JP7384636B2 - How to improve the fire resistance of high-strength mortar or high-strength concrete - Google Patents

How to improve the fire resistance of high-strength mortar or high-strength concrete Download PDF

Info

Publication number
JP7384636B2
JP7384636B2 JP2019201252A JP2019201252A JP7384636B2 JP 7384636 B2 JP7384636 B2 JP 7384636B2 JP 2019201252 A JP2019201252 A JP 2019201252A JP 2019201252 A JP2019201252 A JP 2019201252A JP 7384636 B2 JP7384636 B2 JP 7384636B2
Authority
JP
Japan
Prior art keywords
strength
concrete
fire resistance
mortar
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019201252A
Other languages
Japanese (ja)
Other versions
JP2021075409A (en
Inventor
浩巳 藤原
了 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DC Co Ltd
Original Assignee
DC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DC Co Ltd filed Critical DC Co Ltd
Priority to JP2019201252A priority Critical patent/JP7384636B2/en
Publication of JP2021075409A publication Critical patent/JP2021075409A/en
Application granted granted Critical
Publication of JP7384636B2 publication Critical patent/JP7384636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Description

本発明は、高強度モルタルまたは高強度コンクリートの耐火性能を向上させる方法に関するものであり、セメントなどの結合材の一部を高炉スラグ微粉末またはフライアッシュ微粉末に置き換えることにより耐火性能を向上させるようにしたものである。 The present invention relates to a method for improving the fire resistance of high-strength mortar or high-strength concrete, in which the fire resistance is improved by replacing part of the binder such as cement with pulverized blast furnace slag or pulverized fly ash. This is how it was done.

従来、高炉スラグやフライアッシュ、シリカヒュームを混合した混合セメントが使用されており、それらを用いて、高強度モルタルやコンクリートが製造されている。セメント組成物に配合するためのフライアッシュおよびフライアッシュを用いたモルタルまたはコンクリートに関する従来技術としては、例えば以下の特許文献1~6記載の発明がある。 Conventionally, mixed cement containing blast furnace slag, fly ash, and silica fume has been used, and high-strength mortar and concrete are manufactured using these. As prior art related to fly ash and mortar or concrete using fly ash to be incorporated into a cement composition, there are, for example, inventions described in Patent Documents 1 to 6 below.

特許文献1には、ポルトランドセメントと、BET比表面積が2m/g以上5m/g未満であるフライアッシュと、水と、セメント分散剤とを含んでなる超高強度モルタル組成物であって、ポルトランドセメントとフライアッシュとの質量比が90:10~70:30であり、水/結合材比が0.1~0.2であり、セメント分散剤がポリカルボン酸系分散剤を含有していることを特徴とする超高強度モルタル組成物、およびこれに粗骨材が配合された超高強度コンクリート組成物が開示されている。 Patent Document 1 describes an ultra-high strength mortar composition comprising Portland cement, fly ash having a BET specific surface area of 2 m 2 /g or more and less than 5 m 2 /g, water, and a cement dispersant. , the mass ratio of Portland cement and fly ash is 90:10 to 70:30, the water/binder ratio is 0.1 to 0.2, and the cement dispersant contains a polycarboxylic acid dispersant. An ultra-high-strength mortar composition characterized by the following properties and an ultra-high-strength concrete composition in which coarse aggregate is blended with the mortar composition are disclosed.

特許文献2には、粉砕して微粒子化したフライアッシュであって、質量平均粒径(μm)が0.1乃至0.73μmの範囲にあり、かつ粒径3.73μm以下における質量累積率(%)が95%以上となり、また、ブレーン比表面積が2.5m/g(25000cm/g)以上であることを特徴とする多機能性フライアッシュが開示されており、従来のフライアッシュを用いたセメントおよびコンクリート硬化体の早期強度の低下といった問題を克服し、その硬化体の28日強度並びに長期強度も増進させ、しかもセメント硬化体以外のものにも多用途化できる旨が記載されている。 Patent Document 2 describes fly ash that has been crushed into fine particles, has a mass average particle diameter (μm) in the range of 0.1 to 0.73 μm, and has a mass accumulation rate ( %) is 95% or more, and the Blaine specific surface area is 2.5 m 2 /g (25000 cm 2 /g) or more. It is stated that it overcomes the problem of early strength decline of the cement and concrete hardened material used, increases the 28-day strength and long-term strength of the hardened material, and can be used for many purposes other than cement hardened material. There is.

特許文献3には、結合材にブレーン比表面積が2500~10000cm/gのフライアッシュを含む混合物を用いた水結合材比が10~20%の高強度ポーラスコンクリートの開示がある。 Patent Document 3 discloses high-strength porous concrete with a water binder ratio of 10 to 20% using a mixture containing fly ash with a Blaine specific surface area of 2500 to 10000 cm 2 /g as a binder.

特許文献4には、セメント、シリカフューム、及び、シリカフュームに比べて大きな粒度を有するフィラー(分級フライアッシュ:ブレーン比表面積は、好ましくは4000~50000cm/g、より好ましくは6000~30000cm/g、特に好ましくは7000~20000cm/gである。)も含む結合材を用いた水結合材比0.18以下であり、圧縮強度が80N/mm以上のコンクリートからなる耐摩耗版の製造方法の開示がある。 Patent Document 4 describes cement, silica fume, and a filler having a particle size larger than silica fume (classified fly ash: Blaine specific surface area is preferably 4000 to 50000 cm 2 /g, more preferably 6000 to 30000 cm 2 /g, Particularly preferably , it is 7000 to 20000 cm 2 /g. There is a disclosure.

特許文献5には、特許請求項に粒径20μm以下のフライアッシュを2~25重量%配合したことを特徴とする高層鉄筋コンクリート構造物や鋼管充填コンクリート(CFT)構造物等の施工に用いられる設計基準強度80N/mm程度以下の高強度・高流動コンクリートに関し、シリカヒュームによることなく低水セメント比で高い流動性及び低い粘性を示し、熱履歴を受けた場合でも高い強度発現性を示す高強度・高流動コンクリート用セメントを提供する技術の開示がある。 Patent Document 5 describes a design for use in the construction of high-rise reinforced concrete structures, steel tube-filled concrete (CFT) structures, etc., which is characterized in that 2 to 25% by weight of fly ash with a particle size of 20 μm or less is blended in the patent claim. Regarding high-strength, high-fluidity concrete with a standard strength of 80N/mm2 or less , it shows high fluidity and low viscosity at a low water-cement ratio without silica fume, and shows high strength development even when subjected to thermal history. There is a disclosure of technology for providing cement for concrete with high strength and high fluidity.

特許文献6には、粉体成分としてポルトランドセメントおよびブレーン比表面積7000~30000cm/gの石灰石粉、フライアッシュ及び高炉水砕スラグよりなる群から選択された1種以上の無機質高微粉砕粉末を含み、該無機質高微粉砕粉末が該粉体成分に5~30重量%含まれていることを特徴とする高強度セルフレベリング性セメント組成物が記載されている。 Patent Document 6 discloses that one or more kinds of inorganic highly finely pulverized powders selected from the group consisting of Portland cement, limestone powder with a Blaine specific surface area of 7,000 to 30,000 cm 2 /g, fly ash, and granulated blast furnace slag are used as powder components in Patent Document 6. A high-strength self-leveling cement composition is described, characterized in that the powder component contains 5 to 30% by weight of the highly finely pulverized inorganic powder.

また、高炉スラグやシリカヒュームを用いたコンクリートにおいて耐火性を上げる技術も知られており、例えば特許文献7~9記載の発明がある。 Furthermore, techniques for increasing the fire resistance of concrete using blast furnace slag or silica fume are also known, such as inventions described in Patent Documents 7 to 9.

特許文献7には、セメント、シリカヒューム、細骨材、粗骨材及び高性能減水剤を含み且つ膨張材を含まない、水/結合材比が10~15質量%のコンクリートの圧縮強度の90%以上の圧縮強度を同一材齢で有する、結合材の一部を膨張材で置換含有させた又は膨張材を添加配合したコンクリートを60~90℃で5日間以上加熱促進養生して製造するにあたり、結合材の0.6~2.8質量%を膨張材で置換含有させるか又は結合材の0.6~2.8質量%量の膨張材を添加配合し、コンクリート打設後24時間以上経過後に、加熱促進養生を行うことを特徴とする、高強度コンクリートの製造方法が記載されており、耐火爆裂抑制材として、ポリプロピレン繊維等の耐火爆裂抑制材を含む実施形態が記載されている。 Patent Document 7 discloses that the compressive strength of concrete containing cement, silica fume, fine aggregate, coarse aggregate, and high-performance water reducing agent and without an expansive agent and having a water/binder ratio of 10 to 15% by mass is 90%. % or more at the same material age, in which a part of the binder is replaced with an expanding agent or an expanding agent is added to the concrete, which is heated and cured for 5 days or more at 60-90°C. , 0.6 to 2.8% by mass of the binder is substituted with an expanding agent, or 0.6 to 2.8% by mass of the binder is added and blended, and for at least 24 hours after concrete placement. A method for manufacturing high-strength concrete is described, which is characterized by performing accelerated heating curing after a period of time, and an embodiment is described in which a fire-resistant explosion-suppressing material such as polypropylene fiber is used as the fire-resistant explosion-suppressing material.

特許文献8には、コンクリート構造体に用いられる耐火性コンクリートであって、所定の温度で気化する性質を有するとともに、紐状で、長さと太さの比であるアスペクト比が410以上700以下の有機繊維と、結合材のうち50重量%以上60重量%以下の割合で含まれる高炉スラグと、靭性を向上させるための鋼繊維とを含むことを特徴とする耐火性コンクリートが記載されている。 Patent Document 8 describes fire-resistant concrete used for concrete structures, which has the property of vaporizing at a predetermined temperature, is string-like, and has an aspect ratio of 410 to 700, which is the ratio of length to thickness. A fire-resistant concrete is described that is characterized by containing organic fibers, blast furnace slag included in a binder at a ratio of 50% to 60% by weight, and steel fibers for improving toughness.

特許文献9には、珪酸リチウムを含有することを特徴とする耐火耐熱コンクリートが記載されており、無機添加物として、シリカフューム、高炉スラグ微粉末、天然岩石の微粉末、人口セラミックの微粉末及びフライアッシュ微粉末からなる群から選ばれた1種又は2種以上を配合することが記載されている。 Patent Document 9 describes a fire-resistant and heat-resistant concrete characterized by containing lithium silicate, and contains silica fume, pulverized blast furnace slag powder, pulverized natural rock powder, pulverized artificial ceramic powder, and fried ceramic as inorganic additives. It is described that one kind or two or more kinds selected from the group consisting of fine ash powders are blended.

特開2008-189491号公報Japanese Patent Application Publication No. 2008-189491 特許第4034945号公報Patent No. 4034945 特開2018-002510号公報Japanese Patent Application Publication No. 2018-002510 特開2017-024933号公報JP2017-024933A 特開平11-278908号公報Japanese Patent Application Publication No. 11-278908 特許第3528301号公報Patent No. 3528301 特開2015-048288号公報JP2015-048288A 特開2010-120839号公報Japanese Patent Application Publication No. 2010-120839 特開2005-187275号公報Japanese Patent Application Publication No. 2005-187275

高強度コンクリートの耐火性に関しては、例えば上述した特許文献7~9などにもあるように、従来、ポリプロピレン繊維などの繊維を加えることが多い。しかしながら、ポリプロピレン繊維を加えることにより、一般にコンクリートのフロー値が低下する傾向がある。 Regarding the fire resistance of high-strength concrete, conventionally fibers such as polypropylene fibers are often added, as described in Patent Documents 7 to 9 mentioned above. However, the addition of polypropylene fibers generally tends to reduce the flow values of concrete.

本発明は、このような背景のもとに開発されたものであり、高強度モルタルまたは高強度コンクリートの配合において、高炉スラグ微粉末および/またはフライアッシュ微粉末を添加することにより、低水結合材比で高い流動性および低い粘性を示し、かつ耐火性能を持つ高強度モルタルまたは高強度コンクリートを得られる方法の提供を目的としている。 The present invention was developed against this background, and by adding pulverized blast furnace slag and/or pulverized fly ash to the formulation of high-strength mortar or high-strength concrete, it is possible to achieve low water binding. The object of the present invention is to provide a method for obtaining high-strength mortar or high-strength concrete that exhibits high fluidity and low viscosity in terms of material ratio and has fire resistance.

本発明の高強度モルタルまたは高強度コンクリートの耐火性能の向上方法は、累積体積通過率50%の粒径が0.5~5.0μmである高炉スラグ微粉末および/またはフライアッシュ微粉末を結合材に添加することを特徴とするものである。 The method for improving the fire resistance of high-strength mortar or high-strength concrete according to the present invention combines pulverized blast furnace slag and/or pulverized fly ash having a particle size of 0.5 to 5.0 μm at a cumulative volumetric passage rate of 50%. It is characterized by being added to materials.

高炉スラグ微粉末とフライアッシュ微粉末は、結合材に何れか一方を添加すればよいが、その場合に限らず高炉スラグ微粉末とフライアッシュ微粉末の両者を併用して添加してもよい。 Either one of the pulverized blast furnace slag powder and the pulverized fly ash powder may be added to the binder, but the invention is not limited to this case, and both the pulverized blast furnace slag powder and the pulverized fly ash powder may be added in combination.

水結合材比W/P15~30%(P=N+AD)の高強度モルタルまたは高強度コンクリートに累積体積通過率50%の粒径が0.5~5.0μmである高炉スラグ微粉末および/またはフライアッシュ微粉末を5~30%添加することにより高強度モルタルまたは高強度コンクリートの耐火性能を向上させることができる。 High-strength mortar or high-strength concrete with a water binder ratio W/P of 15 to 30% (P=N+AD) and/or pulverized blast furnace slag with a particle size of 0.5 to 5.0 μm and/or The fire resistance performance of high strength mortar or high strength concrete can be improved by adding 5 to 30% of fly ash fine powder.

高強度モルタルまたは高強度コンクリートの配合において、流動性などのフレッシュ性状の観点からは、水結合材比は好ましくは17.5~25%、より好ましくは20~25%である。 In the formulation of high-strength mortar or high-strength concrete, from the viewpoint of fresh properties such as fluidity, the water binder ratio is preferably 17.5 to 25%, more preferably 20 to 25%.

高炉スラグ微粉末および/またはフライアッシュ微粉末の置換率(AD/P)は、5~30%が好ましい。置換率が大きい範囲ではフレッシュ性状における流動性が良好であるが、耐火性能の面では、より好ましくは5~20%、さらに好ましくは5~15%である。 The substitution ratio (AD/P) of the ground blast furnace slag powder and/or the ground fly ash powder is preferably 5 to 30%. When the substitution rate is high, the fluidity in the fresh state is good, but in terms of fire resistance, it is more preferably 5 to 20%, and even more preferably 5 to 15%.

高炉スラグ微粉末またはフライアッシュ微粉末の累積体積通過率50%粒径は好ましくは0.5~3.5μm、より好ましくは0.9~3.2μmである。累積体積通過率50%粒径が大きくなるとモルタル化時間が大きくなってしまう傾向があり、また累積体積通過率50%粒径が小さくなると、混和材料の置換率によっては耐火性能の向上の面で性能がやや低下する傾向がある。 The cumulative volumetric passage rate 50% particle size of the blast furnace slag powder or fly ash powder is preferably 0.5 to 3.5 μm, more preferably 0.9 to 3.2 μm. As the cumulative volumetric passage rate 50% particle size increases, the mortaring time tends to increase, and as the cumulative volumetric passage rate 50% particle size decreases, depending on the substitution rate of the admixture, the mortaring time tends to increase. Performance tends to decrease slightly.

本発明の高強度モルタルまたは高強度コンクリートの耐火性能の向上方法における結合材としては、各種ポルトランドセメント、混合セメントなどを用いることができ、またモルタルまたはコンクリートの目的に応じた性能を高めるためにセメントの一部を他の材料に置き換えた各種セメント系材料などにも適用することができる。 Various portland cements, mixed cements, etc. can be used as the binder in the method for improving the fire resistance performance of high-strength mortar or high-strength concrete of the present invention. It can also be applied to various cement-based materials in which a part of the material is replaced with other materials.

本発明の高強度モルタルまたは高強度コンクリートの耐火性能の向上方法では、累積体積通過率50%の粒径が0.5~5.0μmである高炉スラグ微粉末および/またはフライアッシュ微粉末を結合材に添加することで、シリカフューム微粉末などが添加される場合に比べ、高強度モルタルまたは高強度コンクリートの耐火性能が顕著に向上する。 In the method for improving the fire resistance of high-strength mortar or high-strength concrete of the present invention, pulverized blast furnace slag and/or pulverized fly ash having a particle size of 0.5 to 5.0 μm at a cumulative volumetric passage rate of 50% are combined. By adding it to materials, the fire resistance performance of high-strength mortar or high-strength concrete is significantly improved compared to when fine silica fume powder is added.

また、従来、高強度モルタルまたは高強度コンクリートの耐火性能の向上に用いられることがあるポリプロピレン繊維との併用においてもフロー値の低下を抑えつつ、耐火性能を向上させることができる。 Furthermore, when used in combination with polypropylene fibers, which have conventionally been used to improve the fire resistance of high-strength mortar or high-strength concrete, the fire resistance can be improved while suppressing a decrease in flow value.

以下、本発明の高強度モルタルまたは高強度コンクリートの耐火性能の向上方法を、その効果を確認するために行った試験に基づいて説明する。 Hereinafter, the method for improving the fire resistance of high-strength mortar or high-strength concrete according to the present invention will be described based on tests conducted to confirm its effects.

〔使用材料〕
試験に用いた使用材料を表1に示す。
[Materials used]
Table 1 shows the materials used in the test.

Figure 0007384636000001
Figure 0007384636000001

〔試験方法〕
試験方法としては、モルタルを作製して評価した。モルタルの配合は、高強度コンクリートの粗骨材を抜いたものとした。材料は表1に示すものを用いた。練混ぜの器具としては一般的に用いられているホバートミキサ(容量3L、0.125kwh)を使用した。ミキサに材料を投入した後、フロー試験が可能となるような混合状態と目視できた時間をモルタル化時間として測定した。モルタル化時間を測定した後に90秒間撹拌した。フロー試験は、JIS R 5201「セメントの物理試験方法」に準拠した方法で行なった。フロー値が260±10mmとなるようにSP添加量を調整した。練り混ぜたモルタルを4×4×16cmの型枠に成型後、24時間後に脱型してから材齢7日、28日まで封函養生した試料(4×4×6cmに切断)を用い、耐火試験を実施した。
〔Test method〕
As a test method, mortar was prepared and evaluated. The mortar mix was high-strength concrete minus the coarse aggregate. The materials shown in Table 1 were used. A commonly used Hobart mixer (capacity: 3 L, 0.125 kwh) was used as a kneading device. After the materials were put into the mixer, the time required to reach a mixing state that allowed a flow test and was visually observed was measured as the mortarization time. After measuring the mortarization time, the mixture was stirred for 90 seconds. The flow test was conducted in accordance with JIS R 5201 "Physical Test Methods for Cement." The amount of SP added was adjusted so that the flow value was 260±10 mm. After molding the mixed mortar into a 4 x 4 x 16 cm mold, the mold was removed after 24 hours, and samples (cut into 4 x 4 x 6 cm) that were sealed and cured until age 7 and 28 days were used. A fire resistance test was conducted.

耐火試験は、電気炉に試料を投入して400℃まで40℃/分、400℃~1100℃まで10℃/分で電気炉の温度を上昇させた。1100℃で70分保持後、自然冷却させた。電気炉での加熱前後の試料の質量変化率から耐火性能を評価した。質量変化率は、(加熱前の質量-加熱後の質量)÷加熱前の質量×100で算出した。加熱中の試料の爆裂の評価は、爆裂なし、爆裂あり(試料破片回収可能)、爆裂あり(試料回収不可能)の3種類とした。なお、爆裂あり(試料回収不可能)のときの質量変化率は100%とした。 In the fire resistance test, a sample was placed in an electric furnace and the temperature of the electric furnace was raised at 40°C/min to 400°C and 10°C/min from 400°C to 1100°C. After being held at 1100°C for 70 minutes, it was allowed to cool naturally. The fire resistance performance was evaluated from the mass change rate of the sample before and after heating in the electric furnace. The mass change rate was calculated as (mass before heating−mass after heating)÷mass before heating×100. There were three types of evaluation for the explosion of the sample during heating: no explosion, explosion (sample fragments could be recovered), and explosion (sample could not be recovered). In addition, the mass change rate when there was an explosion (sample recovery was impossible) was assumed to be 100%.

〔試験結果〕
(1) フレッシュ性状
フレッシュ性状の試験結果を表2に示した。混和材の置換率を変化させた水準1~25において、混和材の置換率AD/P(P=N+AD)が5%のときは混和材の種類によらずモルタル化時間が大きくなった。混和材が15%のときは、F3.2およびBF1.8以外では90秒以下とモルタル化時間が短くなった。混和材が20%以上では、F3.2以外でモルタル化時間が90秒以下となり、流動性が良好なモルタルが得られた。
〔Test results〕
(1) Fresh properties The test results for fresh properties are shown in Table 2. In levels 1 to 25 where the admixture substitution rate was varied, when the admixture substitution rate AD/P (P=N+AD) was 5%, the mortaring time became long regardless of the type of admixture. When the admixture was 15%, the mortaring time was short to 90 seconds or less except for F3.2 and BF1.8. When the admixture was 20% or more, the mortaring time was 90 seconds or less except for F3.2, and a mortar with good fluidity was obtained.

水結合材比を変化させた水準26~37において、フライアッシュの粒度が大きく水結合材比が小さい水準36、37は、モルタル化時間が大きく、練り混ぜが困難であった。 Among levels 26 to 37 in which the water-binder ratio was varied, levels 36 and 37, in which the fly ash particle size was large and the water-binder ratio was small, took a long mortaring time and were difficult to mix.

ポリプロピレン繊維を添加した水準38~43において、シリカフュームにポリプロピレン繊維を0.155、0.135Vol%(コンクリートで0.1、0.2Vol%相当)の添加で、フロー値が低下した。しかし、フライアッシュ微粉末であるF0.9にポリプロピレン繊維を0.155、0.135Vol%(コンクリートで0.1、0.2Vol%相当)の添加では、フロー値の低下は認められなかった。 At levels 38 to 43 where polypropylene fibers were added, the flow value decreased when polypropylene fibers were added to silica fume at 0.155 and 0.135 Vol% (equivalent to 0.1 and 0.2 Vol% in concrete). However, when polypropylene fibers were added in amounts of 0.155 and 0.135 Vol% (equivalent to 0.1 and 0.2 Vol% in concrete) to F0.9, which is a fine fly ash powder, no decrease in the flow value was observed.

Figure 0007384636000002
Figure 0007384636000002

(2) 耐火性能
耐火性能の試験結果を表3に示した。混和材の置換率を変化させた水準1~25において、シリカフュームを混和材に使用した場合は、5%添加の材齢28日以外はすべて爆裂した。フライアッシュ微粉末を添加した場合は、置換率15%まではF0.9の材齢7日の一部を除き爆裂をしなかった。ただし、置換率25%以上ではいずれも爆裂をした。高炉スラグ微粉末を用いた水準はいずれも爆裂をしなかった。
(2) Fire resistance performance The test results for fire resistance performance are shown in Table 3. At Levels 1 to 25, where the substitution rate of the admixture was varied, when silica fume was used as an admixture, all cases exploded except at 28 days when 5% was added. When fly ash fine powder was added, no explosion occurred except for a part of the F0.9 material with an age of 7 days up to a substitution rate of 15%. However, at a substitution rate of 25% or higher, all of them exploded. None of the levels using ground blast furnace slag powder exploded.

水結合材比を変化させた水準26~37において、シリカフュームを混和材に使用した場合は、いずれも爆裂をした。フライアッシュ微粉末を用いた場合は、F0.9の一部で爆裂した。ほかの粒度のフライアッシュ微粉末ではいずれも爆裂しなかった。 At Levels 26 to 37, where the water-binder ratio was varied, explosions occurred in all cases where silica fume was used as an admixture. When fly ash fine powder was used, it exploded at a portion of F0.9. None of the fly ash fine powders of other particle sizes exploded.

ポリプロピレン繊維を添加した水準38~43において、シリカフュームを混和材として使用した場合は、ポリプロピレン繊維を添加した水準も含めて爆裂をした。フライアッシュ微粉末F0.9にポリプロピレン繊維を添加した水準では爆裂をしなかった。 When silica fume was used as an admixture at levels 38 to 43 where polypropylene fibers were added, explosions occurred, including levels where polypropylene fibers were added. No explosion occurred at the level where polypropylene fibers were added to fly ash fine powder F0.9.

Figure 0007384636000003
Figure 0007384636000003

以上のモルタルのフレッシュ性状に関する試験結果および耐火性能の評価においては、シリカフューム微粉末に比べ、フライアッシュ微粉末および高炉スラグ微粉末が、高強度モルタルまたは高強度コンクリートの耐火性能に関して有効であること、高強度コンクリートの耐火性能の向上に用いられることがあるポリプロピレン繊維との併用においてもフロー値の低下を抑えつつ、耐火性能が向上することが確認された。 In the above test results regarding fresh properties of mortar and evaluation of fire resistance performance, it was found that fly ash powder and blast furnace slag powder are more effective than silica fume powder in terms of the fire resistance performance of high-strength mortar or high-strength concrete. It was confirmed that when used in combination with polypropylene fibers, which are sometimes used to improve the fire resistance of high-strength concrete, the fire resistance was improved while suppressing the drop in flow value.

Claims (2)

累積体積通過率50%の粒径が0.5~5.0μmである高炉スラグ微粉末を結合材に対して5~30%添加し、かつ水結合材比が17.5~25%となるようにすることを特徴とする高強度モルタルまたは高強度コンクリートの耐火性能の向上方法。 Blast furnace slag powder with a particle size of 0.5 to 5.0 μm at a cumulative volumetric passage rate of 50 % is added in an amount of 5 to 30% to the binder, and the water binder ratio is 17.5 to 25%. A method for improving the fire resistance of high-strength mortar or high-strength concrete, the method comprising : 請求項1記載の高強度コンクリートの耐火性能の向上方法において、前記結合材はセメント、またはセメントを含むセメント系結合材であることを特徴とする高強度モルタルまたは高強度コンクリートの耐火性能の向上方法。 2. The method for improving the fire resistance of high strength concrete according to claim 1, wherein the binder is cement or a cementitious binder containing cement. .
JP2019201252A 2019-11-06 2019-11-06 How to improve the fire resistance of high-strength mortar or high-strength concrete Active JP7384636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201252A JP7384636B2 (en) 2019-11-06 2019-11-06 How to improve the fire resistance of high-strength mortar or high-strength concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201252A JP7384636B2 (en) 2019-11-06 2019-11-06 How to improve the fire resistance of high-strength mortar or high-strength concrete

Publications (2)

Publication Number Publication Date
JP2021075409A JP2021075409A (en) 2021-05-20
JP7384636B2 true JP7384636B2 (en) 2023-11-21

Family

ID=75897203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201252A Active JP7384636B2 (en) 2019-11-06 2019-11-06 How to improve the fire resistance of high-strength mortar or high-strength concrete

Country Status (1)

Country Link
JP (1) JP7384636B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189491A (en) 2007-02-02 2008-08-21 Sumitomo Osaka Cement Co Ltd Composition for ultra-high strength mortar, composition for ultra-high strength concrete, and method for producing the composition for ultra-high strength mortar
JP2009269786A (en) 2008-05-07 2009-11-19 Utsunomiya Univ Hydraulic composition and concrete using the hydraulic composition
JP2012214343A (en) 2011-03-31 2012-11-08 Taisei Corp Spalling-preventable ultra-high strength concrete
JP2018127375A (en) 2017-02-08 2018-08-16 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2019026490A (en) 2017-07-26 2019-02-21 太平洋セメント株式会社 Cement composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280506A (en) * 1988-01-17 1989-11-10 Toomen Constr Kk Manufacture of high-strength cement mortar product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189491A (en) 2007-02-02 2008-08-21 Sumitomo Osaka Cement Co Ltd Composition for ultra-high strength mortar, composition for ultra-high strength concrete, and method for producing the composition for ultra-high strength mortar
JP2009269786A (en) 2008-05-07 2009-11-19 Utsunomiya Univ Hydraulic composition and concrete using the hydraulic composition
JP2012214343A (en) 2011-03-31 2012-11-08 Taisei Corp Spalling-preventable ultra-high strength concrete
JP2018127375A (en) 2017-02-08 2018-08-16 株式会社デイ・シイ Blast furnace slag fine powder and cement composition
JP2019026490A (en) 2017-07-26 2019-02-21 太平洋セメント株式会社 Cement composition

Also Published As

Publication number Publication date
JP2021075409A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP4834574B2 (en) Cement composition for high fluidity concrete and high fluidity concrete composition
JP6338855B2 (en) Concrete composition having initial and long-term high strength development and high crack resistance and concrete body using the composition
KR101948627B1 (en) High strength lightweight concrete composition including artificial lightweight aggregates
KR100873514B1 (en) Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder
EP3385242B1 (en) Use of calcium oxide as expanding agent in hydraulic binder composition with very low shrinkage
JP6346519B2 (en) Method for producing high-strength concrete and concrete member
JP2011042534A (en) High toughness-high strength mortar composition
JP5649780B2 (en) Method for producing concrete composition and concrete molded body
JP5136829B2 (en) Hydraulic composition and cured product thereof
JP5610626B2 (en) Preparation method of low shrinkage AE concrete and low shrinkage AE concrete
JP5650925B2 (en) High-strength cement composition and hardened cementitious hardened body
JP7384636B2 (en) How to improve the fire resistance of high-strength mortar or high-strength concrete
JP6985177B2 (en) Hydraulic composition and concrete
JP6803775B2 (en) Hydraulic composition and heat resistant structure
KR101750830B1 (en) Low viscosity-low heat generation binder and Low viscosity-low mass concrete composition using the same
JP5816731B2 (en) Method for producing high-strength concrete
JP6154114B2 (en) Refractory cement composition
JP2022183463A (en) Low-shrinkage ultra-high strength grout composition and low-shrinkage ultra-high strength grout
JP6959151B2 (en) Mortar composition and mortar
JP2021155310A (en) Salinity tolerance grout composition and salinity tolerance grout
JP2019123650A (en) High strength cement and high strength concrete
JP7359686B2 (en) Admixtures for mortar and concrete, cement compositions, mortar compositions and concrete compositions containing the same, and methods for producing cured mortar and cured concrete
JP7115677B2 (en) Hydraulic composition and hydraulic hardening body
JP2010265166A (en) Environmental load-reducing mortar or concrete kneading matter
JP4953568B2 (en) Setting accelerator for cement and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7384636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150