JP7390187B2 - Vacuum water heater - Google Patents

Vacuum water heater Download PDF

Info

Publication number
JP7390187B2
JP7390187B2 JP2019237451A JP2019237451A JP7390187B2 JP 7390187 B2 JP7390187 B2 JP 7390187B2 JP 2019237451 A JP2019237451 A JP 2019237451A JP 2019237451 A JP2019237451 A JP 2019237451A JP 7390187 B2 JP7390187 B2 JP 7390187B2
Authority
JP
Japan
Prior art keywords
medium liquid
heat medium
heat
heater
heating device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237451A
Other languages
Japanese (ja)
Other versions
JP2021105491A (en
Inventor
裕 太田
剛志 山口
健一 穂積
智郎 三浦
Original Assignee
株式会社日本サーモエナー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本サーモエナー filed Critical 株式会社日本サーモエナー
Priority to JP2019237451A priority Critical patent/JP7390187B2/en
Publication of JP2021105491A publication Critical patent/JP2021105491A/en
Application granted granted Critical
Publication of JP7390187B2 publication Critical patent/JP7390187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成された熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備え、温水発生装置として用いられる真空式温水機に関する。 The present invention includes a hermetically sealed can whose inside is maintained at below atmospheric pressure, a heat transfer liquid tank formed in the lower part of the can to store a heat transfer liquid, and a reduced pressure steam formed in the upper part of the can. a hot water heat exchanger placed in the reduced pressure steam chamber to condense and liquefy the steam generated in the reduced pressure steam chamber through heat exchange with water; The present invention relates to a vacuum water heater that is equipped with a heating means for heating and evaporating a liquid medium and is used as a hot water generator.

従来、温水発生装置として用いられる真空式温水機としては、例えば、図5に示す構造のものが知られている(特許文献1参照、以下、従来技術1という。)。 Conventionally, as a vacuum water heater used as a hot water generator, for example, one having a structure shown in FIG. 5 is known (see Patent Document 1, hereinafter referred to as Prior Art 1).

即ち、前記真空式温水機は、図5に示す如く、缶体51、バーナ52、燃焼室53、減圧蒸気室54、熱媒水55、温水熱交換器56、水管57、抽気ポンプ(図示省略)等を備えており、缶体51内を抽気ポンプにより大気圧以下に減圧して真空に近い状態とし、この状態でバーナ52により熱媒水55を加熱沸騰させて減圧蒸気室54内にそのときの熱媒水55の温度と同じ蒸気を発生させ、その蒸気が温水熱交換器56の表面で凝縮することで温水熱交換器56内の給水を加熱し、温水を作るようにしたものである。
この真空式温水機は、缶体51内が減圧されているため、温水熱交換器から多量の温水を取り出す高負荷運転時においても、要求される温度の温水を素早く負荷側へ供給できるメリットがある。
That is, as shown in FIG. 5, the vacuum water heater includes a can body 51, a burner 52, a combustion chamber 53, a reduced pressure steam chamber 54, a heat medium water 55, a hot water heat exchanger 56, a water pipe 57, and an air extraction pump (not shown). ) etc., the inside of the can body 51 is depressurized to below atmospheric pressure by an air extraction pump to create a near-vacuum state, and in this state, the heat transfer water 55 is heated to boiling by the burner 52, and the water is released into the reduced pressure steam chamber 54. This system generates steam that has the same temperature as the heat transfer water 55 at that time, and the steam condenses on the surface of the hot water heat exchanger 56 to heat the water supplied in the hot water heat exchanger 56 and create hot water. be.
This vacuum type water heater has the advantage of being able to quickly supply hot water at the required temperature to the load side even during high-load operation when a large amount of hot water is extracted from the hot water heat exchanger because the pressure inside the can body 51 is reduced. be.

しかし、従来技術1のように燃焼式バーナにより熱媒水を加熱している真空式温水機においては、熱効率が80%~95%程度までとなる問題点があり、さらに、缶体容量や使用燃料に応じたバーナの選定が必要となるため、多種類のバーナを用意しておく必要があるという問題点もある。 However, in a vacuum water heater that heats heat medium water using a combustion burner as in Conventional Technology 1, there is a problem that the thermal efficiency is only about 80% to 95%. Since it is necessary to select a burner according to the fuel, there is also the problem that it is necessary to prepare many types of burners.

上記の熱効率を高めるため、燃焼排ガス中に含まれる水蒸気の潜熱を回収する熱回収装置を付設することが提案されている(特許文献2参照、以下、従来技術2という。)。しかし従来技術2では、熱回収装置を別個に設けるため装置全体が大型化するうえ、燃焼排ガスが熱交換により低温となるため白煙が生じたり、燃焼排ガス中の水蒸気が凝縮するため発生する凝縮液の中和処理装置や腐食対策が必要になる問題点がある。 In order to improve the above-mentioned thermal efficiency, it has been proposed to attach a heat recovery device that recovers the latent heat of water vapor contained in the combustion exhaust gas (see Patent Document 2, hereinafter referred to as Prior Art 2). However, in Conventional Technology 2, the heat recovery device is provided separately, which increases the size of the entire device, and the flue gas becomes colder due to heat exchange, resulting in white smoke, and condensation occurs as water vapor in the flue gas condenses. There are problems that require liquid neutralization equipment and corrosion countermeasures.

また、熱効率を高めるため、ヒートポンプ給湯器などの高温水と補助用の燃焼式バーナとを用いる真空式温水機の発明がある(特許文献3参照、以下、従来技術3という。)。この従来技術3は前記高温水を主熱源としており、燃焼式バーナを補助的に使用しているため、缶体効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減を図ることができる利点がある。しかし従来技術3では、熱媒液槽を燃焼式バーナのための熱媒液槽と、高温水用の熱媒液槽との二つの槽に区画していることから、装置が大型化する問題がある。さらに、前記温水熱交換器を低温側と高温側とに分け、低温側温水熱交換器の下方位置の高温水用熱媒液槽に温水熱交換器で凝縮した熱媒液を導く構造となっており、温水熱交換器を二つに分割するため装置が複雑化、大型化する問題もある。 Furthermore, in order to increase thermal efficiency, there is an invention of a vacuum water heater using high temperature water and an auxiliary combustion burner, such as a heat pump water heater (see Patent Document 3, hereinafter referred to as Prior Art 3). This conventional technology 3 uses the high-temperature water as the main heat source and uses a combustion type burner as an auxiliary, so the can body efficiency is high and the annual energy consumption and running costs are reduced, as well as CO 2 emissions. It has the advantage of being able to However, in Conventional Technology 3, the heat medium liquid tank is divided into two tanks, one for the combustion burner and the other for high-temperature water, resulting in the problem of an increase in the size of the device. There is. Furthermore, the hot water heat exchanger is divided into a low temperature side and a high temperature side, and the heat medium liquid condensed in the hot water heat exchanger is guided to a high temperature water heat medium liquid tank located below the low temperature side hot water heat exchanger. However, since the hot water heat exchanger is divided into two parts, there is a problem that the equipment becomes complicated and large.

特開平11-337002号公報Japanese Patent Application Publication No. 11-337002 特開2012-102906号公報JP2012-102906A 特許6359321号公報Patent No. 6359321

本発明は、これらの問題点に鑑みて為されたものであり、その目的は、装置の複雑化と大型化を抑制しながら、熱効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減等を図れるようにした真空式温水機を提供することにある。 The present invention has been made in view of these problems, and its purpose is to suppress the complexity and size of the device while achieving high thermal efficiency, reducing annual energy consumption and running costs, and reducing CO 2 An object of the present invention is to provide a vacuum type water heater that can reduce the amount of water used.

本発明は前記課題を解決するために、次のように構成したものである。
即ち本発明に係る真空式温水機は、内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成されて熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備えた真空式温水機であって、前記加熱手段は、主加熱器と、前記主加熱器よりも出力が大きい補助用加熱装置とを備え、前記補助用加熱装置は、前記主加熱器の鉛直方向下方に配置されていることを特徴とする。
In order to solve the above problems, the present invention is constructed as follows.
That is, the vacuum water heater according to the present invention includes a sealed can whose inside is maintained at atmospheric pressure or lower, a heat medium liquid tank formed at the lower part of the can to store a heat medium liquid, and a A reduced pressure steam chamber formed in the upper part, a hot water heat exchanger placed in the reduced pressure steam chamber to condense and liquefy the steam generated in the reduced pressure steam chamber through heat exchange with water, and a heat medium in a heat medium liquid tank. A vacuum water heater equipped with a heating means disposed in a liquid to heat and evaporate a heat transfer liquid, the heating means comprising a main heater and an auxiliary heating device having a larger output than the main heater. The auxiliary heating device is arranged vertically below the main heater.

前記主加熱器により周囲の熱媒液は加熱されて熱媒液蒸気となる。この熱媒液蒸気は前記温水熱交換器の表面で、温水熱交換器に供給される水との熱交換により冷却されて凝縮し、液滴となって前記熱媒液槽に滴下する。このとき、主加熱器の伝熱面の温度は、前記缶体内の圧力下で熱媒液が沸騰する温度(以下、熱媒液の飽和温度という)よりも高いものの、その飽和温度との差である過熱度は低いことから、この主加熱器の伝熱面では、沸騰気泡がごく少数みられる程度の部分的な核沸騰状態となっている。 The surrounding heat medium liquid is heated by the main heater and turns into heat medium liquid vapor. This heat medium liquid vapor is cooled and condensed on the surface of the hot water heat exchanger by heat exchange with the water supplied to the hot water heat exchanger, and drops into the heat medium liquid tank in the form of droplets. At this time, although the temperature of the heat transfer surface of the main heater is higher than the temperature at which the heat transfer liquid boils under the pressure inside the can (hereinafter referred to as the saturation temperature of the heat transfer liquid), the difference from the saturation temperature is Since the degree of superheat is low, the heat transfer surface of this main heater is in a partial nucleate boiling state with only a few boiling bubbles visible.

真空式温水機から多量の温水が取り出されるなど、温水熱交換器での負荷が大きくなると、温水熱交換器で冷却され凝縮して滴下する熱媒液が増加し、熱媒液槽の熱媒液温度が低下する。そして熱媒液槽内の熱媒液の温度が設定温度以下になると、前記補助用加熱装置が駆動される。補助用加熱装置はその出力が主加熱器よりも大きいため、熱媒液槽内の熱媒液が急速に加熱され蒸発する。この結果、多量に発生した熱媒液蒸気により前記温水熱交換器内を流通する水が効率よく加熱され、真空式温水機から多量の温水が取り出される。なお、前記補助用加熱装置の出力が主加熱器よりも大きいとは、補助用加熱装置が主加熱器よりも、多量の熱媒液を速やかに加熱できる高い加熱能力を備えていることをいう。 When the load on the hot water heat exchanger increases, such as when a large amount of hot water is taken out of a vacuum water heater, the amount of heat medium liquid that is cooled by the hot water heat exchanger, condenses, and drips increases, causing the heat medium in the heat medium liquid tank to increase. Liquid temperature decreases. When the temperature of the heat medium liquid in the heat medium liquid tank becomes equal to or lower than the set temperature, the auxiliary heating device is driven. Since the output of the auxiliary heating device is greater than that of the main heater, the heat medium liquid in the heat medium liquid tank is rapidly heated and evaporated. As a result, the water flowing through the hot water heat exchanger is efficiently heated by the large amount of heat medium liquid vapor generated, and a large amount of hot water is taken out from the vacuum water heater. Note that the output of the auxiliary heating device is greater than that of the main heater means that the auxiliary heating device has a higher heating capacity than the main heater to be able to quickly heat a large amount of heat medium liquid. .

前記補助用加熱装置は出力が大きく、その伝熱面では周囲の熱媒液が激しく沸騰する発達した核沸騰状態となっていることから、伝熱面上で大きな気泡が形成され、次々と離脱する。この離脱した気泡や加熱された熱媒液の上昇により、補助用加熱装置の上方に配置されている前記主加熱器の周囲に熱媒液の上昇流が生じる。この結果、前記主加熱器の伝熱面の周囲で熱媒液が流動し、主加熱器の熱伝達率が著しく向上する。 The auxiliary heating device has a large output, and its heat transfer surface is in a state of advanced nucleate boiling where the surrounding heating medium boils violently, so large bubbles are formed on the heat transfer surface and are separated one after another. do. Due to the rise of the separated bubbles and the heated heat medium liquid, an upward flow of the heat medium liquid is generated around the main heater disposed above the auxiliary heating device. As a result, the heat medium liquid flows around the heat transfer surface of the main heater, and the heat transfer coefficient of the main heater is significantly improved.

前記補助用加熱装置の加熱によりその伝熱面から熱媒液蒸気の気泡が多数発生するが、補助用加熱装置の上方に配置された主加熱器は熱媒液槽の液面近傍に位置するため、この主加熱器がバッフルの役割を果たし、液面の遊動が抑制される。この結果、沸騰液の飛沫が上方の温水熱交換器の表面に降りかかることが軽減され、熱媒液蒸気の凝縮熱伝達が阻害されるおそれが低減されるので、温水熱交換器を液面から離隔させたり、温水熱交換器を大型化させたりする必要がなく、真空式温水機全体がコンパクトに形成される。 The heating of the auxiliary heating device generates many bubbles of heat medium liquid vapor from its heat transfer surface, but the main heater placed above the auxiliary heating device is located near the liquid level of the heat medium liquid tank. Therefore, this main heater plays the role of a baffle, and the floating of the liquid level is suppressed. As a result, splashes of boiling liquid are reduced from falling on the surface of the hot water heat exchanger above, and the risk of inhibiting the condensation heat transfer of the heat medium liquid vapor is reduced. There is no need to separate the vacuum water heater or increase the size of the hot water heat exchanger, and the entire vacuum water heater can be made compact.

また、前記加熱手段の主加熱器と補助用加熱装置は、熱媒液槽の熱媒液中に上下に配置されるので、設置面積を拡げたり熱媒液槽を複数に分割したりする必要がなく、真空式温水機の大型化、複雑化が抑制される。 In addition, since the main heater and the auxiliary heating device of the heating means are arranged one above the other in the heat medium liquid of the heat medium liquid tank, it is necessary to expand the installation area or divide the heat medium liquid tank into multiple parts. This prevents the vacuum water heater from becoming larger and more complex.

前記主加熱器は、前記熱媒液槽内に配置されて熱媒液槽内の熱媒液を加熱する装置であればよく、特定の加熱装置に限定されない。例えば、主加熱器は電気ヒータなどであっても良い。しかし前記主加熱器が、熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えていると、熱媒液と効率よく熱交換できて好ましい。 The main heater may be any device that is disposed in the heat medium liquid tank and heats the heat medium liquid in the heat medium liquid tank, and is not limited to a specific heating device. For example, the main heater may be an electric heater. However, it is preferable that the main heater is provided with piping through which a fluid having a temperature higher than the boiling temperature of the heat medium liquid flows, since heat can be efficiently exchanged with the heat medium liquid.

特に、前記流体がヒートポンプの冷媒であり、前記主加熱器が、ヒートポンプの冷媒を冷却するための冷媒熱交換器、すなわち凝縮器であると、例えば凝縮器を用いた温水設備などを別途必要とせず、簡単でコンパクトな構成にできるうえ、ヒートポンプで発生する熱量が直接的に利用されるので、熱媒液が効率よく加熱されて好ましい。 In particular, if the fluid is a refrigerant for a heat pump and the main heater is a refrigerant heat exchanger for cooling the refrigerant of the heat pump, that is, a condenser, for example, a separate hot water facility using a condenser is required. First, it is possible to have a simple and compact configuration, and the amount of heat generated by the heat pump is directly utilized, so the heat medium liquid is efficiently heated, which is preferable.

また前記流体としては、燃焼式バーナから排出される排ガスなどの高温ガスであってもよいが、ヒートポンプの冷媒のほか、高温水が好ましく用いられる。なお、前記高温水とは、具体的には例えば、ヒートポンプ給湯機により得られた高温水、コージェネレーションシステムのエンジン冷却水、太陽熱温水器により得られた高温水、温泉水、その他の高温水などをいう。 Further, the fluid may be high-temperature gas such as exhaust gas discharged from a combustion burner, but high-temperature water is preferably used in addition to the refrigerant of a heat pump. The high-temperature water specifically includes, for example, high-temperature water obtained from a heat pump water heater, engine cooling water for a cogeneration system, high-temperature water obtained from a solar water heater, hot spring water, and other high-temperature water. means.

前記補助用加熱装置としては、前記主加熱器よりも出力が大きければよく、例えば電気ヒータやエンジン排ガスなどであっても良い。しかし、補助用加熱装置が燃焼式バーナを備えると、火力が強く、多量の熱媒液を速やかに加熱できるので好ましい。なお、燃焼式バーナを備える補助用加熱装置とは、燃焼式バーナのほか、火炉、排ガスが周囲を通過する水管群、煙管路などを備える装置をいい、これらのいずれかあるいは複数が、熱媒液槽内の熱媒液中で主加熱器の鉛直方向下方に配置される。 The auxiliary heating device only needs to have a higher output than the main heater, and may be, for example, an electric heater or engine exhaust gas. However, it is preferable that the auxiliary heating device includes a combustion type burner because the heating power is strong and a large amount of heat medium liquid can be quickly heated. Note that an auxiliary heating device equipped with a combustion burner refers to a device equipped with a combustion burner, a furnace, a group of water pipes around which exhaust gas passes, a smoke pipe, etc., and one or more of these are equipped with a heat medium It is placed vertically below the main heater in the heat medium liquid in the liquid tank.

前記補助用加熱装置は、前記温水熱交換器の負荷が大きい高負荷運転時に駆動されるが、真空式温水機の待機運転時など、温水熱交換器の負荷が小さい低負荷時には停止される。補助用加熱装置が停止していると、上方に配置された主加熱器により周囲の熱媒液と上方の減圧蒸気室内の熱媒液蒸気は加熱されるが、主加熱器の加熱により生じる熱媒液の流動は主加熱器の周囲に限られる。この結果、熱媒液槽の底部の熱媒液までは容易に加熱されない。 The auxiliary heating device is driven during high-load operation when the load on the hot water heat exchanger is large, but is stopped during low load when the load on the hot water heat exchanger is small, such as during standby operation of a vacuum water heater. When the auxiliary heating device is stopped, the surrounding heat medium liquid and the heat medium liquid vapor in the vacuum steam chamber above are heated by the main heater located above, but the heat generated by the heating of the main heater is The fluid flow is limited to the area around the main heater. As a result, the heat medium liquid at the bottom of the heat medium liquid tank is not easily heated.

そこで、前記加熱手段は、前記補助用加熱装置よりも下方の熱媒液中に、低負荷時用加熱器を備えていてもよい。前記補助用加熱装置が停止しているとき、補助用加熱装置よりも下方の、熱媒液槽の底部の熱媒液が低負荷時用加熱器により加熱され、これにより熱媒液槽内の熱媒液全体が加熱される。このとき、補助用加熱装置が停止しているので、熱媒液槽の底部の熱媒液は低温となっており、低負荷時用加熱器の伝熱面との温度差が大きいことから、熱媒液槽の底部の熱媒液が効率よく加熱される。このため、この低負荷時用加熱器の出力の大きさは、前記主加熱器と同程度であってもよく、あるいは異なっていてもよい。そして、熱媒液槽全体の熱媒液が加熱されることにより、蓄熱量が多くなって、温水熱交換器の高負荷運転へ速やかに切り替えることができ、好ましい。 Therefore, the heating means may include a low-load heater in the heat medium liquid below the auxiliary heating device. When the auxiliary heating device is stopped, the heat medium liquid at the bottom of the heat medium liquid tank below the auxiliary heating device is heated by the low-load heater, and as a result, the heat medium liquid in the heat medium liquid tank is heated by the low-load heater. The entire heat transfer liquid is heated. At this time, since the auxiliary heating device is stopped, the heat medium liquid at the bottom of the heat medium liquid tank is at a low temperature, and the temperature difference between it and the heat transfer surface of the heater for low load is large. The heat medium liquid at the bottom of the heat medium liquid tank is efficiently heated. Therefore, the magnitude of the output of this heater for low load times may be the same as or different from that of the main heater. By heating the heat medium liquid in the entire heat medium liquid tank, the amount of heat storage increases, and the hot water heat exchanger can be quickly switched to high-load operation, which is preferable.

前記主加熱器は、前記補助用加熱装置が駆動されている間は周囲の熱媒液を加熱するとともに、前記補助用加熱装置の駆動が停止されている間は加熱を停止し、前記低負荷時用加熱器は、前記補助用加熱装置が駆動されている間は加熱を停止するとともに、前記補助用加熱装置の駆動が停止されている間は周囲の熱媒液を加熱してもよい。この場合、補助用加熱装置が駆動されている高負荷運転時にあっては、補助用加熱装置の上方に配置された主加熱器により、熱媒液が効率よく加熱される。また、補助用加熱装置の駆動が停止されている低負荷運転時にあっては、補助用加熱装置の下方に配置されている低負荷時用加熱器により加熱された熱媒液が熱媒液槽内を上昇するので、この低負荷時用加熱器により熱媒液槽内の熱媒液全体が加熱される。 The main heater heats the surrounding heat medium liquid while the auxiliary heating device is being driven, and stops heating while the auxiliary heating device is not being driven, and is configured to The temporary heater may stop heating while the auxiliary heating device is being driven, and may heat the surrounding heat medium liquid while the auxiliary heating device is not being driven. In this case, during high-load operation when the auxiliary heating device is being driven, the heat medium liquid is efficiently heated by the main heater disposed above the auxiliary heating device. In addition, during low-load operation when the auxiliary heating device is stopped, the heat medium liquid heated by the low-load heater placed below the auxiliary heating device is transferred to the heat medium liquid tank. Since the heat medium liquid rises inside the heat medium liquid tank, the entire heat medium liquid in the heat medium liquid tank is heated by this heater for low load times.

前記低負荷時用加熱器は、前記主加熱器と同様の、熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えていてもよい。この場合、前記の高温流体は、前記主加熱器と低負荷時用加熱器とのいずれか一方に切換弁等を介して流通するものであってもよく、これにより、高負荷時と低負荷時とで、主加熱器による加熱と低負荷時用加熱器による加熱とを切り換えることができて好ましい。 The low-load heater may include piping, similar to the main heater, through which a fluid having a temperature higher than the boiling temperature of the heat transfer fluid flows. In this case, the high-temperature fluid may flow through a switching valve or the like to either the main heater or the low-load heater, so that the high-load and low-load It is preferable to be able to switch between heating by the main heater and heating by the low-load heater at different times.

前記真空式温水機は、前記熱媒液槽内の熱媒液を前記主加熱器の伝熱面の周囲と熱媒液槽の底部との間で流動させる流動装置を備えていてもよい。この場合、前記補助用加熱装置が停止しているときであっても、主加熱器の周囲の熱媒液が移動することから、主加熱伝熱面で熱媒液が効率よく加熱される。しかも、熱媒液槽の底部の熱媒液が主加熱器の周囲へ移動することから、熱媒液槽全体の熱媒液が加熱され、蓄熱量が多くなって、温水熱交換器の高負荷運転へ速やかに切り替えることができ、好ましい。 The vacuum water heater may include a flow device that causes the heat medium liquid in the heat medium liquid tank to flow between the periphery of the heat transfer surface of the main heater and the bottom of the heat medium liquid tank. In this case, even when the auxiliary heating device is stopped, the heat medium liquid around the main heater moves, so that the heat medium liquid is efficiently heated on the main heating heat transfer surface. Moreover, since the heat medium liquid at the bottom of the heat medium liquid tank moves to the surroundings of the main heater, the heat medium liquid in the entire heat medium liquid tank is heated, increasing the amount of heat storage and increasing the temperature of the hot water heat exchanger. This is preferable because it can quickly switch to load operation.

前記流動装置は、例えば熱媒液槽内に配置された撹拌機等であってもよいが、前記熱媒液槽内の底部と熱媒液槽の液面近傍との間に設けた循環ポンプを備える熱媒液路であると、簡単な構造で熱媒液槽内の熱媒液を前記主加熱器の伝熱面の周囲と熱媒液槽の底部との間で流動させることができるうえ、熱媒液槽を大型化することがなく、真空式温水機をコンパクトに構成できて好ましい。なお、前記循環ポンプは、液面近傍の熱媒液を底部に移動させるものであっても、熱媒液槽内の熱媒液全体を加熱できるうえ、主加熱器の周囲の熱媒液を移動させることができて好ましいが、底部の熱媒液を液面近傍に供給すると、低温の熱媒液を主加熱器の周囲に供給できるため、効率よく加熱できてより好ましい。 The flow device may be, for example, a stirrer placed in the heat medium liquid tank, or a circulation pump provided between the bottom of the heat medium liquid tank and the vicinity of the liquid surface of the heat medium liquid tank. With a heat medium liquid path having a simple structure, the heat medium liquid in the heat medium liquid tank can be made to flow between the periphery of the heat transfer surface of the main heater and the bottom of the heat medium liquid tank. Moreover, the vacuum water heater can be configured compactly without increasing the size of the heat medium liquid tank, which is preferable. Note that even if the circulation pump moves the heat medium liquid near the liquid surface to the bottom, it can heat the entire heat medium liquid in the heat medium liquid tank, and also heat the heat medium liquid around the main heater. It is preferable because it can be moved, but it is more preferable to supply the heat medium liquid at the bottom near the liquid surface because low temperature heat medium liquid can be supplied around the main heater and heating can be performed efficiently.

本発明の真空式温水機は、上記のように構成され作用するので、次の効果を奏する。
(1)加熱手段の主加熱器と補助用加熱装置を、熱媒液槽の熱媒液中に上下に配置しているので、設置面積を拡げたり熱媒液槽を複数に分割したりする必要がなく、真空式温水機の大型化、複雑化を抑制できる。
(2)補助用加熱装置の上方に主加熱器を配置しているので、主加熱器が熱媒液槽の液面近傍に位置しており、バッフルの役割を果たすことができる。これにより、補助用加熱装置の伝熱面から多数の沸騰気泡が発生しても、熱媒液面での遊動を抑制でき、沸騰液の飛沫が上方の温水熱交換器の表面に降りかかることを軽減できる。この結果、熱媒液蒸気の凝縮熱を温水熱交換器内の水に効率よく伝達でき、温水熱交換器を液面から離隔させたり、温水熱交換器を大型化させる必要がないので、真空式温水機全体をコンパクトに形成できる。
(3)主加熱器は補助用加熱装置の上方に配置されているので、補助用加熱装置の運転中は、補助用加熱装置での加熱沸騰による熱媒液の上昇により主加熱器の周囲の熱媒液が流動し、主加熱器の熱伝達率が著しく向上する。これらの結果、真空式温水機をコンパクトに形成しながらも、熱効率が高く、年間エネルギー消費量とランニングコストの低減及びCOの削減等を図ることができる。
(4)主加熱器よりも出力が大きい補助用加熱装置を備えているので、温水熱交換器の高負荷時に補助用加熱装置を駆動することで容易に対応することができる。
Since the vacuum water heater of the present invention is configured and operates as described above, it has the following effects.
(1) The main heating device and the auxiliary heating device are arranged one above the other in the heat medium liquid of the heat medium liquid tank, so the installation area can be expanded or the heat medium liquid tank can be divided into multiple parts. There is no need for this, and it is possible to prevent the vacuum water heater from becoming larger and more complex.
(2) Since the main heater is disposed above the auxiliary heating device, the main heater is located near the liquid level of the heat medium liquid tank and can function as a baffle. As a result, even if a large number of boiling bubbles are generated from the heat transfer surface of the auxiliary heating device, their movement on the heat medium liquid surface can be suppressed, and droplets of boiling liquid can be prevented from falling on the surface of the hot water heat exchanger above. It can be reduced. As a result, the heat of condensation of the heat medium liquid vapor can be efficiently transferred to the water in the hot water heat exchanger, and there is no need to separate the hot water heat exchanger from the liquid surface or make the hot water heat exchanger larger, so it is possible to The entire water heater can be made compact.
(3) Since the main heater is located above the auxiliary heating device, when the auxiliary heating device is in operation, the heating medium liquid rises due to boiling in the auxiliary heating device, causing the surrounding area of the main heater to rise. The heat transfer fluid flows and the heat transfer coefficient of the main heater is significantly improved. As a result, although the vacuum water heater is compact, it has high thermal efficiency, and it is possible to reduce annual energy consumption, running costs, and CO 2 emissions.
(4) Since the auxiliary heating device has a larger output than the main heater, it is possible to easily cope with the high load of the hot water heat exchanger by driving the auxiliary heating device.

本発明の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional front view showing a vacuum water heater according to an embodiment of the present invention, with some parts of the vacuum water heater omitted. 本発明の他の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。It is a vertical cross-sectional front view showing a vacuum water heater according to another embodiment of the present invention, with a part of the vacuum water heater omitted. 本発明の更に他の実施形態に係る真空式温水機を示す、真空式温水機の一部を省略した縦断正面図である。It is a longitudinal sectional front view showing a vacuum water heater according to still another embodiment of the present invention, with some parts of the vacuum water heater omitted. 本発明の実施形態の変形例を示す、縦断側面図である。FIG. 7 is a longitudinal sectional side view showing a modification of the embodiment of the present invention. 従来の真空式温水機の縦断面図である。FIG. 2 is a vertical cross-sectional view of a conventional vacuum water heater.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は本発明の実施形態に係る真空式温水機を示し、当該真空式温水機1は、内部が大気圧以下に保持された密閉状の缶体2と、缶体2内の下部に形成され、熱媒液3(例えば、水)を貯留する熱媒液槽4と、缶体2内の上部に形成され抽気ポンプ(図示省略)により減圧された減圧蒸気室5と、減圧蒸気室5に配置され、減圧蒸気室5内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器6と、熱媒液槽4内の熱媒液3中に配置されて熱媒液3を加熱蒸発させる加熱手段7とを備える。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
FIG. 1 shows a vacuum type water heater according to an embodiment of the present invention. A heat medium liquid tank 4 which stores a heat medium liquid 3 (for example, water), a reduced pressure steam chamber 5 formed in the upper part of the can 2 and whose pressure is reduced by an air extraction pump (not shown), and a reduced pressure steam chamber 5. A hot water heat exchanger 6 is disposed in the heat medium liquid 3 in the heat medium liquid tank 4 and condenses and liquefies the steam generated in the reduced pressure steam chamber 5 through heat exchange with water. A heating means 7 for heating and evaporating the liquid 3 is provided.

前記温水熱交換器6は、減圧蒸気室5に水平姿勢で配置されており、缶体2の側壁面に水の入口6aとその上方の温水の出口6bとが形成され、水入口6aが折返部6(c)を経て温水出口6bに接続してある。 The hot water heat exchanger 6 is arranged in a horizontal position in the reduced pressure steam chamber 5, and a water inlet 6a and a hot water outlet 6b above it are formed on the side wall surface of the can body 2, and the water inlet 6a is turned around. It is connected to the hot water outlet 6b via the section 6(c).

前記加熱手段7は、前記熱媒液槽4の熱媒液3中に配置された主加熱器8と補助用加熱装置9とを備えており、補助用加熱装置9の出力は、主加熱器8の出力よりも大きく、多量の熱媒液3を速やかに加熱できる高い加熱能力を備えている。なお、前記補助用加熱装置9の高い加熱能力とは、適用される缶体2の容量などによっても異なるので、具体的に数値を限定することはできないが、例えば、補助用加熱装置9の交換熱量が主加熱器8の交換熱量の10倍程度以上である場合などをいう。そして、前記補助用加熱装置9は、前記主加熱器8の鉛直方向下方に配置されている。 The heating means 7 includes a main heater 8 and an auxiliary heating device 9 disposed in the heat medium liquid 3 of the heat medium liquid tank 4, and the output of the auxiliary heating device 9 is connected to the main heater. 8, and has a high heating capacity capable of quickly heating a large amount of heat medium liquid 3. Note that the high heating capacity of the auxiliary heating device 9 varies depending on the capacity of the can body 2 to which it is applied, so it cannot be specifically limited to a numerical value; This refers to cases where the amount of heat is about 10 times or more the amount of heat exchanged by the main heater 8. The auxiliary heating device 9 is arranged vertically below the main heater 8.

前記主加熱器8には、ヒートポンプ11の冷媒を冷却するための冷媒熱交換器である凝縮器が用いてある。即ち、前記主加熱器8の冷媒入口8bにはヒートポンプ11の圧縮機12からの導入配管13が接続してあり、主加熱器8の冷媒出口8cにヒートポンプ11の膨張弁14への導出配管15が接続してある。 The main heater 8 includes a condenser that is a refrigerant heat exchanger for cooling the refrigerant of the heat pump 11. That is, an inlet pipe 13 from the compressor 12 of the heat pump 11 is connected to the refrigerant inlet 8b of the main heater 8, and an outlet pipe 15 to the expansion valve 14 of the heat pump 11 is connected to the refrigerant outlet 8c of the main heater 8. is connected.

前記ヒートポンプ11の冷媒は、圧縮機12により前記熱媒液3の飽和温度よりも高い温度に加熱されたのち、導入配管13を経て前記主加熱器8の冷媒入口8bに送られる。この高い温度の冷媒は主加熱器8の配管内を流通し、周囲の熱媒液3と熱交換されて冷却される。そしてこの冷却された冷媒は、冷媒出口8cから導出配管15を経てヒートポンプ11に戻され、膨張弁14と蒸発器16と圧縮機12を順に経て加熱され、再び主加熱器8の冷媒入口8bへ送られる。 The refrigerant of the heat pump 11 is heated by the compressor 12 to a temperature higher than the saturation temperature of the heat medium liquid 3, and then sent to the refrigerant inlet 8b of the main heater 8 via the introduction pipe 13. This high-temperature refrigerant flows through the piping of the main heater 8, exchanges heat with the surrounding heat medium liquid 3, and is cooled. The cooled refrigerant is then returned to the heat pump 11 from the refrigerant outlet 8c via the lead-out pipe 15, heated through the expansion valve 14, the evaporator 16, and the compressor 12 in this order, and then returned to the refrigerant inlet 8b of the main heater 8. Sent.

一方、主加熱器8の伝熱面8aは、前記加熱された冷媒により熱媒液3の飽和温度よりも高い温度に加熱されるので、周囲の熱媒液3は加熱されて熱媒液蒸気となる。このとき、前記冷媒により加熱される伝熱面8aの温度は、前記飽和温度よりも高いものの、熱媒液3の飽和温度との差である過熱度は低く、前記伝熱面8aでは、沸騰気泡がごく少数みられる程度の部分的な核沸騰状態となっている。しかし、周囲の熱媒液3は、ヒートポンプ11の冷媒により、ヒートポンプで発生する熱量が直接的に利用されるので、効率よく加熱されて蒸発する。 On the other hand, the heat transfer surface 8a of the main heater 8 is heated by the heated refrigerant to a temperature higher than the saturation temperature of the heat medium liquid 3, so the surrounding heat medium liquid 3 is heated and vaporized into heat medium liquid vapor. becomes. At this time, although the temperature of the heat transfer surface 8a heated by the refrigerant is higher than the saturation temperature, the degree of superheating, which is the difference from the saturation temperature of the heat transfer liquid 3, is low, and the heat transfer surface 8a is heated by the heat transfer surface 8a. It is in a partial nucleate boiling state with only a few bubbles visible. However, the surrounding heat medium liquid 3 is efficiently heated and evaporated by the refrigerant of the heat pump 11 because the amount of heat generated by the heat pump is directly utilized.

前記主加熱器8の加熱により発生した熱媒液蒸気は、前記減圧蒸気室5内の前記温水熱交換器6の表面で、温水熱交換器6に供給される水との熱交換により冷却されて凝縮し、液滴となって前記熱媒液槽4に滴下する。一方、温水熱交換器6に供給された水は、前記熱媒液蒸気との熱交換により加熱され、これにより、所望の温度の温水が温水熱交換器6から取り出される。 The heat medium liquid vapor generated by the heating of the main heater 8 is cooled by heat exchange with water supplied to the hot water heat exchanger 6 on the surface of the hot water heat exchanger 6 in the reduced pressure steam chamber 5. The heat medium is condensed into droplets and dripped into the heat medium liquid tank 4. On the other hand, the water supplied to the hot water heat exchanger 6 is heated by heat exchange with the heat medium liquid vapor, and thereby hot water at a desired temperature is taken out from the hot water heat exchanger 6.

前記真空式温水機1の温水熱交換器6から多量の温水が取り出されるなど、温水熱交換器6での負荷が、主加熱器8の加熱能力よりも大きくなる(以下、高負荷運転時ともいう)と、温水熱交換器6で冷却され凝縮して滴下する熱媒液3が増加し、熱媒液槽4内の熱媒液3の温度が低下する。そこで、熱媒液槽4に付設された液温検出器19により検出される熱媒液3の温度が設定温度以下になると、前記補助用加熱装置9が制御装置20により駆動される。なお、高負荷運転時であるか否かは、熱媒液3の温度による判断に代えて、例えば温水熱交換器6から取り出さる湯量に基づいて負荷の大きさを判断し、補助用加熱装置9の駆動を制御してもよい。 When a large amount of hot water is taken out from the hot water heat exchanger 6 of the vacuum water heater 1, the load on the hot water heat exchanger 6 becomes larger than the heating capacity of the main heater 8 (hereinafter referred to as "high load operation"). ), the heat medium liquid 3 that is cooled and condensed in the hot water heat exchanger 6 and drips increases, and the temperature of the heat medium liquid 3 in the heat medium liquid tank 4 decreases. Therefore, when the temperature of the heat medium liquid 3 detected by the liquid temperature detector 19 attached to the heat medium liquid tank 4 becomes equal to or lower than the set temperature, the auxiliary heating device 9 is driven by the control device 20 . Note that whether or not it is a high-load operation is determined by determining the magnitude of the load based on the amount of hot water taken out from the hot water heat exchanger 6, for example, instead of determining based on the temperature of the heat medium liquid 3, and determining whether the auxiliary heating device 9 may be controlled.

前記補助用加熱装置9は、熱源である燃焼式バーナ21と、燃焼室である火炉22と、水管23群と、排気筒24とを備えている。火炉22と水管23群は前記熱媒液槽4内の熱媒液3に水没されており、火炉22が前記主加熱器8の鉛直方向下方に配置されている。火炉22の周面や水管23の内面が熱媒液3と接しており、熱媒液3への伝熱面9aとなっている。 The auxiliary heating device 9 includes a combustion burner 21 as a heat source, a furnace 22 as a combustion chamber, a group of water pipes 23, and an exhaust pipe 24. The furnace 22 and a group of water tubes 23 are submerged in the heat medium liquid 3 in the heat medium liquid tank 4, and the furnace 22 is arranged vertically below the main heater 8. The peripheral surface of the furnace 22 and the inner surface of the water tube 23 are in contact with the heat transfer liquid 3, and serve as a heat transfer surface 9a to the heat transfer liquid 3.

燃焼式バーナ21が制御装置20により駆動されると、燃焼式バーナ21の強い火力により、補助用加熱装置9の伝熱面9aが加熱される。これにより、火炉22の周囲の熱媒液3と水管23内を流通する熱媒液3が速やかに加熱され、増加した温水負荷に対して不足する主加熱器8の加熱能力が良好に補われる。 When the combustion burner 21 is driven by the control device 20, the heat transfer surface 9a of the auxiliary heating device 9 is heated by the strong thermal power of the combustion burner 21. As a result, the heat medium liquid 3 around the furnace 22 and the heat medium liquid 3 flowing in the water pipes 23 are quickly heated, and the heating capacity of the main heater 8 that is insufficient for the increased hot water load is well compensated for. .

前記補助用加熱装置9の燃焼式バーナ21が駆動されると、伝熱面9aは前記飽和温度よりもかなり高い温度に加熱されるため、周囲の熱媒液3は激しく沸騰する発達した核沸騰状態となる。そして、伝熱面9a上で形成された大きな気泡は、次々と離脱して上昇するので、補助用加熱装置9の上方に熱媒液3の上昇流が生じる。補助用加熱装置9の上方には前記主加熱器8が配置してあるので、前記上昇流が生じると、前記主加熱器8では伝熱面8aの周囲の熱媒液3が流動し、主加熱器8の熱伝達率が著しく向上する。そして、この主加熱器8と補助用加熱装置9により効率よく加熱され蒸発した熱媒液蒸気により、前記温水熱交換器6内を流通する水が加熱され、温水出口6bから多量の温水が取り出される。 When the combustion type burner 21 of the auxiliary heating device 9 is driven, the heat transfer surface 9a is heated to a temperature considerably higher than the saturation temperature, so that the surrounding heat transfer liquid 3 undergoes a developed nucleate boiling that boils violently. state. Then, the large bubbles formed on the heat transfer surface 9a separate one after another and rise, so that an upward flow of the heat medium liquid 3 is generated above the auxiliary heating device 9. Since the main heater 8 is arranged above the auxiliary heating device 9, when the upward flow occurs, the heat medium liquid 3 around the heat transfer surface 8a flows in the main heater 8, and the main heater 8 flows. The heat transfer coefficient of the heater 8 is significantly improved. The water flowing through the hot water heat exchanger 6 is heated by the heat medium liquid vapor that is efficiently heated and evaporated by the main heater 8 and the auxiliary heating device 9, and a large amount of hot water is taken out from the hot water outlet 6b. It will be done.

なお、前記補助用加熱装置9の加熱によりその伝熱面9aから熱媒液3蒸気の気泡が多数発生する。しかし、補助用加熱装置9の上方に配置された主加熱器8は、熱媒液槽4の液面近傍に位置しているので、この主加熱器8があたかもバッフルのように作用して液面の遊動が抑制されている。この結果、補助用加熱装置9が駆動されている間においても、沸騰した熱媒液3の飛沫が上方の温水熱交換器6の表面に降りかかることが軽減され、熱媒液蒸気の凝縮熱が温水熱交換器6の表面に効率よく伝達される。 Note that, due to the heating of the auxiliary heating device 9, many bubbles of vapor of the heat transfer liquid 3 are generated from the heat transfer surface 9a thereof. However, since the main heater 8 placed above the auxiliary heating device 9 is located near the liquid level of the heat medium liquid tank 4, the main heater 8 acts like a baffle and the liquid The movement of the surface is suppressed. As a result, even while the auxiliary heating device 9 is being driven, splashes of the boiling heat medium liquid 3 are prevented from falling on the surface of the hot water heat exchanger 6 above, and the heat of condensation of the heat medium liquid vapor is reduced. It is efficiently transmitted to the surface of the hot water heat exchanger 6.

温水熱交換器6での負荷が低下して主加熱器8の加熱能力よりも小さくなると、温水熱交換器6の表面から滴下する凝縮熱媒液3が少なくなり、熱媒液槽4内の熱媒液3の温度が上昇する。そして、熱媒液3の温度が設定温度を超えたことを前記液温検出器19が検出すると、制御装置20は前記補助用加熱装置9の駆動を停止する。この結果、燃焼式バーナ21を用いる補助用加熱装置9は、温水負荷が高いときや、真空式温水機1の起動時に熱媒液3を早急に昇温させたいときなど、多量の熱媒液3を急速に加熱するときにのみ駆動されるので、缶体効率の向上、年間エネルギー消費量とランニングコストの低減及びCOの削減を図ることができる。 When the load on the hot water heat exchanger 6 decreases and becomes smaller than the heating capacity of the main heater 8, the amount of condensed heat medium liquid 3 dripping from the surface of the hot water heat exchanger 6 decreases, and the amount of the heat medium liquid in the heat medium liquid tank 4 decreases. The temperature of the heat transfer liquid 3 increases. When the liquid temperature detector 19 detects that the temperature of the heat medium liquid 3 exceeds the set temperature, the control device 20 stops driving the auxiliary heating device 9. As a result, the auxiliary heating device 9 using the combustion type burner 21 can handle a large amount of heat medium liquid when the hot water load is high or when it is desired to quickly raise the temperature of the heat medium liquid 3 when starting the vacuum water heater 1. Since it is activated only when rapidly heating the fuel, it is possible to improve the efficiency of the can body, reduce annual energy consumption and running costs, and reduce CO 2 emissions.

前記加熱手段7は、熱媒液槽4の熱媒液3を効率よく加熱できるうえ、熱媒液3の蒸気は温水熱交換器6の表面で効率よく熱交換される。しかも、主加熱器8と補助用加熱装置9は、熱媒液槽4中に上下に配置されるので、真空式温水機1の設置面積を拡げたり熱媒液槽4を複数に分割したりする必要がない。これらの結果、真空式温水機1は、大型化、複雑化することが抑制され、コンパクトに形成されている。 The heating means 7 can efficiently heat the heat medium liquid 3 in the heat medium liquid tank 4, and the vapor of the heat medium liquid 3 is efficiently heat exchanged on the surface of the hot water heat exchanger 6. Moreover, since the main heater 8 and the auxiliary heating device 9 are arranged one above the other in the heat medium liquid tank 4, it is possible to expand the installation area of the vacuum water heater 1 or to divide the heat medium liquid tank 4 into multiple parts. There's no need to. As a result, the vacuum water heater 1 is prevented from increasing in size and complexity, and is formed compactly.

図2は本発明の他の実施形態に係る真空式温水機を示し、当該真空式温水機1の加熱手段7は、前記補助用加熱装置9よりも下方の熱媒液中に、低負荷時用加熱器10を備えている。 FIG. 2 shows a vacuum water heater according to another embodiment of the present invention, in which the heating means 7 of the vacuum water heater 1 is placed in a heat medium liquid below the auxiliary heating device 9 during low load. It is equipped with a heater 10 for use.

前記低負荷時用加熱器10は、前記主加熱器8と同様の、ヒートポンプ11の凝縮器が用いてある。そして、低負荷時用加熱器10の冷媒入口10bは、ヒートポンプ11の圧縮機12からの導入配管13に、導入分岐管17を介して接続してあり、低負荷時用加熱器10の冷媒出口10cは、ヒートポンプ11の膨張弁14への導出配管15に、導出分岐管18を介して接続してある。その他の構成は図1に示す真空式温水機と同様構造に構成され、同様の作用効果を奏することができるため、図1に示す真空式温水機と同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。 The low-load heater 10 uses a condenser of a heat pump 11 similar to the main heater 8. The refrigerant inlet 10b of the heater 10 for low load is connected to the introduction pipe 13 from the compressor 12 of the heat pump 11 via an introduction branch pipe 17, and the refrigerant outlet of the heater 10 for low load is connected to the introduction pipe 13 from the compressor 12 of the heat pump 11. 10c is connected to a lead-out pipe 15 to the expansion valve 14 of the heat pump 11 via a lead-out branch pipe 18. The rest of the structure is similar to that of the vacuum water heater shown in Figure 1, and the same functions and effects can be achieved, so the same parts and members as the vacuum water heater shown in Figure 1 are designated with the same reference numbers. The detailed explanation will be omitted.

前記補助用加熱装置9は、前記温水熱交換器6の負荷が大きい高負荷運転時に駆動されるが、真空式温水機1の待機運転時など、温水熱交換器6の負荷が小さい低負荷時には停止される。そして、補助用加熱装置9が停止している場合、補助用加熱装置9の上方に配置された主加熱器8により、熱媒液槽4の上部の熱媒液3と上方の減圧蒸気室5内の熱媒液蒸気が加熱され、補助用加熱装置9の下方に配置された低負荷時用加熱器10により、熱媒液槽4の底部の熱媒液3が加熱される。 The auxiliary heating device 9 is driven during high-load operation when the load on the hot water heat exchanger 6 is large, but it is driven during low-load operation when the load on the hot water heat exchanger 6 is small, such as during standby operation of the vacuum water heater 1. will be stopped. When the auxiliary heating device 9 is stopped, the main heater 8 arranged above the auxiliary heating device 9 heats the heat medium liquid 3 in the upper part of the heat medium liquid tank 4 and the reduced pressure steam chamber 5 in the upper part. The heat medium liquid vapor in the heat medium liquid tank 4 is heated, and the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 is heated by the low-load heater 10 disposed below the auxiliary heating device 9.

このとき、補助用加熱装置9が停止しているので、熱媒液槽4の底部の熱媒液3は低温となっている。この結果、低負荷時用加熱器10がヒートポンプの凝縮器であり、補助用加熱装置9よりも出力が小さい場合であっても、その低負荷時用加熱器10の伝熱面10aと周囲の熱媒液3との温度差が大きく、周囲の熱媒液3が効率よく加熱される。 At this time, since the auxiliary heating device 9 is stopped, the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 is at a low temperature. As a result, even if the low-load heater 10 is a condenser of a heat pump and has a smaller output than the auxiliary heating device 9, the heat transfer surface 10a of the low-load heater 10 and the surrounding The temperature difference between the heating medium liquid 3 and the heating medium liquid 3 is large, and the surrounding heating medium liquid 3 is efficiently heated.

前記のように、補助用加熱装置9が停止している場合であっても、主加熱器8と低負荷時用加熱器10とにより、熱媒液槽4全体の熱媒液3が加熱されることから、蓄熱量が多くなって、温水熱交換器6を高負荷運転へ速やかに切り替えることができる。 As described above, even when the auxiliary heating device 9 is stopped, the heat medium liquid 3 in the entire heat medium liquid tank 4 is heated by the main heater 8 and the low-load heater 10. Therefore, the amount of heat storage increases, and the hot water heat exchanger 6 can be quickly switched to high-load operation.

また、主加熱器8にヒートポンプの凝縮器を用いる場合、熱媒液槽4の熱媒液3が部分的にしか加熱されないため、凝縮器の冷媒が十分に冷却されず、熱媒液槽4の底部の熱媒液が低温であるにも関わらず、昇温が完了したと判断してヒートポンプが停止されるおそれがある。しかし、この実施形態では前記低負荷時用加熱器10を用いることでヒートポンプの冷媒により熱媒液槽4全体の熱媒液3を加熱していることから、ヒートポンプの停止のおそれが低減される。 Furthermore, when a heat pump condenser is used as the main heater 8, the heat medium liquid 3 in the heat medium liquid tank 4 is only partially heated, so the refrigerant in the condenser is not sufficiently cooled, and the heat medium liquid 3 in the heat medium liquid tank 4 is heated only partially. Even though the heat transfer liquid at the bottom of the heat pump is at a low temperature, there is a risk that the heat pump may be determined to have completed the temperature rise and be stopped. However, in this embodiment, by using the low-load heater 10, the heat medium liquid 3 in the entire heat medium liquid tank 4 is heated by the refrigerant of the heat pump, so the possibility of the heat pump stopping is reduced. .

なお、前記低負荷時用加熱器10で加熱された熱媒液3は熱媒液槽4内を上昇するので、この低負荷時用加熱器10により熱媒液3全体を加熱することができる。このため、補助用加熱装置9が停止している低負荷運転時には、低負荷時用加熱器10により周囲の熱媒液3を加熱するとともに主加熱器8の加熱を停止してもよい。また、高負荷運転時に、補助用加熱装置9の加熱により熱媒液槽4内の熱媒液3全体が十分に加熱される場合には、主加熱器8により周囲の熱媒液3を加熱するとともに低負荷時用加熱器10の加熱を停止することも可能である。 The heat medium liquid 3 heated by the low load heater 10 rises in the heat medium liquid tank 4, so the entire heat medium liquid 3 can be heated by the low load heater 10. . Therefore, during low-load operation when the auxiliary heating device 9 is stopped, the surrounding heat medium liquid 3 may be heated by the low-load heater 10, and the heating of the main heater 8 may be stopped. In addition, during high-load operation, if the entire heat medium liquid 3 in the heat medium liquid tank 4 is sufficiently heated by the heating of the auxiliary heating device 9, the surrounding heat medium liquid 3 is heated by the main heater 8. At the same time, it is also possible to stop the heating of the heater 10 for low load.

そこで、図2に示すように、前記導入配管13と導入分岐管17との接続部、および導出配管15と導出分岐管18との接続部に、それぞれ切換弁17a,18aを設け、低負荷運転時にはヒートポンプの冷媒を低負荷時用加熱器10に案内し、高負荷運転時にはヒートポンプの冷媒を主加熱器8に案内するように各切換弁17a,18aを制御してもよい。これにより、低負荷時にあっても熱媒液槽4内の熱媒液3全体を加熱できるものでありながら、主加熱器8による加熱と低負荷時用加熱器10による加熱とのいずれか一方が用いられるので、缶体効率が一層向上し、年間エネルギー消費量とランニングコストの低減及びCOの削減をさらに図ることができる。 Therefore, as shown in FIG. 2, switching valves 17a and 18a are provided at the connection between the inlet pipe 13 and the inlet branch pipe 17, and at the connection between the outlet pipe 15 and the outlet branch pipe 18, respectively. The switching valves 17a and 18a may be controlled so that the refrigerant of the heat pump is sometimes guided to the heater 10 for low-load operation, and the refrigerant of the heat pump is guided to the main heater 8 during high-load operation. As a result, the entire heat medium liquid 3 in the heat medium liquid tank 4 can be heated even during low load, but only one of the heating by the main heater 8 and the heating by the low load heater 10 can be performed. is used, the can body efficiency is further improved, annual energy consumption and running costs are reduced, and CO 2 emissions can be further reduced.

図3は本発明の他の実施形態に係る真空式温水機を示し、この真空式温水機1は、熱媒液槽4内の熱媒液3を主加熱器8の伝熱面8aの周囲と熱媒液槽4の底部との間で流動させる流動装置25を備えている。即ち、熱媒液槽4内の底部と熱媒液槽4の液面近傍との間には、循環ポンプ26を備える熱媒液路27が設けてあり、この循環ポンプ26を備えた熱媒液路27が前記流動装置25を構成している。その他の構成は図1に示す真空式温水機と同様構造に構成され、同様の作用効果を奏することができるため、図1に示す真空式温水機と同じ部位・部材には同一の参照番号を付し、その詳細な説明を省略する。 FIG. 3 shows a vacuum type water heater according to another embodiment of the present invention. A fluidizing device 25 is provided to cause the fluid to flow between the heating medium and the bottom of the heat medium liquid tank 4. That is, a heat medium liquid path 27 equipped with a circulation pump 26 is provided between the bottom of the heat medium liquid tank 4 and the vicinity of the liquid surface of the heat medium liquid tank 4. The liquid path 27 constitutes the flow device 25. The rest of the structure is similar to that of the vacuum water heater shown in Figure 1, and the same functions and effects can be achieved, so the same parts and members as the vacuum water heater shown in Figure 1 are designated with the same reference numbers. The detailed explanation will be omitted.

前記循環ポンプ26は、補助用加熱装置9が停止している状態で、熱媒液槽4に付設された液温検出器19により検出される熱媒液3の温度が設定温度以下になると、制御装置20により駆動され、熱媒液槽4の底部の熱媒液3が、熱媒液路27を経て熱媒液槽4の液面に案内され、主加熱器8の周囲に供給される。この熱媒液3の供給により、主加熱器8の周囲の熱媒液3が流動することから、伝熱面8aで熱媒液3が効率よく加熱される。また、熱媒液槽4の底部の熱媒液3が主加熱器8の周囲へ移動することから、熱媒液槽4全体の熱媒液3が加熱されて蓄熱量が多くなるので、温水熱交換器6を高負荷運転へ速やかに切り替えることができる。 The circulation pump 26 operates when the temperature of the heat medium liquid 3 detected by the liquid temperature detector 19 attached to the heat medium liquid tank 4 becomes equal to or lower than the set temperature while the auxiliary heating device 9 is stopped. Driven by the control device 20, the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 is guided to the liquid surface of the heat medium liquid tank 4 through the heat medium liquid path 27, and is supplied around the main heater 8. . This supply of the heat medium liquid 3 causes the heat medium liquid 3 around the main heater 8 to flow, so that the heat medium liquid 3 is efficiently heated on the heat transfer surface 8a. In addition, since the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 moves to the vicinity of the main heater 8, the heat medium liquid 3 in the entire heat medium liquid tank 4 is heated and the amount of heat storage increases. The heat exchanger 6 can be quickly switched to high-load operation.

なお、この実施形態では、前記循環ポンプ26が熱媒液槽4の底部の熱媒液3を熱媒液槽4の液面に案内しているので、より低温の熱媒液3が主加熱器8の周囲に供給され、効率よく加熱されるので好ましい。しかし本発明では、循環ポンプ26が熱媒液槽4の液面近傍の熱媒液3を熱媒液槽4の底部に案内するものであってもよく、この場合も、主加熱器8の周囲に熱媒液3の流動を生じるうえ、熱媒液槽4内の熱媒液3全体を加熱できる点で、この実施形態と同様の効果を奏することができる。また、この実施形態では、循環ポンプ26を備えた熱媒液路27で流動装置25を構成したが、本発明に用いる流動装置25は、熱媒液槽4内の熱媒液3を主加熱器8の伝熱面8aの周囲と熱媒液槽4の底部との間で流動させる装置であればよく、例えば熱媒液槽内に配置された撹拌機等であってもよい。 In this embodiment, since the circulation pump 26 guides the heat medium liquid 3 at the bottom of the heat medium liquid tank 4 to the liquid surface of the heat medium liquid tank 4, the lower temperature heat medium liquid 3 is used for main heating. This is preferable because it is supplied around the vessel 8 and heated efficiently. However, in the present invention, the circulation pump 26 may guide the heat medium liquid 3 near the liquid surface of the heat medium liquid tank 4 to the bottom of the heat medium liquid tank 4; The same effects as this embodiment can be achieved in that the heat medium liquid 3 flows around the heat medium liquid 3 and the entire heat medium liquid 3 in the heat medium liquid tank 4 can be heated. Further, in this embodiment, the fluidizing device 25 is configured with the heat medium liquid path 27 equipped with the circulation pump 26, but the fluidizing device 25 used in the present invention mainly heats the heat medium liquid 3 in the heat medium liquid tank 4. Any device may be used as long as it allows the heat medium to flow between the periphery of the heat transfer surface 8a of the vessel 8 and the bottom of the heat medium liquid tank 4. For example, it may be a stirrer or the like disposed within the heat medium liquid tank.

本発明は、上記の各実施形態に限定されず、本発明の趣旨を逸脱しない範囲において、種々の変更が可能である。 The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記の各実施形態においては、主加熱器8としてヒートポンプの凝縮器を用いた。このため、ヒートポンプで発生する熱量が直接的に利用される利点がある。しかも、この凝縮器が大気圧以下に保持された密閉状の缶体内の熱媒液中に配置されていることから、腐食するおそれが低減されるうえ、万一、凝縮器からヒートポンプの冷媒が漏れ出たとしても、温水用熱交換器内の水とは遮断されているので、真空式温水機から取り出される温水にヒートポンプの冷媒が混入するおそれがない利点もある。 For example, in each of the above embodiments, a heat pump condenser is used as the main heater 8. Therefore, there is an advantage that the amount of heat generated by the heat pump is directly utilized. Moreover, since this condenser is placed in the heat medium liquid inside a sealed can kept below atmospheric pressure, the risk of corrosion is reduced, and in the unlikely event that the heat pump's refrigerant leaks from the condenser. Even if it leaks, it is isolated from the water in the hot water heat exchanger, so there is also the advantage that there is no risk of the heat pump's refrigerant getting mixed into the hot water taken out from the vacuum water heater.

しかし本発明で用いる主加熱器は、熱媒液槽内に配置されて熱媒液を加熱する装置であればよく、特定の加熱装置に限定されない。例えば、内部を高温水や高温ガスなどの流体が流通する配管や、電気ヒータなどを用いることも可能である。主加熱器に用いることができる高温水とは、例えば、ヒートポンプ給湯機により得られた高温水、コージェネレーションシステムのエンジン冷却水、太陽熱温水器により得られた高温水、温泉水、その他の高温水などを挙げることができる。 However, the main heater used in the present invention is not limited to a specific heating device, as long as it is a device that is placed in the heat medium liquid tank and heats the heat medium liquid. For example, it is also possible to use piping through which a fluid such as high-temperature water or high-temperature gas flows, an electric heater, or the like. High-temperature water that can be used in the main heater includes, for example, high-temperature water obtained from a heat pump water heater, engine cooling water for a cogeneration system, high-temperature water obtained from a solar water heater, hot spring water, and other high-temperature water. etc. can be mentioned.

また、上記の各実施形態においては、補助用加熱装置9として燃焼式バーナ21と、熱媒液槽4内の熱媒液3に水没されている火炉22と水管23群を備える装置を用いた。しかし本発明で用いる補助用加熱装置は、多量の熱媒液を速やかに加熱できる装置であればよく、例えば電気ヒータやエンジン排ガスなどであっても良い。 Furthermore, in each of the above embodiments, a device including a combustion burner 21, a furnace 22 submerged in the heat medium liquid 3 in the heat medium liquid tank 4, and a group of water pipes 23 is used as the auxiliary heating device 9. . However, the auxiliary heating device used in the present invention may be any device that can quickly heat a large amount of heat medium liquid, such as an electric heater or engine exhaust gas.

また、上記の各実施形態では、主加熱器8の鉛直方向下方に補助用加熱装置9の火炉22を配置したが、本発明では、例えば図4に示す変形例のように、主加熱器8の鉛直方向下方に補助用加熱装置9の水管23群を配置したものであってもよい。また、補助用加熱装置9の火炉22に接続される煙管を熱媒液3中に水没させて配置した場合には、主加熱器8の鉛直方向下方にこの煙管を配置したものであってもよい。 Further, in each of the above embodiments, the furnace 22 of the auxiliary heating device 9 was arranged vertically below the main heater 8, but in the present invention, the main heater 8 The group of water pipes 23 of the auxiliary heating device 9 may be arranged vertically below. In addition, if the smoke pipe connected to the furnace 22 of the auxiliary heating device 9 is placed submerged in the heat medium liquid 3, even if the smoke pipe is placed vertically below the main heater 8. good.

1…真空式温水機
2…缶体
3…熱媒液
4…熱媒液槽
5…減圧蒸気室
6…温水熱交換器
7…加熱手段
8…主加熱器
9…補助用加熱装置
10…低負荷時用加熱器
11…ヒートポンプ
21…燃焼式バーナ
25…流動装置
26…循環ポンプ
27…熱媒液路
1...Vacuum type water heater 2...Can body 3...Heat medium liquid 4...Heat medium liquid tank 5...Reduced pressure steam chamber 6...Hot water heat exchanger 7...Heating means 8...Main heater 9...Auxiliary heating device 10...Low Load heater 11...Heat pump 21...Combustion type burner 25...Flow device 26...Circulation pump 27...Heat medium liquid path

Claims (7)

内部が大気圧以下に保持された密閉状の缶体と、缶体内の下部に形成されて熱媒液を貯留する熱媒液槽と、缶体内の上部に形成された減圧蒸気室と、減圧蒸気室に配置されて減圧蒸気室内に発生した蒸気を水との熱交換により凝縮して液化させる温水熱交換器と、熱媒液槽内の熱媒液中に配置されて熱媒液を加熱蒸発させる加熱手段とを備えた真空式温水機であって、
前記加熱手段は、主加熱器と、前記主加熱器よりも出力が大きい補助用加熱装置と、前記補助用加熱装置よりも下方の熱媒液中に配置された低負荷時用加熱器と、を備え、
前記補助用加熱装置は、前記主加熱器の鉛直方向下方に配置されていることを特徴とする、真空式温水機
A sealed can whose inside is kept below atmospheric pressure, a heat transfer liquid tank formed in the lower part of the can to store a heat transfer liquid, a reduced pressure steam chamber formed in the upper part of the can, and a reduced pressure A hot water heat exchanger is placed in the steam chamber to condense and liquefy the steam generated in the reduced pressure steam chamber through heat exchange with water, and a hot water heat exchanger is placed in the heat medium liquid in the heat medium liquid tank to heat the heat medium liquid. A vacuum water heater equipped with a heating means for evaporating,
The heating means includes a main heater, an auxiliary heating device having a larger output than the main heater , and a low-load heater disposed in the heat medium liquid below the auxiliary heating device. Equipped with
The vacuum water heater , wherein the auxiliary heating device is disposed vertically below the main heater.
前記主加熱器は、熱媒液が沸騰する温度よりも高い温度の流体が内部を流通する配管を備えている、請求項1に記載の真空式温水機。 The vacuum water heater according to claim 1, wherein the main heater includes piping through which a fluid having a temperature higher than the boiling temperature of the heat transfer liquid flows. 前記高温の流体はヒートポンプの冷媒であり、前記主加熱器はヒートポンプの冷媒を冷却するための凝縮器である、請求項2に記載の真空式温水機。 The vacuum water heater according to claim 2, wherein the high temperature fluid is a heat pump refrigerant, and the main heater is a condenser for cooling the heat pump refrigerant. 前記補助用加熱装置は、燃焼式バーナを備える、請求項1から3のいずれかに記載の真空式温水機。 The vacuum water heater according to any one of claims 1 to 3, wherein the auxiliary heating device includes a combustion burner. 前記主加熱器は、前記補助用加熱装置が駆動されている間は周囲の熱媒液を加熱するとともに、前記補助用加熱装置の駆動が停止されている間は加熱を停止し、
前記低負荷時用加熱器は、前記補助用加熱装置が駆動されている間は加熱を停止するとともに、前記補助用加熱装置の駆動が停止されている間は周囲の熱媒液を加熱する、請求項に記載の真空式温水機。
The main heater heats the surrounding heat medium liquid while the auxiliary heating device is being driven, and stops heating while the auxiliary heating device is not being driven;
The low-load heater stops heating while the auxiliary heating device is being driven, and heats the surrounding heat medium liquid while the auxiliary heating device is not being driven. The vacuum water heater according to claim 1 .
前記熱媒液槽内の熱媒液を前記主加熱器の伝熱面の周囲と熱媒液槽の底部との間で流動させる流動装置を備える、請求項1からのいずれかに記載の真空式温水機。 6. The heating medium liquid tank according to claim 1, further comprising a flow device that causes the heat medium liquid in the heat medium liquid tank to flow between the periphery of the heat transfer surface of the main heater and the bottom of the heat medium liquid tank. Vacuum water heater. 前記流動装置は、前記熱媒液槽内の底部と熱媒液槽の液面近傍との間に設けた循環ポンプを備える熱媒液路である、請求項に記載の真空式温水機。 7. The vacuum water heater according to claim 6 , wherein the flow device is a heat medium liquid path including a circulation pump provided between the bottom of the heat medium liquid tank and near the liquid surface of the heat medium liquid tank.
JP2019237451A 2019-12-26 2019-12-26 Vacuum water heater Active JP7390187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237451A JP7390187B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237451A JP7390187B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Publications (2)

Publication Number Publication Date
JP2021105491A JP2021105491A (en) 2021-07-26
JP7390187B2 true JP7390187B2 (en) 2023-12-01

Family

ID=76918702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237451A Active JP7390187B2 (en) 2019-12-26 2019-12-26 Vacuum water heater

Country Status (1)

Country Link
JP (1) JP7390187B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174056A (en) 1999-12-21 2001-06-29 Takuma Co Ltd Vacuum type water heating equipment
JP2015206484A (en) 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174056A (en) 1999-12-21 2001-06-29 Takuma Co Ltd Vacuum type water heating equipment
JP2015206484A (en) 2014-04-17 2015-11-19 株式会社日本サーモエナー Vacuum type water heater

Also Published As

Publication number Publication date
JP2021105491A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
US6904768B2 (en) Absorption-type air conditioner system
JP2007333293A (en) Loop type heat pipe
EA011442B1 (en) Boiler condensation module
JP6359321B2 (en) Vacuum water heater
WO2015053764A1 (en) Water heater with integrated sorption reactor
JP7390187B2 (en) Vacuum water heater
JP7390186B2 (en) Vacuum water heater
JP2006266633A (en) Cooling and heating operation method by absorption heat pump, and absorption heat pump
JP2007247797A (en) Lng vaporizer
JP7390185B2 (en) Vacuum water heater
KR101660706B1 (en) Apparatus for Heat Recovery of Exhaust Gas in High Efficiency Absorption Chiller-Heater
KR101059514B1 (en) Ammonia Water Absorption Cooling System Using Exhaust Gas Residual Heat
JP3318791B2 (en) Waste heat recovery system for direct-fired absorption chiller / heater
JP7309589B2 (en) Vacuum water heater and operation method of vacuum water heater
JP2009036103A (en) Exhaust heat recovery device
JP5653861B2 (en) Water heater
KR100493598B1 (en) Absorption Type Refrigerator
JP2650654B2 (en) Absorption refrigeration cycle device
JPS5829424Y2 (en) absorption cold water machine
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JP2005121332A (en) Double effect absorption type water cooling and heating machine with exhaust heat recovery device
JPH04140599A (en) Decompression boiler type carburetor
JP4007541B2 (en) Operation method for preventing flue wall corrosion at partial load in multi-effect absorption refrigerator / cooling / heating machine
JPH04203697A (en) Pressure reducing boiler type carburetor
JP3559919B2 (en) Absorption type cold and hot heat generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7390187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150