JP7388114B2 - Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds - Google Patents

Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds Download PDF

Info

Publication number
JP7388114B2
JP7388114B2 JP2019187675A JP2019187675A JP7388114B2 JP 7388114 B2 JP7388114 B2 JP 7388114B2 JP 2019187675 A JP2019187675 A JP 2019187675A JP 2019187675 A JP2019187675 A JP 2019187675A JP 7388114 B2 JP7388114 B2 JP 7388114B2
Authority
JP
Japan
Prior art keywords
formula
compound represented
compound
compounds
polymerizable composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019187675A
Other languages
Japanese (ja)
Other versions
JP2021063163A (en
Inventor
与一 ▲高▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2019187675A priority Critical patent/JP7388114B2/en
Publication of JP2021063163A publication Critical patent/JP2021063163A/en
Application granted granted Critical
Publication of JP7388114B2 publication Critical patent/JP7388114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、重合性組成物、重合物、レンズ、コーティング剤、化合物の製造方法および化合物に関する。特に、イソシアネート化合物を用いた重合性組成物等に関する。 The present invention relates to polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds. In particular, it relates to polymerizable compositions using isocyanate compounds.

イソシアネート化合物は、少なくとも1つのイソシアネート基(-NCO)を有する化合物であって、各種用途に広く用いられている。イソシアネート化合物の用途の一例としては、ポリウレタンおよびポリチオウレタンの原料が挙げられる。
一方、イソシアネート化合物に関連する技術としては、特許文献1が挙げられる。
Isocyanate compounds are compounds having at least one isocyanate group (-NCO) and are widely used for various purposes. An example of the use of isocyanate compounds is as a raw material for polyurethane and polythiourethane.
On the other hand, as a technology related to isocyanate compounds, Patent Document 1 can be mentioned.

国際公開第2015/025773号International Publication No. 2015/025773

近年、イソシアネート化合物の需要が拡大している。そのため、新たなイソシアネート化合物が求められるようになっている。そして、新たなイソシアネート化合物は、その特性に応じ、各種工業材料として、色々な用途への展開が期待される。
かかる状況のもと、本発明では、新規なイソシアネート化合物、および、これを用いた重合性組成物、重合物、レンズ、コーティング剤、ならびに、イソシアネート化合物の製造方法を提供することを目的とする。
In recent years, demand for isocyanate compounds has increased. Therefore, new isocyanate compounds are required. The new isocyanate compounds are expected to be used in a variety of applications as various industrial materials, depending on their properties.
Under such circumstances, the present invention aims to provide a novel isocyanate compound, a polymerizable composition, a polymer, a lens, a coating agent using the same, and a method for producing the isocyanate compound.

上記課題のもと、検討を行った結果、下記手段により、上記課題は解決された。
<1>式(1)で表される化合物と、ポリオールおよびポリチオールの少なくとも一方を含む、重合性組成物。
(式(1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<2>前記式(1)で表される化合物が、式(1-1)で表される化合物を含む、<1>に記載の重合性組成物。
(式(1-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<3>前記式(1)で表される化合物として、前記式(1)において、RA~RDのうち少なくとも1つが、水素原子である化合物を含む、<1>または<2>に記載の重合性組成物。
<4>前記式(1)で表される化合物が、式(2)で表される化合物を含む、<1>~<3>のいずれか1つに記載の重合性組成物。
<5>前記式(1)で表される化合物が、式(3)で表される化合物を含む、<1>~<4>のいずれか1つに記載の重合性組成物。
<6><1>~<5>のいずれか1つに記載の重合性組成物から形成された重合物。
<7><6>に記載の重合物を含むレンズ。
<8><6>に記載の重合物を含むコーティング剤。
<9>式(4)で表される化合物に対して、ホスゲンを反応させることを含む、イソシアネート化合物の製造方法。
(式(4)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<10>式(4)で表される化合物が、式(4-1)で表される化合物を含む、<9>に記載のイソシアネート化合物の製造方法。
(式(4-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<11>式(1)で表される化合物。
(式(1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<12>式(1)で表される化合物が、式(1-1)で表される化合物である、<11>に記載の化合物。
(式(1-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
<13>前記式(1)で表される化合物は、前記式(1)において、RA~RDのうち少なくとも1つが、水素原子である化合物である、<11>に記載の化合物。
<14>式(1)で表される化合物が、式(2)で表される化合物である、<11>に記載の化合物。
<15>式(1)で表される化合物が、式(3)で表される化合物である、<11>に記載の化合物。
As a result of studies based on the above-mentioned problems, the above-mentioned problems were solved by the following means.
<1> A polymerizable composition containing a compound represented by formula (1) and at least one of a polyol and a polythiol.
(In formula (1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<2> The polymerizable composition according to <1>, wherein the compound represented by formula (1) includes a compound represented by formula (1-1).
(In formula (1-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<3> The compound represented by the formula (1) described in <1> or <2> includes a compound in which in the formula (1), at least one of R A to R D is a hydrogen atom. polymerizable composition.
<4> The polymerizable composition according to any one of <1> to <3>, wherein the compound represented by formula (1) includes a compound represented by formula (2).
<5> The polymerizable composition according to any one of <1> to <4>, wherein the compound represented by formula (1) includes a compound represented by formula (3).
<6> A polymer formed from the polymerizable composition according to any one of <1> to <5>.
<7> A lens containing the polymer according to <6>.
<8> A coating agent containing the polymer according to <6>.
<9> A method for producing an isocyanate compound, comprising reacting a compound represented by formula (4) with phosgene.
(In formula (4), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<10> The method for producing an isocyanate compound according to <9>, wherein the compound represented by formula (4) includes a compound represented by formula (4-1).
(In formula (4-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<11> A compound represented by formula (1).
(In formula (1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<12> The compound according to <11>, wherein the compound represented by formula (1) is a compound represented by formula (1-1).
(In formula (1-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
<13> The compound represented by the formula (1) is the compound according to <11>, wherein in the formula (1), at least one of R A to R D is a hydrogen atom.
<14> The compound according to <11>, wherein the compound represented by formula (1) is a compound represented by formula (2).
<15> The compound according to <11>, wherein the compound represented by formula (1) is a compound represented by formula (3).

本発明により、新規なイソシアネート化合物、および、これを用いた重合性組成物、重合物、レンズ、コーティング剤、ならびに、イソシアネート化合物の製造方法を提供可能になった。 The present invention has made it possible to provide a novel isocyanate compound, a polymerizable composition, a polymer, a lens, a coating agent using the same, and a method for producing the isocyanate compound.

以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
The content of the present invention will be explained in detail below. In addition, in this specification, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
In this specification, various physical property values and characteristic values are assumed to be at 23° C. unless otherwise stated.

[式(1)で表される化合物]
本発明の化合物は、式(1)で表される化合物である。このような新規なイソシアネート化合物を用いることにより、各種用途への応用が期待できる。特に、ポリウレタンやポリチオウレタンの原料として期待される。
(式(1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
[Compound represented by formula (1)]
The compound of the present invention is a compound represented by formula (1). The use of such novel isocyanate compounds can be expected to be applied to various uses. In particular, it is expected to be used as a raw material for polyurethane and polythiourethane.
(In formula (1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)

式(1)で表される化合物は、式(1-1)で表される化合物であることが好ましい。
(式(1-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
The compound represented by formula (1) is preferably a compound represented by formula (1-1).
(In formula (1-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)

式(1)および式(1-1)の好ましい実施形態の一例は、RA~RDのうち3つまたは4つは、エチル基であり、それら以外のRA~RDは、水素原子である。エチル基の置換率を高くすることにより、立体障害によりイソシアネート基の反応性を低下させ水との反応をより効果的に抑制できる。
式(1)および式(1-1)の好ましい他の実施形態の一例は、RA~RDのうち少なくとも2つは、エチル基であり、RA~RDのうち少なくとも1つは、水素原子である。水素原子を少なくとも1つ含む構成とすることにより、イソシアネート基の反応性が向上し、水中でのハンドリング性とアルコール、チオール類との反応性のバランスが良好になる傾向にある。
A preferred embodiment of formula (1) and formula (1-1) is that three or four of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms. It is. By increasing the substitution rate of the ethyl group, the reactivity of the isocyanate group can be reduced due to steric hindrance, and the reaction with water can be more effectively suppressed.
In another preferred embodiment of formula (1) and formula (1-1), at least two of R A to R D are ethyl groups, and at least one of R A to R D is It is a hydrogen atom. By having a structure containing at least one hydrogen atom, the reactivity of the isocyanate group tends to be improved, and the balance between handleability in water and reactivity with alcohols and thiols becomes better.

式(1)で表される化合物は、式(2)で表される化合物であることが好ましい。
式(1)で表される化合物は、また、式(3)で表される化合物であることも好ましい。
The compound represented by formula (1) is preferably a compound represented by formula (2).
The compound represented by formula (1) is also preferably a compound represented by formula (3).

また、式(1)で表される化合物は、以下の化合物であることも好ましい。
Moreover, it is also preferable that the compound represented by Formula (1) is the following compound.

また、式(1)で表される化合物は、2種以上の混合物であってもよい。
式(1)で表される化合物が混合物である場合、式(1)で表される化合物であって、RA~RDのうち、3つまたは4つがエチル基である化合物の合計割合が、式(1)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
さらには、式(1)で表される化合物であって、RA~RDのうち、3つがエチル基である化合物の合計割合が、式(1)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
また、式(1)で表される化合物であって、RA~RDのうち、4つがエチル基である化合物の合計割合が、式(1)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
Further, the compound represented by formula (1) may be a mixture of two or more kinds.
When the compound represented by formula (1) is a mixture, the total proportion of compounds represented by formula (1) in which three or four of R A to R D are ethyl groups is , a mixture in which the total amount of the compound represented by formula (1) is 80% by mass or more (preferably 90% by mass or more).
Furthermore, the total proportion of compounds represented by formula (1) in which three of R A to R D are ethyl groups is 80% of the total amount of compounds represented by formula (1). Examples include mixtures in which the content is 90% by mass or more (preferably 90% by mass or more).
Furthermore, the total proportion of compounds represented by formula (1) in which four of R A to R D are ethyl groups is 80% by mass of the total amount of compounds represented by formula (1). % or more (preferably 90% by mass or more).

[イソシアネート化合物の製造方法]
上記式(1)で表される化合物は、公知の方法で製造できる。イソシアネート化合物の製造方法としては、例えば、式(4)で表される化合物に対して、ホスゲンを反応させることを含む製造方法が挙げられる。
(式(4)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
[Production method of isocyanate compound]
The compound represented by the above formula (1) can be produced by a known method. Examples of the method for producing the isocyanate compound include a method including reacting a compound represented by formula (4) with phosgene.
(In formula (4), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)

まず、式(4)で表される化合物について説明する。
式(4)で表される化合物は、原料ジアミンであり、式(4)におけるRA~RDは、式(1)におけるRA~RDと同義であり、好ましい範囲も同様である。
式(4)で表される化合物は、式(4-1)で表される化合物であることが好ましい。
(式(4-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
式(4-1)中、RA~RDは、式(1)におけるRA~RDと同義であり、好ましい範囲も同様である。
First, the compound represented by formula (4) will be explained.
The compound represented by formula (4) is a raw material diamine, and R A to R D in formula (4) have the same meanings as R A to R D in formula (1), and the preferred ranges are also the same.
The compound represented by formula (4) is preferably a compound represented by formula (4-1).
(In formula (4-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
In formula (4-1), R A to R D have the same meanings as R A to R D in formula (1), and the preferred ranges are also the same.

式(4)で表される化合物は、例えば、キシリレンジアミン(好ましくはメタキシリレンジアミン)に、塩基の存在下で、エチレンを充填して、エチレン化することにより得られる。前記エチレン充填時の反応液の温度は0~10℃が好ましい。また、エチレンの充填圧力が1.5~2.3MPaであることが好ましい。
前記塩基は、炭酸ルビジウム、水酸化ルビジウム、炭酸セシウム、および、水酸化セシウムからなる群より選択される1種以上のアルカリ金属含有化合物と、金属ナトリウムとを含有する塩基組成物であることが好ましい。上記塩基組成物における、アルカリ金属含有化合物と、金属ナトリウムとを含有する塩基組成物は、さらに、アルカリ土類金属含有化合物(周期表第2元素を含有する化合物)を含有することが好ましい。アルカリ土類金属含有化合物(C)は、Mc(OH)2、McCO3、McO(Mcはアルカリ土類金属)がより好ましく、酸化マグネシウム、水酸化マグネシウム、および、炭酸マグネシウムからなる群より選択される1種以上のアルカリ土類金属含有化合物を含有することがさらに好ましい。アルカリ土類金属含有化合物を含有することにより、塩基組成物のべたつきを抑え、ハンドリング性を向上することができる。
式(4)で表される化合物を、上記のような製造方法で製造するにより、芳香環に結合しているアルキル基のα位の炭素原子のエチレン化率の高いジアミンが得られ、結果として、エチレン化率の高いイソシアネート化合物が得られる。
式(4)で表される化合物としては、以下の化合物が例示される。
The compound represented by formula (4) can be obtained, for example, by charging xylylene diamine (preferably meta-xylylene diamine) with ethylene in the presence of a base, and then ethyleneizing it. The temperature of the reaction solution during charging of ethylene is preferably 0 to 10°C. Further, it is preferable that the ethylene filling pressure is 1.5 to 2.3 MPa.
The base is preferably a base composition containing sodium metal and one or more alkali metal-containing compounds selected from the group consisting of rubidium carbonate, rubidium hydroxide, cesium carbonate, and cesium hydroxide. . In the above base composition, the base composition containing an alkali metal-containing compound and metallic sodium preferably further contains an alkaline earth metal-containing compound (a compound containing the second element of the periodic table). The alkaline earth metal-containing compound (C) is more preferably M c (OH) 2 , M c CO 3 , M c O (M c is an alkaline earth metal), and magnesium oxide, magnesium hydroxide, and magnesium carbonate. It is further preferable to contain one or more alkaline earth metal-containing compounds selected from the group consisting of: By containing the alkaline earth metal-containing compound, the stickiness of the base composition can be suppressed and the handling properties can be improved.
By producing the compound represented by formula (4) by the above production method, a diamine with a high ethylenic rate of the α-position carbon atom of the alkyl group bonded to the aromatic ring is obtained, and as a result, , an isocyanate compound with a high ethylenic rate is obtained.
Examples of the compound represented by formula (4) include the following compounds.

また、本発明の製造方法において、式(4)で表される化合物は、1種のみ用いてもよいし、2種以上の混合物を用いてもよい。
式(4)で表される化合物が混合物である場合、式(4)で表される化合物であって、RA~RDのうち、3つまたは4つがエチル基である化合物の合計割合が、式(4)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
さらには、式(4)で表される化合物であって、RA~RDのうち、3つがエチル基である化合物の合計割合が、式(4)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
また、式(4)で表される化合物であって、RA~RDのうち、4つがエチル基である化合物の合計割合が、式(4)で表される化合物の合計量の80質量%以上(好ましくは90質量%以上)である混合物が例示される。
Moreover, in the manufacturing method of the present invention, only one type of compound represented by formula (4) may be used, or a mixture of two or more types may be used.
When the compound represented by formula (4) is a mixture, the total proportion of compounds represented by formula (4) in which three or four of R A to R D are ethyl groups is , a mixture in which the total amount of the compound represented by formula (4) is 80% by mass or more (preferably 90% by mass or more) is exemplified.
Furthermore, the total proportion of compounds represented by formula (4) in which three of R A to R D are ethyl groups is 80% of the total amount of compounds represented by formula (4). Examples include mixtures in which the content is 90% by mass or more (preferably 90% by mass or more).
Further, the total proportion of compounds represented by formula (4) in which four of R A to R D are ethyl groups is 80% by mass of the total amount of compounds represented by formula (4). % or more (preferably 90% by mass or more).

次に、式(4)で表される化合物とホスゲンの反応について述べる。
本発明では、式(4)で表される化合物に、ホスゲンを反応させて、式(1)で表される化合物を得ることができる。例えば、式(4)で表される化合物と、塩酸を溶剤中で反応させて式(4)で表される化合物と塩酸の塩を得て、その後、これをホスゲンと反応させて式(1)で表される化合物を合成することができる。溶剤としては、芳香族系溶剤やエステル系溶剤が例示され、芳香族系溶剤が好ましく、キシレンがより好ましい。
式(4)で表される化合物とホスゲンの反応は、例えば、100~170℃で行うことができる。
Next, the reaction between the compound represented by formula (4) and phosgene will be described.
In the present invention, the compound represented by formula (1) can be obtained by reacting the compound represented by formula (4) with phosgene. For example, the compound represented by formula (4) is reacted with hydrochloric acid in a solvent to obtain a salt of the compound represented by formula (4) and hydrochloric acid, and then this is reacted with phosgene to obtain the salt of formula (1). ) can be synthesized. Examples of the solvent include aromatic solvents and ester solvents, with aromatic solvents being preferred and xylene being more preferred.
The reaction between the compound represented by formula (4) and phosgene can be carried out, for example, at 100 to 170°C.

また、本発明では、式(1)で表される化合物は、非ホスゲン法で製造してもよい。例えば、式(4)で表される化合物を、ハロゲン化アルキルクロロホルメート、ハロゲン化ジアルキルクロロカーボネートおよびジアルキルカーボネートの少なくとも1種と反応させてビスカルバメートを調製し、その後、これを触媒の存在中、130~250℃の温度で、溶剤中において熱分解させ、式(1)で表される化合物を合成してもよい。 Further, in the present invention, the compound represented by formula (1) may be produced by a non-phosgene method. For example, a biscarbamate is prepared by reacting a compound represented by formula (4) with at least one of a halogenated alkyl chloroformate, a halogenated dialkyl chlorocarbonate, and a dialkyl carbonate, and then this is reacted in the presence of a catalyst. The compound represented by formula (1) may be synthesized by thermal decomposition in a solvent at a temperature of 130 to 250°C.

[重合性組成物]
式(1)で表される化合物は、ポリオールやポリチオールと共に重合性組成物として用いることができる。すなわち、本発明は、式(1)で表される化合物と、ポリオールおよびポリチオールの少なくとも一方を含む、重合性組成物に関する。
[Polymerizable composition]
The compound represented by formula (1) can be used as a polymerizable composition together with polyol or polythiol. That is, the present invention relates to a polymerizable composition containing a compound represented by formula (1) and at least one of a polyol and a polythiol.

重合性組成物に含まれる式(1)で表される化合物の好ましい範囲は、上記[式(1)で表される化合物]で述べた事項と同様である。
重合性組成物に含まれる式(1)で表される化合物の含有量は、溶剤を除く成分中、下限値が、30質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、前記式(1)で表される化合物の含有量の上限値は、溶剤を除く成分中、55質量%以下であることが好ましく、40質量%以下であることがより好ましい。
重合性組成物には、式(1)で表される化合物が1種のみ含まれていてもよいし、2種以上含まれていてもよい。2種以上含まれている場合、合計量が上記範囲となることが好ましい。
The preferable range of the compound represented by formula (1) contained in the polymerizable composition is the same as described above for [compound represented by formula (1)].
The lower limit of the content of the compound represented by formula (1) in the polymerizable composition is preferably 30% by mass or more, more preferably 35% by mass or more among the components excluding the solvent. preferable. Further, the upper limit of the content of the compound represented by the formula (1) is preferably 55% by mass or less, more preferably 40% by mass or less in the components excluding the solvent.
The polymerizable composition may contain only one kind of compound represented by formula (1), or may contain two or more kinds. When two or more types are contained, it is preferable that the total amount falls within the above range.

重合性組成物に含まれうるポリオールとしては、1分子中に水酸基を2以上有する化合物であり、一分子中に水酸基を2~6有する化合物が好ましい。ポリオールは、2つ以上の水酸基を有する低分子化合物であってもよいし、2つ以上の水酸基を有するオリゴマーまたはポリマーであってもよい。
ポリオールとしては、具体的には、ポリアルキレングリコール、ポリエステルポリオール、ポリカーボネートポリオール等が例示される。また、ポリオールとしては、国際公開第2018/061658号の段落0026~0037、国際公開第2018/021394号の段落0134~0233の記載を参酌でき、これらの内容は本明細書に組み込まれる。
The polyol that can be included in the polymerizable composition is a compound having two or more hydroxyl groups in one molecule, preferably a compound having 2 to 6 hydroxyl groups in one molecule. The polyol may be a low molecular weight compound having two or more hydroxyl groups, or may be an oligomer or polymer having two or more hydroxyl groups.
Specific examples of the polyol include polyalkylene glycol, polyester polyol, polycarbonate polyol, and the like. Further, as for the polyol, the descriptions in paragraphs 0026 to 0037 of International Publication No. 2018/061658 and paragraphs 0134 to 0233 of International Publication No. 2018/021394 can be referred to, and the contents of these are incorporated herein.

重合性組成物に含まれるうるポリチオールとしては、1分子中にメルカプト基を2以上有する化合物であり、一分子中にメルカプト基を2~6有する化合物が好ましい。
ポリチオールとしては、具体的には、ヘキサンジチオール、デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジンなどが挙げられる。また、ポリチオールとしては、特開2019-119860号公報の段落0020~0041の記載、特開2017-211547号公報の段落0078~0081を参酌でき、これらの内容は本明細書に組み込まれる。
The polythiol contained in the polymerizable composition is a compound having two or more mercapto groups in one molecule, preferably a compound having 2 to 6 mercapto groups in one molecule.
Specific examples of the polythiol include hexanedithiol, decanedithiol, 1,4-butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene glycol bisthioglycolate, and ethylene glycol bisthiopropionate. Pionate, trimethylolpropane tristhioglycolate, trimethylolpropane tristhiopropionate, trimethylolpropane tris(3-mercaptobutyrate), pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakisthiopropionate, trimercaptopropion Acid tris(2-hydroxyethyl)isocyanurate, 1,4-dimethylmercaptobenzene, 2,4,6-trimercapto-s-triazine, 2-(N,N-dibutylamino)-4,6-dimercapto-s - Examples include triazines. Further, as for the polythiol, the descriptions in paragraphs 0020 to 0041 of JP 2019-119860A and paragraphs 0078 to 0081 of JP 2017-211547A can be referred to, and the contents thereof are incorporated into the present specification.

重合性組成物に含まれるポリオールおよび/またはポリチオールの含有量は、下限値が、30質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、前記ポリオールおよび/またはポリチオールの含有量の上限値は、55質量%以下であることが好ましく、40質量%以下であることがより好ましい。
重合性組成物には、ポリオールおよびポリチオールのいずれか1種のみ含まれていてもよいし、2種以上含まれていてもよい。また、ポリオールとポリチオールの混合物であってもよい。本発明の重合性組成物にポリオールおよび/またはポリチオールが2種以上含まれている場合、合計量が上記範囲となることが好ましい。
The lower limit of the content of polyol and/or polythiol contained in the polymerizable composition is preferably 30% by mass or more, more preferably 35% by mass or more. Further, the upper limit of the content of the polyol and/or polythiol is preferably 55% by mass or less, more preferably 40% by mass or less.
The polymerizable composition may contain only one of polyols and polythiols, or may contain two or more of them. It may also be a mixture of polyol and polythiol. When the polymerizable composition of the present invention contains two or more polyols and/or polythiols, the total amount is preferably within the above range.

重合性組成物に含まれる式(1)で表される化合物と、ポリオールおよび/またはポリチオールの総量の質量比は、1:0.1~3.0であることが好ましく、1:0.5~1.5であることがより好ましい。このような範囲とすることにより、より良好な特性を有する重合物が得られる。 The mass ratio of the compound represented by formula (1) and the total amount of polyol and/or polythiol contained in the polymerizable composition is preferably 1:0.1 to 3.0, and 1:0.5. More preferably, it is 1.5 to 1.5. By setting it within such a range, a polymer having better properties can be obtained.

重合性組成物は、上記の他、ウレタン化触媒、チオウレタン化触媒、重合開始剤、重合禁止剤、鎖延長剤等を含んでいてもよい。また、本発明の趣旨を逸脱しない範囲で、式(1)で表される化合物以外のイソシアネート化合物を含んでいてもよい。
ウレタン化触媒およびチオウレタン化触媒としては、アミン系触媒、イミダゾール系触媒、ジアザシクロアミン塩系触媒、金属系触媒等が例示される。ウレタン化触媒およびチオウレタン化触媒の具体例は、特開2019-143150号公報の段落0034~0037の記載、特開2016-222050号公報の段落0130~0132の記載を参酌でき、これらの内容は本明細書に組み込まれる。
式(1)で表される化合物以外のイソシアネート化合物としては、国際公開第2017/208959号の段落0035~0037の記載を参酌でき、この内容は本明細書に組み込まれる。
In addition to the above, the polymerizable composition may also contain a urethanization catalyst, a thiourethane catalyst, a polymerization initiator, a polymerization inhibitor, a chain extender, and the like. Moreover, isocyanate compounds other than the compound represented by formula (1) may be included without departing from the spirit of the present invention.
Examples of the urethanization catalyst and thiourethane catalyst include amine catalysts, imidazole catalysts, diazacycloamine salt catalysts, metal catalysts, and the like. For specific examples of urethanization catalysts and thiourethane catalysts, the descriptions in paragraphs 0034 to 0037 of JP2019-143150A and paragraphs 0130 to 0132 of JP2016-222050A can be referred to, and the contents of these Incorporated herein.
As for isocyanate compounds other than the compound represented by formula (1), the description in paragraphs 0035 to 0037 of International Publication No. 2017/208959 can be referred to, the contents of which are incorporated herein.

さらに、重合性組成物の用途に応じて、重合性組成物には、熱安定剤や光安定剤などの安定剤、可塑剤、無機充填剤、滑剤、着色剤、シリコンオイル、発泡剤、難燃剤、表面調整剤、溶剤、バインダー、フィラー、顔料分散剤、導電性付与剤、紫外線吸収剤、酸化防止剤、乾燥防止剤、浸透剤、pH調整剤、金属封鎖剤、防菌防かび剤、界面活性剤、可塑剤、ワックス、レベリング剤の添加剤を配合してもよい。 Furthermore, depending on the use of the polymerizable composition, the polymerizable composition may include stabilizers such as heat stabilizers and light stabilizers, plasticizers, inorganic fillers, lubricants, colorants, silicone oil, foaming agents, and Fuel, surface conditioner, solvent, binder, filler, pigment dispersant, conductivity imparting agent, ultraviolet absorber, antioxidant, drying inhibitor, penetrant, pH adjuster, metal sequestering agent, antibacterial and fungicidal agent, Additives such as surfactants, plasticizers, waxes, and leveling agents may be added.

[重合物]
本発明は、上記重合性組成物から形成された重合物にも関する。前記重合物の例には、ポリウレタン、ポリチオウレタンが含まれる。
重合性組成物を用いて重合物を製造する方法としては、公知のポリウレタンまたはポリチオウレタンの製造方法が採用できる。本発明では、重合性組成物を所望の型に適用して、成形加工することが好ましい。成形加工法としては、例えば、注型成形法、射出成形法、トランスファー成形法、などがあげられる。また、特開2019-131711号公報の段落0046~0047の記載を参酌でき、この内容は本明細書に組み込まれる。
[Polymer]
The present invention also relates to polymers formed from the above polymerizable compositions. Examples of the polymer include polyurethane and polythiourethane.
As a method for producing a polymer using a polymerizable composition, a known method for producing polyurethane or polythiourethane can be employed. In the present invention, it is preferable to apply the polymerizable composition to a desired mold and process it. Examples of the molding method include cast molding, injection molding, and transfer molding. In addition, the descriptions in paragraphs 0046 to 0047 of JP 2019-131711 A can be referred to, and the contents thereof are incorporated into the present specification.

本発明の重合物は、例えば、レンズ、コーティング剤、ポリウレタンエラストマー、接着剤、フォーム、バインダー、弾性繊維、合成皮革、人工皮革、シーリング材、防水材、床材等に用いられ、レンズおよびコーティング剤に好ましく用いられる。
本発明の重合物をレンズに用いる場合、特開2017-095695号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
本発明の重合物をコーティング材料に用いる場合、特開2015-206017号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる、
The polymer of the present invention can be used, for example, in lenses, coating agents, polyurethane elastomers, adhesives, foams, binders, elastic fibers, synthetic leather, artificial leather, sealants, waterproof materials, flooring materials, etc. It is preferably used for.
When using the polymer of the present invention for a lens, the description in JP-A-2017-095695 can be referred to, and the contents thereof are incorporated herein.
When using the polymer of the present invention as a coating material, the description in JP-A-2015-206017 can be referred to, the contents of which are incorporated herein.

以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be explained in more detail with reference to Examples below. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.

イソシアネート化合物の分析は以下の方法にて行った。
<イソシアネート化合物の分析>
(1)ガスクロマトグラフィー(以下、「GC分析」ということがある)
装置:島津製作所製社製、GC-2025
カラム:アジレント・テクノロジー社製、CP-Sil8CBforAmines(0.25μm×0.25mm×30m)
カラム温度:80℃で2分間維持した後、8℃/分の速度で昇温し、150℃に達した後、5分間維持し、15℃/分の速度で昇温し、300℃に達した後、5分間維持した。
(2)飛行時間形質量分析(以下、「TOFMS分析」ということがある)
装置:日本電子社製、AccuTOF GCX
イオン化手法:FI+
(3)核磁気共鳴吸収法(1H-NMR、13C-NMR)
装置:BRUKER製、核磁気共鳴装置AVANCEII600MHz
重水素置換クロロホルム溶剤中で測定を行った。尚、後述のδ(ppm)は次式で表される化学シフトを示す。
δ(ppm)=106×(νS-νR)/νR
νS:試料の共鳴周波数(Hz)
νR:標準物質のトリメチルシラン(TMS)の共鳴周波数(Hz)
(4)赤外線(IR)スペクトル分析
装置:FT/IR-4100typeA
合成反応後溶剤を留去した粗生成物についてATR法を用いて、分析を実施した。
The isocyanate compound was analyzed by the following method.
<Analysis of isocyanate compounds>
(1) Gas chromatography (hereinafter sometimes referred to as "GC analysis")
Equipment: Manufactured by Shimadzu Corporation, GC-2025
Column: Agilent Technologies, CP-Sil8CBforAmines (0.25 μm x 0.25 mm x 30 m)
Column temperature: Maintained at 80°C for 2 minutes, then increased the temperature at a rate of 8°C/min. After reaching 150°C, maintained for 5 minutes, then increased the temperature at a rate of 15°C/min, reaching 300°C. After that, it was maintained for 5 minutes.
(2) Time-of-flight mass spectrometry (hereinafter sometimes referred to as "TOFMS analysis")
Equipment: AccuTOF GCX manufactured by JEOL Ltd.
Ionization method: FI +
(3) Nuclear magnetic resonance absorption method ( 1 H-NMR, 13 C-NMR)
Equipment: BRUKER, nuclear magnetic resonance device AVANCE II 600MHz
Measurements were carried out in a deuterated chloroform solvent. Note that δ (ppm), which will be described later, indicates a chemical shift expressed by the following formula.
δ (ppm) = 10 6 × (ν S - ν R )/ν R
ν S : Resonance frequency of sample (Hz)
ν R : Resonance frequency (Hz) of standard material trimethylsilane (TMS)
(4) Infrared (IR) spectrum analyzer: FT/IR-4100typeA
After the synthesis reaction, the solvent was distilled off and the crude product was analyzed using the ATR method.

(塩基組成物の調製)
磁気撹拌子を備えた200mLのナスフラスコに窒素雰囲気下で、炭酸セシウム(Cs2CO3、富士フイルム和光純薬社製)23.375g、金属ナトリウム(Na、富士フイルム和光純薬社製)1.65g、酸化マグネシウム(MgO、富士フイルム和光純薬社製)17.6gを仕込んだ。このナスフラスコをアルミブロックヒータースターラーに設置して、250℃で、1時間加熱撹拌した後に、アルミブロックヒータースターラーから取り外した。上記ナスフラスコを空冷で室温まで冷却して、塩基組成物を得た。
(Preparation of base composition)
In a 200 mL eggplant flask equipped with a magnetic stirrer under a nitrogen atmosphere, 23.375 g of cesium carbonate (Cs 2 CO 3 , manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 1 g of metallic sodium (Na, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were added. .65 g and 17.6 g of magnesium oxide (MgO, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were charged. This eggplant flask was placed in an aluminum block heater stirrer, heated and stirred at 250° C. for 1 hour, and then removed from the aluminum block heater stirrer. The above eggplant flask was air-cooled to room temperature to obtain a base composition.

(合成例1:α,α,α’,α’-テトラエチルメタキシリレンジアミンの合成)
冷却水循環ジャケット、撹拌翼を備えた500mLオートクレーブにアルゴン雰囲気下で、上記で得られた塩基組成物12.2g、および、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)25mLを入れた後、ジャケットに-5℃の冷媒を循環させ、内溶液温度を10℃とした。液温が1℃になるように氷冷した13.2gのα,α,α’-トリエチルメタキシリレンジアミンと80mLのテトラヒドロフランからなる原料溶液を窒素ガスの圧力によりオートクレーブ内に導入しジャケットに冷媒を循環させながら15分間700rpmで撹拌した。撹拌を継続しながらオートクレーブをエチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9体積%超)を1.8MPaの圧力で充填した。冷媒の温度を20℃に変更し、24時間撹拌を継続し反応を行った。反応液に53mLのイソプロピルアルコールを加えて反応を停止し、No.5C桐山ろ紙で塩基組成物残渣を取り除いた。ろ液に300mLのクロロホルム(富士フイルム和光純薬社製)と200mLの純水を加えて、分液操作を行った後、有機層側を回収、エバポレーターを用いて溶剤を留去することで15.6gの粗生成物を得た。粗生成物を原料に120Paの減圧条件下で単蒸留を行い純度92%のα,α,α’,α’-テトラエチルメタキシリレンジアミンを得た。
(Synthesis Example 1: Synthesis of α,α,α',α'-tetraethylmethaxylylenediamine)
In an argon atmosphere, 12.2 g of the base composition obtained above and tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., ultra-dehydrated, stabilizer-free grade) were placed in a 500 mL autoclave equipped with a cooling water circulation jacket and a stirring blade. After adding 25 mL, a -5°C refrigerant was circulated through the jacket to bring the internal solution temperature to 10°C. A raw material solution consisting of 13.2 g of α, α, α'-triethyl metaxylylene diamine and 80 mL of tetrahydrofuran, which had been ice-cooled so that the liquid temperature was 1°C, was introduced into the autoclave under nitrogen gas pressure, and the refrigerant was introduced into the jacket. The mixture was stirred at 700 rpm for 15 minutes while circulating. While stirring, the autoclave was connected to an ethylene gas cylinder and filled with ethylene gas (manufactured by Japan Fine Products, ethylene purity: over 99.9% by volume) at a pressure of 1.8 MPa. The temperature of the refrigerant was changed to 20° C., and stirring was continued for 24 hours to carry out the reaction. 53 mL of isopropyl alcohol was added to the reaction solution to stop the reaction, and No. The base composition residue was removed using 5C Kiriyama filter paper. After adding 300 mL of chloroform (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 200 mL of pure water to the filtrate and performing a liquid separation operation, the organic layer side was collected and the solvent was distilled off using an evaporator. .6 g of crude product was obtained. Using the crude product as a raw material, simple distillation was performed under reduced pressure conditions of 120 Pa to obtain α,α,α',α'-tetraethyl metaxylylenediamine with a purity of 92%.

(合成例2:α,α,α’-トリエチルメタキシリレンジアミンの合成)
冷却水循環ジャケット、撹拌翼を備えた500mLオートクレーブにアルゴン雰囲気下で、上記で得られた塩基組成物19.2g、および、テトラヒドロフラン(富士フイルム和光純薬社製、超脱水、安定剤不含グレード)30mLを入れた後、ジャケットに-5℃の冷媒を循環させ、内溶液温度を6℃とした。液温が1℃になるように氷冷した13.2gのメタキシリレンジアミン(東京化成工業社製)と75mLのテトラヒドロフランからなる原料溶液を窒素ガスの圧力によりオートクレーブ内に導入し、ジャケットに冷媒を循環させながら15分間700rpmで撹拌した。撹拌を継続しながらオートクレーブをエチレンガスボンベに接続し、エチレンガス(ジャパンファインプロダクツ社製、エチレン純度:99.9体積%超)を1.8MPaの圧力で充填した。冷媒の温度を20℃に変更し、24時間撹拌を継続し反応を行った。反応液に53mLのイソプロピルアルコールを加えて反応を停止し、No.5C桐山ろ紙で塩基組成物残渣を取り除いた。ろ液に300mLのクロロホルム(富士フイルム和光純薬社製)と200mLの純水を加えて、分液操作を行った後、有機層側を回収、エバポレーターを用いて溶剤を留去することで22g(α,α,α’-トリエチルメタキシリレンジアミン含有率54質量%)の粗生成物を得た。粗生成物を原料に40~50Paの減圧条件下で精密蒸留を行い純度98%のα,α,α’-トリエチルメタキシリレンジアミンを得た。
(Synthesis Example 2: Synthesis of α,α,α'-triethylmethaxylylenediamine)
19.2 g of the base composition obtained above and tetrahydrofuran (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., ultra-dehydrated, stabilizer-free grade) were placed in a 500 mL autoclave equipped with a cooling water circulation jacket and a stirring blade under an argon atmosphere. After adding 30 mL, a -5°C refrigerant was circulated through the jacket to bring the internal solution temperature to 6°C. A raw material solution consisting of 13.2 g of metaxylylene diamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 75 mL of tetrahydrofuran, which had been ice-cooled so that the liquid temperature was 1°C, was introduced into the autoclave under nitrogen gas pressure, and the refrigerant was introduced into the jacket. The mixture was stirred at 700 rpm for 15 minutes while circulating. While stirring, the autoclave was connected to an ethylene gas cylinder and filled with ethylene gas (manufactured by Japan Fine Products, ethylene purity: over 99.9% by volume) at a pressure of 1.8 MPa. The temperature of the refrigerant was changed to 20° C., and stirring was continued for 24 hours to carry out the reaction. 53 mL of isopropyl alcohol was added to the reaction solution to stop the reaction, and No. The base composition residue was removed using 5C Kiriyama filter paper. After adding 300 mL of chloroform (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 200 mL of pure water to the filtrate and performing a liquid separation operation, the organic layer side was collected and the solvent was distilled off using an evaporator to obtain 22 g. A crude product (α,α,α'-triethylmethaxylylenediamine content: 54% by mass) was obtained. Using the crude product as a raw material, precision distillation was performed under reduced pressure conditions of 40 to 50 Pa to obtain α,α,α'-triethylmethaxylylenediamine with a purity of 98%.

(実施例1) α,α,α’,α’-テトラエチルメタキシリレンジイソシアネート化合物(2)の合成
合成例1で得られた純度92%のα,α,α’,α’-テトラエチルメタキシリレンジアミン5.00gにキシレンを加えた後、共沸脱水を行い水分量32質量ppm(カールフィッシャー水分計での分析結果)とした。次いで、キシレン溶剤中に塩化水素を導入して、上記ジアミンを塩酸塩とし、ホスゲンを吹き込み、120℃で1時間反応させた。ホスゲンと溶剤のキシレンを留去し、5.88gの粗生成物を得た。粗生成物を原料に260Paの減圧条件下で単蒸留を実施した結果、ガスクロマトグラフィー純度94%の化合物(2)を含有する無色透明の留分4.51gを取得した。
(Example 1) Synthesis of α,α,α',α'-tetraethylmethaxylylene diisocyanate compound (2) α,α,α',α'-tetraethylmethaxylylene with a purity of 92% obtained in Synthesis Example 1 After adding xylene to 5.00 g of diamine, azeotropic dehydration was performed to obtain a water content of 32 mass ppm (analysis result with a Karl Fischer moisture meter). Next, hydrogen chloride was introduced into the xylene solvent to convert the diamine into a hydrochloride salt, phosgene was blown into the xylene solvent, and the mixture was reacted at 120° C. for 1 hour. Phosgene and the solvent xylene were distilled off to obtain 5.88 g of a crude product. As a result of carrying out simple distillation under reduced pressure conditions of 260 Pa using the crude product as a raw material, 4.51 g of a colorless and transparent fraction containing compound (2) with a gas chromatography purity of 94% was obtained.

α,α,α’,α’-テトラエチルメタキシリレンジイソシアネート化合物(2)の各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン)δ(ppm):0.771、0.786、0.800(12H、t、Ar-C(NCO)-CH2-CH3におけるCH3の水素)、1.948、1.962、1.977、1.992(8H、q、Ar-C(NCO)-CH2-CH3におけるCH2の水素)、7.198~7.230(3H、Ar)、7.316~7.347(1H、Ar)
13C NMR(CDCl3、テトラメチルシラン)δ(ppm):8.5、37.01、69.4、122.0、122.9、124.2、128.4、142.25
TOFMS分析:m/eの理論値(C182422)として300.18323、実測値300.18486。
上記においてArはベンゼン環を示している(以下、同じ)。
IRスペクトル分析:2252cm-1(NCO伸縮振動)
Various spectral data of α, α, α', α'-tetraethyl metaxylylene diisocyanate compound (2) were as follows.
1 H NMR (CDCl 3 , tetramethylsilane) δ (ppm): 0.771, 0.786, 0.800 (12H, t, hydrogen of CH 3 in Ar-C(NCO)-CH 2 -CH 3 ) , 1.948, 1.962, 1.977, 1.992 (8H, q, hydrogen of CH 2 in Ar-C(NCO)-CH2-CH 3 ), 7.198-7.230 (3H, Ar ), 7.316-7.347 (1H, Ar)
13C NMR ( CDCl3 , tetramethylsilane) δ (ppm): 8.5, 37.01, 69.4, 122.0, 122.9, 124.2, 128.4, 142.25
TOFMS analysis: theoretical m/e value (C 18 H 24 N 2 O 2 ) of 300.18323, actual value of 300.18486.
In the above, Ar represents a benzene ring (the same applies hereinafter).
IR spectrum analysis: 2252 cm -1 (NCO stretching vibration)

(実施例2) α,α,α’-トリエチルメタキシリレンジイソシアネート化合物(3)の合成
合成例2で得られた純度98%のα,α,α’-トリエチルメタキシリレンジアミン5.00gにキシレンを加えた後、共沸脱水を行い水分量52質量ppm(カールフィッシャー水分計での分析結果)とした。次いでキシレン溶剤中に塩化水素を導入し、原料ジアミンを塩酸塩とし、ホスゲンを吹き込み、120℃で1時間反応させた。ホスゲンと溶剤のキシレンを留去し、5.96gの粗生成物を得た。粗生成物を原料に300Paの減圧条件下で単蒸留を実施した結果、ガスクロマトグラフィー純度96%の化合物(3)を含有する無色透明の留分4.33gを取得した。
(Example 2) Synthesis of α,α,α'-triethyl metaxylylene diisocyanate compound (3) To 5.00 g of α, α, α'-triethyl metaxylylene diisocyanate with a purity of 98% obtained in Synthesis Example 2 After adding xylene, azeotropic dehydration was performed to obtain a water content of 52 mass ppm (analysis result with a Karl Fischer moisture meter). Next, hydrogen chloride was introduced into the xylene solvent to convert the raw material diamine into a hydrochloride salt, phosgene was blown into the solution, and the mixture was reacted at 120° C. for 1 hour. Phosgene and the solvent xylene were distilled off to obtain 5.96 g of a crude product. As a result of performing simple distillation under reduced pressure conditions of 300 Pa using the crude product as a raw material, 4.33 g of a colorless and transparent fraction containing compound (3) with a gas chromatography purity of 96% was obtained.

α,α,α,α’-トリエチルメタキシリレンジイソシアネート化合物(3)の各種スペクトルデータは以下のとおりであった。
1H NMR(CDCl3、テトラメチルシラン) δ(ppm):0.784、0.801、0.815(6H、t、Ar-C(NCO)-CH2-CH3におけるCH3の水素)、0.952、0.966、0.981(3H、t、Ar-CH(NCO)-CH2-CH3におけるCH3の水素)、1.825~1.882(2H、m、Ar-CH(NCO)-CH2-CH3におけるCH2の水素)、1.942~1.992(4H、m、Ar-C(NCO)-CH2-CH3におけるCH2の水素)、4.540、4.553、4.566(1H、t、Ar-CH(NCO)-CH2-CH3におけるCHの水素)7.193、7.211、7.243、7.246(3H、Ar)7.332、7.348、7.363(1H、Ar)。
13C NMR(CDCl3、テトラメチルシラン) δ(ppm):8.55、10.55、32.92、36.93、36.97、60.88、69.29、121.95、123.20、123.27、124.39、125.03、128.75、141.39、142.76。
TOFMS分析:m/eの理論値(C162022)として272.15193、実測値272.15063。
IRスペクトル分析:2250cm-1(NCO伸縮振動)
Various spectral data of α,α,α,α'-triethylmethaxylylene diisocyanate compound (3) were as follows.
1 H NMR (CDCl 3 , tetramethylsilane) δ (ppm): 0.784, 0.801, 0.815 (6H, t, hydrogen of CH 3 in Ar-C(NCO)-CH 2 -CH 3 ) , 0.952, 0.966, 0.981 (3H, t, hydrogen of CH 3 in Ar-CH(NCO)-CH 2 -CH 3 ), 1.825-1.882 (2H, m, Ar- Hydrogen of CH 2 in CH(NCO)-CH 2 -CH 3 ), 1.942-1.992 (4H, m, hydrogen of CH 2 in Ar-C(NCO)-CH 2 -CH 3 ), 4. 540, 4.553, 4.566 (1H, t, hydrogen of CH in Ar-CH(NCO)-CH 2 -CH 3 ) 7.193, 7.211, 7.243, 7.246 (3H, Ar ) 7.332, 7.348, 7.363 (1H, Ar).
13C NMR ( CDCl3 , tetramethylsilane) δ (ppm): 8.55, 10.55, 32.92, 36.93, 36.97, 60.88, 69.29, 121.95, 123. 20, 123.27, 124.39, 125.03, 128.75, 141.39, 142.76.
TOFMS analysis: theoretical m/e value (C 16 H 20 N 2 O 2 ) of 272.15193, actual value of 272.15063.
IR spectrum analysis: 2250cm -1 (NCO stretching vibration)

(実施例3)
ペンタエリスリトールテトラキスチオプロピオネート(東京化成工業社製)2.297gとα,α,α’,α’-テトラエチルメタキシリレンジイソシアネート2.703g、2-エチルヘキサン酸錫(II)(富士フイルム和光純薬社製)25mg、1,4-ジアザビシクロ[2,2,2]オクタン(東京化成工業社製)25mgを混合し重合性組成物を調製した。
(Example 3)
2.297 g of pentaerythritol tetrakisthiopropionate (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2.703 g of α, α, α', α'-tetraethylmethaxylylene diisocyanate, tin(II) 2-ethylhexanoate (manufactured by Fujifilm Wa A polymerizable composition was prepared by mixing 25 mg of 1,4-diazabicyclo[2,2,2]octane (manufactured by Tokyo Chemical Industry Co., Ltd.).

(実施例4)
<重合物の作製>
重合性組成物を脱気後、2.5mm厚の平板レンズ用モールドに注入し、オーブン中で昇温速度8℃/時間の条件で40℃から120℃まで昇温後、120℃で12時間保持する条件で加熱し重合硬化を進行させることで、重合物(ポリチオウレタン)(以下、「サンプル」と呼ぶ」)を作製した。得られたサンプルは無色透明であった。
(Example 4)
<Preparation of polymer>
After degassing the polymerizable composition, it was injected into a 2.5 mm thick flat lens mold, heated in an oven from 40°C to 120°C at a heating rate of 8°C/hour, and then heated at 120°C for 12 hours. A polymer (polythiourethane) (hereinafter referred to as "sample") was produced by heating under the same conditions to advance polymerization and curing. The obtained sample was colorless and transparent.

<重合物の評価>
重合物の評価は以下の方法により行った。
ガラス転移温度の測定:
サンプルを3mmに切り出し、直径1mmのピンに10gの加重を与え、30℃から10℃/分で昇温し、熱機械分析(TMA法)測定を行い、ガラス転移温度(℃)を測定した。
屈折率:
上記で得られたサンプルについて、カルニュー精密屈折計(KPR-2000)を用い温度25℃、湿度50%の条件で行った。屈折率の波長は、589.3nmのD線における値である。
黄色度(YI):
上記で得られたサンプル(厚み2.5mm)について、コニカミノルタ社製の分光測色計CM-5でYIを測定した。
ヘイズ値:
上記で得られたサンプル(厚み2.5mm)について、コニカミノルタ社製の分光測色計CM-5でASTM D1003に準拠して測定した。
各評価結果を表1に示す。
<Evaluation of polymer>
Evaluation of the polymer was performed by the following method.
Measurement of glass transition temperature:
A sample was cut into 3 mm pieces, a 10 g load was applied to a 1 mm diameter pin, the temperature was raised from 30° C. at a rate of 10° C./min, and thermomechanical analysis (TMA method) was performed to measure the glass transition temperature (° C.).
Refractive index:
The samples obtained above were tested using a Kalnew Precision Refractometer (KPR-2000) at a temperature of 25° C. and a humidity of 50%. The wavelength of the refractive index is the value at the D line of 589.3 nm.
Yellowness (YI):
The YI of the sample (thickness 2.5 mm) obtained above was measured using a spectrophotometer CM-5 manufactured by Konica Minolta.
Haze value:
The sample obtained above (thickness: 2.5 mm) was measured in accordance with ASTM D1003 using a spectrophotometer CM-5 manufactured by Konica Minolta.
The results of each evaluation are shown in Table 1.

Claims (14)

(1-1)で表される化合物と、ポリオールおよびポリチオールの少なくとも一方を含む、重合性組成物。
Figure 0007388114000022
(式(1-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
A polymerizable composition containing a compound represented by formula (1-1) and at least one of a polyol and a polythiol .
Figure 0007388114000022
(In formula (1-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
(1)で表される化合物と、ポリオールおよびポリチオールの少なくとも一方を含む、重合性組成物。
Figure 0007388114000023
(式(1)中、R A ~R D のうち少なくとも2つは、エチル基であり、それら以外のR A ~R D は、水素原子であり、かつ、A~RDのうち少なくとも1つが、水素原子である。)
A polymerizable composition containing a compound represented by formula (1) and at least one of a polyol and a polythiol .
Figure 0007388114000023
(In formula (1), at least two of R A to R D are ethyl groups, the other R A to R D are hydrogen atoms, and at least one of R A to R D is the hydrogen atom .)
前記式(1-1)で表される化合物が、式(2)で表される化合物を含む、請求項1に記載の重合性組成物。
Figure 0007388114000024
The polymerizable composition according to claim 1 , wherein the compound represented by formula ( 1-1 ) includes a compound represented by formula (2).
Figure 0007388114000024
前記式(1-1)で表される化合物が、式(3)で表される化合物を含む、請求項1または3に記載の重合性組成物。
Figure 0007388114000025
The polymerizable composition according to claim 1 or 3 , wherein the compound represented by formula (1 -1 ) includes a compound represented by formula (3).
Figure 0007388114000025
前記式(1)で表される化合物が、式(3)で表される化合物を含む、請求項2に記載の重合性組成物。The polymerizable composition according to claim 2, wherein the compound represented by formula (1) includes a compound represented by formula (3).
Figure 0007388114000026
Figure 0007388114000026
請求項1~のいずれか1項に記載の重合性組成物から形成された重合物。 A polymer formed from the polymerizable composition according to any one of claims 1 to 5 . 請求項に記載の重合物を含むレンズ。 A lens comprising the polymer according to claim 6 . 請求項に記載の重合物を含むコーティング剤。 A coating agent comprising the polymer according to claim 6 . 式(4)で表される化合物に対して、ホスゲンを反応させることを含む、イソシアネート化合物の製造方法。
Figure 0007388114000027
(式(4)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
A method for producing an isocyanate compound, comprising reacting a compound represented by formula (4) with phosgene.
Figure 0007388114000027
(In formula (4), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
式(4)で表される化合物が、式(4-1)で表される化合物を含む、請求項に記載のイソシアネート化合物の製造方法。
Figure 0007388114000028
(式(4-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
The method for producing an isocyanate compound according to claim 9 , wherein the compound represented by formula (4) includes a compound represented by formula (4-1).
Figure 0007388114000028
(In formula (4-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
(1-1)で表される化合物。
Figure 0007388114000029
(式(1-1)中、RA~RDのうち少なくとも2つは、エチル基であり、それら以外のRA~RDは、水素原子である。)
A compound represented by formula (1-1) .
Figure 0007388114000029
(In formula (1-1), at least two of R A to R D are ethyl groups, and the other R A to R D are hydrogen atoms.)
(1)で表される化合物。
Figure 0007388114000030
(式(1)中、R A ~R D のうち少なくとも2つは、エチル基であり、それら以外のR A ~R D は、水素原子であり、かつ、A~RDのうち少なくとも1つが、水素原子である。)
A compound represented by formula (1) .
Figure 0007388114000030
(In formula (1), at least two of R A to R D are ethyl groups, the other R A to R D are hydrogen atoms, and at least one of R A to R D is the hydrogen atom .)
式(1-1)で表される化合物が、式(2)で表される化合物である、請求項11に記載の化合物。
Figure 0007388114000031
The compound according to claim 11 , wherein the compound represented by formula (1 -1 ) is a compound represented by formula (2).
Figure 0007388114000031
式(1-1)で表される化合物が、式(3)で表される化合物である、請求項11に記載の化合物。
Figure 0007388114000032
The compound according to claim 11 , wherein the compound represented by formula (1 -1 ) is a compound represented by formula (3).
Figure 0007388114000032
JP2019187675A 2019-10-11 2019-10-11 Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds Active JP7388114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187675A JP7388114B2 (en) 2019-10-11 2019-10-11 Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187675A JP7388114B2 (en) 2019-10-11 2019-10-11 Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds

Publications (2)

Publication Number Publication Date
JP2021063163A JP2021063163A (en) 2021-04-22
JP7388114B2 true JP7388114B2 (en) 2023-11-29

Family

ID=75487547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187675A Active JP7388114B2 (en) 2019-10-11 2019-10-11 Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds

Country Status (1)

Country Link
JP (1) JP7388114B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124808A (en) 2003-10-23 2005-05-19 Sanyo Chem Ind Ltd Medical adhesive
JP2012011326A (en) 2010-07-01 2012-01-19 Hiramatsu Sangyo Kk Filter material, filter, and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2723265A (en) * 1952-07-21 1955-11-08 Du Pont Doubly hindered diisocyanates
NL148622B (en) * 1964-06-30 1976-02-16 Du Pont ELASTIC FIBER.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005124808A (en) 2003-10-23 2005-05-19 Sanyo Chem Ind Ltd Medical adhesive
JP2012011326A (en) 2010-07-01 2012-01-19 Hiramatsu Sangyo Kk Filter material, filter, and device

Also Published As

Publication number Publication date
JP2021063163A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2018190290A1 (en) Xylylene diisocyanate composition, xylylene diisocyanate modification composition, two-component resin starting material, and resin
CN108689883B (en) Isocyanate composition for optical lens and preparation method thereof
KR101363198B1 (en) Process for producing pentaerythritol mercaptocarboxylic acid ester, pentaerythritol mercaptocarboxylic acid ester obtained by the same, and use thereof
EP2011785B1 (en) Method for producing polythiol compound for optical material
CN114634612A (en) Xylylene diisocyanate composition having improved stability and reactivity and optical lens using the same
AU2007242330B2 (en) Process for production of mercaptocarboxylic esters of pentaerythritol and polymerizable compositions containing the esters
TW201636343A (en) Novel episulfide compound and optical material composition including same
KR101988494B1 (en) Xylylene diisocyanate composition with improved stability and reactivity, and optical lens using the same
JP7289990B2 (en) Xylylene diisocyanate composition, modified xylylene diisocyanate composition, polymerizable composition, resin, molded article, optical element and lens
KR20130087447A (en) Preparation method of 3-mercaptopropionic acid and preparation method of carbonic acid ester compounds bearing mercapto group and thioepoxy based optical material using it
KR102122703B1 (en) Manufacturing method of polythiol compound and optical material containing it
JP4339181B2 (en) Polymerizable composition for optical element and optical element obtained by curing the composition
JP7388114B2 (en) Polymerizable compositions, polymers, lenses, coating agents, methods for producing compounds, and compounds
JPS62267316A (en) Resin for plastic lens having high refractive index
KR20100069205A (en) Uv curable resin composition, prism film, backlight unit and liquid crystal display device made by using the same
JP7331611B2 (en) Isocyanate composition, polymerizable composition, compound, polymer, lens, coating agent, and method for producing isocyanate compound
KR101915818B1 (en) Optical Resin Composition using polytiolester composition and the Plastic Ophthalmic Lens using it
JPS63130614A (en) Resin for high-refractive index plastic lens
CN109563209A (en) Polymerisable compound for optical goods
KR20120097330A (en) Preparation method of mercapto-carbonic acid and preparation of carbonic acid ester compound bearing mercapto group using it
KR101869785B1 (en) Composition for a novel optical material containing a thiol compound
KR101826104B1 (en) Sulfur-containing compound for optics article with flame retardance and polyurethane composition thereof
KR101813258B1 (en) Siloxane thiol oligomer for optical materials
KR101971115B1 (en) Method for preparing ester polythiol with high yield
JP3982949B2 (en) New polyisothiocyanate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231030

R151 Written notification of patent or utility model registration

Ref document number: 7388114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151