JP7391356B2 - Multilayer material and its manufacturing method, multilayer material plating method - Google Patents

Multilayer material and its manufacturing method, multilayer material plating method Download PDF

Info

Publication number
JP7391356B2
JP7391356B2 JP2019161565A JP2019161565A JP7391356B2 JP 7391356 B2 JP7391356 B2 JP 7391356B2 JP 2019161565 A JP2019161565 A JP 2019161565A JP 2019161565 A JP2019161565 A JP 2019161565A JP 7391356 B2 JP7391356 B2 JP 7391356B2
Authority
JP
Japan
Prior art keywords
layer
layers
multilayer material
shrinkage
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019161565A
Other languages
Japanese (ja)
Other versions
JP2021038445A (en
Inventor
徹 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hyogo
Original Assignee
University of Hyogo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hyogo filed Critical University of Hyogo
Priority to JP2019161565A priority Critical patent/JP7391356B2/en
Publication of JP2021038445A publication Critical patent/JP2021038445A/en
Application granted granted Critical
Publication of JP7391356B2 publication Critical patent/JP7391356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

特許法第30条第2項適用 発行日:平成30年9月5日 刊行物:公益社団法人日本金属学会2018年秋期講演(第163回)大会プログラム、B会場、J31 〔刊行物等〕 開催日:平成30年9月19日 集会名:公益社団法人日本金属学会2018年秋期講演(第163回)大会 開催場所:東北大学川内北キャンパス(仙台市青葉区川内41)Article 30, Paragraph 2 of the Patent Act applies Publication date: September 5, 2018 Publication: Japan Institute of Metals 2018 Autumn Lecture (163rd) Conference Program, Venue B, J31 [Publications] Held Date: September 19, 2018 Meeting name: Japan Institute of Metals 2018 Autumn Lecture (163rd) Conference Venue: Tohoku University Kawauchi Kita Campus (41 Kawauchi, Aoba-ku, Sendai City)

本発明は、Ni-W層又はNi-P層とNi層とを交互に積層することにより、機械的強度を向上させた複合材である多層材、及びその製造方法に関する。また、本発明は、Ni-W層又はNi-P層とNi層とを交互に積層させた多層材で基材をメッキするメッキ方法に関する。 The present invention relates to a multilayer material that is a composite material with improved mechanical strength by alternately laminating Ni--W layers or Ni--P layers and Ni layers, and a method for manufacturing the same. The present invention also relates to a plating method for plating a base material with a multilayer material in which Ni--W layers or Ni--P layers and Ni layers are alternately laminated.

各種の流体を射出してその流体の形態を制御する金属製ノズルまたは移送管としての細孔または細管は、種々のステンレス鋼や高強度合金鋼などの部材により作製されているが、これらは、機械的強度が高いものの、前記流体が溶融した樹脂の場合には部材との反応性が高く、腐食による摩耗が激しい。酸性流体を射出する場合も同様である。また、泥水のような流体では機械的磨耗が激しく起こる。 Fine holes or thin tubes used as metal nozzles or transfer pipes that inject various fluids and control the form of the fluids are made of various materials such as stainless steel and high-strength alloy steel. Although the fluid has high mechanical strength, if the fluid is a molten resin, it has high reactivity with the member and is subject to severe wear due to corrosion. The same applies when injecting acidic fluid. Additionally, fluids such as muddy water cause severe mechanical wear.

このような欠点を改善するため、ノズル内壁表面に高耐磨耗性、高耐食性、高耐熱性等の優れた特性を有する金属もしくは合金の被膜の形成が求められている。このような被覆材は同時に高付着性をも要求される。無電解メッキでは高耐摩耗性、且つ高付着性の金属が存在しない。幸い、数年前に本発明者によって、電解析出法を用い、上記の特性を全て満足する理想的なナノ結晶ニッケルータングステン(Ni-W)合金被覆材が開発されている。 In order to improve these drawbacks, there is a need to form a metal or alloy coating having excellent properties such as high abrasion resistance, high corrosion resistance, and high heat resistance on the inner wall surface of the nozzle. Such coating materials are also required to have high adhesion. In electroless plating, there is no metal with high wear resistance and high adhesion. Fortunately, several years ago, the present inventor developed an ideal nanocrystalline nickel-tungsten (Ni-W) alloy coating material that satisfies all of the above characteristics using an electrolytic deposition method.

ナノ結晶単相材料及びアモルファス単相材料は、一般的には極端に硬質化しており、塑性変形中の加工硬化を生ずることなく脆性的に破壊されることが知られている(非特許文献1)。本発明者等は、電解析出法を用いて2~3 GPa程度の引張強度を示すNi-W合金を開発してきており、この合金のW含有量を制御することにより組織が変化することが判明している(非特許文献2及び3)。非特許文献2及び3の方法で作製されたナノ結晶単相Ni-W合金・アモルファス単相Ni-W合金は、従来どおり脆性的な破壊を示している。 Nanocrystalline single-phase materials and amorphous single-phase materials are generally extremely hard and are known to be destroyed brittlely without work hardening during plastic deformation (Non-patent Document 1). ). The present inventors have developed a Ni-W alloy that exhibits a tensile strength of approximately 2 to 3 GPa using an electrolytic deposition method, and have found that the structure can be changed by controlling the W content of this alloy. It is known (Non-patent Documents 2 and 3). Nanocrystalline single-phase Ni-W alloys and amorphous single-phase Ni-W alloys produced by the methods of Non-Patent Documents 2 and 3 show brittle fracture as before.

一方、本発明者等は、W含有量が約14~20原子%となるように作製されたNi-W合金は、ナノ結晶/アモルファス複合組織を有しており、5 %を超える塑性伸びを示すことも確認している。 On the other hand, the present inventors found that a Ni-W alloy prepared with a W content of approximately 14 to 20 at% has a nanocrystalline/amorphous composite structure and has a plastic elongation exceeding 5%. It has also been confirmed that

特開2001-342591号公報Japanese Patent Application Publication No. 2001-342591

J. R.Trelewicz, C. A. Schuh: Acta Materialia, 55 (2007), 5948-5958J. R. Trelewicz, C. A. Schuh: Acta Materialia, 55 (2007), 5948-5958 I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi: Materials Letters, 99 (2013), 65-67I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi: Materials Letters, 99 (2013), 65-67 山▲崎▼徹: 表面技術, Vol.55 No.4 (2004), 242-247Toru Yamazaki: Surface Technology, Vol.55 No.4 (2004), 242-247

電解析出されたNi-W合金は、ナノ結晶/アモルファス複合組織を有し、2~3 GPa程度の高引張強度と5%を超える高い塑性伸びを示す。しかし、ナノ結晶単相及びアモルファス単相は極端に硬質化しており、塑性変形中の加工硬化を生じることなく、脆弱的に破壊される。そして、ナノ結晶/アモルファス複合組織を有するNi-W合金も、室温保存中に体積減少(収縮)を伴って延性が低下し、脆化が進行することが確認されている。 The electrolytically deposited Ni-W alloy has a nanocrystalline/amorphous composite structure and exhibits high tensile strength of approximately 2 to 3 GPa and high plastic elongation of over 5%. However, the nanocrystalline single phase and the amorphous single phase are extremely hard and are brittlely destroyed without undergoing work hardening during plastic deformation. It has also been confirmed that Ni-W alloys having a nanocrystalline/amorphous composite structure also exhibit volume reduction (shrinkage) during storage at room temperature, resulting in a decrease in ductility and progression of embrittlement.

図1は、作製直後及び室温2年保管後のNi-W合金試料の公称ひずみと公称応力との関係を測定した結果を示す。Ni-W合金試料は、後述するNi-W層単層材の引張試験片と同じであり、公称ひずみと公称応力の測定方法は、後述する引張試験と同じである。作製直後(製造直後)のNi-W合金試料は、公称ひずみが6%を超えて破断したが、作製後室温で2年保管した後のNi-W合金試料は、公称ひずみが3%に到達する前に破断した。すなわち、室温2年保管後のNi-W合金試料は、作製直後のNi-W合金試料と比較して延性が著しく低下している。 Figure 1 shows the results of measuring the relationship between the nominal strain and nominal stress of a Ni-W alloy sample immediately after fabrication and after storage at room temperature for 2 years. The Ni-W alloy sample is the same as the tensile test piece of the Ni-W single layer material described below, and the measurement method of the nominal strain and stress is the same as the tensile test described below. Immediately after fabrication (immediately after manufacture), the Ni-W alloy sample fractured at a nominal strain exceeding 6%, but after being stored at room temperature for 2 years after fabrication, the Ni-W alloy sample reached a nominal strain of 3%. It broke before I could do it. That is, the Ni-W alloy sample after being stored at room temperature for two years has significantly lower ductility than the Ni-W alloy sample immediately after fabrication.

図2は、Ni-W合金が脆化する原理を説明する概念図を示す。Ni-W合金は、ナノ結晶/アモルファス複合組織を有する。作製直後のNi-W合金は、アモルファス部分の自由体積が大きいが経時変化後はアモルファス部分の自由体積が減少して、金属原子の移動が困難となる。その結果、ナノ結晶/アモルファス界面で結晶成長が起きなくなり、収縮を伴って脆化する。 FIG. 2 shows a conceptual diagram explaining the principle of embrittlement of Ni-W alloy. Ni-W alloy has a nanocrystalline/amorphous composite structure. Immediately after fabrication, the Ni-W alloy has a large free volume in the amorphous portion, but after aging, the free volume in the amorphous portion decreases, making it difficult for metal atoms to move. As a result, crystal growth does not occur at the nanocrystal/amorphous interface, resulting in shrinkage and embrittlement.

本発明者等は、Ni-W合金に生じる経時的な脆化を抑制する手段について、鋭意検討を重ねた。その結果、Ni-W合金よりも収縮量の少ない電解析出Ni層と、電解析出Ni-W合金層とを、特定の厚さで交互に複数層積層させることによって、界面におけるNi-W層の収縮を抑制し得ることを見出した。また、本発明者等は、Ni-W合金と類似する物性を有するNi-P合金についても、特定の厚さで電解析出Niと交互に複数層積層させることによって、界面におけるNi-P層の収縮を抑制し得ることを見出し、本発明を完成させるに至った。 The present inventors have conducted extensive studies on means to suppress the embrittlement that occurs over time in Ni-W alloys. As a result, by alternately laminating multiple electrolytically deposited Ni layers with a smaller amount of shrinkage than the Ni-W alloy and electrolytically deposited Ni-W alloy layers at a specific thickness, the Ni-W It has been found that shrinkage of the layer can be suppressed. In addition, the present inventors also developed a Ni-P alloy at the interface by stacking multiple layers alternately with electrolytically deposited Ni at a specific thickness for a Ni-P alloy that has physical properties similar to the Ni-W alloy. The present inventors have discovered that the shrinkage of can be suppressed, and have completed the present invention.

具体的に本発明は、
Ni層とNi-W層又はNi-P層とが交互に積層されており、
前記Ni層と前記Ni-W層又は前記Ni-P層の1層あたりの厚さが0.75μm以上2μm以下である、
多層材に関する。
Specifically, the present invention includes:
Ni layers and Ni-W layers or Ni-P layers are stacked alternately,
The thickness of each layer of the Ni layer and the Ni-W layer or the Ni-P layer is 0.75 μm or more and 2 μm or less,
Regarding multilayer materials.

Ni-W合金は、高強度であるが室温においても経時的に収縮し、脆化する。これに対してNiは収縮量が少なく延性が高い。Ni層とNi-W層の1層あたりの厚さを0.75μm以上2μm以下に調整して、複数層交互に積層することにより、Ni-W層の経時的な収縮が抑制され、高強度・高延性な多層材として機能し得る。また、Ni-P合金もNi-W合金と類似する物性を有しており、Ni層とNi-W層の1層あたりの厚さを0.75μm以上2μm以下に調整して、複数層交互に積層することにより、Ni-W層の経時的な収縮が抑制され、高強度・高延性な多層材として機能し得る。 Although Ni-W alloy has high strength, it shrinks and becomes brittle over time even at room temperature. On the other hand, Ni has low shrinkage and high ductility. By adjusting the thickness of each Ni layer and Ni-W layer to 0.75 μm or more and 2 μm or less, and stacking multiple layers alternately, shrinkage of the Ni-W layer over time is suppressed, resulting in high strength and Can function as a highly ductile multilayer material. In addition, the Ni-P alloy has similar physical properties to the Ni-W alloy, and the thickness of each Ni layer and Ni-W layer is adjusted to 0.75 μm or more and 2 μm or less, and multiple layers are alternately layered. By stacking, the shrinkage of the Ni-W layer over time is suppressed, allowing it to function as a high-strength, high-ductility multilayer material.

Ni-W層におけるWの割合、又はNi-P層におけるPの割合は、15原子%以上20原子%以下であることが好ましい。 The proportion of W in the Ni-W layer or the proportion of P in the Ni-P layer is preferably 15 atomic % or more and 20 atomic % or less.

本発明はまた、
電解析出法によって基材上にNi層を析出させる工程(a)と、
電解析出法によって基材上にNi-W層を析出させる工程(b1)又はNi-P層を析出させる工程(b2)と、
基材を溶解させる工程(c)とを有し、
前記工程(a)と前記工程(b1)又は前記工程(b2)とを交互に繰り返し、
前記工程(a)において形成される前記Ni層の厚さが0.75μm以上2μm以下であり、
前記工程(b1)において形成される前記Ni-W層又は前記工程(b2)において形成される前記Ni-P層の厚さがそれぞれ0.75μm以上2μm以下である、
ことを特徴とする、多層材の製造方法に関する。
The present invention also provides
a step (a) of depositing a Ni layer on the base material by electrolytic deposition;
A step (b1) of depositing a Ni-W layer or a step (b2) of depositing a Ni-P layer on the base material by electrolytic deposition,
(c) dissolving the base material;
Alternately repeating the step (a) and the step (b1) or the step (b2),
The thickness of the Ni layer formed in the step (a) is 0.75 μm or more and 2 μm or less,
The thickness of the Ni-W layer formed in the step (b1) or the Ni-P layer formed in the step (b2) is 0.75 μm or more and 2 μm or less, respectively.
The present invention relates to a method for manufacturing a multilayer material, characterized in that:

本発明はさらに、
電解析出法によって基材上にNi層を析出させる工程(a)と、
電解析出法によって基材上にNi-W層を析出させる工程(b1)又はNi-P層を析出させる工程(b2)とを有し、
前記工程(a)と前記工程(b1)又は前記工程(b2)とを交互に繰り返し、
前記工程(a)において形成される前記Ni層の厚さが0.75μm以上2μm以下であり、
前記工程(b1)において形成される前記Ni-W層又は前記工程(b2)において形成される前記Ni-P層の厚さがそれぞれ0.75μm以上2μm以下である、
ことを特徴とする、多層材メッキ方法に関する。
The present invention further includes:
a step (a) of depositing a Ni layer on the base material by electrolytic deposition;
A step (b1) of depositing a Ni-W layer on a base material by an electrolytic deposition method or a step (b2) of depositing a Ni-P layer,
Alternately repeating the step (a) and the step (b1) or the step (b2),
The thickness of the Ni layer formed in the step (a) is 0.75 μm or more and 2 μm or less,
The thickness of the Ni-W layer formed in the step (b1) or the Ni-P layer formed in the step (b2) is 0.75 μm or more and 2 μm or less, respectively.
The present invention relates to a multilayer material plating method characterized by the following.

本発明の多層材の製造方法及び多層材メッキ方法は、
前記工程(b1)において形成されるNi-W層におけるWの割合、又は前記工程(b2)において形成されるNi-P層におけるPの割合は、15原子%以上20原子%以下であることが好ましい。
The multilayer material manufacturing method and multilayer material plating method of the present invention include:
The proportion of W in the Ni-W layer formed in the step (b1) or the proportion of P in the Ni-P layer formed in the step (b2) may be 15 atomic % or more and 20 atomic % or less. preferable.

本発明によれば、Ni-W合金又はNi-P合金に生じる経時的な収縮を抑制し、高強度・高延性な多層材及び多層材メッキが得られる。 According to the present invention, shrinkage over time that occurs in Ni-W alloys or Ni-P alloys can be suppressed, and multilayer materials and multilayer material plating with high strength and high ductility can be obtained.

作製直後及び室温2年保管後のNi-W合金試料の公称ひずみと公称応力との関係を測定した結果を示す。The results of measuring the relationship between the nominal strain and nominal stress of Ni-W alloy samples immediately after fabrication and after storage at room temperature for 2 years are shown. Ni-W合金が脆化する原理を説明する概念図を示す。A conceptual diagram explaining the principle of embrittlement of Ni-W alloy is shown. (a)は使用されたフォトマスクのパターン、(b)は引張試験片の形状を示す。(a) shows the pattern of the photomask used, and (b) shows the shape of the tensile test piece. Ni層及びNi-W層を24層ずつ積層させた引張試験片の断面の走査電子顕微鏡写真を示す。This is a scanning electron micrograph of a cross section of a tensile test piece in which 24 Ni layers and 24 Ni-W layers were laminated. 作製直後の引張試験片の応力-ひずみ曲線を示す。The stress-strain curve of the tensile test piece immediately after fabrication is shown. 破断試験終了後の引っ張り試験片の破断面の電子顕微鏡写真を示す。An electron micrograph of the fracture surface of the tensile test piece after the completion of the fracture test is shown. 室温で1週間及び1か月保管後のNi-W単層材及びNi単層材である引張試験片の応力-ひずみ曲線を示す。The stress-strain curves of the Ni-W single layer material and Ni single layer material tensile test specimens are shown after being stored at room temperature for 1 week and 1 month. 破断試験終了後の引張試験片(単層材)の破断面の変化を示す電子顕微鏡写真である。It is an electron micrograph showing the change in the fracture surface of a tensile test piece (single layer material) after completion of the fracture test. 多層材である引張試験片の応力-ひずみ曲線の変化を示すグラフである。It is a graph showing changes in the stress-strain curve of a tensile test piece that is a multilayer material. 破断試験終了後の引張試験片(多層材)の破断面の変化を示す電子顕微鏡写真である。It is an electron micrograph showing the change in the fracture surface of a tensile test piece (multilayer material) after the completion of the fracture test. Ni/Ni-W多層材におけるNi-WとNiのピーク分離を説明する概念図を示す。A conceptual diagram illustrating the peak separation of Ni-W and Ni in the Ni/Ni-W multilayer material is shown. TMA測定装置の測定部の概略図を示す。A schematic diagram of the measurement section of the TMA measurement device is shown. 熱機械分析の測定結果を示す。The measurement results of thermomechanical analysis are shown. Ni単層材(粗大粒Ni)とNi-W単層材の317 ℃-110 分等温保持区間における熱収縮量を示す。The amount of thermal shrinkage of Ni single-layer material (coarse-grained Ni) and Ni-W single-layer material during isothermal holding period at 317 °C for 110 minutes is shown. 3種類の単層材及び3種類の積層材の317 ℃-110 分等温保持区間における熱収縮量を示す。The amount of thermal shrinkage of three types of single-layer materials and three types of laminated materials in the isothermal holding period at 317 °C for 110 minutes is shown. Ni/Ni-W多層材の1層あたりの厚さと、塑性ひずみとの関係をプロットしたグラフを示す。A graph plotting the relationship between the thickness per layer and plastic strain of a Ni/Ni-W multilayer material is shown. Ni/Ni-W多層材における脆化抑制の概念図を示す。A conceptual diagram of embrittlement suppression in Ni/Ni-W multilayer materials is shown.

以下、本発明の実施形態について、適宜図面を参照しながら説明する。本発明は、以下の記載に限定されない。 Embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to the following description.

[Ni/Ni-W多層材の作製例]
フォトリソグラフィー技術を用いて、引張試験片の形状の試験サンプルを以下の手順に従って作製した。Ni-W合金は、ナノ結晶/アモルファス二相混合組織となるような条件で作製され、EPMA分析により合金組成はNi-16.9 原子%であった。Niメッキは、強度の高い試料作製のできるワット浴Niを使用して作製された。表1にNi-W合金メッキ、表2にワット浴Niメッキの浴組成と電析条件を示す。
[Example of fabrication of Ni/Ni-W multilayer material]
A test sample in the form of a tensile test piece was prepared using photolithography technology according to the following procedure. The Ni-W alloy was fabricated under conditions such that it had a nanocrystalline/amorphous two-phase mixed structure, and the alloy composition was found to be Ni-16.9 at% by EPMA analysis. Ni plating was made using Watt bath Ni, which allows for the preparation of high-strength samples. Table 1 shows the bath composition and electrodeposition conditions for Ni-W alloy plating, and Table 2 shows the bath composition and electrodeposition conditions for Watt bath Ni plating.

Figure 0007391356000001
Figure 0007391356000001

Figure 0007391356000002
Figure 0007391356000002

フォトリソグラフィー技術を用いて、Cu基板上に引張試験片の形状に電解析出法によってNi-W合金層及び純Ni層を成形させた後、基板(基材)のCuはクロム酸混液(酸化クロム(VI)の飽和溶液+濃硫酸)を用いて溶解させ、電解析出物であるNi層/Ni-W層の積層材を得た。図3は、使用されたフォトマスクのパターン及び引張試験片の形状を示す。 Using photolithography technology, a Ni-W alloy layer and a pure Ni layer are formed by electrolytic deposition into the shape of a tensile test piece on a Cu substrate. A chromium (VI) saturated solution + concentrated sulfuric acid) was used to dissolve the material, and a laminate of Ni layer/Ni-W layer, which was an electrolytic deposit, was obtained. FIG. 3 shows the pattern of the photomask used and the shape of the tensile test piece.

図4は、Ni層及びNi-W層を24層ずつ積層(合計48層、各層の厚さ0.33μm)させた引張試験片の断面の走査電子顕微鏡写真を示す。図4においては、明るく見える層がNi層である。図4に示されているように、引張試験片には欠陥が存在せず、Ni層とNi-W層との界面に剥離も生じていなかった。 FIG. 4 shows a scanning electron micrograph of a cross section of a tensile test piece in which 24 Ni layers and 24 Ni-W layers were laminated (48 layers in total, each layer having a thickness of 0.33 μm). In FIG. 4, the layer that appears bright is the Ni layer. As shown in FIG. 4, there were no defects in the tensile test piece, and no peeling occurred at the interface between the Ni layer and the Ni-W layer.

引張試験片として、表3に示される2種類の単層材及び3種類の多層材(積層材)を作製した。Ni単層材は、ナノ結晶構造を有するNi単層材である。 Two types of single layer materials and three types of multilayer materials (laminated materials) shown in Table 3 were prepared as tensile test pieces. The Ni single layer material is a Ni single layer material having a nanocrystalline structure.

Figure 0007391356000003
Figure 0007391356000003

[引張試験]
作製された5種類の引張試験片の引張強度及び延性を測定するために、室温において引張試験を行った。試験には島津製マイクロオート(MST-I Type HS/HR)を用いた。引張試験片の平行部形状は、図3(b)に示されるとおりであり、初期ひずみ速度は4.2×10-4 /secとした。塑性伸びの算出方法は、応力-ひずみ曲線の破断点から、弾性変形域での傾きの直線を引き、横軸との交点を塑性伸びとした。
[Tensile test]
A tensile test was conducted at room temperature to measure the tensile strength and ductility of the five types of tensile test specimens prepared. A Shimadzu micro auto (MST-I Type HS/HR) was used for the test. The shape of the parallel part of the tensile test piece was as shown in FIG. 3(b), and the initial strain rate was 4.2×10 −4 /sec. The plastic elongation was calculated by drawing a straight line with an inclination in the elastic deformation region from the breaking point of the stress-strain curve, and taking the intersection with the horizontal axis as the plastic elongation.

図5は、作製直後の引張試験片の応力-ひずみ曲線を示す。引張強度は、Ni-W単層材では約3GPa、Ni単層材で約2GPaであった。続いて塑性伸びについてみると、Ni単層材及びNi-W単層材に比べ8層材及び16層材はより大きな塑性伸びを示した。一方、48層材は、Ni-W単層材とNi単層材の中間の伸びを示した。 FIG. 5 shows the stress-strain curve of the tensile test piece immediately after fabrication. The tensile strength was approximately 3 GPa for the Ni-W single layer material and approximately 2 GPa for the Ni single layer material. Next, looking at the plastic elongation, the 8-layer material and the 16-layer material showed larger plastic elongation than the Ni single-layer material and the Ni-W single-layer material. On the other hand, the 48-layer material showed an intermediate elongation between the Ni-W single-layer material and the Ni single-layer material.

図6は、破断試験終了後の引張試験片の破断面の電子顕微鏡写真を示す。Ni-W層の破断面を見ると、単層材に比べ多層材ではディンプルパターンが細かくなっており、多層化による効果で延性が向上していることが確認できた。また、多層材における破断は、層の界面剥離により生じたのではないことも確認できた。このことは、図5に示される応力-ひずみ曲線の結果と整合している。 FIG. 6 shows an electron micrograph of the fracture surface of the tensile test piece after the fracture test. Looking at the fractured surface of the Ni-W layer, it was confirmed that the dimple pattern was finer in the multilayer material compared to the single layer material, and the ductility was improved due to the effect of multilayering. It was also confirmed that the fracture in the multilayer material was not caused by interfacial peeling of the layers. This is consistent with the stress-strain curve results shown in FIG.

図7は、室温で1週間及び1か月保管後のNi-W単層材及びNi単層材である引張試験片の応力-ひずみ曲線を示す。室温保管後の引張試験片は、作製直後の引張試験片と比較して延性が低下し、脆化していることが確認された。 FIG. 7 shows the stress-strain curves of the Ni-W single layer material and Ni single layer material tensile test specimens after storage for one week and one month at room temperature. It was confirmed that the tensile test piece after storage at room temperature had lower ductility and became brittle compared to the tensile test piece immediately after preparation.

図8は、破断試験終了後の引張試験片(Ni-W単層材及びNi単層材)の破断面の変化を示す電子顕微鏡写真である。Ni単層材は、破断面に大きな違いは認められなかった。一方、Ni-W単層材は、室温1ヶ月保管後は、ディンプルの数及び深さが作製直後よりも減少しており、脆化していることが確認された。 FIG. 8 is an electron micrograph showing changes in the fracture surfaces of the tensile test pieces (Ni-W single layer material and Ni single layer material) after the completion of the fracture test. No significant difference was observed in the fracture surface of the Ni single-layer material. On the other hand, after one month of storage at room temperature, the Ni-W single-layer material was confirmed to have become brittle, with the number and depth of dimples decreasing compared to immediately after fabrication.

図9は、多層材である引張試験片の応力-ひずみ曲線の変化を示すグラフである。8層材及び16層材については、室温1ヶ月保管後も2%程度の塑性伸びを維持していた。48層材については、塑性伸びが少なく、経時的な変化もあまり認められなかった。 FIG. 9 is a graph showing changes in the stress-strain curve of a tensile test piece that is a multilayer material. The 8-layer material and the 16-layer material maintained approximately 2% plastic elongation even after being stored at room temperature for one month. Regarding the 48-layer material, there was little plastic elongation and no significant change over time was observed.

図10は、破断試験終了後の引張試験片(多層材)の破断面の変化を示す電子顕微鏡写真である。図10からは、作製直後と室温1ヶ月保管後で変化があまり認められなかった。 FIG. 10 is an electron micrograph showing changes in the fracture surface of the tensile test piece (multilayer material) after the fracture test. From FIG. 10, little change was observed immediately after fabrication and after one month of storage at room temperature.

[結晶サイズの測定]
スルファミン酸浴電解析出Ni単層材を含む6種類の引張試験片についてin-situ XRD測定を行い、X線プロファイル形状から結晶子サイズを算出した。in-situ XRD測定は、引張試験と同時に行われた。結晶子サイズは、Niの(111)及びNi-Wの(111)回折ピークから、それぞれScherrer式(数1)から算出した。ただし、Ni-Wについてはナノ結晶/アモルファス複合組織であるために、本来(111)といった結晶相のみを示す表記は正確ではないが、ここでは便宜的にこのように表すものとした。
[Measurement of crystal size]
In-situ XRD measurements were performed on six types of tensile test specimens, including single-layered Ni materials deposited by electrolytic deposition in a sulfamic acid bath, and the crystallite size was calculated from the X-ray profile shapes. In-situ XRD measurements were performed simultaneously with the tensile tests. The crystallite size was calculated from the (111) diffraction peak of Ni and the (111) diffraction peak of Ni-W using the Scherrer equation (Equation 1). However, since Ni-W has a nanocrystalline/amorphous composite structure, it is not accurate to express only the crystalline phase, such as (111), but this is used here for convenience.

Figure 0007391356000004
Figure 0007391356000004

ここで、Dは結晶子サイズ(nm)、λは波長(nm)、Bは半値幅(rad.),θBは回折角(deg.)である。測定は大型放射光施設SPring-8のBL46XUにて行われ、測定角度は7.7027°~38.3841°、ビームエネルギーは30 keV(波長0.04133 nm)とした。 Here, D is the crystallite size (nm), λ is the wavelength (nm), B is the half width (rad.), and θ B is the diffraction angle (deg.). The measurements were performed at BL46XU in the large synchrotron radiation facility SPring-8, with a measurement angle of 7.7027° to 38.3841° and a beam energy of 30 keV (wavelength 0.04133 nm).

XRD測定は、試験片平行部に0.4×0.4 mm2の範囲でビームを連続照射し、時間分解能2.0 sec、測定角度7.7027°~38.3841°、ビームエネルギー30 keV(波長0.04133 nm)という条件で行われた。このとき得られる回折線は、6つ連結させた一次元検出器MYTHENで同時に広範囲の測定が短時間で可能となる。 XRD measurements were performed by continuously irradiating the parallel part of the specimen with a beam in an area of 0.4 × 0.4 mm 2 under the conditions of a time resolution of 2.0 sec, a measurement angle of 7.7027° to 38.3841°, and a beam energy of 30 keV (wavelength 0.04133 nm). Ta. The diffraction lines obtained at this time can be measured simultaneously over a wide range in a short time using six one-dimensional detectors, MYTHEN.

得られたXRD測定と引張試験の結果、応力印加に伴うX線回折プロファイルのピークシフト量と半値幅の変化を求めた。ピークシフト量については、一般に試料へ引張応力を印加すると、X線回折ピークが低角側にシフトする。するとブラッグの式(数2及び数3)より求められる(hkl)格子面間隔dhkl(nm)が大きくなる。 As a result of the obtained XRD measurement and tensile test, the amount of peak shift and change in half-width of the X-ray diffraction profile due to stress application were determined. Regarding the amount of peak shift, generally when tensile stress is applied to a sample, the X-ray diffraction peak shifts to the lower angle side. Then, the (hkl) lattice spacing d hkl (nm) obtained from Bragg's equation (Equations 2 and 3) increases.

Figure 0007391356000005
Figure 0007391356000005

Figure 0007391356000006
Figure 0007391356000006

ここで、応力0 MPaの時点における格子面間隔をd0 hklとして、数4から格子ひずみεhklを求めた。 Here, the lattice strain ε hkl was determined from Equation 4, with the lattice spacing at the time of the stress being 0 MPa as d 0 hkl .

Figure 0007391356000007
Figure 0007391356000007

この格子ひずみεhklと印加した真応力をプロットした。この測定結果の解析は、Ni-Wの(111)、Niの(111), (200)ピークについて行われた。ただし、Ni/Ni-W積層材については回折ピークがそれぞれ近い位置にあり分離が必要なため、図11に示されるようにピーク分離を行った。すなわち、Ni及びNi-Wともに強度が最も高いのは(111)面の回折ピークであるため、この2つのピークを分離し、ピーク位置及び半値幅を求めた。このときNi-Wはアモルファス相を含んでいるため、(111)面という表記は本来正確ではないが、ここでは便宜上(111)面とする。 The lattice strain ε hkl and the applied true stress were plotted. Analysis of this measurement result was performed on the (111) peaks of Ni-W and the (111) and (200) peaks of Ni. However, for the Ni/Ni-W laminate, the diffraction peaks are located close to each other and require separation, so peak separation was performed as shown in FIG. 11. That is, since the diffraction peak of the (111) plane has the highest intensity for both Ni and Ni-W, these two peaks were separated and the peak position and half-value width were determined. At this time, since Ni-W contains an amorphous phase, the expression (111) plane is originally not accurate, but for convenience, it is referred to as (111) plane.

XRD測定結果から得られた回折ピーク位置及び半値幅からScherrer式(数1)を用いて単層材及び多層材のNi及びNi-Wの結晶子サイズを算出した。表4は、5種類の引張試験片の結晶子サイズの測定結果を示す。表4より、単層材又は多層材にかかわらずNi-W層とNi層は同様の組織を有していることが確認された。 The crystallite size of Ni and Ni-W in the single-layer material and the multi-layer material was calculated from the diffraction peak position and half-value width obtained from the XRD measurement results using the Scherrer equation (Equation 1). Table 4 shows the measurement results of crystallite size of five types of tensile test specimens. From Table 4, it was confirmed that the Ni-W layer and the Ni layer have similar structures regardless of whether the material is a single-layer material or a multi-layer material.

Figure 0007391356000008
Figure 0007391356000008

[熱機械分析]
Ni-W単層材、Ni単層材及びNi/Ni-W多層材の自由体積減少による収縮量を調べるために、熱機械分析装置(TMA分析装置/リガク製 TMA8310)を用いて一定の引張応力下、高温保持中の変位(試料の変形)を測定した。図12は、TMA測定装置の測定部の概略図を示す。ここでは、引張試験片を試料として取り付け、引張荷重は1.96 MPaとした。温度は約300 ℃まで昇温速度10 K/分で設定し、2時間保持した後,室温まで空冷した。ただし、設定温度300 ℃にした場合、等温保持時の温度は317 ℃となった。
[Thermomechanical analysis]
In order to investigate the amount of shrinkage due to free volume reduction of Ni-W single-layer materials, Ni single-layer materials, and Ni/Ni-W multilayer materials, we used a thermomechanical analyzer (TMA analyzer/Rigaku TMA8310) to Displacement (deformation of the sample) during high temperature holding under stress was measured. FIG. 12 shows a schematic diagram of the measurement section of the TMA measurement device. Here, a tensile test piece was attached as a sample, and the tensile load was 1.96 MPa. The temperature was set at a heating rate of 10 K/min to approximately 300 °C, held for 2 hours, and then air cooled to room temperature. However, when the set temperature was set to 300 °C, the temperature during isothermal holding was 317 °C.

図13は、TMA分析の測定結果を示す。参考試料として、スルファミン酸浴より作製され粗大粒Ni単層材についても測定した。通常の材料では、温度上昇と共に膨張し、等温保持中にわずかに膨張し、冷却すると変位は0よりもわずかに大きな値まで戻ってくる挙動を示す。Watt浴により作製された微細粒Ni単層材は、約20 μmの収縮を示しており、Ni-W単層材は30μm程度と大きな収縮を示した。さらに多層材3種類にも収縮が起きていた。 FIG. 13 shows the measurement results of TMA analysis. As a reference sample, a coarse-grained Ni single-layer material prepared from a sulfamic acid bath was also measured. Normal materials expand as the temperature rises, expand slightly during isothermal maintenance, and return to a value slightly larger than 0 when cooled. The fine-grained Ni single-layer material prepared by the Watt bath showed a shrinkage of about 20 μm, and the Ni-W single-layer material showed a large shrinkage of about 30 μm. Additionally, three types of multilayer materials also experienced shrinkage.

このTMA分析の測定結果について、さらに比較しやすいように温度が300 ℃に達してから10 分後から110分の間のデータで比較した。このようにすると、昇温・冷却のタイミングによるわずかな膨張・収縮のずれを修正可能であり、擬似的な経時変化の高速試験結果が得られると見込まれる。図14は、Ni単層材(粗大粒Ni、スルファミン酸浴)とNi-W単層材の317 ℃-110 分等温保持区間における熱収縮量を示す。粗大粒Ni単層材のような一般的な金属材料は、TMAの等温保持区間では変位はほぼ移動しなかった。一方、作製直後のNi-W単層材は、0.05%程度の大きな収縮を示した。さらに4ヶ月経過後のNi-W単層材においては、作製直後よりも収縮量は小さくなっていた。このことより、Ni-W単層材は室温においても収縮していることが確認された。 For easier comparison, the measurement results of this TMA analysis were compared using data from 10 minutes after the temperature reached 300°C to 110 minutes. In this way, it is possible to correct slight deviations in expansion and contraction caused by the timing of temperature rise and cooling, and it is expected that high-speed test results with simulated changes over time will be obtained. Figure 14 shows the amount of thermal shrinkage of the Ni single layer material (coarse grained Ni, sulfamic acid bath) and the Ni-W single layer material in the isothermal holding period at 317°C for 110 minutes. In the case of common metal materials such as coarse-grained Ni single-layer materials, there was almost no displacement during the isothermal holding period of TMA. On the other hand, the Ni-W single layer material immediately after fabrication showed a large shrinkage of about 0.05%. Furthermore, after 4 months had elapsed, the amount of shrinkage in the Ni-W single layer material was smaller than that immediately after fabrication. This confirmed that the Ni-W single-layer material contracts even at room temperature.

図15は、3種類の単層材及び3種類の積層材の317 ℃-110 分等温保持区間における熱収縮量を示す。等温保持中、微細粒Ni単層材は約0.02%の収縮を示したが、Ni-W単層材は約0.05%と大きな収縮を示している。一方、Ni/Ni-W多層材は単層材の中間の収縮量を示し、8層材では約0.045%、16層材では約0.035 %、48層材では約0.03 %と層厚(1層あたりの厚さ)が薄くなっていくに従い、収縮量が小さくなった。このことから、微細粒Ni単層材及びNi-W単層材は、それぞれ単独では収縮を示すが、微細粒Ni材の収縮量がNi-Wよりも小さいために、Ni/Ni-W多層材においては、Ni層によってNi-W層の収縮が抑制されていると考察された。また、Ni/Ni-W多層材においては、層数が増える(1層あたり厚さを減少させる)と収縮抑制効果が大きくなることが示唆された。 Figure 15 shows the amount of thermal shrinkage of three types of single-layer materials and three types of laminated materials in the isothermal holding period at 317°C for 110 minutes. During isothermal holding, the fine-grained Ni single-layer material showed a shrinkage of about 0.02%, but the Ni-W single-layer material showed a large shrinkage of about 0.05%. On the other hand, the Ni/Ni-W multilayer material exhibits a shrinkage amount intermediate to that of the single-layer material, with the 8-layer material showing approximately 0.045%, the 16-layer material approximately 0.035%, and the 48-layer material approximately 0.03%. The amount of shrinkage decreased as the thickness around the area became thinner. From this, the single-layer fine-grained Ni material and the single-layer Ni-W material exhibit shrinkage when used alone, but since the amount of shrinkage of the fine-grained Ni material is smaller than that of Ni-W, the Ni/Ni-W multilayer material exhibits shrinkage. In the material, it was considered that the shrinkage of the Ni-W layer was suppressed by the Ni layer. In addition, it was suggested that in Ni/Ni-W multilayer materials, the shrinkage suppression effect increases as the number of layers increases (decreases the thickness per layer).

図16は、Ni/Ni-W多層材の1層あたりの厚さと、塑性伸び及びTMA収縮との関係をプロットしたグラフを示す。TMA分析より、多層材においては1層あたりの厚さを薄くするほど経時変化による収縮を抑制し得るが、引張試験においては1層あたりの厚さを1μmにしたときに最も大きな塑性伸びが示された。このことから、経時変化による脆化を抑制し、かつ、良好な塑性伸びを示すためには、多層材の厚さは1層あたり0.75μm以上2μm以下とすることが好ましく、0.85μm以上1.3μm以下とすることがより好ましいと判断された。 FIG. 16 shows a graph plotting the relationship between the thickness per layer of the Ni/Ni-W multilayer material and the plastic elongation and TMA shrinkage. TMA analysis shows that in multilayer materials, shrinkage due to aging can be suppressed by decreasing the thickness of each layer, but in tensile tests, the largest plastic elongation was observed when the thickness of each layer was 1 μm. It was done. Therefore, in order to suppress embrittlement due to aging and exhibit good plastic elongation, the thickness of the multilayer material is preferably 0.75 μm or more and 2 μm or less per layer, and 0.85 μm or more and 1.3 μm or less. It was determined that the following is more preferable.

本発明の多層材は、Ni層とNi-W層又はNi-P層が2層以上積層される。円筒形状のような残留応力が発生してもバランスの取れる部材である場合には、多層材全体として合計2層以上積層されればよいが、平面形状の部材の場合には合計3層以上積層されることが好ましい。電析時の残留応力の発生の見地からは、多層材全体としての積層数は、50層以下であることが実用的である。 The multilayer material of the present invention has two or more stacked Ni layers and Ni-W layers or Ni-P layers. In the case of a cylindrical member that can be balanced even if residual stress occurs, it is sufficient to laminate two or more layers in total for the entire multilayer material, but in the case of a planar member, a total of three or more layers may be laminated. It is preferable that From the viewpoint of the generation of residual stress during electrodeposition, it is practical that the number of laminated layers in the entire multilayer material is 50 or less.

Ni-W層又はNi-P層は、全体として3層以上積層する場合には、最外層(最表層)がNi-W層又はNi-P層であってもよい。 When three or more Ni-W layers or Ni-P layers are laminated as a whole, the outermost layer (surface layer) may be the Ni-W layer or the Ni-P layer.

本発明においては、Ni層は、Niのみから構成されるNi層に限定されず、微量のB. P等を添加して硬質化されたNi層であってもよい。このような硬質化されたNi層は、Niのみから構成されるNi層の場合と同様に、面心立方型の最密充填の原子構造を維持している場合には、加熱雰囲気中での体積収縮が無いため、Niのみから構成されるNi層と同様の効果を有する。 In the present invention, the Ni layer is not limited to a Ni layer composed only of Ni, but may be a Ni layer hardened by adding a trace amount of B.P. Such a hardened Ni layer, if it maintains a face-centered cubic close-packed atomic structure, will not react well in a heated atmosphere, as in the case of a Ni layer composed only of Ni. Since there is no volumetric shrinkage, it has the same effect as a Ni layer made of only Ni.

図17は、Ni/Ni-W多層材における脆化抑制の概念図を示す。Ni-W層は、時間経過によりアモルファス相での自由体積の減少により経時的に収縮する。Ni層は、電解析出法で作製された微細粒材であるために結晶粒界が非平衡粒界からなっており、経時的に平衡になろうとする。その際に非平衡粒界中の自由体積が失われ、収縮すると考えられる。Ni層及びNi-W層は、いずれも室温で時間経過に伴い収縮するが、Ni層の収縮量がNi-W層の収縮量の半分以下と小さいために、Ni/Ni-W多層材ではNi層がNi-W層の収縮を抑制していると考えられる。この場合、Ni-W層には引張残留応力、Ni層には圧縮残留応力がかかっていると予測される。 FIG. 17 shows a conceptual diagram of embrittlement suppression in Ni/Ni-W multilayer materials. The Ni-W layer shrinks over time due to the decrease in free volume in the amorphous phase over time. Since the Ni layer is a fine-grained material produced by electrolytic deposition, the grain boundaries are non-equilibrium grain boundaries, which tend to become balanced over time. At that time, it is thought that the free volume in the non-equilibrium grain boundaries is lost and shrinkage occurs. Both the Ni layer and the Ni-W layer shrink over time at room temperature, but since the amount of shrinkage of the Ni layer is small, less than half of the amount of shrinkage of the Ni-W layer, Ni/Ni-W multilayer materials It is thought that the Ni layer suppresses the shrinkage of the Ni-W layer. In this case, it is predicted that tensile residual stress is applied to the Ni-W layer and compressive residual stress is applied to the Ni layer.

本明細書においては、フォトリソグラフィー技術を用いて、Cu基板上に引張試験片の形状に電解析出法によってNi-W合金層及び純Ni層を成形させた後、基板(基材)であるCuを酸によって溶解させた。しかし、基材を除去しない場合には、多層材によってメッキされたメッキ製品として利用し得る。 In this specification, a Ni-W alloy layer and a pure Ni layer are formed by electrolytic deposition into the shape of a tensile test piece on a Cu substrate using photolithography technology, and then the substrate (base material) is formed. Cu was dissolved by acid. However, if the base material is not removed, it can be used as a plated product plated with a multilayer material.

本願明細書においては、Ni/Ni-W多層材の作製例について説明したが、Ni-P合金は、Ni-W合金と同様に、アモルファス単層組織、ナノ結晶単層組織もしくはアモルファスとナノ結晶の複合組織を有することが可能であり、Ni/Ni-P積層材についても、Ni/Ni-W積層材と同様の実験結果が得られることが推測される。 In this specification, an example of the production of a Ni/Ni-W multilayer material has been described, but like the Ni-W alloy, the Ni-P alloy has an amorphous single-layer structure, a nanocrystalline single-layer structure, or an amorphous and nanocrystalline structure. It is assumed that the same experimental results as the Ni/Ni-W laminate will be obtained for the Ni/Ni-P laminate.

本発明の多層材及びその製造方法、多層材メッキ方法は、金属、冶金分野、又は高強度・高耐久性の表面被膜形成、高強度のナノ金属金型、優れたばね特性を生かしたマイクロ構造部材開発等の技術分野において有用である。
The multilayer material, its manufacturing method, and the multilayer material plating method of the present invention are applicable to the field of metals, metallurgy, and the formation of high-strength and highly durable surface coatings, high-strength nanometal molds, and microstructure members that take advantage of excellent spring properties. It is useful in technical fields such as development.

Claims (8)

Ni層とNi-W層又はNi-P層のみとが交互に積層されており、
前記Ni層と前記Ni-W層又は前記Ni-P層の1層あたりの厚さが0.75μm以上2μm以下であ
Ni層とNi-W層又はNi-P層の積層数が3層以上50層以下である、
多層材。
Ni layers and Ni-W layers or only Ni-P layers are stacked alternately,
The thickness of each layer of the Ni layer and the Ni-W layer or the Ni-P layer is 0.75 μm or more and 2 μm or less,
The number of laminated Ni layers and Ni-W layers or Ni-P layers is 3 or more and 50 or less,
Multilayer material.
前記Ni-W層におけるWの割合、又は前記Ni-P層におけるPの割合が15原子%以上20原子%以下である、
請求項1に記載の多層材。
The proportion of W in the Ni-W layer or the proportion of P in the Ni-P layer is 15 atomic % or more and 20 atomic % or less,
Multilayer material according to claim 1.
最外層がNi-W層又はNi-P層である、The outermost layer is a Ni-W layer or a Ni-P layer,
請求項1又は2に記載の多層材。The multilayer material according to claim 1 or 2.
電解析出法によって基材上にNi層を析出させる工程(a)と、
電解析出法によって基材上にNi-W層を析出させる工程(b1)又はNi-P層を析出させる工程(b2)と、
基材を溶解させる工程(c)とを有し、
前記工程(a)と前記工程(b1)又は前記工程(b2)とを交互に繰り返し、
前記工程(a)において形成される前記Ni層の厚さが0.75μm以上2μm以下であり、
前記工程(b1)において形成される前記Ni-W層又は前記工程(b2)において形成される前記Ni-P層の厚さがそれぞれ0.75μm以上2μm以下である、
ことを特徴とする、多層材の製造方法。
a step (a) of depositing a Ni layer on the base material by electrolytic deposition;
A step (b1) of depositing a Ni-W layer or a step (b2) of depositing a Ni-P layer on the base material by electrolytic deposition,
(c) dissolving the base material;
Alternately repeating the step (a) and the step (b1) or the step (b2),
The thickness of the Ni layer formed in the step (a) is 0.75 μm or more and 2 μm or less,
The thickness of the Ni-W layer formed in the step (b1) or the Ni-P layer formed in the step (b2) is 0.75 μm or more and 2 μm or less, respectively.
A method for manufacturing a multilayer material, characterized by:
前記工程(b1)において形成される前記Ni-W層におけるWの割合、又は前記工程(b2)において形成される前記Ni-P層におけるPの割合が15原子%以上20原子%以下である、
請求項に記載の多層材の製造方法。
The proportion of W in the Ni-W layer formed in the step (b1) or the proportion of P in the Ni-P layer formed in the step (b2) is 15 atomic % or more and 20 atomic % or less,
A method for manufacturing a multilayer material according to claim 4 .
電解析出法によって基材上にNi層を析出させる工程(a)と、
電解析出法によって基材上にNi-W層を析出させる工程(b1)又はNi-P層を析出させる工程(b2)とを有し、
前記工程(a)と前記工程(b1)又は前記工程(b2)のみとを交互に繰り返し、
前記工程(a)において形成される前記Ni層の厚さが0.75μm以上2μm以下であり、
前記工程(b1)において形成される前記Ni-W層又は前記工程(b2)において形成される前記Ni-P層の厚さがそれぞれ0.75μm以上2μm以下であ
Ni層とNi-W層又はNi-P層の積層数が3層以上50層以下であることを特徴とする、多層材メッキ方法。
a step (a) of depositing a Ni layer on the base material by electrolytic deposition;
A step (b1) of depositing a Ni-W layer on a base material by an electrolytic deposition method or a step (b2) of depositing a Ni-P layer,
Alternately repeating the step (a) and the step (b1) or only the step (b2),
The thickness of the Ni layer formed in the step (a) is 0.75 μm or more and 2 μm or less,
The thickness of the Ni-W layer formed in the step (b1) or the Ni-P layer formed in the step (b2) is 0.75 μm or more and 2 μm or less, respectively,
A multilayer material plating method characterized in that the number of stacked Ni layers and Ni-W layers or Ni-P layers is 3 or more and 50 or less .
前記工程(b1)において形成される前記Ni-W層におけるWの割合、又は前記工程(b2)において形成される前記Ni-P層におけるPの割合が15原子%以上20原子%以下である、
請求項に記載の多層材メッキ方法。
The proportion of W in the Ni-W layer formed in the step (b1) or the proportion of P in the Ni-P layer formed in the step (b2) is 15 atomic % or more and 20 atomic % or less,
The multilayer material plating method according to claim 6 .
最外層をNi-W層又はNi-P層とする、The outermost layer is a Ni-W layer or a Ni-P layer,
請求項6又は7に記載の多層材メッキ方法。The multilayer material plating method according to claim 6 or 7.
JP2019161565A 2019-09-04 2019-09-04 Multilayer material and its manufacturing method, multilayer material plating method Active JP7391356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161565A JP7391356B2 (en) 2019-09-04 2019-09-04 Multilayer material and its manufacturing method, multilayer material plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161565A JP7391356B2 (en) 2019-09-04 2019-09-04 Multilayer material and its manufacturing method, multilayer material plating method

Publications (2)

Publication Number Publication Date
JP2021038445A JP2021038445A (en) 2021-03-11
JP7391356B2 true JP7391356B2 (en) 2023-12-05

Family

ID=74848326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161565A Active JP7391356B2 (en) 2019-09-04 2019-09-04 Multilayer material and its manufacturing method, multilayer material plating method

Country Status (1)

Country Link
JP (1) JP7391356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022138295A1 (en) * 2020-12-25 2022-06-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068546A (en) 2003-08-26 2005-03-17 Toru Yamazaki Multiple alloy with three-dimensional periodic hierarchical structure, and its production method
JP2005146405A (en) 2003-11-14 2005-06-09 Toru Yamazaki Electrodeposition stacked alloy thin sheet, and its production method
WO2008059971A1 (en) 2006-11-16 2008-05-22 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068546A (en) 2003-08-26 2005-03-17 Toru Yamazaki Multiple alloy with three-dimensional periodic hierarchical structure, and its production method
JP2005146405A (en) 2003-11-14 2005-06-09 Toru Yamazaki Electrodeposition stacked alloy thin sheet, and its production method
WO2008059971A1 (en) 2006-11-16 2008-05-22 National University Corporation Hokkaido University Multilayer alloy coating film, heat-resistant metal member having the same, and method for producing multilayer alloy coating film

Also Published As

Publication number Publication date
JP2021038445A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Bhardwaj et al. Effect of laser scanning strategies on texture, physical and mechanical properties of laser sintered maraging steel
Nasim et al. A review of high-strength nanolaminates and evaluation of their properties
Padilla et al. A review of fatigue behavior in nanocrystalline metals
US6902827B2 (en) Process for the electrodeposition of low stress nickel-manganese alloys
Shen et al. Nanoscratching deformation and fracture toughness of electroless Ni–P coatings
US11661664B1 (en) Thin-walled high temperature alloy structures via multi-material additive manufacturing
US11851320B2 (en) Method of depositing nanotwinned nickel-molybdenum-tungsten alloys
Erb et al. Electrodeposited nanocrystalline metals, alloys, and composites
JP7391356B2 (en) Multilayer material and its manufacturing method, multilayer material plating method
Erb Size effects in electroformed nanomaterials
Wang et al. Effect of yttrium addition on microstructural evolution and high temperature mechanical properties of Ni-based superalloy produced by selective laser melting
Nakayama et al. Correlation Between Mechanical Properties and Microstructure as a Function of W Content in Ni–W Dual-Phase Alloys
Feng et al. Hierarchical eutectic structure and superior mechanical property in low cobalt content AlCo0. 2CrFeNi2. 1 alloy by laser metal deposition
Fan et al. Interface-controlled mechanical properties and irradiation hardening in nanostructured Cr/Zr multilayers
Cancellieri et al. Microstructure-property control in functional materials by multilayer design
Liang et al. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures
Huang et al. Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale
Liu et al. TiC/metal nacrous structures and their fracture toughness increase
Lin et al. Enhancing plasticity in laser additive manufactured high-entropy alloys: The combined effect of thermal cycle induced dissolution and twinning
Wang et al. Layering Ni to mediate the Kirkendall effect (KE) in cu/ta nonequilibrium diffusion for enhanced abrasion resistance
Zhang et al. Multilayered structure control for obtaining electrodeposited nanocrystalline iron–nickel alloy with high strength and ductility
Hu et al. Homogeneous nanocrystalline Ni–Co alloys with excellent mechanical properties via abrasive-assisted electroforming
Nandha Kumar et al. Effect of Heat Treatment on Structure and Properties of Laser Powder Bed Fusion Inconel 939
Haché Synthesis and Characterization of Electrodeposited Nanocrystalline Medium-and High-Entropy Alloys
Chen et al. Study of thermal ageing effects on Rh coating's mechanical performance upon CuCrZr substrate through modeling and experimental methods

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7391356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150