエステル、ポリウレタン、ポリシロキサン、フエノール樹脂、ポリサルフアイド、ポリアセタール、ポリアクリロニトリル、ポリビニルクロライド、ポリスチレン、ポリメチルメタクリレート、ポリビニルアセタート、ポリテトラフルオロエチレン、ポリイソプレン、ポリカーボネート、ポリエーテル、ポリイミド、ポリベンゾイミダゾール、ポリベンズオキサゾール、ポリベンゾチアゾール、ポリオキサジアゾール、ポリトリアゾール、ポリキノキサリン、ポリイミダゾピロロン、エポキシ樹脂、並びに芳香族成分及びビニルやシクロブタン基から選択される成分を含む共重合体のような有機物であってもよく、あるいは、サファイア、酸化亜鉛、酸化インジウムスズ(ITO)のような無機物を用いることもできる。 As the second member, similarly to the first member, a base material whose surface is coated with parylene can be used. In addition, glass and cycloolefin polymer (Cycloolefin Polymer (COP), including its copolymers such as cycloolefin copolymer (COC) and cycloblock copolymer (CBC)) can also be used. In addition, the base materials include polyamide, polyester, polyurethane, polysiloxane, phenolic resin, polysulfide, polyacetal, polyacrylonitrile, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyvinyl acetate, polytetrafluoroethylene, polyisoprene, polycarbonate, and polyether. , polyimides, polybenzimidazoles, polybenzoxazoles, polybenzothiazoles, polyoxadiazoles, polytriazoles, polyquinoxalines, polyimidazopyrrolones, epoxy resins, as well as aromatic components and vinyl or cyclobutane groups. It may be organic, such as a polymer, or it may be inorganic, such as sapphire, zinc oxide, or indium tin oxide (ITO).

基材の表面に、平滑な平面部を有するパリレン層を備えた第1部材を作製する方法としては、例えば、表面に平滑な平面部を有する型の該表面にパリレンモノマーを蒸着することでパリレン層を形成し、該パリレン層に更に基材を、該パリレン層との密着性の高い状態で置き、表面に前記パリレン層が接合した基材を前記型から取り出すことにより作製することができる。 As a method for producing the first member having a parylene layer having a smooth flat surface on the surface of the base material, for example, parylene monomer is deposited on the surface of a mold having a smooth flat surface. It can be produced by forming a layer, placing a base material on the parylene layer in a state with high adhesion to the parylene layer, and taking out the base material with the parylene layer bonded to the surface from the mold.

この場合、前記パリレン層に前記基材を密着性の高い状態で置く方法として、該パリレン層の表面(型面ではない方の面)を水プラズマ又は他のプラズマで処理し、次に、前記型に(パリレンのプラズマ処理した表面側に)流動状態の基材(例えばPDMS)を流しこんで硬化させる、という方法がある。該パリレン層の表面をプラズマ処理せず、次に、前記型に流動状態の基材を流しこんで硬化させた場合は、基材を前記型から取り出すときに前記パリレン層が前記型に残るので、基材の表面に、平滑な平面部を有するパリレン層を備えた第1部材を作製することができない(特開2016-163549)。 In this case, as a method of placing the base material on the parylene layer with high adhesion, the surface of the parylene layer (the side that is not the mold surface) is treated with water plasma or other plasma, and then the One method is to pour a fluid base material (e.g. PDMS) into a mold (on the plasma-treated surface of parylene) and allow it to harden. If the surface of the parylene layer is not plasma-treated and then a fluidized base material is poured into the mold and cured, the parylene layer will remain in the mold when the base material is taken out of the mold. , it is not possible to produce a first member including a parylene layer having a smooth flat surface on the surface of the base material (JP 2016-163549A).

ここにおける水プラズマの他のプラズマとしては、例えば酸素プラズマ(Oプラズマ)、アルゴンプラズマ(Arプラズマ)、或いはそれらの混合プラズマ等を挙げることができる。 Examples of plasma other than water plasma include oxygen plasma (O plasma), argon plasma (Ar plasma), or a mixed plasma thereof.

基材の表面にパリレン層を備えた第2部材を作製する方法としては、例えば、表面に平滑な平面部を有する型の該表面にパリレンモノマーを蒸着することでパリレン層を形成し、該パリレン層に更に基材(例えば、PDMS、ガラスまたはCOP製の板)を、該パリレン層との密着性の高い状態で置き、表面に前記パリレン層が接合した基材を前記型から取り出すことにより作製することが好ましい。 As a method for producing the second member having a parylene layer on the surface of the base material, for example, a parylene layer is formed by vapor-depositing a parylene monomer on the surface of a mold having a smooth flat surface, and the parylene layer is formed on the surface of a mold having a smooth flat surface. A base material (for example, a plate made of PDMS, glass, or COP) is further placed on the layer in a state with high adhesion to the parylene layer, and the base material with the parylene layer bonded to the surface is taken out from the mold. It is preferable to do so.

この場合、前記パリレン層に前記基材を密着性の高い状態で置く方法として、該パリレン層の表面(型面ではない方の面)を水プラズマ又は他のプラズマで処理し、次に、前記型に(パリレンのプラズマ処理した表面側に)基材を置くという方法が好ましい。 In this case, as a method of placing the base material on the parylene layer with high adhesion, the surface of the parylene layer (the side that is not the mold surface) is treated with water plasma or other plasma, and then the A preferred method is to place the substrate in the mold (on the plasma-treated surface side of the parylene).

このようにして得られた第1部材のパリレン層と第2部材のパリレン層は平滑な平面部を有しているので、パリレン層同士を接合すると第1部材と第2部材とを高い強度で接合することができるが、さらに高い強度で第1部材と第2部材と接合できる点で、第1部材のパリレン層および第2部材のパリレン層を水プラズマで処理した後に、パリレン層同士を接合することが好ましい。このようにして製造されたマイクロ流路チップは、流路内に高い圧力で送液しても第1部材と第2部材とが剥離しない。 Since the parylene layer of the first member and the parylene layer of the second member obtained in this way have smooth plane parts, when the parylene layers are joined together, the first member and the second member are bonded with high strength. However, in order to bond the first member and the second member with even higher strength, it is possible to bond the parylene layers together after treating the parylene layer of the first member and the parylene layer of the second member with water plasma. It is preferable to do so. In the microchannel chip manufactured in this way, the first member and the second member do not separate even if liquid is fed into the channel at high pressure.

本発明に係る接合方法によると、表面をパリレンでコーティングした部材の該表面を熱圧着や接着剤ではない方法で他の透明材料と接合することができる。 According to the bonding method of the present invention, the surface of a member whose surface is coated with parylene can be bonded to another transparent material by a method other than thermocompression bonding or adhesive.

本発明に係る接合方法を用いて作製するマイクロ流路デバイスの一例の概略構成図であり、(a)は流路板の平面図、(b)は閉鎖部材の平面図、(c)は両者を合わせたものの側面図。1 is a schematic configuration diagram of an example of a microchannel device produced using the bonding method according to the present invention, in which (a) is a plan view of a channel plate, (b) is a plan view of a closing member, and (c) is a plan view of both. A side view of the combination. 本発明に係る接合方法の一実施形態において用いられるプラズマ処理装置の概略構成図。1 is a schematic configuration diagram of a plasma processing apparatus used in an embodiment of a bonding method according to the present invention. 前記実施形態のフローチャート。Flowchart of the embodiment. 前記実施形態において行われる試験片の作製手順を示す断面図。FIG. 3 is a cross-sectional view showing the procedure for manufacturing a test piece performed in the embodiment. 接合強度評価試験の試験片の平面図(a)及び側面図(b)。Plan view (a) and side view (b) of the test piece for the joint strength evaluation test. 接合強度評価試験の結果を示す写真。A photograph showing the results of a joint strength evaluation test. 接合強度評価試験において行う引張試験の方法を示す説明図。FIG. 2 is an explanatory diagram showing a method of a tensile test performed in a joint strength evaluation test.

本発明に係る接合方法を用いてマイクロ流路デバイスを作製する方法の一実施形態を説明する。本実施形態で作製するマイクロ流路デバイスの一例を図1に示す。このマイクロ流路デバイス10は、一方の表面に流路13が形成された透明板である流路部材11と、該流路部材11の流路形成側の面を閉鎖する(すなわち、流路を形成する)ための透明の平面板である閉鎖部材12で構成される。閉鎖部材12の、流路13の両端部に対応する位置には、試料を流路13に導入し、流路13から導出するための試料導入口/導出口14がそれぞれ設けられている。 An embodiment of a method for manufacturing a microchannel device using the bonding method according to the present invention will be described. FIG. 1 shows an example of a microchannel device manufactured in this embodiment. This microchannel device 10 includes a channel member 11 that is a transparent plate with a channel 13 formed on one surface, and a channel forming side surface of the channel member 11 that is closed (that is, the channel is closed). The closure member 12 is a transparent planar plate for forming the device. Sample inlets/outlets 14 for introducing the sample into the channel 13 and leading it out from the channel 13 are provided at positions corresponding to both ends of the channel 13 of the closing member 12, respectively.

このマイクロ流路デバイスの作製方法を図3のフローチャート及び図4のマイクロ流路デバイス断面図を用いて説明する。まず、流路部材11の作製方法を説明する。図1(a)に示すような流路部材11の雌型である流路型21(図4(a))を用意し、その表面を平滑にする(ステップS1)。ここで「平滑」とは、表面の算術平均粗さRaが5nm以下であることを言う。次に、この流路型21の内表面(平滑面)にパリレンを蒸着する(ステップS2、図4(b))。こうして形成したパリレン層22の表面(蒸着面)をプラズマで処理する(ステップS3)。ここで用いるプラズマは、水プラズマ(H2Oプラズマ)の他、水-酸素プラズマ(H2O-O2プラズマ)、酸素プラズマ(Oプラズマ)、アルゴンプラズマ(Arプラズマ)など、一般的に洗浄目的で使用されている各種プラズマを使用することができる。その後、流路型21の中にPDMS23を注入し、熱硬化させる(ステップS4、図4(c))。PDMS層23が十分に硬化した後、表面にパリレン層22を有するPDMS層23を流路型21から取り出す(ステップS5)。パリレン層22の型側の面は平滑面であるのに対しPDMS層23側の面はパリレンを蒸着したままの粗面であり、また、プラズマにより表面処理が施された後に液体状のPDMS23と接触したため、PDMS層23はパリレン層22と良く密着し、パリレン層22は流路型21には残らずPDMS層23と一緒に流路型21から取り出される(図4(d))。これで、表面に平滑なパリレン層22を有するPDMS層23から成る流路部材11が完成する(図4(e)左)。 A method for manufacturing this microchannel device will be explained using the flowchart of FIG. 3 and the cross-sectional view of the microchannel device of FIG. 4. First, a method for manufacturing the channel member 11 will be explained. A channel mold 21 (FIG. 4(a)), which is a female mold of the channel member 11 as shown in FIG. 1(a), is prepared, and its surface is smoothed (step S1). Here, "smooth" means that the arithmetic mean roughness Ra of the surface is 5 nm or less. Next, parylene is deposited on the inner surface (smooth surface) of this channel mold 21 (step S2, FIG. 4(b)). The surface (evaporation surface) of the parylene layer 22 thus formed is treated with plasma (step S3). The plasmas used here include water plasma (H 2 O plasma), water-oxygen plasma (H 2 O-O 2 plasma), oxygen plasma (O plasma), argon plasma (Ar plasma), etc., which are commonly used for cleaning. Various plasmas used for this purpose can be used. Thereafter, PDMS 23 is injected into the channel mold 21 and thermally cured (step S4, FIG. 4(c)). After the PDMS layer 23 is sufficiently cured, the PDMS layer 23 having the parylene layer 22 on its surface is taken out from the channel mold 21 (step S5). The surface of the parylene layer 22 on the mold side is a smooth surface, whereas the surface on the PDMS layer 23 side is a rough surface with parylene deposited on it. Because of the contact, the PDMS layer 23 adheres well to the parylene layer 22, and the parylene layer 22 does not remain in the channel mold 21, but is taken out from the channel mold 21 together with the PDMS layer 23 (FIG. 4(d)). In this way, the channel member 11 made of the PDMS layer 23 having the smooth parylene layer 22 on the surface is completed (FIG. 4(e) left).

一方、同様の方法により、試料導入口/導出口に対応する凸部を設けた閉鎖板型(図示せず)を用いて、表面に平滑なパリレン層27を有するPDMS層28から成る閉鎖部材12を作製する(ステップS6、図4(e)右。なお、図1及び図4はいずれも模式的に示したものであり、流路13の幅や試料導入口/導出口14の大きさなどは図1と図4において異なる。)。なお、閉鎖部材12はこのようなパリレン層27を有するPDMS層から成る平板ではなく、平滑な表面を持つCOP板やガラス板で作製してもよい。 On the other hand, using a similar method, a closing plate type (not shown) provided with convex portions corresponding to the sample inlet/outlet was used to create a closing member 12 made of a PDMS layer 28 having a smooth parylene layer 27 on the surface. (Step S6, FIG. 4(e) right. Both FIGS. 1 and 4 are schematic illustrations, and the width of the channel 13, the size of the sample inlet/outlet 14, etc.) are different in Figures 1 and 4). Note that the closing member 12 may be made of a COP plate or a glass plate having a smooth surface, instead of being a flat plate made of a PDMS layer having such a parylene layer 27.

こうして作製した流路部材11と閉鎖部材12のパリレン層側の面(平滑面)を、水プラズマで処理する(ステップS7)。水プラズマ処理は、例えば平行平板型(容量結合型)プラズマ処理装置を用いて行うことができる。このような平行平板型プラズマ処理装置の一例であるプラズマ処理装置50(サムコ株式会社製AQ-2000)の概略の構成を図2により説明する。処理室51内には上下に電極52、53が配置され、いずれか一方が接地され、他方に高周波電力が供給される。図2の装置では、上部電極53に高周波電源54より高周波電力が供給され、下部電極52が接地されてそこに被処理部材が載置される(PEモード)。これを逆にして、被処理部材を載置した下部電極52に高周波電力を供給し、上部電極53を接地してもよい(RIEモード)。密閉された処理室51内は真空排気系55により排気可能となっており、排気後の処理室51内には水蒸気供給系56から水蒸気(H2O)が供給される。これら各部はプラズマ処理装置50の制御部58により制御される。 The parylene layer side surfaces (smooth surfaces) of the flow path member 11 and closing member 12 thus produced are treated with water plasma (step S7). The water plasma treatment can be performed using, for example, a parallel plate type (capacitively coupled) plasma treatment apparatus. A schematic configuration of a plasma processing apparatus 50 (AQ-2000 manufactured by Samco Co., Ltd.), which is an example of such a parallel plate type plasma processing apparatus, will be explained with reference to FIG. Electrodes 52 and 53 are arranged above and below in the processing chamber 51, one of which is grounded and high frequency power is supplied to the other. In the apparatus shown in FIG. 2, high frequency power is supplied from a high frequency power source 54 to the upper electrode 53, the lower electrode 52 is grounded, and the workpiece is placed there (PE mode). This may be reversed, and high frequency power is supplied to the lower electrode 52 on which the member to be processed is placed, and the upper electrode 53 is grounded (RIE mode). The sealed processing chamber 51 can be evacuated by a vacuum evacuation system 55, and water vapor (H 2 O) is supplied from a water vapor supply system 56 to the processing chamber 51 after evacuation. Each of these parts is controlled by a control section 58 of the plasma processing apparatus 50.

このプラズマ処理装置50の処理室51内に前記流路部材11及び閉鎖部材12を、それらの平滑面が処理面(上面)となるように下部電極52上に設置し(図4(e))、水プラズマ処理を施す(ステップS7)。水プラズマ処理の処理条件は、例えば次のとおりとすることができる。
水蒸気(H2O)流量20sccm
B.G.P. 10Pa
圧力 4Pa
高周波電力 100W(33mW/cm2
試験片温度 25℃
処理時間 80sec
In the processing chamber 51 of this plasma processing apparatus 50, the flow path member 11 and the closing member 12 are installed on the lower electrode 52 so that their smooth surfaces become the processing surface (upper surface) (FIG. 4(e)). , water plasma treatment is performed (step S7). The treatment conditions for the water plasma treatment can be, for example, as follows.
Water vapor ( H2O ) flow rate 20sccm
BGP 10Pa
Pressure 4Pa
High frequency power 100W (33mW/cm 2 )
Test piece temperature 25℃
Processing time 80sec

こうして両平滑面に水プラズマ処理を施した後、両平滑面を合わせ、それらを接合する(ステップS8、図4(f))。接合は、流路部材11又は閉鎖部材12の自重(流路部材11や閉鎖部材12が76mm×26mm×2mm程度の平板である場合、通常、約4gf)程度の力でも可能であるが、0.5MPa以下の圧力を加えてもよい。
以上の工程により、マイクロ流路デバイスが完成する。
After water plasma treatment is applied to both smooth surfaces in this manner, both smooth surfaces are brought together and bonded (step S8, FIG. 4(f)). Bonding can be performed using a force of about 0.5 gf due to the weight of the channel member 11 or the closing member 12 (usually about 4 gf when the channel member 11 or the closing member 12 is a flat plate of about 76 mm x 26 mm x 2 mm). A pressure of MPa or less may be applied.
Through the above steps, a microchannel device is completed.

次に、上記の工程のうち、
(1) パリレン蒸着面へのプラズマ処理の有無による、パリレン層とPDMS層の接着性(ステップS3の効果)
(2) パリレン層の平滑表面と他の平滑表面に水プラズマ処理を施した後の両平滑表面の接着性(ステップS8の効果)
を評価するための試験を行った。
Next, among the above steps,
(1) Adhesion between parylene layer and PDMS layer depending on whether plasma treatment is performed on the parylene vapor deposition surface (effect of step S3)
(2) Adhesion between the smooth surfaces of the parylene layer and other smooth surfaces after water plasma treatment (effect of step S8)
A test was conducted to evaluate the

まず、(1)の評価のため、次のような試験を行った。図5に示すように、ガラス基板31にパリレンC(ベンゼン環の水素の1つを塩素に置換したもの。)を2μmの厚さで蒸着した。この、ガラス基板31+パリレン層32から成る試験片30を2枚作製し、そのうち1枚の試験片30についてはパリレン層の表面(蒸着面。粗面)をプラズマで処理した。ここにおけるプラズマ処理は、上記と同じ条件の水プラズマ処理とした。他の1枚の試験片30にはプラズマ処理を施さなかった。その後、両試験片30上にそれぞれ15mm×15mmの略正方形の枠を載置し、各枠内にPDMSを2mmの厚さとなるように注入し、硬化させた。ここで用いたPDMSはダウ・東レ株式会社製のSylgard184(Sylgardは同社の商標。)である。硬化は、75℃に90分保持することにより行った。PDMS層33が硬化した後、枠を取り外し、ガラス基板31上にパリレン層32とPDMS層33の積層体が形成された2種の試験片30を得た。前記の通り、このうち1種はパリレン層32表面にプラズマ処理が施されており、他の1種にはプラズマ処理が施されていない。図5に示すように、両試験片30のガラス基板31上のパリレン層32とPDMS層33の積層体に、カッターナイフで、積層体を3×3に分割するように分割線34を入れた。 First, in order to evaluate (1), the following test was conducted. As shown in FIG. 5, parylene C (one of the hydrogen atoms in the benzene ring is replaced with chlorine) was deposited on a glass substrate 31 to a thickness of 2 μm. Two test pieces 30 consisting of the glass substrate 31 and the parylene layer 32 were prepared, and the surface (evaporated surface, rough surface) of the parylene layer of one of the test pieces 30 was treated with plasma. The plasma treatment here was water plasma treatment under the same conditions as above. The other test piece 30 was not subjected to plasma treatment. Thereafter, approximately square frames of 15 mm x 15 mm were placed on both test pieces 30, and PDMS was injected into each frame to a thickness of 2 mm and cured. The PDMS used here is Sylgard 184 manufactured by Dow Toray Industries, Inc. (Sylgard is a trademark of that company). Curing was performed by holding at 75°C for 90 minutes. After the PDMS layer 33 was cured, the frame was removed to obtain two types of test pieces 30 in which a laminate of a parylene layer 32 and a PDMS layer 33 was formed on a glass substrate 31. As described above, the surface of one of these parylene layers 32 is subjected to plasma treatment, and the other one is not subjected to plasma treatment. As shown in FIG. 5, a dividing line 34 was inserted into the laminate of the parylene layer 32 and the PDMS layer 33 on the glass substrate 31 of both test pieces 30 using a cutter knife so as to divide the laminate into 3×3 pieces. .

こうして形成した両試験片30の9個の各分割領域毎に、真空ピンセットでPDMS層33を吸引してガラス基板31に垂直に引っ張り、各層がどの境界で剥離するかを調べた。その結果を図6に示す。プラズマ処理を施さなかった試験片30(図6の「プラズマ処理なし」欄)では、9箇所のうち9箇所(全数)で、パリレン層32とPDMS層33の間の境界で剥離した。すなわち、パリレン層32は全てガラス基板31に残留し、剥離したPDMS層33にはパリレン層32は付着してこなかった。一方、プラズマ処理を施した試験片30(図6の「プラズマ処理あり」欄)では、9箇所のうち9箇所(全数)で、ガラス基板31とパリレン層32の間の境界で剥離した。すなわち、全ての領域においてガラス基板31上には何も残らず、全領域においてパリレン層32はPDMS層33と一緒に剥離した。 For each of the nine divided regions of both test pieces 30 thus formed, the PDMS layer 33 was suctioned and pulled perpendicularly to the glass substrate 31 using vacuum tweezers, and the boundaries at which each layer peeled were examined. The results are shown in FIG. In the test piece 30 that was not subjected to plasma treatment ("No plasma treatment" column in FIG. 6), peeling occurred at the boundary between the parylene layer 32 and the PDMS layer 33 at 9 out of 9 locations (all samples). That is, all of the parylene layer 32 remained on the glass substrate 31, and no parylene layer 32 adhered to the peeled PDMS layer 33. On the other hand, in the plasma-treated test piece 30 ("plasma-treated" column in FIG. 6), peeling occurred at the boundary between the glass substrate 31 and the parylene layer 32 at 9 out of 9 locations (in total). That is, nothing remained on the glass substrate 31 in all regions, and the parylene layer 32 was peeled off together with the PDMS layer 33 in all regions.

これにより、パリレン蒸着面にプラズマ処理を施すことによる、パリレン層32とPDMS層33の接着性向上の効果(ステップS3の効果)が確認された。 This confirmed the effect of improving the adhesion between the parylene layer 32 and the PDMS layer 33 (the effect of step S3) by performing plasma treatment on the parylene vapor-deposited surface.

また、上記のうちプラズマ処理を施した試験片3枚について、プラズマ処理を施した直後のパリレン層32表面の水接触角を測定した。また、プラズマ処理を施さなかった試験片3枚についても同様にパリレン層表面の水接触角を測定した。その結果、プラズマ処理を施した試験片30では水接触角は4°、5°、4°であったのに対し、プラズマ処理を施さなかった試験片30では水接触角は82°、90°、88°であった。このことから、プラズマ処理を施すことによりパリレン層32の表面が非常に強い親水性となっていることがわかる。この強い親水性がPDMS層33との接着性向上に寄与しているものと考えられる。 In addition, for three of the above plasma-treated test pieces, the water contact angle on the surface of the parylene layer 32 immediately after the plasma treatment was measured. Furthermore, the water contact angle on the surface of the parylene layer was similarly measured for three test pieces that were not subjected to plasma treatment. As a result, the water contact angles were 4°, 5°, and 4° for specimen 30 that was subjected to plasma treatment, whereas the water contact angles were 82° and 90° for specimen 30 that was not subjected to plasma treatment. , 88°. From this, it can be seen that the surface of the parylene layer 32 becomes extremely hydrophilic by performing the plasma treatment. It is thought that this strong hydrophilicity contributes to improved adhesion with the PDMS layer 33.

次に、上記(2)の評価のため、次のような接合試験片を作製した。
接合試験片1:上記評価試験(1)においてプラズマ処理後にガラス基板から剥離した[パリレン層+PDMS層]から成る5mm×5mm×[2μm+2mm]の板状試験片
接合試験片2:白板ガラス板(松波硝子工業株式会社製S1112スライドグラス)から成る76mm×26mm×1mmの)試験片
Next, for the evaluation of (2) above, the following bonded test pieces were prepared.
Bonded test piece 1: A 5 mm x 5 mm x [2 μm + 2 mm] plate-like test piece consisting of [Parylene layer + PDMS layer] peeled off from the glass substrate after plasma treatment in the above evaluation test (1) Bonded test piece 2: White glass plate (Matsunami 76 mm x 26 mm x 1 mm) specimen made of S1112 slide glass manufactured by Glass Industry Co., Ltd.

接合試験1として、2枚の接合試験片1を用意し、それらの平滑表面(ガラス基板から剥離したパリレン層表面)を水プラズマ処理で処理した後、直ちに両処理面(両平滑表面)を合わせ、ハンドローラーで加圧した。このときの水プラズマ処理の条件は前記のとおりである。接合時の環境温度は25℃であり、ハンドローラーによる加圧の両平滑表面における圧力は0.1MPaである。こうして接合した2枚の接合試験片1のそれぞれから、PDMS層を除去した。この理由は、本接合試験1は、平滑なパリレン層と平滑なパリレン層の間の接合強度を評価するためのものであるからである。こうして準備した2枚の接合試験片1(図7(a)、(b)の41、42)の両側の外表面にそれぞれプラスチックボルト43のヘッドの平坦面を合わせ、接着剤で固定した(図4(c))。両ボルト43を引張試験機で引っ張り、両接合試験片1(41、42)が剥離したときの引張強度を測定した。 As bonding test 1, two bonding test pieces 1 were prepared, and their smooth surfaces (the surface of the parylene layer peeled off from the glass substrate) were treated with water plasma treatment, and then both treated surfaces (both smooth surfaces) were immediately brought together. , and pressurized with a hand roller. The conditions for the water plasma treatment at this time are as described above. The environmental temperature during bonding was 25°C, and the pressure applied by hand rollers on both smooth surfaces was 0.1 MPa. The PDMS layer was removed from each of the two bonded test pieces 1 thus bonded. The reason for this is that this bonding test 1 is for evaluating the bonding strength between smooth parylene layers. The flat surfaces of the heads of plastic bolts 43 were aligned with the outer surfaces on both sides of the two joint test pieces 1 (41 and 42 in Figures 7(a) and (b)) thus prepared, and fixed with adhesive (Figure 7(a), (b)). 4(c)). Both bolts 43 were pulled using a tensile tester, and the tensile strength when both bonded test pieces 1 (41, 42) were separated was measured.

その結果、2枚の試験片1の接合強度(引張強度)は192.8 N/cm2と、水プラズマ処理を行った平滑なパリレン層間では十分強固な接合がなされていることが確認された。 As a result, the bonding strength (tensile strength) of the two test pieces 1 was 192.8 N/cm 2 , and it was confirmed that a sufficiently strong bond was formed between the smooth parylene layers treated with water plasma.

また、接合試験2として、1枚の接合試験片1と1枚の接合試験片2(白板ガラス板)を用意し、接合試験片1(前記同様、PDMS層は引張試験前に除去した。)の平滑表面と接合試験片2の一方の表面(当然、平滑表面)に前記条件で水プラズマ処理を施した後、直ちに両処理面(両平滑表面)を合わせてハンドローラーで加圧することにより接合した。このときの接合条件(環境温度、圧力)は接合試験1と同じとした。この状態で引張強度試験を行った(前記同様、接合試験片1のPDMS層は引張試験前に除去した。)ところ、接合試験片1と接合試験片2の接合強度(引張強度)は63.2 N/cm2であった。これも、マイクロ流路デバイスとして使用するには十分な接合強度である。 In addition, for bonding test 2, one bonding test piece 1 and one bonding test piece 2 (white glass plate) were prepared, and bonding test piece 1 (as above, the PDMS layer was removed before the tensile test). After applying water plasma treatment to the smooth surface of the test piece 2 and one surface (of course, the smooth surface) of the bonding test piece 2 under the above conditions, the two treated surfaces (both smooth surfaces) were immediately brought together and bonded by applying pressure with a hand roller. did. The bonding conditions (environmental temperature, pressure) at this time were the same as in bonding test 1. A tensile strength test was conducted in this state (as before, the PDMS layer of bonded test piece 1 was removed before the tensile test), and the bonding strength (tensile strength) between bonded test piece 1 and bonded test piece 2 was 63.2 N. / cm2 . This also has sufficient bonding strength for use as a microchannel device.

さらに、前記のように接合試験片1と接合試験片2を接合した後、50℃で10分間加熱し、その後引張強度試験を行った。その結果、接合試験片1と接合試験片2の接合強度は103.4 N/cm2に増加した。すなわち、接合後に加熱することは接合強度向上に有効であることが判明した。 Furthermore, after bonding test piece 1 and bonding test piece 2 were bonded as described above, they were heated at 50° C. for 10 minutes, and then a tensile strength test was conducted. As a result, the bonding strength between bonded test piece 1 and bonded test piece 2 increased to 103.4 N/cm 2 . That is, it has been found that heating after bonding is effective in improving bonding strength.

10…マイクロ流路デバイス
11…流路部材
12…閉鎖部材
13…流路
14…試料導入口/導出口
21…流路型
22、27…パリレン層
23、28…PDMS層
30…試験片
31…ガラス基板
32…パリレン層
33…PDMS層
34…分割線
41、42…接合試験片
43…プラスチックボルト
50…プラズマ処理装置
51…処理室
52…下部電極
53…上部電極
54…高周波電源
55…真空排気系
56…水蒸気供給系
58…制御部
10... Microchannel device 11... Channel member 12... Closing member 13... Channel 14... Sample inlet/outlet 21... Channel type 22, 27... Parylene layer 23, 28... PDMS layer 30... Test piece 31... Glass substrate 32...Parylene layer 33...PDMS layer 34...Parting lines 41, 42...Joining test piece 43...Plastic bolt 50...Plasma processing device 51...Processing chamber 52...Lower electrode 53...Upper electrode 54...High frequency power source 55...Evacuation System 56...Steam supply system 58...Control unit

Claims (9)

基材の表面に、ポリパラキシリレンから成り平滑な平面部を有するパリレン層を備えた第1部材を作製し、
平滑な平面部を有する第2部材を作製し、
前記第1部材の前記平面部及び前記第2部材の前記平面部を共に水プラズマで処理し、
前記第1部材の前記平面部と前記第2部材の前記平面部を合わせる
ことにより第1部材と第2部材を接合する方法。
Producing a first member having a parylene layer made of polyparaxylylene and having a smooth flat surface on the surface of a base material,
Producing a second member having a smooth plane part,
treating both the flat part of the first member and the flat part of the second member with water plasma;
A method of joining a first member and a second member by aligning the flat part of the first member and the flat part of the second member.
前記第1部材の前記基材がPDMSである請求項1に記載の第1部材と第2部材の接合方法。 The method for joining a first member and a second member according to claim 1, wherein the base material of the first member is PDMS. 前記第2部材が、基材の表面にパリレン層を備えたものである請求項1又は2に記載の第1部材と第2部材の接合方法。 3. The method of joining a first member and a second member according to claim 1, wherein the second member has a parylene layer on the surface of a base material. 前記第2部材がガラス板またはCOP製の板である請求項1又は2に記載の第1部材と第2部材の接合方法。 3. The method of joining a first member and a second member according to claim 1, wherein the second member is a glass plate or a COP plate. 前記第1部材のパリレン層および前記第2部材のパリレン層を水プラズマで処理し、パリレン層同士を接合する請求項に記載の第1部材と第2部材の接合方法。 4. The method of joining a first member and a second member according to claim 3 , wherein the parylene layer of the first member and the parylene layer of the second member are treated with water plasma to join the parylene layers. 前記第1部材が、
表面に平滑な平面部を有する型の該表面にポリパラキシリレンモノマーを蒸着することで前記パリレン層を形成し、
該パリレン層に更に前記基材を、該パリレン層との密着性の高い状態で置き、
表面に前記パリレン層が接合した基材を前記型から取り出す
ことにより作製される請求項1~5のいずれかに記載の第1部材と第2部材の接合方法。
The first member is
Forming the parylene layer by depositing a polyparaxylylene monomer on the surface of the mold having a smooth flat surface,
Further placing the base material on the parylene layer in a state of high adhesion with the parylene layer,
The method for joining a first member and a second member according to any one of claims 1 to 5, wherein the method is produced by taking out a base material whose surface is joined to the parylene layer from the mold.
前記パリレン層に前記基材を密着性の高い状態で置く方法が、
該パリレン層の表面をプラズマで処理し、
次に、前記型に流動状態の基材を流しこんで硬化させる
方法である請求項に記載の第1部材と第2部材の接合方法。
A method of placing the base material on the parylene layer in a highly adhesive state,
treating the surface of the parylene layer with plasma,
The method for joining the first member and the second member according to claim 6 , wherein the base material in a fluid state is then poured into the mold and cured.
前記パリレン層の表面に対して行われるプラズマ処理が水プラズマ処理である請求項に記載の第1部材と第2部材の接合方法。 8. The method for joining a first member and a second member according to claim 7 , wherein the plasma treatment performed on the surface of the parylene layer is water plasma treatment. 一方の表面に流路が形成された板である第1部材と、前記一方の表面を閉鎖する板である第2部材を、請求項1から請求項8のいずれかに記載の接合方法で接合することによりマイクロ流路チップを製造する方法 A first member that is a plate with a flow path formed on one surface and a second member that is a plate that closes the one surface are joined by the joining method according to any one of claims 1 to 8. A method of manufacturing a microfluidic chip by .
JP2019179658A 2019-09-30 2019-09-30 Bonding method of transparent resin using water plasma Active JP7395175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019179658A JP7395175B2 (en) 2019-09-30 2019-09-30 Bonding method of transparent resin using water plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019179658A JP7395175B2 (en) 2019-09-30 2019-09-30 Bonding method of transparent resin using water plasma

Publications (3)

Publication Number Publication Date
JP2021053951A JP2021053951A (en) 2021-04-08
JP2021053951A5 JP2021053951A5 (en) 2022-09-28
JP7395175B2 true JP7395175B2 (en) 2023-12-11

Family

ID=75269431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019179658A Active JP7395175B2 (en) 2019-09-30 2019-09-30 Bonding method of transparent resin using water plasma

Country Status (1)

Country Link
JP (1) JP7395175B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188677A (en) 2012-03-13 2013-09-26 Asahi Fr R&D Co Ltd Microchemical chip
JP2016163549A (en) 2015-03-06 2016-09-08 学校法人 中央大学 Microwell plate, microwell device, cell analysis method, and manufacturing method of microwell plate
WO2018159257A1 (en) 2017-02-28 2018-09-07 サムコ株式会社 Method for joining cycloolefin polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188677A (en) 2012-03-13 2013-09-26 Asahi Fr R&D Co Ltd Microchemical chip
JP2016163549A (en) 2015-03-06 2016-09-08 学校法人 中央大学 Microwell plate, microwell device, cell analysis method, and manufacturing method of microwell plate
WO2018159257A1 (en) 2017-02-28 2018-09-07 サムコ株式会社 Method for joining cycloolefin polymers

Also Published As

Publication number Publication date
JP2021053951A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP4656149B2 (en) Flow cell and manufacturing method thereof
JP4993243B2 (en) Manufacturing method of resin microchannel chemical device and resin microchannel chemical device structure manufactured by the manufacturing method
KR100739515B1 (en) Microdevice having multilayer structure and method for fabricating the same
KR101313359B1 (en) Process for production of resin composite molded article
KR100763907B1 (en) A method of fabricating a microfluidic device and a microfluidic device fabricated by the same
Liu et al. PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA
US20140065035A1 (en) Method for manufacturing a microvalve device mounted on a lab-on-a-chip, and microvalve device manufactured by same
JP7109068B2 (en) Method for bonding cycloolefin polymer
JP2005257283A (en) Microchip
Yu et al. Thermal bonding of thermoplastic elastomer film to PMMA for microfluidic applications
KR20160138237A (en) Methods and apparatus for lamination of rigid substrates by sequential application of vacuum and mechanical force
CN109894171A (en) A kind of method of reversible keying micro-fluidic chip
JP7395175B2 (en) Bonding method of transparent resin using water plasma
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
Cheng et al. Surface modification-assisted bonding of 2D polymer-based nanofluidic devices
JP2008157644A (en) Plastic microchip, and biochip or micro analysis chip using the same
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2008076208A (en) Plastic microchip, biochip using it or microanalyzing chip
KR100839775B1 (en) Coating nozzle and method for manufacturing the same
Zhang et al. Thermal assisted ultrasonic bonding of multilayer polymer microfluidic devices
Sun et al. A Simple and Low-Cost Method for Fabrication of Polydimethylsiloxane Microfludic Chips
JP2021016944A (en) Method for joining transparent resins by water plasma
WO2018180508A1 (en) Microchannel chip manufacturing method
JP6372254B2 (en) Manufacturing method of microchannel chip
JP2022025241A (en) Micro flow channel chip production process

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231121

R150 Certificate of patent or registration of utility model

Ref document number: 7395175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150