JP7388833B2 - Vehicle light control device, vehicle light control method, vehicle light - Google Patents

Vehicle light control device, vehicle light control method, vehicle light Download PDF

Info

Publication number
JP7388833B2
JP7388833B2 JP2019119559A JP2019119559A JP7388833B2 JP 7388833 B2 JP7388833 B2 JP 7388833B2 JP 2019119559 A JP2019119559 A JP 2019119559A JP 2019119559 A JP2019119559 A JP 2019119559A JP 7388833 B2 JP7388833 B2 JP 7388833B2
Authority
JP
Japan
Prior art keywords
light
light emitting
period
time
emitting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019119559A
Other languages
Japanese (ja)
Other versions
JP2021003999A (en
Inventor
汎 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2019119559A priority Critical patent/JP7388833B2/en
Publication of JP2021003999A publication Critical patent/JP2021003999A/en
Application granted granted Critical
Publication of JP7388833B2 publication Critical patent/JP7388833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/26Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic
    • B60Q1/34Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction
    • B60Q1/38Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps
    • B60Q1/381Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to indicate the vehicle, or parts thereof, or to give signals, to other traffic for indicating change of drive direction using immovably-mounted light sources, e.g. fixed flashing lamps with several light sources activated in sequence, e.g. to create a sweep effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/15Strips of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/237Light guides characterised by the shape of the light guide rod-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/243Light guides characterised by the emission area emitting light from one or more of its extremities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/251Light guides the light guides being used to transmit light from remote light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/20Direction indicator lights

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Description

本発明は、例えばターンランプとして用いられる車両用灯具の点灯制御技術に関する。 The present invention relates to lighting control technology for a vehicle lamp used, for example, as a turn lamp.

特開2017-183287号公報(特許文献1)には、一方向(例えば車幅方向)に光が流れるように視認させる点灯制御を行う車両用灯具が記載されている。上記のような点灯制御は、シーケンシャル制御と称される。この従来技術の車両用灯具では、導光体に対して複数のLED光源の各々から光を入射させ、各々からの光を導光体の異なる箇所において反射させて導光体外部へ順次出射させることにより上記のシーケンシャル制御を実現している(特許文献1の図11等参照)。 Japanese Unexamined Patent Application Publication No. 2017-183287 (Patent Document 1) describes a vehicle lamp that performs lighting control so that light flows in one direction (for example, in the vehicle width direction). The lighting control as described above is called sequential control. In this prior art vehicle lamp, light is incident on the light guide from each of a plurality of LED light sources, and the light from each is reflected at different locations on the light guide and sequentially emitted to the outside of the light guide. This achieves the above sequential control (see FIG. 11 of Patent Document 1, etc.).

ところで、上記した従来の車両用灯具においては、各LED光源からの光は、導光体に内部においてLED光源から近い位置で反射する場合と遠い位置で反射する場合で各々の光路長が異なる。このとき、光路長が短いほど光の広がりが抑えられるので、当該光が導光体から出射する際の発光面(光出射面)の大きさが小さくなるので、複数の発光面のそれぞれの大きさが異なることになる。この場合に、比較的大きい発光面がいくつか存在し、それらを短い時間で順次発光させたとすると、各発光面における発光時期の違いをユーザが感得しにくくなってしまい、光が流れるように視認させることが難しくなる。 By the way, in the above-described conventional vehicle lamp, the optical path length of the light from each LED light source differs depending on whether the light is reflected at a position close to the LED light source inside the light guide or when it is reflected at a position far from the LED light source. At this time, the shorter the optical path length, the more the spread of light is suppressed, so the size of the light emitting surface (light exit surface) when the light is emitted from the light guide becomes smaller, so the size of each of the multiple light emitting surfaces becomes smaller. The result will be different. In this case, if there are several relatively large light-emitting surfaces and if they are made to emit light one after another in a short period of time, it will be difficult for the user to perceive the difference in the timing of light emission on each light-emitting surface, and the light will flow as if it were flowing. It becomes difficult to make it visible.

特開2017-183287号公報JP2017-183287A

本発明に係る具体的態様は、大きさの異なる光出射面を有する車両用灯具においてシーケンシャル制御をより良好に行うことを可能とする技術を提供することを目的の1つとする。 One of the objects of the specific embodiments of the present invention is to provide a technique that enables better sequential control in a vehicle lamp having light emitting surfaces of different sizes.

[1]本発明に係る一態様の車両用灯具の制御装置は、(a)大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御装置であって、(b)一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して点灯制御を行う、車両用灯具の制御装置である。
[2]本発明に係る一態様の車両用灯具の制御方法は、(a)大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御方法であって、(b)一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して点灯制御を行う、車両用灯具の制御方法である。
[3]本発明に係る一態様の車両用灯具は、(a)大きさの異なる少なくとも3つの光出射面を有するランプユニットと、(b)一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して前記ランプユニットの点灯制御を行う制御部と、を含む、車両用灯具である。
[1] A control device for a vehicle light according to one aspect of the present invention is a control device for a vehicle light having (a) at least three light emitting surfaces of different sizes, and (b) within a certain period of time. When the at least three light emitting surfaces are turned on sequentially starting from the relatively large light emitting surface, the time when one relatively large light emitting surface reaches a predetermined brightness and the time when the next largest light emitting surface reaches the corresponding one. This is a control device for a vehicular lamp that performs lighting control by setting a period so that the period between when the brightness reaches a predetermined level gradually becomes shorter.
[2] A method for controlling a vehicular lamp according to one aspect of the present invention is (a) a method for controlling a vehicular lamp having at least three light emitting surfaces of different sizes, and (b) within a certain period of time. When the at least three light emitting surfaces are turned on sequentially starting from the relatively large light emitting surface, the time when one relatively large light emitting surface reaches a predetermined brightness and the time when the next largest light emitting surface reaches the corresponding one. This is a control method for a vehicle lamp in which lighting control is performed by setting a period so that the period between when the brightness reaches a predetermined level gradually becomes shorter.
[3] A vehicle lamp according to one aspect of the present invention includes (a) a lamp unit having at least three light emitting surfaces of different sizes, and (b) a lamp unit that has at least three light emitting surfaces relative to each other within a certain period of time. When the relatively large light exit surface is turned on sequentially, the period between the time when one relatively large light exit surface reaches a predetermined brightness and the time when the next relatively large light exit surface reaches the predetermined brightness. A vehicular lamp includes: a control section that controls lighting of the lamp unit by setting the period so that the length thereof gradually decreases.

上記構成によれば、大きさの異なる光出射面を有する車両用灯具においてシーケンシャル制御をより良好に行うことができる。 According to the above configuration, sequential control can be performed better in a vehicle lamp having light emitting surfaces of different sizes.

図1は、一実施形態の車両用灯具の斜視図である。FIG. 1 is a perspective view of a vehicle lamp according to one embodiment. 図2は、車両用灯具の部分断面図である。FIG. 2 is a partial cross-sectional view of the vehicle lamp. 図3は、各LED光源からの光の導光体内での光路とそれぞれの光出射面との関係について説明するための図である。FIG. 3 is a diagram for explaining the relationship between the optical path of light from each LED light source within the light guide and the respective light exit surface. 図4(A)は、各LED光源の点灯制御方法を説明するための波形図である。図4(B)は、比較例の各LED光源の点灯制御方法を説明するための波形図である。FIG. 4(A) is a waveform diagram for explaining a lighting control method for each LED light source. FIG. 4(B) is a waveform diagram for explaining a lighting control method for each LED light source in a comparative example. 図5(A)は、本実施形態の車両用灯具における各光出射面からの光の点灯タイミングについて模式的に示す図である。図5(B)は、比較例の車両用灯具における各光出射面からの光の点灯タイミングについて模式的に示す図である。FIG. 5A is a diagram schematically showing the lighting timing of light from each light emitting surface in the vehicle lamp of this embodiment. FIG. 5(B) is a diagram schematically showing the lighting timing of light from each light emitting surface in a vehicle lamp of a comparative example. 図6(A)、図6(B)は、それぞれ、輝度変化の変形例を説明するための図である。FIGS. 6A and 6B are diagrams for explaining modified examples of luminance changes, respectively. 図7(A)、図7(B)は、それぞれ、変形例の車両用灯具の構造を説明するための図である。7(A) and 7(B) are diagrams for explaining the structure of a modified example of a vehicle lamp, respectively. 図8(A)は、変形例の車両用灯具の構造を説明するための正面図であり、図8(B)は、この変形例の車両用灯具の構造を説明するための上面図(断面図)であり、図8(C)は、この変形例の車両用灯具における光源モジュールの構造を説明するための拡大上面図(断面図)である。FIG. 8(A) is a front view for explaining the structure of a vehicle lamp according to a modified example, and FIG. 8(B) is a top view (cross-sectional view) for explaining the structure of a vehicle lamp according to this modified example. FIG. 8(C) is an enlarged top view (cross-sectional view) for explaining the structure of the light source module in the vehicle lamp of this modification.

図1は、一実施形態の車両用灯具の斜視図である。図2は、車両用灯具の部分断面図である。本実施形態の車両用灯具1は、7つのLED光源(光源)15を順次点灯又は順次消灯させ、各LED光源15から出射する光を導光体20によって導光し、それぞれ異なる光出射面から出射させることにより、シーケンシャル制御を実現するものであり、例えば車両の前部および後部にそれぞれ一対ずつ設置されてターンランプ(方向指示灯)として用いられる。 FIG. 1 is a perspective view of a vehicle lamp according to one embodiment. FIG. 2 is a partial cross-sectional view of the vehicle lamp. The vehicle lamp 1 of this embodiment sequentially turns on or off seven LED light sources (light sources) 15, guides the light emitted from each LED light source 15 through a light guide 20, and guides the light emitted from each LED light source 15 from a different light exit surface. Sequential control is achieved by emitting light, and for example, a pair are installed at the front and rear of a vehicle and used as turn lamps (direction indicator lights).

車両用灯具1は、7つのLED光源15が実装された光源ユニット10と、各LED光源15から照射された光を複数の光出射面からそれぞれ出射させる導光体20と、を備える。導光体20は、入射部21と、反射部26と、光出射部29を有する。なお、光源ユニット10と導光体20が「ランプユニット」に対応する。 The vehicle lamp 1 includes a light source unit 10 in which seven LED light sources 15 are mounted, and a light guide 20 that causes the light emitted from each LED light source 15 to be emitted from a plurality of light output surfaces. The light guide 20 has an entrance section 21 , a reflection section 26 , and a light output section 29 . Note that the light source unit 10 and the light guide 20 correspond to a "lamp unit".

図1に示すように、光源ユニット10は、回路基板11と、回路基板11に実装された7つのLED光源15および制御チップ(制御部)13を有する。本実施形態において、回路基板11の板面が延びる方向は、水平面方向と略一致する。7つのLED光源15は、左右方向に若干ずれて、前後方向に沿って配列されている。 As shown in FIG. 1, the light source unit 10 includes a circuit board 11, seven LED light sources 15 and a control chip (control unit) 13 mounted on the circuit board 11. In this embodiment, the direction in which the board surface of the circuit board 11 extends substantially coincides with the horizontal direction. The seven LED light sources 15 are arranged along the front-rear direction and are slightly shifted in the left-right direction.

LED光源15から出射する光は、入射部21において導光体20の内部に入射し、配列方向と直交する方向に平行な一次平行光L1とされる。一次平行光L1は、反射部26において内面反射されて二次平行光L2とされ、光出射部29から出射される。 The light emitted from the LED light source 15 enters the inside of the light guide 20 at the entrance part 21, and is converted into primary parallel light L1 parallel to the direction orthogonal to the arrangement direction. The primary parallel light L1 is internally reflected at the reflection section 26 to become a secondary parallel light L2, which is emitted from the light emitting section 29.

入射部21は、車両の前後方向に沿って配列された7つの入射素子22を有する。7つの入射素子22は、7つのLED光源15にそれぞれ対向して配置されている。7つの入射素子22は、対向するLED光源15から出射された光をLED光源15の配列方向(前後方向)と直交する方向(左右方向)に平行な一次平行光L1とする。 The incidence section 21 has seven incidence elements 22 arranged along the longitudinal direction of the vehicle. The seven incident elements 22 are arranged to face the seven LED light sources 15, respectively. The seven incident elements 22 convert the light emitted from the LED light sources 15 facing each other into primary parallel light L1 parallel to the direction (horizontal direction) orthogonal to the arrangement direction (front-back direction) of the LED light sources 15.

図2に示すように、入射素子22は、入射面23と、外周反射面24と、内面反射部25を有する。入射面23および外周反射面24は、LED光源15の中心を通過する光軸Jを中心とする回転対称形状を有する。入射面23は、LED光源15から出射する光を導光体20の内部に入射させる。また、入射面23は、LED光源15から出射する光のうち比較的出射角の小さい光を略平行光となるように屈折させる。また、入射面23は、LED光源15から出射する光のうち比較的出射角の大きな光を屈折させて外周反射面24に入射させる。外周反射面24は、入射した光を略平行光となるように内面反射させる。すなわち、入射面23および外周反射面24は、LED光源15から出射した光を導光体20の内部に入射させて平行光とする。 As shown in FIG. 2, the incident element 22 has an incident surface 23, an outer peripheral reflective surface 24, and an inner reflective portion 25. The incident surface 23 and the outer peripheral reflective surface 24 have a rotationally symmetrical shape with the optical axis J passing through the center of the LED light source 15 as the center. The entrance surface 23 allows the light emitted from the LED light source 15 to enter the inside of the light guide 20 . Further, the entrance surface 23 refracts light having a relatively small exit angle out of the light emitted from the LED light source 15 so that it becomes substantially parallel light. Furthermore, the incident surface 23 refracts light having a relatively large emission angle among the light emitted from the LED light source 15 and makes it enter the outer peripheral reflective surface 24 . The outer peripheral reflective surface 24 internally reflects the incident light so that it becomes approximately parallel light. That is, the incident surface 23 and the outer peripheral reflective surface 24 allow the light emitted from the LED light source 15 to enter the inside of the light guide 20 and convert it into parallel light.

内面反射部25は、LED光源15の光軸Jに対して傾斜する平面である。内面反射部25には、LED光源15の光軸Jが通過する。内面反射部425は、入射面23および外周反射面24において平行光とされた光を内面反射させて、左右方向に平行な一次平行光L1とする。したがって、本実施形態において、LED光源15の光軸Jと一次平行光L1とは互いに異なる方向を向く。 The internal reflection section 25 is a plane that is inclined with respect to the optical axis J of the LED light source 15. The optical axis J of the LED light source 15 passes through the internal reflection section 25 . The internal reflection section 425 internally reflects the light that has been made into parallel light on the incident surface 23 and the outer circumferential reflection surface 24, and converts it into primary parallel light L1 parallel to the left-right direction. Therefore, in this embodiment, the optical axis J of the LED light source 15 and the primary parallel light L1 face different directions.

図1に示すように、本実施形態の光出射部29は、車両の左右方向に沿って延び出射方向に凸となる湾曲面である。光出射部29は、反射部26で反射されて一次平行光L1から二次平行光L2に変換された光を、車両の前方(又は後方)に向けて出射する。 As shown in FIG. 1, the light emitting portion 29 of this embodiment is a curved surface that extends along the left-right direction of the vehicle and is convex in the light emitting direction. The light emitting section 29 emits the light reflected by the reflecting section 26 and converted from the primary parallel light L1 to the secondary parallel light L2 toward the front (or rear) of the vehicle.

本実施形態の導光体20は、車両の前後方向に沿って並ぶ複数(本実施形態では7つ)の分割体30を有する。それぞれの分割体30には、その一端側に1つの入射素子22が設けられている。それぞれの分割体30には、それぞれ反射部26の一部が設けられており、複数の分割体30が組み合わされることで、車両幅方向に延びる1つの反射部26が構成される。また、複数の分割体30のうち、最も車両前方側(すなわち光の出射側)に配置される分割体30の外側には光出射部29が設けられている。 The light guide 20 of this embodiment has a plurality of (seven in this embodiment) divided bodies 30 lined up along the front-rear direction of the vehicle. Each divided body 30 is provided with one input element 22 at one end thereof. Each of the divided bodies 30 is provided with a portion of the reflective section 26, and by combining the plurality of divided bodies 30, one reflective section 26 extending in the vehicle width direction is configured. Further, among the plurality of divided bodies 30, a light emitting portion 29 is provided on the outer side of the divided body 30 that is disposed closest to the vehicle front side (that is, on the light emission side).

それぞれの分割体30は、境界面を介して互いに接触しており、それぞれ車両の幅方向に沿って延びている。複数の分割体30同士の境界面は、一次平行光L1と平行に延びる第1境界面と、一次平行光L1と直交する第2の境界面に分類される。第1境界面は、複数のLED光源15に対応する一次平行光L1の光路を区画するスリット(第3実施形態のスリットSに対応)として機能する。第1境界面は、一次平行光L1の平行成分に対して傾いた光を全反射させるため、それぞれのLED光源15から出射した一次平行光L1が混ざり合うことを抑制する。また、第1境界面には、二次平行光L2が通過する。第1境界面は、二次平行光L2と直交するため、第1境界面における二次平行光L2の反射は抑制される。第2境界面には、一次平行光L1が通過する。第2の境界面は、一次平行光L1と直交するため、第2境界面における一次平行光L1の反射は抑制される。 The respective divided bodies 30 are in contact with each other via boundary surfaces, and extend along the width direction of the vehicle. The boundary surfaces between the plurality of divided bodies 30 are classified into a first boundary surface extending parallel to the primary parallel light L1 and a second boundary surface perpendicular to the primary parallel light L1. The first boundary surface functions as a slit (corresponding to the slit S of the third embodiment) that partitions the optical path of the primary parallel light L1 corresponding to the plurality of LED light sources 15. The first boundary surface totally reflects the light that is tilted with respect to the parallel component of the primary parallel light L1, and thus suppresses mixing of the primary parallel light L1 emitted from each LED light source 15. Moreover, the secondary parallel light L2 passes through the first boundary surface. Since the first boundary surface is orthogonal to the secondary parallel light L2, reflection of the secondary parallel light L2 at the first boundary surface is suppressed. The primary parallel light L1 passes through the second boundary surface. Since the second boundary surface is orthogonal to the primary parallel light L1, reflection of the primary parallel light L1 at the second boundary surface is suppressed.

図3は、各LED光源からの光の導光体内での光路とそれぞれの光出射面との関係について説明するための図である。図3では導光体20を上面側から平面視した様子が示され、各LED光源15による光の光路が細線によって示されている。図示のように、各LED光源15から出射する光のうち、光路長が最も長くなる光L11を出射させる光出射面41は、他の光出射面42~47に比べてその幅(面積)が大きくなっている。なお、各光出射面41~47の境界を図中点線で示している。 FIG. 3 is a diagram for explaining the relationship between the optical path of light from each LED light source within the light guide and the respective light exit surface. FIG. 3 shows a plan view of the light guide 20 from the top side, and the optical path of light from each LED light source 15 is shown by thin lines. As shown in the figure, among the lights emitted from each LED light source 15, the light exit surface 41 that emits the light L11 having the longest optical path length has a width (area) smaller than that of the other light exit surfaces 42 to 47. It's getting bigger. Note that the boundaries of each of the light exit surfaces 41 to 47 are indicated by dotted lines in the figure.

他のLED光源15から出射する光も同様で、例えば、2番目に光路長が長くなる光L12を出射させる光出射面42は、他の光出射面43~47に比べてその幅(面積)が大きくなっており、3番目に光路長が長くなる光L13を出射させる光出射面43は、他の光出射面44~47に比べてその幅(面積)が大きくなっている。光L14、L15、L16、L17の各々を出射させる光出射面44、45、46、47についても同様である。ただし、これらに光出射面44~47については光路長の差がそれほど大きくないため、幅(面積)の差も少ない。 The same applies to the light emitted from the other LED light sources 15. For example, the light emitting surface 42 that emits the light L12 having the second longest optical path length has a width (area) that is larger than that of the other light emitting surfaces 43 to 47. The light emitting surface 43 that emits the light L13 having the third longest optical path length has a larger width (area) than the other light emitting surfaces 44 to 47. The same applies to the light emitting surfaces 44, 45, 46, and 47 that emit the lights L14, L15, L16, and L17, respectively. However, since the difference in optical path length between these light exit surfaces 44 to 47 is not so large, the difference in width (area) is also small.

本実施形態の車両用灯具では、光路長の長い光L11に対応するLED光源15を最初に点灯させ、その後、光L12、L13・・・L17に対応する各LED光源15を順次点灯させることにより、光L11~L17がその順に各光出射面41~47から外部へ出射するようにシーケンシャル制御が実行される。 In the vehicle lamp of this embodiment, the LED light source 15 corresponding to the light L11 having a long optical path length is first turned on, and then the LED light sources 15 corresponding to the light L12, L13, . . . L17 are turned on in sequence. , sequential control is performed such that the lights L11 to L17 are emitted to the outside from each of the light emitting surfaces 41 to 47 in that order.

図4(A)は、各LED光源の点灯制御方法を説明するための波形図である。図4(A)では、各光出射面の出射光輝度の時間変化の様子が示されている(後述する図4(B)においても同様)。各LED光源15の点灯制御は、回路基板11に実装された制御チップ13(図1参照)によって実行される。具体的には、各LED光源15の出射光は、例えばPWM(Pulse Width Modulation)制御、あるいは電流値制御によって増減させることが可能できる。また、ここでは各光出射面41~47の出射光輝度を0%から100%に変化させる際の当該輝度の時間変化を制御する方法について例示するが、出射光輝度の最大値を100%よりも小さい値に設定してもよい。 FIG. 4(A) is a waveform diagram for explaining a lighting control method for each LED light source. FIG. 4A shows how the luminance of the emitted light from each light exit surface changes over time (the same applies to FIG. 4B, which will be described later). Lighting control of each LED light source 15 is executed by a control chip 13 (see FIG. 1) mounted on the circuit board 11. Specifically, the light emitted from each LED light source 15 can be increased or decreased by, for example, PWM (Pulse Width Modulation) control or current value control. In addition, here we will exemplify a method for controlling the temporal change in the luminance when changing the luminance of the emitted light from each of the light emitting surfaces 41 to 47 from 0% to 100%. may also be set to a small value.

図示のように、本実施形態では、第1期間(一例として200ms)において、各LED光源15に対応する各光出射面41~47の出射光をそれぞれ別々の時刻から別々の傾き(急峻性)で上昇させるように点灯制御する。そして、第1期間と始期を共通にしており第1期間よりも長い第2期間(一例として333ms)が経過して時刻t8となる際にすべての光出射面41~47からの出射光輝度が100%から0%に下降させるように制御する。例えば、方向指示スイッチが作動している間において、このようなルーチンでの点灯制御が繰り返し実行される。 As shown in the figure, in this embodiment, the emitted light from each of the light emitting surfaces 41 to 47 corresponding to each LED light source 15 has different inclinations (steepness) from different times in the first period (200 ms as an example). Control the lighting so that it rises. Then, at time t8 after a second period (for example, 333 ms), which has the same starting period as the first period and is longer than the first period, has elapsed, the luminance of the light emitted from all the light emitting surfaces 41 to 47 changes. It is controlled to decrease from 100% to 0%. For example, while the direction indicator switch is in operation, such routine lighting control is repeatedly executed.

詳細には、第1期間の始期と一致する時刻t1において、光路長の最も長い光L11に対応するLED光源15が点灯する。図示のように、光L11に対応する光出射面41での出射光輝度が0%から100%へ瞬時に上昇するようにLED光源15が制御される。次に、時刻t1よりも後の時刻t2において、2番目に光路長の長い光L12に対応するLED光源15が点灯する。ここでは、光L12に対応する光出射面42での出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが相対的に小さく設定されている。そして、この光出射面42の出射光輝度が100%に上昇する時刻は第1期間を1/2以上経過した時となるように制御される。すなわち、光L11に対応する光出射面41の出射光輝度が100%になった時から、光L12に対応する光出射面42の出射光輝度が100%になる時までの間は、第1期間の1/2よりも長く設定されている。なお、図示の例では時刻t2は第1期間の1/2が経過する以前の時期に設定されている。 Specifically, at time t1, which coincides with the start of the first period, the LED light source 15 corresponding to the light L11 with the longest optical path length is turned on. As shown in the figure, the LED light source 15 is controlled so that the luminance of the emitted light at the light emitting surface 41 corresponding to the light L11 instantly increases from 0% to 100%. Next, at time t2 after time t1, the LED light source 15 corresponding to the light L12 with the second longest optical path length is turned on. Here, the slope of the brightness change when the emitted light brightness at the light exit surface 42 corresponding to the light L12 increases from 0% to 100% is set relatively small. Then, the time at which the luminance of the light emitted from the light emitting surface 42 rises to 100% is controlled so that the time when more than half of the first period has elapsed. That is, from the time when the output light brightness of the light output surface 41 corresponding to the light L11 becomes 100% until the time when the output light brightness of the light output surface 42 corresponding to the light L12 becomes 100%, the first It is set longer than 1/2 of the period. Note that in the illustrated example, time t2 is set to a time before 1/2 of the first period has elapsed.

時刻t2によりも後の時刻t3において、3番目に光路長の長い光L13に対応するLED光源15が点灯する。ここでは、光L13に対応する出射面43の出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが光L12に対応する輝度変化の傾きよりも相対的に大きく設定されている。そして、この光L13に対応する光出射面43の出射光輝度が100%に上昇する時期は、光L12に対応する光出射面42の出射光輝度が100%となる時によりも遅い時となるように制御される。図示のように、光L13に対応する出射光輝度が100%となる時点で、第1期間の大半(図示の例では180ms以上)が経過している。なお、図示の例では時刻t3は第1期間の1/2が経過した後の時期に設定されている。 At time t3, which is later than time t2, the LED light source 15 corresponding to the light L13 with the third longest optical path length is turned on. Here, the slope of the brightness change when the output light brightness of the light output surface 43 corresponding to the light L13 rises from 0% to 100% is set to be relatively larger than the slope of the brightness change corresponding to the light L12. . The time when the output light brightness of the light output surface 43 corresponding to the light L13 rises to 100% is later than the time when the output light brightness of the light output surface 42 corresponding to the light L12 reaches 100%. controlled as follows. As shown in the figure, most of the first period (180 ms or more in the illustrated example) has elapsed by the time the output light brightness corresponding to the light L13 reaches 100%. Note that in the illustrated example, time t3 is set to a time after 1/2 of the first period has elapsed.

時刻t3よりも後の時刻t4、t5、t6、t7において、それぞれ光L14、L15、L16、L17に対応するLED光源15が順次点灯する。ここでは、ここでは、出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが光L12、L13に対応する輝度変化の傾きよりも相対的に大きく設定されている。また、光L14、L15、L16、L17の順にそれぞれの輝度変化の傾きが大きく設定されている。また、図示の例では、光L14、L15、L16、L17の各々の輝度が100%に至る時期は共通(同一)の時刻とされており、当該時刻は第1期間の終期と一致している。 At times t4, t5, t6, and t7 after time t3, the LED light sources 15 corresponding to the lights L14, L15, L16, and L17 are sequentially turned on. Here, the slope of the brightness change when the emitted light brightness increases from 0% to 100% is set to be relatively larger than the slope of the brightness change corresponding to the lights L12 and L13. Further, the slope of the luminance change is set to be larger in the order of the lights L14, L15, L16, and L17. In addition, in the illustrated example, the time when the brightness of each of the lights L14, L15, L16, and L17 reaches 100% is a common (same) time, and the time coincides with the end of the first period. .

上記のように、相対的に幅(面積)の大きい光出射面41、42、43に対応する光L11、L12、L13については、各々の輝度が100%に至る時期の間が比較的長くなるように各LED光源15の点灯制御が実行される。特に、最も光路長の長い光L11に対応する光出射面41の出射光輝度は、速やかに100%へ上昇するように、その輝度変化を最も急峻にして制御されている。また、この時期から次に光路長の長い光L12の輝度が100%に上昇する時期までの間隔は、第1期間の1/2以上(図示の例では第1期間の3/4程度)と長く設定されている。そして、相対的に幅(面積)の小さい光出射面44~47に対応する光L14~L17については、各々の輝度が100%に至る時期の間が短くなるように各LED光源15の点灯制御が実行される。そして、全体としては、相対的に大きい光出射面の出射光輝度が100%になる時期とその次に大きい光出射面の出射光輝度が100%になる時期との間の長さが徐々に短くなるように点灯制御が行われている。 As mentioned above, for the lights L11, L12, and L13 corresponding to the light exit surfaces 41, 42, and 43 having relatively large widths (areas), the period when each luminance reaches 100% is relatively long. The lighting control of each LED light source 15 is executed as follows. In particular, the brightness of the light emitted from the light exit surface 41 corresponding to the light L11 having the longest optical path length is controlled to have the steepest change so that it quickly rises to 100%. Furthermore, the interval from this time to the time when the brightness of the light L12 with the next longest optical path length increases to 100% is 1/2 or more of the first period (about 3/4 of the first period in the illustrated example). It has been set for a long time. For the lights L14 to L17 corresponding to the light output surfaces 44 to 47 having relatively small widths (areas), the lighting of each LED light source 15 is controlled so that the period when each brightness reaches 100% is shortened. is executed. As a whole, the length between the time when the output light brightness of the relatively large light exit surface becomes 100% and the time when the exit light brightness of the next largest light exit surface becomes 100% gradually increases. Lighting control is performed to shorten the time.

図5(A)は、本実施形態の車両用灯具における各光出射面からの光の点灯タイミングについて模式的に示す図である。同図では、各光出射面41~47を模式的に示し、かつ光を出射している状態を模様によって示している(後述する図5(B)においても同様)。また、図中下方向へ向かって時間が経過するものとする。上記のような点灯制御を行うことにより、各光出射面41~47からの光L11~L17が分離性よく順次点灯するため、光が図中で左から右へスムーズに流れるシーケンシャル制御を実現することができる。 FIG. 5A is a diagram schematically showing the lighting timing of light from each light emitting surface in the vehicle lamp of this embodiment. In the same figure, each of the light emitting surfaces 41 to 47 is schematically shown, and the state in which light is emitted is shown by a pattern (the same applies to FIG. 5(B) described later). It is also assumed that time passes toward the bottom in the figure. By performing the lighting control as described above, the lights L11 to L17 from each of the light exit surfaces 41 to 47 are lit sequentially with good separation, thereby realizing sequential control in which the light flows smoothly from left to right in the figure. be able to.

図4(B)は、比較例の各LED光源の点灯制御方法を説明するための波形図である。また、図5(B)は、この比較例の車両用灯具における各光出射面からの光の点灯タイミングについて模式的に示す図である。図4(B)に示すように、比較例では、上記した実施形態と同様の構造を有する車両用灯具において、第1期間内で均等な間隔で各光出射面41~47からの光L11~L17がそれぞれ順次0%から100%の輝度に上昇するように制御されている。この場合には、相対的に幅(面積)の大きい光出射面41、42、43に対応する光L11、L12、L13が比較的短い期間で次々と100%の輝度に至ることから、光L11、L12、L13の分離性の悪く、図5(B)に示すように各光出射面41、42、43の光L11、L12、L13がほとんど同時に点滅するように視認されてしまう。 FIG. 4(B) is a waveform diagram for explaining a lighting control method for each LED light source in a comparative example. Further, FIG. 5(B) is a diagram schematically showing the lighting timing of light from each light emitting surface in the vehicle lamp of this comparative example. As shown in FIG. 4(B), in the comparative example, in a vehicle lamp having a structure similar to that of the above-described embodiment, light L11 to The luminance of L17 is controlled to increase sequentially from 0% to 100%. In this case, since the lights L11, L12, and L13 corresponding to the light exit surfaces 41, 42, and 43 having relatively large widths (areas) reach 100% brightness one after another in a relatively short period, the light L11 .

以上のような実施形態によれば、大きさの異なる光出射面を有する車両用灯具においてシーケンシャル制御をより良好に行うことができる。 According to the embodiments described above, sequential control can be better performed in a vehicle lamp having light emitting surfaces of different sizes.

なお、本発明は上記した実施形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々に変形して実施をすることが可能である。例えば、上記した実施形態では、本発明をターンランプに適用した一例を説明したが、本発明の適用範囲はこれに限定されない。例えば、エクステリアランプ、ウェルカムランプ、アクセサリーランプ、インテリア用アンビエント照明器具など種々の灯具に適用することができる。 Note that the present invention is not limited to the contents of the embodiments described above, and can be implemented with various modifications within the scope of the gist of the present invention. For example, in the embodiment described above, an example in which the present invention is applied to a turn lamp has been described, but the scope of application of the present invention is not limited thereto. For example, it can be applied to various lighting equipment such as exterior lamps, welcome lamps, accessory lamps, and interior ambient lighting equipment.

また、上記した実施形態では、図4(A)に示したように各LED光源15からの光L11~L17の輝度を0%(最小値)から100%(最大値)へ上昇させる際の時間変化を直線的に制御していたが、図6(A)に示す変形例のように曲線的な時間変化によって制御してもよい。 Furthermore, in the above embodiment, as shown in FIG. 4A, the time required to increase the brightness of the lights L11 to L17 from each LED light source 15 from 0% (minimum value) to 100% (maximum value) Although the change is controlled linearly, it may be controlled by a curved time change as in the modification shown in FIG. 6(A).

また、上記した実施形態では、LED光源からの光を導光して出射させる場合の光出射面の大きさに応じて点灯制御を行っていたが、反射を用いずに直接的に光を出射させる光源を用いる車両用灯具においても同様に本発明を適用することができる。例えば、図7(A)に例示するように、直射型の発光モジュール101、102、103、104、105、106を一方向に並べた構造の車両用灯具に本発明を適用してもよい。この場合には、LED素子などの発光素子(図中、丸で示す)の数が多い発光モジュール101を最初に最大値の輝度まで上昇させ、次いで発光モジュール102を最大値の輝度まで上昇させ、さらに発光モジュール103~106を順次最大値の輝度まで上昇させるように制御すればよい。同様に、図7(B)に例示するように縦横のサイズが異なる直射型の発光モジュール201、202、203、204、205、206を一方向に並べた構造の車両用灯具に本発明を適用してもよい。この場合には、LED素子などの発光素子の数が多い発光モジュール201を最初に最大値の輝度まで上昇させ、次いで発光モジュール202を最大値の輝度まで上昇させ、さらに発光モジュール203~206を順次最大値の輝度まで上昇させるように制御すればよい。なお、何れの変形例においても、発光モジュールは直射型に限られず、反射部を用いて光を外部へ出射させるリフレクタ型のものであってもよい。 In addition, in the above-described embodiment, lighting control was performed according to the size of the light exit surface when guiding and emitting light from an LED light source, but light is emitted directly without using reflection. The present invention can be similarly applied to a vehicle lamp that uses a light source. For example, as illustrated in FIG. 7A, the present invention may be applied to a vehicle lamp having a structure in which direct-emitting light emitting modules 101, 102, 103, 104, 105, and 106 are arranged in one direction. In this case, the light emitting module 101 having a large number of light emitting elements (indicated by circles in the figure) such as LED elements is first raised to the maximum brightness, and then the light emitting module 102 is raised to the maximum brightness, Furthermore, the luminance of the light emitting modules 103 to 106 may be controlled to increase sequentially to the maximum value. Similarly, the present invention is applied to a vehicle lamp having a structure in which direct-emitting light emitting modules 201, 202, 203, 204, 205, and 206 of different vertical and horizontal sizes are arranged in one direction as illustrated in FIG. 7(B). You may. In this case, the light emitting module 201 with a large number of light emitting elements such as LED elements is raised to the maximum brightness first, then the light emitting module 202 is raised to the maximum brightness, and then the light emitting modules 203 to 206 are sequentially increased. Control may be performed to increase the brightness to the maximum value. In any of the modified examples, the light emitting module is not limited to a direct type, but may be a reflector type that emits light to the outside using a reflective section.

また、上記した実施形態では、相対的に幅(面積)の大きい光出射面から順に点灯させる場合の点灯制御を説明したが、これとは逆に、相対的に幅(面積)の小さい光出射面から順に点灯させるようにすることもできる。 Furthermore, in the above-described embodiment, the lighting control was explained in the case where the light is turned on in order from the light emitting surface with a relatively large width (area). It is also possible to turn on the lights sequentially from the front.

図6(B)は、各LED光源の点灯制御方法を説明するための波形図である。図6(B)では、各光出射面の出射光輝度の時間変化の様子が示されている。また、図8(A)は、変形例の車両用灯具の構造を説明するための正面図であり、図8(B)は、この変形例の車両用灯具の構造を説明するための上面図(断面図)であり、図8(C)は、この変形例の車両用灯具における光源モジュールの構造を説明するための拡大上面図(断面図)である。なお、図8(C)では1つのLED光源を有する光源モジュールの構成を例示しているが、複数のLED光源を有する光源モジュールの構成も同様である。図示の各光源モジュール301、302、303、304は、それぞれ1つのLED光源を備え、光源モジュール305は2つのLED光源を備え、光源モジュール306は3つのLED光源を備え、光源モジュール307は4つのLED光源を備えている。換言すれば、光源モジュール301~304は光出射面が最も小さく、光源モジュール305は次に光出射面が小さく、光源モジュール306は次に光出射面が小さく、光源モジュール307は光出射面が最も大きい。 FIG. 6(B) is a waveform diagram for explaining a lighting control method for each LED light source. FIG. 6(B) shows how the luminance of the emitted light from each light emitting surface changes over time. Further, FIG. 8(A) is a front view for explaining the structure of the vehicle lamp according to the modification, and FIG. 8(B) is a top view for explaining the structure of the vehicle lamp according to the modification. (Cross-sectional view), and FIG. 8(C) is an enlarged top view (cross-sectional view) for explaining the structure of the light source module in the vehicle lamp of this modification. Although FIG. 8C illustrates the configuration of a light source module having one LED light source, the configuration of a light source module having a plurality of LED light sources is also similar. Each illustrated light source module 301, 302, 303, 304 includes one LED light source, light source module 305 includes two LED light sources, light source module 306 includes three LED light sources, and light source module 307 includes four LED light sources. Equipped with an LED light source. In other words, the light source modules 301 to 304 have the smallest light exit surface, the light source module 305 has the next smallest light exit surface, the light source module 306 has the next smallest light exit surface, and the light source module 307 has the smallest light exit surface. big.

各LED光源315の点灯制御は、各LED光源315に対応付けられた回路基板311に実装された制御チップ(不図示)によって実行される。具体的には、各LED光源315の出射光は、例えばPWM(Pulse Width Modulation)制御、あるいは電流値制御によって増減させることが可能できる。また、ここでは車両用灯具の各光源モジュール301~307の光出射面からの出射光輝度を0%から100%に変化させる際の当該輝度の時間変化を制御する方法について例示するが、出射光輝度の最大値を100%よりも小さい値に設定してもよい。図8(A)に示すように、出射面積の相対的に小さい光出射面を有する光源モジュール301は、車両の車幅方向における内側に配置され、出射面積が最も大きい光出射面を有する光源モジュール307が車両の車幅方向の外側に配置されている。図中に示すように、車両用灯具は、車両内側の出射面積の小さい光出射面の光源モジュール301から車両外側の出射面積が最も大きい光出射面の光源モジュール307に向かって、順次点灯するように制御される。図8(C)に例示するように、本例の各発光モジュール301~307はそれぞれリフレクタ型であり、各LED315から出射された光は、箱体321に収容されたリフレクタ313で反射され、箱体312の前方に配置されたインナレンズ314を通して、前方へ照射される。配光制御はリフレクタ313、および/又はインナレンズ314に形成したレンズカットで行っている。 Lighting control of each LED light source 315 is executed by a control chip (not shown) mounted on the circuit board 311 associated with each LED light source 315. Specifically, the light emitted from each LED light source 315 can be increased or decreased by, for example, PWM (Pulse Width Modulation) control or current value control. In addition, here we will exemplify a method for controlling the temporal change in the luminance when changing the luminance of the emitted light from the light emitting surface of each of the light source modules 301 to 307 of the vehicle lamp from 0% to 100%. The maximum value of brightness may be set to a value smaller than 100%. As shown in FIG. 8A, a light source module 301 having a light output surface with a relatively small output area is disposed inside the vehicle in the vehicle width direction, and a light source module 301 having a light output surface with the largest output area 307 is arranged on the outside of the vehicle in the vehicle width direction. As shown in the figure, the vehicle lamp is turned on sequentially from the light source module 301 on the light exit surface with the smallest emission area on the inside of the vehicle to the light source module 307 on the light emission surface with the largest emission area on the outside of the vehicle. controlled by. As illustrated in FIG. 8C, each of the light emitting modules 301 to 307 of this example is of a reflector type, and the light emitted from each LED 315 is reflected by a reflector 313 housed in a box body 321, and The light is irradiated forward through an inner lens 314 placed in front of the body 312. Light distribution is controlled by a reflector 313 and/or a lens cut formed in the inner lens 314.

図6(B)に示したように、本変形例では、第1期間(一例として200ms)において、各光源モジュール301~307の各LED光源315に対応する各光出射面の出射光をそれぞれ別々の時刻から別々の傾き(急峻性)で上昇させるように点灯制御する。そして、第1期間と始期を共通にしており第1期間よりも長い第2期間(一例として333ms)が経過して時刻t8となる際にすべての光源モジュール301~307からの出射光輝度を100%から0%に下降させるように制御する。例えば、方向指示スイッチが作動している間において、このようなルーチンでの点灯制御が繰り返し実行される。 As shown in FIG. 6(B), in this modification, the emitted light from each light emitting surface corresponding to each LED light source 315 of each light source module 301 to 307 is separately transmitted during the first period (200 ms as an example). The lighting is controlled to rise at different slopes (steepness) from the time of . Then, at time t8 after a second period (for example, 333 ms), which has the same starting period as the first period and is longer than the first period, has elapsed, the luminance of the light emitted from all the light source modules 301 to 307 is reduced to 100. It is controlled so that it decreases from % to 0%. For example, while the direction indicator switch is in operation, such routine lighting control is repeatedly executed.

詳細には、相対的に幅(面積)の小さい光出射面の光源モジュール301~304に対応する光L21~L24については、各々の輝度が100%に至る時期の間が短くなるように各LED光源315の点灯制御が実行される。時刻t1、t2、t3、t4において、それぞれ光L21、L22、L23、L24に対応するLED光源315が順次点灯する。ここでは、出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが、後述する光L25に対応する輝度変化の傾きよりも相対的に大きく設定されている。また、光L21、L22、L23、L24の順にそれぞれの輝度変化の傾きが大きく設定されている。また、図示の例では、光L21、L22、L23、L24の各々の輝度が100%に至る時期は共通(同一)の時刻とされている。 Specifically, for the lights L21 to L24 corresponding to the light source modules 301 to 304 having light exit surfaces with relatively small widths (areas), each LED is Lighting control of the light source 315 is executed. At times t1, t2, t3, and t4, the LED light sources 315 corresponding to the lights L21, L22, L23, and L24 are sequentially turned on. Here, the slope of the brightness change when the emitted light brightness increases from 0% to 100% is set to be relatively larger than the slope of the brightness change corresponding to light L25, which will be described later. Further, the slope of the luminance change is set to be larger in the order of the lights L21, L22, L23, and L24. Further, in the illustrated example, the time when the brightness of each of the lights L21, L22, L23, and L24 reaches 100% is a common (same) time.

時刻t4によりも後の時刻t5において、2番目に車幅方向に対して発光面が長い(発光面積が大きい)光出射面の光源モジュール305に対応するLED光源315が点灯し、光L25が出射する。ここでは、光L25に対応する光源モジュール305の光出射面の出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが光L24に対応する輝度変化の傾きよりも相対的に小さく設定されている。そして、この光L25に対応する光源モジュール305の光出射面の出射光輝度が100%に上昇する時期は、光L24に対応する光源モジュール304の光出射面の出射光輝度が100%となる時によりも遅い時となるように制御される。図示のように、光L25に対応する出射光輝度が100%となる時点で、第1期間の1/2以上が経過している。すなわち、光L24に対応する光源モジュール304の光出射面の出射光輝度が100%になった時から、光L25に対応する光源モジュール305の光出射面の出射光輝度が100%になる時までの間は、第1期間の1/2よりも長く設定されている。なお、図示の例では時刻t5は第1期間の1/2が経過する以前の時期に設定されている。 At time t5, which is later than time t4, the LED light source 315 corresponding to the light source module 305 having the second longest light emitting surface in the vehicle width direction (larger light emitting area) is turned on, and light L25 is emitted. do. Here, the slope of the brightness change when the output light brightness of the light output surface of the light source module 305 corresponding to the light L25 rises from 0% to 100% is relatively smaller than the slope of the brightness change corresponding to the light L24. It is set. The time when the output light brightness of the light output surface of the light source module 305 corresponding to the light L25 increases to 100% is when the output light brightness of the light output surface of the light source module 304 corresponding to the light L24 reaches 100%. It is controlled so that it is slower than the current time. As shown in the figure, more than half of the first period has elapsed when the output light brightness corresponding to the light L25 reaches 100%. That is, from the time when the output light brightness of the light output surface of the light source module 304 corresponding to the light L24 reaches 100% until the time when the output light brightness of the light output surface of the light source module 305 corresponding to the light L25 reaches 100%. The period is set to be longer than 1/2 of the first period. Note that in the illustrated example, time t5 is set to a time before 1/2 of the first period has elapsed.

時刻t5によりも後の時刻t6において、3番目に車幅方向に対して発光面が長い(発光面積が大きい)光出射面の光モジュール306に対応するLED光源315が点灯し、光L26が出射する。ここでは、光L26に対応する光源モジュール306の光出射面の出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが光L25に対応する輝度変化の傾きよりも相対的に大きく設定されている。そして、この光L26に対応する光源モジュール306の光出射面の出射光輝度が100%に上昇する時期は、光L24に対応する光源モジュール305の光出射面の出射光輝度が100%となる時によりも遅い時となるように制御される。図示のように、光L26に対応する出射光輝度が100%となる時点で、第1期間の大半(図示の例では180ms以上)が経過している。なお、図示の例では時刻t6は第1期間の1/2が経過した後の時期に設定されている。 At time t6, which is later than time t5, the LED light source 315 corresponding to the optical module 306 whose light emitting surface is the third longest in the vehicle width direction (larger light emitting area) is turned on, and light L26 is emitted. do. Here, the slope of the brightness change when the output light brightness of the light output surface of the light source module 306 corresponding to the light L26 rises from 0% to 100% is relatively larger than the slope of the brightness change corresponding to the light L25. It is set. The time when the output light brightness of the light output surface of the light source module 306 corresponding to the light L26 increases to 100% is when the output light brightness of the light output surface of the light source module 305 corresponding to the light L24 reaches 100%. It is controlled so that it is slower than the current time. As shown in the figure, most of the first period (180 ms or more in the illustrated example) has elapsed by the time the output light brightness corresponding to the light L26 reaches 100%. Note that in the illustrated example, time t6 is set to a time after 1/2 of the first period has elapsed.

第1期間の終期と一致する時刻t7において、車幅方向に対して発光面が長い(発光面積が大きい)光出射面の光モジュール307に対応するLED光源15が点灯し、光L27が出射する。図示のように、光L27に対応する光源モジュール307の光出射面での出射光輝度が0%から100%へ瞬時に上昇するようにLED光源315が制御される。当然のことながら、光L27に対応する光源モジュール307の光出射面の出射光輝度が0%から100%へ上昇する際の輝度変化の傾きが光L26に対応する輝度変化の傾きよりも相対的に大きく設定されている。 At time t7, which coincides with the end of the first period, the LED light source 15 corresponding to the optical module 307 whose light emitting surface is long (large light emitting area) in the vehicle width direction is turned on, and light L27 is emitted. . As shown in the figure, the LED light source 315 is controlled so that the luminance of the emitted light on the light emitting surface of the light source module 307 corresponding to the light L27 instantly increases from 0% to 100%. Naturally, the slope of the brightness change when the output light brightness of the light output surface of the light source module 307 corresponding to the light L27 rises from 0% to 100% is relatively higher than the slope of the brightness change corresponding to the light L26. is set to a large value.

上記のように、相対的に幅(面積)の大きい光出射面を有する各光源モジュール305、306、307に対応する光L25、L26、L27については、各々の輝度が100%に至る時期の間が比較的長くなるように各LED光源315の点灯制御が実行される。特に、最も車幅方向に対して発光面が長い(発光面積が大きい)光L27に対応する光出射面を有する光源モジュール307の出射光輝度は、速やかに100%へ上昇するように、その輝度変化を最も急峻にして制御されている。また、この時期からその前の車幅方向に対して発光面が長い(発光面積が大きい)L26の輝度が100%に上昇する時期までの間隔は、第1期間の1/2以上(図示の例では第1期間の3/4程度)と長く設定されている。そして、相対的に幅(面積)の小さい光出射面を有する各光源モジュール301~304に対応する光L21~L24については、各々の輝度が100%に至る時期の間が短くなるように各LED光源15の点灯制御が実行される。そして、全体としては、相対的に大きい光出射面の出射光輝度が100%になる時期とその前に大きい光出射面の出射光輝度が100%になる時期との間の長さが徐々に短くなるように点灯制御が行われている。 As mentioned above, for the lights L25, L26, and L27 corresponding to the light source modules 305, 306, and 307 having light exit surfaces with relatively large widths (areas), the brightness of each light reaches 100% during the period when the brightness reaches 100%. The lighting control of each LED light source 315 is executed so that the time period becomes relatively long. In particular, the luminance of the emitted light of the light source module 307 having the light emitting surface corresponding to the light L27 having the longest emitting surface in the vehicle width direction (largest emitting area) is set such that the luminance quickly increases to 100%. The change is the steepest and controlled. In addition, the interval from this period to the period when the brightness of L26, which has a long light emitting surface (large light emitting area) in the vehicle width direction, increases to 100% is more than 1/2 of the first period (as shown in the figure). In the example, the period is set to be as long as 3/4 of the first period). Regarding the lights L21 to L24 corresponding to the light source modules 301 to 304 having light output surfaces with relatively small widths (areas), each LED is Lighting control of the light source 15 is executed. Overall, the length between the time when the output light brightness of the relatively large light exit surface reaches 100% and the time before that when the output light brightness of the large light exit surface reaches 100% gradually increases. Lighting control is performed to shorten the time.

1:車両用灯具、10:光源ユニット、11:回路基板、13:制御チップ(制御部)、15:LED光源、20:導光体、41、42、43、44、45、46、47:光出射面 1: Vehicle lamp, 10: Light source unit, 11: Circuit board, 13: Control chip (control unit), 15: LED light source, 20: Light guide, 41, 42, 43, 44, 45, 46, 47: light exit surface

Claims (11)

大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御装置であって、
一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して点灯制御を行う、
車両用灯具の制御装置。
A control device for a vehicle lamp having at least three light emitting surfaces of different sizes,
When the at least three light emitting surfaces are sequentially turned on from the relatively large light emitting surface within a certain period of time, the time when one relatively large light emitting surface reaches a predetermined brightness and the next largest light emitting surface. performing lighting control by setting the period so that the period between when the emission surface reaches the predetermined brightness is gradually shortened;
Control device for vehicle lights.
前記少なくとも3つの光出射面は、大きさの順で一方向に配列されている、
請求項1に記載の車両用灯具の制御装置。
The at least three light exit surfaces are arranged in one direction in order of size,
The control device for a vehicle lamp according to claim 1.
前記少なくとも3つの光出射面の大きさの違いは、少なくとも同一方向における幅の違いを含む、
請求項1又は2に記載の車両用灯具の制御装置。
The difference in size of the at least three light exit surfaces includes a difference in width at least in the same direction.
The control device for a vehicle lamp according to claim 1 or 2.
最も大きい前記光出射面が前記所定輝度になるまでの間の輝度変化を最も急峻にして点灯制御を行う、
請求項1~3の何れか1項に記載の車両用灯具の制御装置。
performing lighting control by making the brightness change steepest until the largest light exit surface reaches the predetermined brightness;
A control device for a vehicle lamp according to any one of claims 1 to 3.
最も大きい前記光出射面が前記所定輝度になってからその次に大きい前記光出射面が前記所定輝度になるまでの間の長さが、前記一定期間の1/2以上である、
請求項1~4の何れか1項に記載の車両用灯具の制御装置。
The length of time from when the largest light emitting surface reaches the predetermined brightness until the next largest light emitting surface reaches the predetermined brightness is 1/2 or more of the certain period,
A control device for a vehicle lamp according to any one of claims 1 to 4.
大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御方法であって、
一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して点灯制御を行う、
車両用灯具の制御方法。
A method for controlling a vehicle lamp having at least three light emitting surfaces of different sizes, the method comprising:
When the at least three light emitting surfaces are sequentially turned on from the relatively large light emitting surface within a certain period of time, the time when one relatively large light emitting surface reaches a predetermined brightness and the next largest light emitting surface. performing lighting control by setting the period so that the period between when the emission surface reaches the predetermined brightness is gradually shortened;
A method of controlling vehicle lights.
大きさの異なる少なくとも3つの光出射面を有するランプユニットと、
一定期間内において前記少なくとも3つの光出射面を相対的に大きい当該光出射面から順次点灯させる際に、相対的に大きい1つの前記光出射面が所定輝度になる時期とその次に大きい前記光出射面が当該所定輝度になる時期との間の長さが徐々に短くなるように当該期間を設定して前記ランプユニットの点灯制御を行う制御部と、
を含む、車両用灯具。
a lamp unit having at least three light exit surfaces of different sizes;
When the at least three light emitting surfaces are sequentially turned on from the relatively large light emitting surface within a certain period of time, the time when one relatively large light emitting surface reaches a predetermined brightness and the next largest light emitting surface. a control unit that controls lighting of the lamp unit by setting the period so that the period between when the emission surface reaches the predetermined brightness is gradually shortened;
Vehicle lighting equipment, including:
大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御装置であって、
一定期間内において前記少なくとも3つの光出射面を相対的に小さい当該光出射面から順次点灯させる際に、相対的に小さい1つの前記光出射面が所定輝度になる時期とその次に小さい前記光出射面が当該所定輝度になる時期との間の長さが徐々に長くなるように当該期間を設定して点灯制御を行う、
車両用灯具の制御装置。
A control device for a vehicle lamp having at least three light emitting surfaces of different sizes,
When the at least three light emitting surfaces are sequentially turned on starting from the relatively smaller light emitting surface within a certain period of time, the time when one relatively small light emitting surface reaches a predetermined brightness and the next smaller light emitting surface are determined. performing lighting control by setting the period so that the period between when the emission surface reaches the predetermined brightness and the period gradually increases;
Control device for vehicle lights.
前記少なくとも3つの光出射面は、小ささの順で一方向に配列されている、
請求項に記載の車両用灯具の制御装置。
The at least three light exit surfaces are arranged in one direction in order of size,
The control device for a vehicle lamp according to claim 8 .
大きさの異なる少なくとも3つの光出射面を有する車両用灯具の制御方法であって、
一定期間内において前記少なくとも3つの光出射面を相対的に小さい当該光出射面から
順次点灯させる際に、相対的に小さい1つの前記光出射面が所定輝度になる時期とその次に小さい前記光出射面が当該所定輝度になる時期との間の長さが徐々に長くなるように当該期間を設定して点灯制御を行う、
車両用灯具の制御方法。
A method for controlling a vehicle lamp having at least three light emitting surfaces of different sizes, the method comprising:
When the at least three light emitting surfaces are sequentially turned on starting from the relatively smaller light emitting surface within a certain period of time, the time when one relatively small light emitting surface reaches a predetermined brightness and the next smaller light emitting surface. performing lighting control by setting the period so that the period between when the emission surface reaches the predetermined brightness and the period gradually increases;
A method of controlling vehicle lights.
大きさの異なる少なくとも3つの光出射面を有するランプユニットと、
一定期間内において前記少なくとも3つの光出射面を相対的に小さい当該光出射面から順次点灯させる際に、相対的に小さい1つの前記光出射面が所定輝度になる時期とその次に小さい前記光出射面が当該所定輝度になる時期との間の長さが徐々に長くなるように当該期間を設定して前記ランプユニットの点灯制御を行う制御部と、
を含む、車両用灯具。
a lamp unit having at least three light exit surfaces of different sizes;
When the at least three light emitting surfaces are sequentially turned on starting from the relatively smaller light emitting surface within a certain period of time, the time when one relatively small light emitting surface reaches a predetermined brightness and the next smaller light emitting surface. a control unit that controls lighting of the lamp unit by setting the period so that the period between when the emission surface reaches the predetermined brightness is gradually lengthened;
Vehicle lighting equipment, including:
JP2019119559A 2019-06-27 2019-06-27 Vehicle light control device, vehicle light control method, vehicle light Active JP7388833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019119559A JP7388833B2 (en) 2019-06-27 2019-06-27 Vehicle light control device, vehicle light control method, vehicle light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019119559A JP7388833B2 (en) 2019-06-27 2019-06-27 Vehicle light control device, vehicle light control method, vehicle light

Publications (2)

Publication Number Publication Date
JP2021003999A JP2021003999A (en) 2021-01-14
JP7388833B2 true JP7388833B2 (en) 2023-11-29

Family

ID=74097023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019119559A Active JP7388833B2 (en) 2019-06-27 2019-06-27 Vehicle light control device, vehicle light control method, vehicle light

Country Status (1)

Country Link
JP (1) JP7388833B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444084B2 (en) 2021-01-14 2024-03-06 三菱電機株式会社 semiconductor equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145224A (en) 2014-02-04 2015-08-13 株式会社小糸製作所 Vehicular lighting fixture
JP2016088401A (en) 2014-11-10 2016-05-23 株式会社今仙電機製作所 Drive circuit and device for vehicle direction indicator and driving method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145224A (en) 2014-02-04 2015-08-13 株式会社小糸製作所 Vehicular lighting fixture
JP2016088401A (en) 2014-11-10 2016-05-23 株式会社今仙電機製作所 Drive circuit and device for vehicle direction indicator and driving method therefor

Also Published As

Publication number Publication date
JP2021003999A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
KR101065813B1 (en) Vehicular lamp
JP5664900B2 (en) Optical unit for vehicles
EP2187115A2 (en) Vehicular lamp
JP5374140B2 (en) Vehicle lamp
US10400974B2 (en) Illumination device having a plurality of light guides, headlight including the illuminating device, and movable body including the headlight
JP2003100116A (en) Vehicular lamp
KR102109910B1 (en) Vehicle headlamp
US9623792B2 (en) Vehicle headlight
WO2015156121A1 (en) Vehicular light guide member and vehicular lighting equipment
CN113167454B (en) Lighting device for vehicle
JP2018098105A (en) Vehicular headlamp
JP6762979B2 (en) Vehicle lighting
US10612743B2 (en) Vehicle lamp
JP7211903B2 (en) vehicle lamp
KR20180076708A (en) Lamp for vehicle
JP7388833B2 (en) Vehicle light control device, vehicle light control method, vehicle light
CN108224352B (en) Lamp fitting
US20220275923A1 (en) Vehicle lamp
JP6937121B2 (en) Lamp
JP4165331B2 (en) Vehicle headlamp device
JP2019114386A (en) Vehicular lighting fixture
JP6780068B2 (en) Vehicle lighting
CN113795705A (en) Vehicle lamp
JP2006073289A (en) Vehicular marker lamp
JP2021111446A (en) Vehicular lighting fixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231116

R150 Certificate of patent or registration of utility model

Ref document number: 7388833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150