JP7392976B2 - mineral supplement - Google Patents

mineral supplement Download PDF

Info

Publication number
JP7392976B2
JP7392976B2 JP2019211769A JP2019211769A JP7392976B2 JP 7392976 B2 JP7392976 B2 JP 7392976B2 JP 2019211769 A JP2019211769 A JP 2019211769A JP 2019211769 A JP2019211769 A JP 2019211769A JP 7392976 B2 JP7392976 B2 JP 7392976B2
Authority
JP
Japan
Prior art keywords
solid solution
water
mineral supplement
mineral
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019211769A
Other languages
Japanese (ja)
Other versions
JP2021078480A (en
Inventor
茂男 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sea Water Chemical Institute Inc
Original Assignee
Sea Water Chemical Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sea Water Chemical Institute Inc filed Critical Sea Water Chemical Institute Inc
Priority to JP2019211769A priority Critical patent/JP7392976B2/en
Publication of JP2021078480A publication Critical patent/JP2021078480A/en
Application granted granted Critical
Publication of JP7392976B2 publication Critical patent/JP7392976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、新規な必須ミネラルの炭酸塩系固溶体を有効成分とするミネラル補給剤に関する。更に詳しくは、Caおよび/またはMgと微量必須ミネラルとの炭酸塩系固溶体を有効成分とするミネラル補給剤に関する。 The present invention relates to a mineral supplement containing a novel carbonate-based solid solution of essential minerals as an active ingredient. More specifically, the present invention relates to a mineral supplement containing a carbonate solid solution of Ca and/or Mg and trace essential minerals as an active ingredient.

動物、植物の区別なく、すべての生物にとってミネラルが重要であることが徐々に認識されるようになってきた。そのため、肥料には3大要素である窒素、リン、カリ以外にミネラルとして、中量必要なCaとMgに加えて、Fe,Mn、Zn,Cu、B,Mo等の微量必要なミネラルも使用されつつある。 It is gradually becoming recognized that minerals are important to all living things, whether animals or plants. Therefore, in addition to the three major elements of nitrogen, phosphorus, and potassium, fertilizers also use minerals such as Ca and Mg, which are required in medium amounts, as well as minerals that are required in trace amounts, such as Fe, Mn, Zn, Cu, B, and Mo. It is being done.

ヒトの食事および、鶏、豚、牛、ペット等の動物の飼料または餌に、中量の必要とされるCaとMg(成人のヒトの場合、1人当たり約200~600mg)と、微量の必要なFe,Zn,MnおよびCu(成人のヒトの場合、1人当たり約2~15mgと)、そして超微量の必要なCr,Co,SeおよびMo(成人のヒト1人当たり約20~40μg)の一部または全部とがミネラルとして添加されている。 Human diets and animal feeds such as chickens, pigs, cows, and pets require medium amounts of Ca and Mg (approximately 200 to 600 mg per adult human) and trace amounts of Ca and Mg. Fe, Zn, Mn and Cu (approximately 2-15 mg per adult human) and ultra-trace amounts of Cr, Co, Se and Mo (approximately 20-40 μg per adult human). Some or all of the minerals are added as minerals.

ミネラルを含有する物質として使用されているのは、有機ミネラル物質として、乳酸カルシウム、ペプチド鉄、ペプチド亜鉛、ペプチド銅、ペプチドマンガン、DL-トレオニン鉄、硫酸亜鉛メチオニン、クエン酸鉄、コハク酸クエン酸鉄ナトリウム、フマル酸第一鉄等であり、無機ミネラル物質として、塩化カリウム、酸化マグネシウム、水酸化アルムニウム、炭酸亜鉛、炭酸コバルト、炭酸水素ナトリウム、炭酸マグネシウム、炭酸マンガン、ヨウ化カリウム、ヨウ素酸カリウム、ヨウ素酸カルシウム、硫酸亜鉛、硫酸コバルト、硫酸鉄、硫酸銅、硫酸ナトリウム、硫酸マグネシウム、硫酸マンガン、リン酸一水素カリウム、リン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸二水素カリウム等である。 Organic mineral substances used as mineral-containing substances include calcium lactate, peptide iron, peptide zinc, peptide copper, peptide manganese, DL-threonine iron, zinc sulfate methionine, iron citrate, succinic acid citric acid. Sodium iron, ferrous fumarate, etc., and inorganic mineral substances such as potassium chloride, magnesium oxide, aluminum hydroxide, zinc carbonate, cobalt carbonate, sodium hydrogen carbonate, magnesium carbonate, manganese carbonate, potassium iodide, and potassium iodate. , calcium iodate, zinc sulfate, cobalt sulfate, iron sulfate, copper sulfate, sodium sulfate, magnesium sulfate, manganese sulfate, potassium monohydrogen phosphate, sodium monohydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, etc. It is.

本発明者により、下記式(3) The inventor has developed the following formula (3)

Figure 0007392976000001
(式中、M12+はCaおよび/またはMgを示し、M22+は必須ミネラルMn, Fe,CuおよびZnの少なくとも一種以上を示し、xは0<x<0.4の範囲を満足する正の数を示す)で表される金属水酸化物固溶体を有効成分として含有する植物のミネラル補給剤が提案されている。(特許文献1)
Figure 0007392976000001
(In the formula, M1 2+ represents Ca and/or Mg, M2 2+ represents at least one of the essential minerals Mn, Fe, Cu and Zn, and x is a positive value satisfying the range of 0<x<0.4. A plant mineral supplement containing a metal hydroxide solid solution represented by the following numbers (indicating numbers) as an active ingredient has been proposed. (Patent Document 1)

特開2005-89237JP2005-89237

必須ミネラル補給剤が有効に働くためには、ミネラルごとにほぼ決まっている必要量を、毎日吸収されやすい化合物の形で摂取することが必要である。吸収されるためには、水に溶けた状態である必要がある。過剰の摂取は有害であり死に至ることもある。逆に摂取量が少なすぎるとミネラル不足による種々の問題が発生する。したがって、徐々に水に溶解し、各ミネラルについて必要な量をイオンとして放出し、容易に吸収されるミネラル補給剤が理想である。 In order for an essential mineral supplement to work effectively, it is necessary to ingest approximately the required amount of each mineral each day in the form of an easily absorbed compound. In order to be absorbed, it must be dissolved in water. Excessive intake can be harmful and even fatal. On the other hand, if the intake is too low, various problems will occur due to mineral deficiency. Therefore, a mineral supplement that gradually dissolves in water, releases the required amount of each mineral as ions, and is easily absorbed is ideal.

しかし、前記既存のミネラル補給剤は吸収が悪いか、吸収が良すぎるかのどちらかである。例えば、CaCOとかZnCOは水に難溶のため吸収が悪い。逆にMgSOとかFeSOは水溶性のため、吸収が良すぎて過剰摂取になるか、または必要量を超える量は吸収されずに排出される。排出が起こるのは、1日当たりのミネラル摂取量の上限を超える量が供給されても、必要量だけしか吸収されないためである。このように、従来のミネラル補給剤は、水に難溶で過小摂取になるか、水に易溶で過剰摂取になるか、のどちらかに属し、安全で有効なミネラル補給剤とは言い難く、ミネラルの効果が十分発揮されない。 However, the existing mineral supplements are either poorly absorbed or absorbed too well. For example, CaCO 3 and ZnCO 3 are poorly soluble in water and therefore poorly absorbed. On the other hand, MgSO 4 and FeSO 4 are water-soluble, so they are absorbed too well resulting in excessive intake, or the amount exceeding the required amount is not absorbed and is excreted. Excretion occurs because the body absorbs only the required amount, even if it is supplied in excess of the maximum daily intake of minerals. In this way, conventional mineral supplements are either poorly soluble in water, resulting in under-intake, or easily soluble in water, resulting in excessive intake, and it is difficult to say that they are safe and effective mineral supplements. , the effects of minerals are not fully demonstrated.

徐放性のミネラル補給剤として、本発明者が発明した水酸化カルシウムおよび/または水酸化マグネシウムと他の必須ミネラルとの固溶体があるが、pHが12~13と高すぎる欠点がある。(特許文献1)
したがって、本発明が解決しようとする課題は、徐放性で且つ、pHが中性からアルカリ性の7~12未満、特に好ましくは7~10の範囲のミネラル補給剤を提供することである。
As a sustained-release mineral supplement, there is a solid solution of calcium hydroxide and/or magnesium hydroxide and other essential minerals invented by the present inventor, but it has the disadvantage that the pH is too high at 12 to 13. (Patent Document 1)
Therefore, the problem to be solved by the present invention is to provide a mineral replenisher that is sustained-release and has a pH ranging from neutral to alkaline, from 7 to less than 12, particularly preferably from 7 to 10.

本発明者は、上記課題を解決するために鋭意研究した結果、下記式(1) As a result of intensive research in order to solve the above problems, the present inventor has determined that the following formula (1)

Figure 0007392976000002
(式中、Mは、Mn、Fe、Co、CuおよびZnから選ばれる少なくとも一種の2価金属,好ましくはMn,Fe,CuおよびZnを示し、xとyはそれぞれ次の範囲、0<x<0.4、好ましくは0.02≦x≦0.3、特に好ましくは0.05≦x≦0.2,0.01<y≦1、好ましくは0.5≦y≦1、特に好ましくは0.8≦y≦1、を満足する正の数を示す)で表されるCaおよび/またはMgと必須微量ミネラル2価金属イオンとの新規な炭酸塩系固溶体を共沈法で合成することにより、徐放性であり且つ温和なpH範囲7~12未満、特には7~10を実現することに成功した。該炭酸塩系固溶体は、CaCOやドロマイトよりも高い水溶性を示すだけでなく、難溶性のMn,ZnおよびCuの炭酸塩の水溶性も大きく改善されている。
本明細書において固溶体のpHとは、固溶体1gの粉砕物を100mLの脱イオン水に加えて30℃で5分間攪拌して得た分散液のpHを言う。
Figure 0007392976000002
(In the formula, M represents at least one divalent metal selected from Mn, Fe, Co, Cu, and Zn, preferably Mn, Fe, Cu, and Zn, and x and y are each in the following range, 0<x <0.4, preferably 0.02≦x≦0.3, particularly preferably 0.05≦x≦0.2, 0.01<y≦1, preferably 0.5≦y≦1, particularly preferably is a positive number satisfying 0.8≦y≦1) A novel carbonate-based solid solution of Ca and/or Mg and essential trace mineral divalent metal ions is synthesized by coprecipitation method. As a result, we succeeded in achieving a sustained release and mild pH range of 7 to less than 12, particularly 7 to 10. The carbonate-based solid solution not only exhibits higher water solubility than CaCO 3 and dolomite, but also greatly improves the water solubility of sparingly soluble Mn, Zn, and Cu carbonates.
In this specification, the pH of the solid solution refers to the pH of a dispersion obtained by adding 1 g of the solid solution to 100 mL of deionized water and stirring the mixture at 30° C. for 5 minutes.

CaCOは約6mg/LのCaが水に溶けるという難溶性であるが、Mg等とともに固溶化することにより、Ca換算で20~200mg/Lという大幅な水溶性改善、すなわち吸収性改善が可能となった。本発明の固溶体を入れた水溶液のpHを、飲料水基準の8.6以下にできる。これは、従来CaCOおよびドロマイトでは不可能であった。Ca,Mg、Mn,Fe,Zn,Cuの2価金属をすべて含有する本発明の炭酸塩系固溶体を鶏の飼料に添加することにより、死亡率の低下、餌の低減、食味の向上、タンパクの増量、脂肪の低減ができる。成長中の農産物に本発明の炭酸塩系固溶体を与えると、収穫増、栄養成分の増加、糖度及び酸度の向上が得られ、かつ酸度の向上よりも糖度の向上が大きいので食味も向上する。キノコの培地に与えると、収穫量とミネラル含有量が増加する。
Ca換算とは、分析において溶出した全ての種類のイオンの総モル数を求め、このモル数のCa原子の重さを言う。
CaCO 3 is sparingly soluble with approximately 6 mg/L of Ca soluble in water, but by making it a solid solution with Mg etc., it is possible to significantly improve water solubility to 20 to 200 mg/L in terms of Ca, that is, improve absorption. It became. The pH of an aqueous solution containing the solid solution of the present invention can be lower than 8.6, which is the drinking water standard. This was not previously possible with CaCO 3 and dolomite. By adding the carbonate-based solid solution of the present invention containing all divalent metals such as Ca, Mg, Mn, Fe, Zn, and Cu to chicken feed, it is possible to reduce mortality rate, reduce feed consumption, improve taste, and increase protein content. can increase weight and reduce fat. When the carbonate-based solid solution of the present invention is applied to growing agricultural products, an increase in yield, an increase in nutritional components, an improvement in sugar content and acidity can be obtained, and since the improvement in sugar content is greater than the improvement in acidity, the taste is also improved. When fed to mushroom media, it increases yield and mineral content.
Ca conversion refers to the total number of moles of all types of ions eluted during analysis, and the weight of Ca atoms corresponding to this number of moles.

実施例1の生成物のXRDパターンXRD pattern of the product of Example 1 実施例2の生成物のXRDパターンXRD pattern of the product of Example 2 実施例3の生成物のXRDパターンXRD pattern of the product of Example 3 実施例4の生成物のXRDパターンXRD pattern of the product of Example 4

本発明は下記式(1)

Figure 0007392976000003
(式中、Mは、Mn、Fe、Co、Cu、Znから選ばれる少なくとも一種の2価金属を示し、xとyはそれぞれ次の範囲、0<x<0.4、0.01<y≦1を満足する正の数を示す)で表される、2価金属炭酸塩系の固溶体を含有するミネラル補給剤である。
主成分であるCaおよび/またはMgは、好ましくはCaおよびMgである。好ましいCa:Mgのモル比率は25~75:75~25、特に好ましくは40~70:60~30である。 The present invention is expressed by the following formula (1)
Figure 0007392976000003
(In the formula, M represents at least one divalent metal selected from Mn, Fe, Co, Cu, and Zn, and x and y are in the following ranges, 0<x<0.4, 0.01<y, respectively. This is a mineral replenisher containing a divalent metal carbonate-based solid solution, expressed as a positive number satisfying ≦1.
The main components Ca and/or Mg are preferably Ca and Mg. The preferred Ca:Mg molar ratio is 25-75:75-25, particularly preferably 40-70:60-30.

本発明の金属炭酸塩系固溶体の構造は、CaCO(カルサイト)、MgCO(マグネサイト)及び(Ca、Mg)CO(ドロマイト)のいずれかに属する。Ca成分が多い時はカルサイト型構造、Mgが主成分の時はマグネサイト型構造、CaとMgが近い量存在する場合はドロマイト型構造を示す。結晶性が悪い場合には、無定形に近いこともある。CaとMgは中量必要なミネラルであり、且つCaの必要量がMgのそれより多いから、本発明の固溶体の好ましい構造は、ドロマイト型である。 The structure of the metal carbonate solid solution of the present invention belongs to any one of CaCO 3 (calcite), MgCO 3 (magnesite) and (Ca,Mg)CO 3 (dolomite). When the Ca content is large, a calcite type structure is shown, when Mg is the main component, a magnesite type structure is shown, and when Ca and Mg are present in similar amounts, a dolomite type structure is shown. If the crystallinity is poor, it may be nearly amorphous. Since Ca and Mg are minerals that are required in moderate amounts, and the required amount of Ca is greater than that of Mg, the preferred structure of the solid solution of the present invention is dolomite type.

本発明の固溶体は、難溶性でも易溶性でも無く、Ca換算で20~200mg/Lレベルの適度の濃度を保ちながら(生体による吸収分を補填しながら)ゆっくりと溶けていく、いわゆる優れた徐放性を示す。ミネラルが動物あるいは植物により吸収されるためには、水に溶解する必要がある。しかし、水に対する炭酸カルシウムの溶解度は約6mg/L前後と極めて低い。本発明では、比較的易溶性である炭酸マグネシウムあるいは炭酸第一鉄と共に炭酸カルシウムを固溶させ、更に、水熱処理しないで炭酸化反応を100℃未満で行うことにより結晶の大きさを小さくコントロールし、これによりCa換算で20mg/L以上、好ましくは30mg/L以上、特に好ましくは50mg/L~200mg/Lの水への溶解性が可能となった。 The solid solution of the present invention is neither poorly soluble nor easily soluble, and dissolves slowly while maintaining an appropriate concentration of 20 to 200 mg/L (calculated as Ca) (while compensating for absorption by the body). Shows radioactivity. In order for minerals to be absorbed by animals or plants, they must be dissolved in water. However, the solubility of calcium carbonate in water is extremely low at around 6 mg/L. In the present invention, calcium carbonate is dissolved in solid solution with magnesium carbonate or ferrous carbonate, which are relatively easily soluble, and the size of the crystals is controlled to be small by carrying out the carbonation reaction at less than 100°C without hydrothermal treatment. This makes it possible to achieve a solubility in water of 20 mg/L or more, preferably 30 mg/L or more, particularly preferably 50 mg/L to 200 mg/L in terms of Ca.

更に、酸化されやすく、酸化されると実質的に水に不溶となるMnおよびFeは、これを2価の状態で固溶化することで、酸化に対し安定化され、良好な水への溶解性を実現できる。少なくとも2種類以上、好ましくは7種類以上のミネラルが固溶体の組成比に近い比率で、水に溶解する。 Furthermore, Mn and Fe, which are easily oxidized and become substantially insoluble in water when oxidized, are stabilized against oxidation by converting them into a solid solution in a divalent state, resulting in good water solubility. can be realized. At least two or more types, preferably seven or more types of minerals are dissolved in water at a composition ratio close to that of a solid solution.

本発明の固溶体のpHは7~12未満、好ましくは7~10、特に好ましくは7~8.5の範囲にある。したがって飲料水のpH規格5.8~8.6に適合し、飲料水のミネラル補給剤としても使用できる。 The pH of the solid solution according to the invention is in the range from 7 to less than 12, preferably from 7 to 10, particularly preferably from 7 to 8.5. Therefore, it conforms to the pH standard of 5.8 to 8.6 for drinking water and can be used as a mineral supplement for drinking water.

本発明の固溶体の製造の一例は、Caおよび/またはMgと2価金属Mの夫々の水溶性金属塩の混合水溶液にNaCO、NaHCO、NHCO、NHHCO等のアルカリ性炭酸塩を加えて共沈反応を起こさせ、次に濾過、水洗、乾燥することにより実施できる。この際、所望により共沈生成物を水熱処理して結晶を大きくすることにより、pHが中性~弱アルカリ性であり、かつ非晶質の物に比べて水に対する溶解量を少し減らされたものを得ることができる。水熱処理は、好ましくは水洗後、100~200℃、好ましくは100~150℃で1~10時間処理することにより行う。 An example of producing the solid solution of the present invention is to add Na 2 CO 3 , NaHCO 3 , NH 4 CO 3 , NH 4 HCO 3 or the like to a mixed aqueous solution of water-soluble metal salts of Ca and/or Mg and the divalent metal M. This can be carried out by adding an alkaline carbonate to cause a coprecipitation reaction, followed by filtration, washing with water, and drying. At this time, if desired, the coprecipitated product is hydrothermally treated to enlarge the crystals, so that the pH is neutral to weakly alkaline and the amount of solubility in water is slightly reduced compared to amorphous products. can be obtained. The hydrothermal treatment is preferably carried out by treatment at 100 to 200°C, preferably 100 to 150°C for 1 to 10 hours after washing with water.

本発明の固溶体の製造方法の別の例として、前記共沈反応におけるアルカリ性炭酸塩の代わりにNaOH、KOH、アンモニア、Ca(OH)等のアルカリ化合物を添加して共沈反応を起こさせることにより、水酸化物の固溶体を製造し、好ましくは固溶体を水洗したのち、これを水に分散させ、COと反応させることにより、本発明の炭酸塩系固溶体を製造できる。この場合にも、炭酸塩系固溶体を更に水熱処理することにより、前記と同様の効果を出すことができる。 As another example of the method for producing the solid solution of the present invention, an alkaline compound such as NaOH, KOH, ammonia, Ca(OH) 2 or the like is added in place of the alkaline carbonate in the coprecipitation reaction to cause the coprecipitation reaction. The carbonate-based solid solution of the present invention can be produced by producing a hydroxide solid solution, preferably washing the solid solution with water, dispersing it in water, and reacting it with CO 2 . In this case as well, the same effect as described above can be achieved by further hydrothermally treating the carbonate solid solution.

本発明の固溶体の使用量は動物の飼料に対し0.001~1重量%、好ましくは0.01~0.5重量%、特に好ましくは、0.02~0.2重量%である。農産物等の植物に対しては、土壌1m当たり0.5~20g、好ましくは1~10g、特に好ましくは2~4gである。散布時期は、種まき又は植栽の前または後、更には結実直前~結実中である。散布場所は、根の近傍の土を浅く取り散布後、覆土することが好ましい。ヒトに対しては、1日当たり0.1~5g、好ましくは0.5~3g、特に好ましくは0.7~2gである。キノコに対しては、培地1kg当たり0.5~5gである。 The amount of the solid solution of the present invention used is 0.001 to 1% by weight, preferably 0.01 to 0.5% by weight, particularly preferably 0.02 to 0.2% by weight, based on the animal feed. For plants such as agricultural products, the amount is 0.5 to 20 g, preferably 1 to 10 g, particularly preferably 2 to 4 g per m 2 of soil. The spraying time is before or after sowing or planting, and even just before fruiting and during fruiting. It is preferable to take the soil near the roots shallowly and cover the area with soil after spreading. For humans, the amount is 0.1 to 5 g, preferably 0.5 to 3 g, particularly preferably 0.7 to 2 g per day. For mushrooms it is 0.5-5 g per kg of medium.

本発明の固溶体を動物の飼料に使用する場合、極微量必要とされるMo,Se,Cr(3+)及びCo(2+)を本発明の固溶体と物理的に混合する又は本発明の固溶体と反応させることにより、該微量金属を固溶体に含有させることができる。Mo及びSeはHMoO、NaMoO,HSeO,NaSeO等のMo(6+)及びSe(6+)の酸素酸又は酸素酸塩を物理的に混合又は、水媒体中で混合することにより、製造できる。Cr(3+)及びCo(2+)の場合は、塩化物、硝酸塩、硫酸塩等の水溶性塩の水溶液を本発明炭酸塩系固溶体合成原料の2価金属イオン水溶液に混合して、アルカリ性炭酸塩と共沈反応させることによりCr(3+)及びCo(2+)がさらに固溶した金属炭酸塩系固溶体として製造できる。 When the solid solution of the present invention is used in animal feed, extremely small amounts of Mo, Se, Cr(3+) and Co(2+) are physically mixed with the solid solution of the present invention or reacted with the solid solution of the present invention. By doing so, the trace metal can be contained in a solid solution. Mo and Se can be prepared by physically mixing oxyacids or oxyacids of Mo(6+) and Se(6+) such as H 2 MoO 4 , Na 2 MoO 4 , H 2 SeO 4 , Na 2 SeO 4 or in an aqueous medium. It can be manufactured by mixing inside. In the case of Cr(3+) and Co(2+), an aqueous solution of water-soluble salts such as chlorides, nitrates, sulfates, etc. is mixed with an aqueous divalent metal ion solution of the carbonate-based solid solution synthesis raw material of the present invention to form an alkaline carbonate. By carrying out a coprecipitation reaction with Cr(3+) and Co(2+), it can be produced as a metal carbonate-based solid solution in which Cr(3+) and Co(2+) are further dissolved.

本発明の固溶体を農作物等の植物およびキノコに使用する場合には、ホウ素及び極微量必要とされるMo及びCoを本発明の固溶体と物理的に混合する又は水媒体中で混合することにより、これら金属を固溶体に含有させることができる。ホウ素源は、HBO、またはNa等のホウ酸塩であることができる。これらを水媒体中で固溶体と混合すると、ホウ素イオンが炭酸イオンと置換すると推定される。動物の飼料においても、本発明の固溶体へのMo及びCoの添加は、同様にして行うことができる。 When the solid solution of the present invention is used for plants such as agricultural products and mushrooms, boron and Mo and Co, which are required in extremely small amounts, are physically mixed with the solid solution of the present invention or mixed in an aqueous medium. These metals can be contained in a solid solution. The boron source can be H 3 BO 3 or a borate such as Na 2 B 4 O 7 . It is estimated that when these are mixed with a solid solution in an aqueous medium, boron ions replace carbonate ions. In animal feed, Mo and Co can be added to the solid solution of the present invention in a similar manner.

ヒトを対象とする場合、該固溶体が、CaとMgを含有し、且つZnおよび/またはFeの2価金属をさらに含有し、該固溶体1gの粉砕物を100mLの脱イオン水に加えて30℃で5分間攪拌して得た分散液のpHが6.5~8.6の範囲にあり、ヒト用の飲料水用が好ましい。 When intended for humans, the solid solution contains Ca and Mg, and further contains divalent metals such as Zn and/or Fe, and 1 g of the solid solution is added to 100 mL of deionized water and heated at 30°C. The pH of the dispersion obtained by stirring for 5 minutes is in the range of 6.5 to 8.6, and is preferably suitable for human drinking water.

以下実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化第一鉄、塩化マンガン及び硝酸第二銅の混合水溶液(Ca=0.75モル/L、Mg=0.6モル/L,Zn=0.06モル/L,Fe=0.045モル/L,Mn=0.03モル/L,Cu=0.015モル/L)2Lを、0.9モル/Lの炭酸ナトリウムと0.3モル/Lの炭酸水素ナトリウムの混合水溶液3Lに撹拌下添加し、約30℃で共沈反応させた。この後、濾過、水洗し、得られたケ-キを撹拌機で水3Lに分散させ、80℃で2時間加熱熟成した。この後、濾過、乾燥(約120℃)、および粉砕した。 Mixed aqueous solution of calcium chloride, magnesium chloride, zinc chloride, ferrous chloride, manganese chloride and cupric nitrate (Ca = 0.75 mol/L, Mg = 0.6 mol/L, Zn = 0.06 mol/L) L, Fe = 0.045 mol/L, Mn = 0.03 mol/L, Cu = 0.015 mol/L) 2L, 0.9 mol/L sodium carbonate and 0.3 mol/L carbonate The mixture was added to 3 L of a mixed aqueous solution of sodium hydrogen under stirring, and a coprecipitation reaction was carried out at about 30°C. Thereafter, the cake was filtered and washed with water, and the resulting cake was dispersed in 3 L of water using a stirrer, and heated and aged at 80° C. for 2 hours. This was followed by filtration, drying (approximately 120°C), and grinding.

粉砕物のXRDを測定した結果、低角側に少しシフトしているがドロマイトとほぼ同じ回折パターが得られ、ドロマイト型結晶構造の固溶体であることが分かる(図1)。粉砕物を塩酸に溶解し、元素分析をICP法で行った。COの分析は、AGK式CO吸収法でおこなった。その結果、化学組成は次の通りであった。
[(Ca)0.51(Mg)0.39(Zn)0.04(Fe)0.03(Mn)0.02(Cu)0.01](CO0.80(OH)0.40
As a result of XRD measurement of the pulverized material, a diffraction pattern almost the same as that of dolomite was obtained, although it was slightly shifted to the lower angle side, indicating that it is a solid solution with a dolomite-type crystal structure (Figure 1). The pulverized material was dissolved in hydrochloric acid, and elemental analysis was performed by ICP method. The analysis of CO 2 was performed using the AGK CO 2 absorption method. As a result, the chemical composition was as follows.
[(Ca) 0.51 (Mg) 0.39 (Zn) 0.04 (Fe) 0.03 (Mn) 0.02 (Cu) 0.01 ] (CO 3 ) 0.80 (OH) 0. 40

水への溶解性とpHを調べるために、粉砕物1gを100mLの脱イオン水に加え、30℃で5分間マグネッチクスターラーを用いて撹拌後、濾過し、ろ液中の金属イオン濃度をICP法で測定した。その結果Ca=18mg/L、Mg=9mg/L、Zn=0.9mg/L、Fe=0.7mg/L、Mn=0.3mg/L、Cu=0.2mg/Lであった。pHは9.3であった。 To examine the solubility in water and pH, 1 g of the pulverized material was added to 100 mL of deionized water, stirred at 30°C for 5 minutes using a magnetic stirrer, filtered, and the metal ion concentration in the filtrate was determined by ICP. It was measured by the method. The results were Ca=18 mg/L, Mg=9 mg/L, Zn=0.9 mg/L, Fe=0.7 mg/L, Mn=0.3 mg/L, and Cu=0.2 mg/L. pH was 9.3.

塩化カルシウム、塩化マグネシウム及び塩化亜鉛の混合水溶液(Ca=0.65モル/L,Mg=0.35モル/L,Zn=0.05モル/L)2Lに、0.9モル/Lの炭酸ナトリウム水溶液2Lを撹拌下に添加し、続いて0.3モル/Lの炭酸水素ナトリウム2Lを添加し共沈反応させた。温度は約25℃であった。反応生成物の一部を容量1Lのオートクレーブに入れ、120℃で4時間水熱処理した後、濾過、水洗、乾燥(120℃)、そして粉砕した。 Add 0.9 mol/L of carbonic acid to 2 L of a mixed aqueous solution of calcium chloride, magnesium chloride, and zinc chloride (Ca=0.65 mol/L, Mg=0.35 mol/L, Zn=0.05 mol/L). 2 L of aqueous sodium solution was added under stirring, and then 2 L of 0.3 mol/L sodium hydrogen carbonate was added to cause a coprecipitation reaction. The temperature was approximately 25°C. A portion of the reaction product was placed in a 1 L autoclave and subjected to hydrothermal treatment at 120°C for 4 hours, followed by filtration, washing with water, drying (120°C), and pulverization.

粉砕物のXRDは、わずかに高角側にシフトしているがドロマイトと同様の回折パターンを示したので、Znがドロマイトに固溶していることが分かる(図2)。 化学組成を実施例1と同様の方法で測定した結果、次の通りであった。
(Ca0.66Mg0.335Zn0.05)CO
The XRD of the pulverized material showed a diffraction pattern similar to that of dolomite, although it was slightly shifted to the higher angle side, indicating that Zn was dissolved in dolomite (FIG. 2). The chemical composition was measured in the same manner as in Example 1, and the results were as follows.
(Ca 0.66 Mg 0.335 Zn 0.05 ) CO 3

水への溶解量とpHを実施例1と同様の方法で測定した結果、Ca,Mg及びZnのそれぞれの溶出量は22mg/L,9mg/L,0.2mg/Lであり、pHは7.6であった。 As a result of measuring the amount dissolved in water and the pH using the same method as in Example 1, the respective elution amounts of Ca, Mg, and Zn were 22 mg/L, 9 mg/L, and 0.2 mg/L, and the pH was 7. It was .6.

塩化マグネシウムと塩化亜鉛の混合水溶液(Mg=0.9モル/L,Zn=0.1モル/L)1Lに、撹拌下、約30℃で1モル/Lの炭酸ナトリウム水溶液800mL、続いて、1.0モル/Lの炭酸水素ナトリウム水溶液400mLを加え、共沈反応した。得られた反応物の一部を1Lのオートクレーブに入れ、120℃で4時間水熱処理した。この後濾過、水洗、乾燥(120℃)、粉砕した。 To 1 L of a mixed aqueous solution of magnesium chloride and zinc chloride (Mg = 0.9 mol/L, Zn = 0.1 mol/L), 800 mL of a 1 mol/L sodium carbonate aqueous solution was added at about 30°C with stirring, followed by 400 mL of a 1.0 mol/L sodium hydrogen carbonate aqueous solution was added to carry out a coprecipitation reaction. A portion of the obtained reaction product was placed in a 1 L autoclave and hydrothermally treated at 120° C. for 4 hours. After that, it was filtered, washed with water, dried (120°C), and pulverized.

粉砕物のXRDは、わずかに高角側にシフトしているがマグネサイトとほぼ同じ回折パターンを示すため、Znが固溶した炭酸マグネシウムであることが分かる(図3)。 化学組成を実施例1と同様の方法で測定した結果、次の通りであった。
(Mg0.9Zn0.1)(CO0.9(OH)0.2
The XRD of the pulverized material shows a diffraction pattern that is slightly shifted toward higher angles, but almost the same as that of magnesite, indicating that it is magnesium carbonate containing Zn as a solid solution (Figure 3). The chemical composition was measured in the same manner as in Example 1, and the results were as follows.
(Mg 0.9 Zn 0.1 ) (CO 3 ) 0.9 (OH) 0.2

への溶解度とpHを実施例1と同様の方法で測定した結果、MgとZnの溶出量はMg=21mg/L,Zn=4.1mg/Lであり、pHは7.5であった。 As a result of measuring the solubility and pH in the same manner as in Example 1, the eluted amounts of Mg and Zn were Mg = 21 mg/L, Zn = 4.1 mg/L, and the pH was 7.5.

2モルの水酸化カルシウムを5Lの容器に入れ、水2Lを加えて撹拌機で分散させた。このスラリーに塩化マグネシウム、硫酸第一鉄、硝酸マンガン、塩化亜鉛よび硝酸第二銅の混合水溶液(Mg=0.5モル/L,Fe=0.13モル/L,Mn=0.09モル/L, Zn=0.05モル/L、Cu=0.016モル/L)1Lを撹拌下に加え共沈させ、水酸化物固溶体を含むスラリーを生成し、次に炭酸ガスボンベからCOをスラリーに吹き込みpHが10に下がるまで吹き込みを継続した。この後、濾過、水洗、乾燥(120℃)、そして粉砕した。 2 mol of calcium hydroxide was placed in a 5 L container, 2 L of water was added, and the mixture was dispersed using a stirrer. Add to this slurry a mixed aqueous solution of magnesium chloride, ferrous sulfate, manganese nitrate, zinc chloride, and cupric nitrate (Mg=0.5 mol/L, Fe=0.13 mol/L, Mn=0.09 mol/ L, Zn = 0.05 mol/L, Cu = 0.016 mol/L) was added under stirring to cause coprecipitation to produce a slurry containing a hydroxide solid solution, and then CO 2 was added to the slurry from a carbon dioxide gas cylinder. Blowing was continued until the pH dropped to 10. This was followed by filtration, washing with water, drying (120°C), and pulverization.

粉砕物のXRDは、わずかに高角側にシフトしているがカルサイトと同様な回折像を示すことから、カルサイト型固溶体であることが分かる(図4)。化学組成を実施例1と同様の方法で測定した結果、次の通りであった。
[(Ca)0.612(Mg)0.25(Fe)0.065(Mn)0.045(Zn)0.02(Cu)0.008](CO0.7(OH)0.6
The XRD of the pulverized material shows a diffraction image similar to that of calcite, although it is slightly shifted to the higher angle side, indicating that it is a calcite-type solid solution (FIG. 4). The chemical composition was measured in the same manner as in Example 1, and the results were as follows.
[(Ca) 0.612 (Mg) 0.25 (Fe) 0.065 (Mn) 0.045 (Zn) 0.02 (Cu) 0.008 ] (CO 3 ) 0.7 (OH) 0. 6

粉砕物の水に対する溶解量とpHを実施例1と同様の方法で測定した結果、溶出量はCa&shy;=36mg/L,Mg=22mg/L,Fe=8mg/L,Mn=6mg/L,Zn=3mg/L,Cu=1mg/Lであり、pHは9.8であった。
[比較例1]
As a result of measuring the dissolution amount and pH of the ground product in water in the same manner as in Example 1, the elution amount was Ca' = 36 mg/L, Mg = 22 mg/L, Fe = 8 mg/L, Mn = 6 mg/L, Zn=3 mg/L, Cu=1 mg/L, and pH was 9.8.
[Comparative example 1]

石灰岩(炭酸カルシウム、カルサイト型構造)の粉砕物について、水への溶解量とpHを実施例1と同様の方法で測定した結果、溶出量Ca=6mg/L,pHは9.6であった。
[比較例2]
Regarding the crushed product of limestone (calcium carbonate, calcite type structure), the amount dissolved in water and the pH were measured in the same manner as in Example 1. As a result, the amount of elution Ca = 6 mg/L, and the pH was 9.6. Ta.
[Comparative example 2]

ドロマイトの粉砕物について、水への溶解量とpHを実施例1と同様の方法で測定した結果、溶出Ca=7mg/L,Mg=5mg/L,pH=9.3であった。
[比較例3]
Regarding the pulverized dolomite, the amount dissolved in water and the pH were measured in the same manner as in Example 1, and the results were that eluted Ca = 7 mg/L, Mg = 5 mg/L, and pH = 9.3.
[Comparative example 3]

実施例4において、得られた水酸化物を濾過、水洗後、乾燥(120℃)、粉砕して得られた粉末について、水への溶解量とpHを測定した結果、溶解量Ca=220mg/L,Mg=6m,Fe=0.2mg/L,Mn=0.2mg/L,Zn=0.1mg/L,Cu=0.1mg/L,pH=12.3であった。 In Example 4, the amount dissolved in water and the pH of the powder obtained by filtering the obtained hydroxide, washing with water, drying (120°C), and pulverizing were measured, and the result was that the dissolved amount Ca = 220 mg/ L, Mg=6m, Fe=0.2mg/L, Mn=0.2mg/L, Zn=0.1mg/L, Cu=0.1mg/L, and pH=12.3.

実施例1で合成された金属炭酸塩系固溶体を、市販の飼料(1kg当たり、トウモロコシ:580g、大豆粕ミール:335g、コーンオイル:47g、DL-メチオニン:1.4g、CaHPO:20g、CaCO:6.6g、NaCl:5.0g、ミネラル・ビタミン混合物:5.0g)に対し、0.05%の割合で添加して飼料を作った。当該ミネラル・ビタミン物は1kg当たり、ミネラル、Mg=120g、Fe=16g、Mn=12g、Zn=8g、Cu=1.6g、I(ヨード)=0.07gを含有していた。該飼料を120日齢の鶏18,000羽に60日間投与した。実施例1で合成された金属炭酸塩系固溶体に代えて市販のミネラル・ビタミン混合物0.05%を添加した飼料を供与した鶏を対照として、60日後の死亡率、餌の摂取量、卵の食味を、調べた。その結果死亡率は0.3%から0.06%に減少し、餌の消費量が1日、1羽当110gから105gへと低下し、卵の食味は大きく改善した。 The metal carbonate solid solution synthesized in Example 1 was mixed with commercially available feed (per 1 kg, corn: 580 g, soybean meal meal: 335 g, corn oil: 47 g, DL-methionine: 1.4 g, CaHPO 4 : 20 g, CaCO 3 : 6.6 g, NaCl: 5.0 g, mineral/vitamin mixture: 5.0 g) at a rate of 0.05% to make feed. The mineral/vitamin material contained minerals, Mg = 120 g, Fe = 16 g, Mn = 12 g, Zn = 8 g, Cu = 1.6 g, and I (iodine) = 0.07 g per 1 kg. The feed was administered to 18,000 120-day-old chickens for 60 days. As a control, chickens fed a feed supplemented with 0.05% of a commercially available mineral/vitamin mixture instead of the metal carbonate solid solution synthesized in Example 1 were used as a control, and the mortality rate, feed intake, and egg production after 60 days were evaluated. I checked the taste. As a result, mortality rate decreased from 0.3% to 0.06%, feed consumption decreased from 110g per day to 105g per bird, and the taste of eggs greatly improved.

実施例4の方法で合成した本発明金属炭酸塩系固溶体の乾燥前のスラリーに、ホウ酸とモリブデン酸ナトリウムを乾燥固溶体1kgに換算してそれぞれ、70g、1gを撹拌下に加え約30分混合後、濾過、乾燥、粉砕した。 To the slurry of the metal carbonate solid solution of the present invention synthesized by the method of Example 4 before drying, 70 g and 1 g of boric acid and sodium molybdate, respectively, calculated as 1 kg of the dry solid solution, were added under stirring and mixed for about 30 minutes. After that, it was filtered, dried and ground.

粉砕物を、元肥(窒素、リン、カリを10アール当たりそれぞれ4,8,6kg散布)と一緒に1m当たり3gを散布した農地40m毎に、大根(春の都)、ジャガイモ(男爵)、ナス(接木苗)、トウモロコシ(あま~いコーン)を植え、粉砕物を散布しない隣接する農地40mを対照区として、収穫量を測定した。その結果を表1に示す。 For every 40 m2 of farmland where the crushed product was sprayed together with base fertilizer (nitrogen, phosphorus, and potassium at 4, 8, and 6 kg per 10 ares) at a rate of 3 g per 1 m2, radish (Spring Capital), potato (Baron), Eggplant (grafted seedlings) and corn (sweet corn) were planted, and yields were measured using 40 m 2 of adjacent farmland, which was not sprayed with pulverized material, as a control plot. The results are shown in Table 1.

Figure 0007392976000004
Figure 0007392976000004

Claims (9)

下記式(1)
Figure 0007392976000005
(式中、Mは、Mn,Fe,Co,Cu,Znから選ばれる少なくとも一種の2価金属を示し、xとyはそれぞれ次の範囲、0<x<0.4、0.01<y≦1を満足する正の数を示す)で表される、2価金属炭酸塩系の固溶体を含有するミネラル補給剤。
The following formula (1)
Figure 0007392976000005
(In the formula, M represents at least one divalent metal selected from Mn, Fe, Co, Cu, and Zn, and x and y are in the following ranges, 0<x<0.4, 0.01<y, respectively. A mineral replenisher containing a divalent metal carbonate solid solution represented by a positive number satisfying ≦1.
該固溶体がCaおよびMgを含む請求項1記載のミネラル補給剤。 The mineral supplement according to claim 1, wherein the solid solution contains Ca and Mg. 該固溶体が、式(1)におけるMとしてMn,Fe,CuおよびZnの2価金属を含有する、請求項1または2記載のミネラル補給剤。 The mineral supplement according to claim 1 or 2, wherein the solid solution contains divalent metals such as Mn, Fe, Cu, and Zn as M in formula (1). 請求項1の式(1)において、xとyがそれぞれ0.02≦x≦0.3、0.5≦y≦1の範囲にある請求項1~3のいずれか1項記載のミネラル補給剤。 The mineral supplement according to any one of claims 1 to 3, wherein in formula (1) of claim 1, x and y are in the range of 0.02≦x≦0.3 and 0.5≦y≦1, respectively. agent. 水に対する溶解量がCa換算で20mg/L以上である請求項1~4のいずれか1項記載のミネラル補給剤。 The mineral supplement according to any one of claims 1 to 4, which has a dissolved amount in water of 20 mg/L or more in terms of Ca. 該固溶体が、Ca、Mg、Mn、Fe、CuおよびZnのすべての2価金属を含有し、かつホウ素及びモリブデンの酸素酸塩および/または酸素酸を吸着しており、植物用である、請求項1~5項のいずれか1項記載のミネラル補給剤。 The solid solution contains all divalent metals of Ca, Mg, Mn, Fe, Cu, and Zn, and adsorbs boron and molybdenum oxyacids and/or oxyacids, and is for plants. The mineral supplement according to any one of Items 1 to 5. 該固溶体が、Ca、Mg、Mn、Fe、CuおよびZnのすべての2価金属と3価のCrとを含有し、かつセレン及びモリブデンの酸素酸塩および/または酸素酸を吸着しており、動物用である、請求項1~5のいずれか1項記載のミネラル補給剤。 The solid solution contains all divalent metals of Ca, Mg, Mn, Fe, Cu, and Zn and trivalent Cr, and adsorbs selenium and molybdenum oxyacid and/or oxyacid, The mineral supplement according to any one of claims 1 to 5, which is for animals. 該固溶体が、CaとMgを含有し、且つZnおよび/またはFeの2価金属をさらに含有し、該固溶体1gの粉砕物を100mLの脱イオン水に加えて30℃で5分間攪拌して得た分散液のpHが6.5~8.6の範囲にあり、ヒト用の飲料水用である請求項1~5項記載のいずれか1項記載のミネラル補給剤。 The solid solution contains Ca and Mg, and further contains divalent metals such as Zn and/or Fe, and is obtained by adding 1 g of the pulverized solid solution to 100 mL of deionized water and stirring at 30 ° C. for 5 minutes. The mineral supplement according to any one of claims 1 to 5, wherein the dispersion has a pH in the range of 6.5 to 8.6 and is suitable for human drinking water. 下記式(2)
Figure 0007392976000006
(但し、式中Mは、Mn、Fe、Co、Cu、Znから選ばれた少なくとも一種の2価金属を示し、xとyはそれぞれ次の範囲0<x<0.4、0.01<y≦1を満足する正の数を示す)で表される2価金属炭酸塩系の固溶体。
The following formula (2)
Figure 0007392976000006
(However, in the formula, M represents at least one divalent metal selected from Mn, Fe, Co, Cu, and Zn, and x and y are in the following ranges 0<x<0.4, 0.01< A divalent metal carbonate solid solution represented by a positive number satisfying y≦1.
JP2019211769A 2019-11-22 2019-11-22 mineral supplement Active JP7392976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211769A JP7392976B2 (en) 2019-11-22 2019-11-22 mineral supplement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211769A JP7392976B2 (en) 2019-11-22 2019-11-22 mineral supplement

Publications (2)

Publication Number Publication Date
JP2021078480A JP2021078480A (en) 2021-05-27
JP7392976B2 true JP7392976B2 (en) 2023-12-06

Family

ID=75965569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211769A Active JP7392976B2 (en) 2019-11-22 2019-11-22 mineral supplement

Country Status (1)

Country Link
JP (1) JP7392976B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617376B1 (en) * 2021-06-02 2023-12-27 안지혜 Method of manufacturing selenium nutrition for animal and plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089237A (en) 2003-09-17 2005-04-07 Kaisui Kagaku Kenkyusho:Kk Mineral supplement agent to crop
JP2006290780A (en) 2005-04-08 2006-10-26 Kaisui Kagaku Kenkyusho:Kk Mineral supplement for animal
JP2007289130A (en) 2006-04-27 2007-11-08 Kaisui Kagaku Kenkyusho:Kk Marine product raising auxiliary agent
US20090092680A1 (en) 2005-12-07 2009-04-09 Theodoor Maximiliaan Slaghek Preparation for treatment of mineral deficiency
JP2019099471A (en) 2017-11-29 2019-06-24 協和化学工業株式会社 Cholesterol lowering agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089237A (en) 2003-09-17 2005-04-07 Kaisui Kagaku Kenkyusho:Kk Mineral supplement agent to crop
JP2006290780A (en) 2005-04-08 2006-10-26 Kaisui Kagaku Kenkyusho:Kk Mineral supplement for animal
US20090092680A1 (en) 2005-12-07 2009-04-09 Theodoor Maximiliaan Slaghek Preparation for treatment of mineral deficiency
JP2007289130A (en) 2006-04-27 2007-11-08 Kaisui Kagaku Kenkyusho:Kk Marine product raising auxiliary agent
JP2019099471A (en) 2017-11-29 2019-06-24 協和化学工業株式会社 Cholesterol lowering agent

Also Published As

Publication number Publication date
JP2021078480A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
US5504055A (en) Metal amino acid chelate
US6197815B1 (en) Amino acid chelates to reduce still births and increase birth weight in non-human animals
EP2794473B1 (en) Nutrient composition for biological systems
JP2012515756A5 (en)
EP1661876B1 (en) Method of soil conditionning
JP7392976B2 (en) mineral supplement
CN111094301B (en) Methionine-metal chelate and preparation method thereof
CN111051317B (en) Methionine-metal chelate and preparation method thereof
JP2001151589A (en) Chelate compound-containing fertilizer and farm product
CN110708957B (en) Formulations of metal and ascorbic acid complexes, their obtention and use
JP5113315B2 (en) Agricultural crop mineral supplement and method for producing the same
JP2003267810A (en) Disinfecting and mineral-replenishing agent for agriculture and method for producing the same
KR100741441B1 (en) Nitrate-nitrogen diminishing agent
PL240443B1 (en) Formulations of metal and ascorbic acid complexes, method for obtaining them and applications
JP2001089279A (en) Chelate compound-containing fertilizer and method for manufacturing the same
KR20120075740A (en) Copper compounds having crop protection function and preparing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7392976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150