JP7383843B1 - Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food - Google Patents

Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food Download PDF

Info

Publication number
JP7383843B1
JP7383843B1 JP2023086197A JP2023086197A JP7383843B1 JP 7383843 B1 JP7383843 B1 JP 7383843B1 JP 2023086197 A JP2023086197 A JP 2023086197A JP 2023086197 A JP2023086197 A JP 2023086197A JP 7383843 B1 JP7383843 B1 JP 7383843B1
Authority
JP
Japan
Prior art keywords
dough
bakery food
layer
oil
flour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023086197A
Other languages
Japanese (ja)
Inventor
翼 大橋
洋 中村
Original Assignee
株式会社ホ-ライ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホ-ライ filed Critical 株式会社ホ-ライ
Priority to JP2023086197A priority Critical patent/JP7383843B1/en
Application granted granted Critical
Publication of JP7383843B1 publication Critical patent/JP7383843B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

【課題】油脂層を備える生地を焼成した際、浮きがより大きくなるベーカリー食品用生地、その製造方法、このベーカリー食品の製造方法、及びこのベーカリー食品を提供する。【解決手段】ベーカリー食品用生地が、この生地中に、小麦粉を含有する小麦粉生地層と、油脂層とが形成されていて、熱ゲル化性のあるセルロース誘導体がこの小麦粉生地層中に分散されて含有されている。ベーカリー食品用生地の製造方法が、この小麦粉生地層の原料中に熱ゲル化性のあるセルロース誘導体を混合して、この小麦粉生地層を形成する工程、及び、この小麦粉生地層に油脂組成物を混合又は挟み込んでこの油脂層を形成する油脂層形成工程を含む。ベーカリー食品の製造方法が、このベーカリー食品用生地を焼成する焼成工程を含む。ベーカリー食品が、ベーカリー食品の製造方法により製造され、熱ゲル化性のあるセルロース誘導体を含む。【選択図】なしThe present invention provides a dough for a bakery food which has a larger float when baking the dough including an oil and fat layer, a method for producing the same, a method for producing the bakery food, and the bakery food. [Solution] A dough for bakery food has a flour dough layer containing flour and an oil layer formed in the dough, and a cellulose derivative having heat-gelling property is dispersed in the flour dough layer. Contains A method for producing dough for bakery food includes the steps of: mixing a thermogelatable cellulose derivative into the raw material for the flour dough layer to form the flour dough layer; and applying an oil and fat composition to the flour dough layer. It includes an oil and fat layer forming step of mixing or sandwiching to form this oil and fat layer. A method for producing a bakery food includes a baking step of baking the dough for the bakery food. A bakery food product is produced by a method for producing a bakery food product and contains a cellulose derivative that can be thermally gelled. [Selection diagram] None

Description

本発明は、ベーカリー食品用生地、ベーカリー食品用生地の製造方法、ベーカリー食品の製造方法、及びベーカリー食品に関する。 The present invention relates to a dough for bakery food, a method for manufacturing dough for bakery food, a method for manufacturing bakery food, and a bakery food.

油脂層を備える生地を焼成し、当該生地を層状に膨化させ調理される、パイ、デニッシュ、クロワッサン、ミルフィーユ等のベーカリー食品が知られている。 BACKGROUND OF THE INVENTION Bakery foods such as pies, danishes, croissants, and mille-feuilles are known, which are prepared by baking a dough having a fat layer and swelling the dough into layers.

引用文献1には、加熱ゲル化剤、分離大豆蛋白質から選ばれる1種類以上をパイ生地に塗布して折り込み、当該パイ生地を半焼成する、電子レンジ調理用パイの製造方法が開示されている。 Cited Document 1 discloses a method for producing a pie for microwave cooking, which involves applying one or more types selected from a heat gelling agent and isolated soybean protein to pie dough, folding it in, and semi-baking the pie dough. .

特開2015-177774号公報Japanese Patent Application Publication No. 2015-177774

近年、油脂層を備える生地を焼成した際、浮き(膨化度合い)がより大きくなる、ベーカリー食品用生地が希求されるようになってきた。 BACKGROUND ART In recent years, there has been a demand for dough for bakery foods that has a greater degree of floating (degree of puffiness) when the dough is baked and has an oil layer.

本発明が解決しようとする課題は、油脂層を備える生地を焼成した際、浮きがより大きくなる、ベーカリー食品用生地を提供することである。本発明が解決しようとする別の課題は、前記ベーカリー食品用生地の製造方法、前記ベーカリー食品の製造方法、及び前記ベーカリー食品を提供することである。 The problem to be solved by the present invention is to provide a dough for bakery food that has a larger floating effect when the dough including an oil and fat layer is baked. Another problem to be solved by the present invention is to provide a method for producing the dough for bakery food, a method for producing the bakery food, and the bakery food.

本発明者らは上記課題に鑑み検討を重ね、熱ゲル化性のあるセルロース誘導体が分散されている小麦粉生地層と、油脂層とが形成されているベーカリー食品用生地を焼成した際、浮きがより大きくなることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。 The present inventors have made repeated studies in view of the above-mentioned problems, and found that when baking dough for bakery food, which has a flour dough layer in which a heat-gelatable cellulose derivative is dispersed, and an oil and fat layer, the dough floats. I found it to be larger. The present invention has been completed based on these findings.

本発明は、生地中に、小麦粉を含有する小麦粉生地層と、油脂層とが形成され、前記小麦粉生地層と、前記油脂層とが交互に重なって多層構造になったベーカリー食品用生地であって、熱ゲル化性のあるセルロース誘導体が前記小麦粉生地層中に分散されて含有されており、前記セルロース誘導体が、メチルセルロース、ヒドロキシプロピルメチルセルロースからなる群から選ばれる少なくとも1つを含み、前記セルロース誘導体のゲル化温度が50℃以上であり、動的粘弾性測定装置を使用し、前記セルロース誘導体の1.3質量%水溶液を、昇温速度3.5℃/分で20℃から90℃まで昇温し、せん断応力1%、周波数1Hz、治具として直径25mm、ギャップ1mmのパラレルプレートで、温度分散測定法により貯蔵弾性率と損失弾性率を測定し、当該貯蔵弾性率と損失弾性率の交点となる温度が当該ゲル化温度であるベーカリー食品用生地に関する。
前記ベーカリー食品は、好ましくはパイ、デニッシュ、クロワッサン、及びミルフィーユからなる群から選ばれる少なくとも1つである。
前記セルロース誘導体の前記生地中の含有量は、好ましくは0.5~5質量%の範囲である。
The present invention provides a dough for bakery food in which a flour dough layer containing wheat flour and an oil/fat layer are formed in the dough, and the flour dough layer and the oil/fat layer are alternately overlapped to form a multilayer structure. A heat-gelatable cellulose derivative is dispersed and contained in the flour dough layer , the cellulose derivative contains at least one selected from the group consisting of methylcellulose and hydroxypropylmethylcellulose, and the cellulose derivative The gelation temperature of the cellulose derivative is 50°C or higher, and a 1.3% by mass aqueous solution of the cellulose derivative is heated from 20°C to 90°C at a heating rate of 3.5°C/min using a dynamic viscoelasticity measuring device. The storage modulus and the loss modulus were measured by the temperature dispersion measurement method using a parallel plate with a diameter of 25 mm and a gap of 1 mm as a jig at a shear stress of 1%, a frequency of 1 Hz, and the intersection of the storage modulus and loss modulus. The present invention relates to a dough for bakery food whose gelling temperature is the temperature at which the temperature becomes .
The bakery food is preferably at least one selected from the group consisting of pie, danish, croissant, and mille-feuille.
The content of the cellulose derivative in the dough is preferably in the range of 0.5 to 5% by mass.

本発明は、生地中に、小麦粉を含有する小麦粉生地層と、油脂層とが形成されているベーカリー食品用生地の製造方法であって、前記小麦粉生地層の原料中に熱ゲル化性のあるセルロース誘導体を混合して、前記小麦粉生地層を形成する工程、及び、前記小麦粉生地層に油脂組成物を混合又は挟み込んで前記油脂層を形成する油脂層形成工程を含み、前記セルロース誘導体が、メチルセルロース、ヒドロキシプロピルメチルセルロースからなる群から選ばれる少なくとも1つを含み、前記セルロース誘導体のゲル化温度が50℃以上であり、動的粘弾性測定装置を使用し、前記セルロース誘導体の1.3質量%水溶液を、昇温速度3.5℃/分で20℃から90℃まで昇温し、せん断応力1%、周波数1Hz、治具として直径25mm、ギャップ1mmのパラレルプレートで、温度分散測定法により貯蔵弾性率と損失弾性率を測定し、当該貯蔵弾性率と損失弾性率の交点となる温度が当該ゲル化温度であるベーカリー食品用生地の製造方法に関する。
前記ベーカリー食品は、好ましくはパイ、デニッシュ、クロワッサン、及びミルフィーユからなる群から選ばれる少なくとも1つである。
The present invention provides a method for producing dough for bakery food, in which a flour dough layer containing wheat flour and an oil layer are formed in the dough, wherein the raw material for the flour dough layer has heat-gelatable properties. A step of forming the flour dough layer by mixing a cellulose derivative, and an oil layer forming step of mixing or sandwiching an oil composition in the flour dough layer to form the oil layer, the cellulose derivative comprising: The cellulose derivative contains at least one selected from the group consisting of methyl cellulose and hydroxypropyl methyl cellulose, the gelling temperature of the cellulose derivative is 50°C or higher, and 1.3% by mass of the cellulose derivative is measured using a dynamic viscoelasticity measuring device. The aqueous solution was heated from 20°C to 90°C at a heating rate of 3.5°C/min, and stored using a temperature dispersion measurement method using a parallel plate with a diameter of 25 mm and a gap of 1 mm as a jig at a shear stress of 1% and a frequency of 1 Hz. The present invention relates to a method for producing dough for bakery food, in which the elastic modulus and the loss modulus are measured, and the temperature at which the storage modulus and the loss modulus intersect is the gelling temperature.
The bakery food is preferably at least one selected from the group consisting of pie, danish, croissant, and mille-feuille.

本発明は、前記ベーカリー食品用生地の製造方法で得られたベーカリー食品用生地を焼成する焼成工程を含むベーカリー食品の製造方法に関する。 The present invention relates to a method for producing a bakery food product, which includes a baking step of baking the dough for a bakery food product obtained by the method for producing dough for a bakery food product.

さらに本発明は、前記ベーカリー食品の製造方法により製造された、熱ゲル化性のあるセルロース誘導体を含むベーカリー食品に関する。 Furthermore, the present invention relates to a bakery food product containing a heat-gelatable cellulose derivative produced by the above-mentioned method for producing a bakery food product.

本発明のベーカリー食品用生地は、焼成した際、浮きがより大きくなるベーカリー食品用生地を提供する。本発明のベーカリー食品用生地の製造方法は、焼成した際、浮きがより大きくなるベーカリー食品用生地の製造方法を提供する。本発明のベーカリー食品の製造方法は、浮きがより大きいベーカリー食品の製造方法を提供する。さらに本発明のベーカリー食品は、前記ベーカリー食品を提供する。 The dough for bakery food of the present invention provides a dough for bakery food that has a larger float when baked. The method for producing dough for bakery foods of the present invention provides a method for producing dough for bakery foods that has a larger floating effect when baked. The method for producing a bakery food product of the present invention provides a method for producing a bakery food product that has higher float. Furthermore, the bakery food of the present invention provides the above bakery food.

各種セルロース誘導体が小麦粉生地層中に含まれるパイ生地から調理されたパイの浮きを示す図。FIG. 2 is a diagram showing the float of a pie prepared from pie dough in which various cellulose derivatives are contained in the flour dough layer. メチルセルロースのパイ生地への添加方法が異なるパイ生地から調理されたパイの浮きを示す図。Figure 3 shows the floats of pies prepared from pie doughs with different methods of adding methylcellulose to the pie dough. ゲル化温度が異なるメチルセルロースが小麦粉生地層中に含まれるパイ生地から調理されたパイの浮きを示す図。Figure 3 shows pie floats prepared from pie dough in which methylcellulose with different gelling temperatures is included in the flour dough layer. ゲル化温度が異なるヒドロキシプロピルメチルセルロースが小麦粉生地層中に含まれるパイ生地から調理されたパイの浮きを示す図。Figure 3 shows pie floats prepared from pie crusts in which hydroxypropyl methylcellulose with different gelling temperatures is included in the flour dough layer. 各種セルロース誘導体のパイ生地への添加方法が異なるパイ生地から調理されたパイの浮きを示す図。FIG. 3 is a diagram showing the floats of pies prepared from pie doughs in which various cellulose derivatives are added to the pie dough using different methods. 小麦粉生地層中のメチルセルロースの含有量が異なるパイ生地から調理されたパイの浮きを示す図。Figure 2 shows the floats of pies prepared from pie doughs with different contents of methylcellulose in the flour dough layer. メチルセルロースのパイ生地への添加方法が異なるパイ生地から調理されたパイの浮きを示す図。Figure 3 shows the floats of pies prepared from pie doughs with different methods of adding methylcellulose to the pie dough. ゲル化温度の測定方法を示す図。The figure which shows the measuring method of gelation temperature.

本発明について更に詳細に説明する。
なお、数値範囲の「~」は、断りがなければ、以上から以下を表し、両端の数値をいずれも含む。また、数値範囲を示したときは、上限値および下限値を適宜組み合わせることができ、それにより得られた数値範囲も開示したものとする。
The present invention will be explained in more detail.
In addition, unless otherwise specified, "~" in a numerical range represents the above to the following, and includes both ends of the range. Furthermore, when a numerical range is indicated, the upper limit and lower limit can be combined as appropriate, and the resulting numerical range is also disclosed.

<ベーカリー食品用生地>
小麦粉を含有する小麦粉生地層と油脂層が、本発明のベーカリー食品用生地に形成されている。本発明のベーカリー食品用生地は、従来のベーカリー食品用生地と同様、小麦粉生地層と油脂層が交互に重なって多層構造になった生地であってよい。
<Dough for bakery food>
A flour dough layer containing wheat flour and an oil/fat layer are formed in the bakery food dough of the present invention. The dough for bakery food of the present invention may be a dough having a multilayer structure in which wheat flour dough layers and oil and fat layers are alternately stacked, similar to conventional dough for bakery food.

(小麦粉生地層)
小麦粉生地層としては、従来のベーカリー食品用生地と同様、薄力粉、中力粉、強力粉等の小麦粉、澱粉、を主原料とし、脱脂粉乳、卵、砂糖、食塩、バター、マーガリン、ショートニング等の油脂製品等の副原料が添加されたものを使用できる。
(flour dough layer)
As with conventional bakery food dough, the main ingredients for the flour dough layer are wheat flour such as weak flour, medium flour, and strong flour, and starch, as well as fats and oils such as skim milk powder, eggs, sugar, salt, butter, margarine, and shortening. Products to which auxiliary raw materials have been added can be used.

(熱ゲル化性のあるセルロース誘導体)
本発明の特徴は、上記小麦粉生地層中に、熱ゲル化性のあるセルロース誘導体を混合して、分散した状態で含有させた点にある。前記セルロース誘導体は、好ましくはセルロースエーテルを含み、より好ましくはセルロースエーテルである。カルボキシメチルセルロース等の熱ゲル化性のないセルロース誘導体は、小麦粉生地層中に分散させて含有させても、焼成時の膨化による浮きが大きくならない。
(Cellulose derivative with thermal gelation property)
The feature of the present invention is that a cellulose derivative having thermal gelation property is mixed and contained in the flour dough layer in a dispersed state. The cellulose derivative preferably includes cellulose ether, more preferably cellulose ether. Even if a cellulose derivative such as carboxymethyl cellulose that does not have thermal gelling properties is dispersed and contained in the wheat flour dough layer, it will not become too loose due to swelling during baking.

熱ゲル化性のあるセルロースエーテルは、より好ましくはメチルセルロース(MC)、及びヒドロキシプロピルメチルセルロース(HPMC)からなる群から選ばれる少なくとも1つである。 The thermogelatable cellulose ether is more preferably at least one selected from the group consisting of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC).

前記セルロース誘導体のゲル化温度は、好ましくは50℃以上であり、より好ましくは50~80℃である。前記ゲル化温度が50℃以上である場合、本発明のベーカリー食品用生地を焼成した際の浮きがより大きくなる。 The gelling temperature of the cellulose derivative is preferably 50°C or higher, more preferably 50 to 80°C. When the gelation temperature is 50° C. or higher, the dough for bakery foods of the present invention will float more when baked.

前記ゲル化温度は、次のような方法で求める。セルロース誘導体の1.3質量%水溶液を、昇温速度3.5℃/分で20℃から90℃まで昇温し、せん断応力1%、周波数1Hzで、温度分散測定法により測定した貯蔵弾性率と損失弾性率の交点となる温度をゲル化温度とした(図8参照)。昇温時、サンプルの蒸発を防ぐため、側面をシリコンオイルで覆い、治具として直径25mmのパラレルプレート(ギャップ1mm)を使用する。 The gelation temperature is determined by the following method. The storage modulus of a 1.3% by mass aqueous solution of a cellulose derivative was heated from 20°C to 90°C at a heating rate of 3.5°C/min, with a shear stress of 1% and a frequency of 1Hz, using a temperature dispersion measurement method. The temperature at which the loss modulus and the loss modulus intersect was defined as the gelation temperature (see FIG. 8). To prevent evaporation of the sample during temperature rise, cover the sides with silicone oil and use a 25 mm diameter parallel plate (gap 1 mm) as a jig.

前記セルロース誘導体の前記生地中の含有量(小麦粉生地層と油脂層とを合わせた生地全体中の含有量)は、好ましくは0.5~5質量%の範囲であり、より好ましくは0.5~2質量%の範囲である。前記含有量が前記範囲であると、本発明のベーカリー食品用生地を焼成した際の浮きが大きくなると共に、本発明のベーカリー食品の食感が良くなる。 The content of the cellulose derivative in the dough (the content in the entire dough including the flour dough layer and the oil and fat layer) is preferably in the range of 0.5 to 5% by mass, more preferably 0.5% by mass. It is in the range of ~2% by mass. When the content is within the above range, the dough for the bakery food of the present invention will have a greater float when baked, and the texture of the bakery food of the present invention will be improved.

(油脂層)
前記油脂層は、小麦粉生地層の間に挟み込まれたり、小麦粉生地層中にチップ状で混合されたりしやすいように、前記油脂層を構成する油脂は、可塑性のある油脂組成物であることが好ましく、特にマーガリン、ファットスプレッドなどの可塑性油中水型乳化組成物であることがより好ましい。前記油脂組成物の原料として用いられる油脂は、飲食可能とされる油脂であればよく、特に制限はない。前記原料として用いられる油脂として、菜種油、大豆油、パーム油、コーン油、オリーブ油、ゴマ油、アマニ油、えごま油、紅花油、ヒマワリ油、綿実油、米油、落花生油、シア脂、サル脂、カカオ脂、パーム核油、ヤシ油、グレープシード油、マカダミアナッツオイル、ココナッツオイル、月見草油などの植物油脂;牛脂、豚脂、乳脂、鶏油、魚油等の動物油脂;中鎖脂肪酸トリグリセリドなどの合成油脂などが挙げられる。
(Oil layer)
The oil and fat constituting the oil and fat layer may be a plastic oil and fat composition so that the oil and fat layer can be easily sandwiched between the flour dough layers or mixed in the form of chips into the flour dough layer. Preferably, plastic water-in-oil emulsion compositions such as margarine and fat spreads are more preferable. The fat or oil used as a raw material for the oil or fat composition is not particularly limited as long as it is edible or edible. The oils and fats used as the raw materials include rapeseed oil, soybean oil, palm oil, corn oil, olive oil, sesame oil, linseed oil, perilla oil, safflower oil, sunflower oil, cottonseed oil, rice oil, peanut oil, shea butter, monkey fat, and cacao. Vegetable oils and fats such as fat, palm kernel oil, coconut oil, grapeseed oil, macadamia nut oil, coconut oil, and evening primrose oil; Animal oils and fats such as beef tallow, lard, milk fat, chicken oil, and fish oil; Synthesis of medium-chain fatty acid triglycerides, etc. Examples include oils and fats.

<ベーカリー食品用生地の製造方法>
本発明のベーカリー食品用生地の製造方法は、前記小麦粉生地層の原料中に前記熱ゲル化性のあるセルロース誘導体を混合して、前記小麦粉生地層を形成する工程を含む。
<Method for manufacturing dough for bakery food>
The method for producing dough for bakery foods of the present invention includes the step of mixing the heat-gelatable cellulose derivative into the raw material for the flour dough layer to form the flour dough layer.

前記主原料、及び必要に応じて添加される副原料と混合される前記熱ゲル化性のあるセルロース誘導体は粉体であってもよく、水溶液であってもよい。 The heat-gelatable cellulose derivative mixed with the main raw material and optionally added auxiliary raw materials may be in the form of a powder or an aqueous solution.

さらに本発明のベーカリー食品用生地の製造方法は、前記小麦粉生地層に油脂組成物を混合又は挟み込んで前記油脂層を形成する油脂層形成工程を含む。前記油脂層は、前記小麦粉生地層を圧延して折り畳む際に、小麦粉生地層の間に油脂組成物を挟み込むようにして形成されてもよい。さらに前記油脂層は、チップ状の可塑性油脂組成物が小麦粉生地層に練りこまれ、小麦粉生地層が圧延されて折り畳まれる際に、チップ状の可塑性油脂組成物も薄く伸ばされて、小麦粉生地層中に層状となって含有されるようにしてもよい。なお、本発明のベーカリー食品用生地の前記油脂層を形成する油脂組成物中には、前記熱ゲル化性のあるセルロース誘導体を含有させる必要はなく、むしろ前記熱ゲル化性のあるセルロース誘導体は前記油脂層中には含有されない方が好ましい。 Further, the method for producing dough for bakery foods of the present invention includes an oil layer forming step of mixing or sandwiching an oil composition in the flour dough layer to form the oil layer. The oil layer may be formed by sandwiching the oil composition between the flour dough layers when the flour dough layers are rolled and folded. Furthermore, the chip-shaped plastic oil-fat composition is kneaded into the flour dough layer, and when the flour-dough layer is rolled and folded, the chip-shaped plastic oil-fat composition is also thinly stretched to form the flour dough layer. It may be contained in a layered manner. It should be noted that it is not necessary to contain the heat-gelatable cellulose derivative in the oil-fat composition forming the oil-fat layer of the bakery food dough of the present invention; rather, the heat-gelatable cellulose derivative is It is preferable that it is not contained in the oil layer.

<ベーカリー食品>
本発明のベーカリー食品は、好ましくは、パイ、デニッシュ、クロワッサン、及びミルフィーユからなる群から選ばれる少なくとも1つであり、より好ましくはパイである。
<Bakery food>
The bakery food of the present invention is preferably at least one selected from the group consisting of pie, danish, croissant, and mille-feuille, and more preferably pie.

本発明のベーカリー食品の製造方法は、前記ベーカリー食品用生地を焼成する焼成工程を含む。焼成は、例えばガスオーブン、電気オーブン、コンベクションオーブン、電子レンジオーブンなどを用いて、常法に従って行えばよい。焼成温度、焼成時間は、特に限定されないが、例えば150~250℃で10~60分が好ましい。
焼成することにより、小麦粉生地中の水分が蒸発して生地が膨化すると共に、小麦粉生地の間に形成された油脂層を介して、小麦粉生地どうしが剥離して膨張するため、層状の空隙を介して複数層をなして浮き上がったベーカリー食品となる。
本発明においては、小麦粉生地層中に分散して含有された熱ゲル化性のあるセルロース誘導体が、焼成の最中にゲル化して小麦粉生地層を強化するので、水蒸気の放出を適度に抑制して、前記小麦粉生地層が浮き上がりやすくなると考えられる。
こうして得られたベーカリー食品は、歯ざわりがソフトで、サク味があり、焼成による香ばしさも増大して、従来のものより一層美味しい食品となる。
The method for producing a bakery food according to the present invention includes a baking step of baking the dough for the bakery food. The baking may be carried out according to a conventional method using, for example, a gas oven, an electric oven, a convection oven, a microwave oven, or the like. The firing temperature and firing time are not particularly limited, but are preferably, for example, 150 to 250°C for 10 to 60 minutes.
By baking, the water in the flour dough evaporates and the dough expands, and at the same time, the flour dough peels off from each other and expands through the oil layer formed between the flour dough. The result is a bakery food with multiple layers that stand out.
In the present invention, the heat-gelatable cellulose derivative dispersed and contained in the flour dough layer gels during baking and strengthens the flour dough layer, thereby appropriately suppressing the release of water vapor. It is thought that this makes it easier for the flour dough layer to rise.
The bakery food thus obtained has a soft texture, a crispy taste, and an increased aroma due to baking, making it even more delicious than conventional products.

(不可能・非実際的事情)
メチルセルロース、ヒドロキシプロピルメチルセルロース等の多糖類をパイ生地に塗布して折り込み、当該パイ生地を焼成して調理される、特許文献1に記載されているパイの生地中には、当該多糖類が局在していると考えられる。一方、本発明のベーカリー食品の製造方法は、前記小麦粉生地層の原料中に前記熱ゲル化性のあるセルロース誘導体を混合して、前記小麦粉生地層を形成する工程を含んでいるので、前記熱ゲル化性のあるセルロース誘導体は本発明のベーカリー食品中に均一に分布していると考えられる。しかしながら、前記熱ゲル化性のあるセルロース誘導体の本発明のベーカリー食品中の分布状態の定量的測定は不可能、ないし非実際的である。
上述の通り、本発明のベーカリー食品を構造又は特性により直接特定することは不可能又は非実際的であるので、本発明のベーカリー食品は、本発明のベーカリー食品の製造方法により特定されるべきである。
(Impossible/impractical circumstances)
The polysaccharide is localized in the pie dough described in Patent Document 1, in which polysaccharides such as methylcellulose and hydroxypropyl methylcellulose are applied to pie dough and folded in, and the pie dough is baked and cooked. it seems to do. On the other hand, the method for producing a bakery food of the present invention includes the step of forming the flour dough layer by mixing the heat-gelatable cellulose derivative into the raw material for the flour dough layer. It is believed that the gelling cellulose derivative is uniformly distributed in the bakery food of the present invention. However, it is impossible or impractical to quantitatively measure the distribution state of the heat-gelatable cellulose derivative in the bakery food of the present invention.
As mentioned above, since it is impossible or impractical to directly specify the bakery food of the present invention by structure or properties, the bakery food of the present invention should be specified by the method for producing the bakery food of the present invention. be.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited thereto.

実施例及び比較例において、各種物性は以下のとおりに測定ないし算出された。
<セルロース誘導体の熱ゲル化温度>
1.3gの各セルロース誘導体を50~60℃の水100mlに添加し、ホイッパーで攪拌して当該セルロース誘導体を水中に分散させる。調製された前記セルロース誘導体の水分散液を氷水で冷却してダマが消失するまで冷却し、前記セルロース誘導体を水に溶解する。調製された水溶液を、昇温速度3.5℃/分にて20℃から90℃への昇温、せん断応力1%、周波数1Hzの条件で、サンプルの蒸発を防ぐため、側面をシリコンオイルで覆い、治具として直径25mmのパラレルプレート(ギャップ1mm)、測定装置として株式会社アントンパール・ジャパン製動的粘弾性測定装置MCRを使用して、温度分散測定法により測定した貯蔵弾性率と損失弾性率の推移から、それらの交点となる温度をゲル化温度として算出した(図8参照)。
In Examples and Comparative Examples, various physical properties were measured or calculated as follows.
<Thermal gelation temperature of cellulose derivative>
1.3 g of each cellulose derivative is added to 100 ml of water at 50-60° C. and stirred with a whipper to disperse the cellulose derivative in the water. The prepared aqueous dispersion of the cellulose derivative is cooled with ice water until lumps disappear, and the cellulose derivative is dissolved in water. The prepared aqueous solution was heated from 20°C to 90°C at a heating rate of 3.5°C/min, shear stress was 1%, and frequency was 1Hz, and the sides were coated with silicone oil to prevent sample evaporation. Storage modulus and loss elasticity measured by temperature dispersion measurement method using a parallel plate with a diameter of 25 mm (gap 1 mm) as a cover and jig, and a dynamic viscoelasticity measuring device MCR manufactured by Anton Paar Japan Co., Ltd. as a measuring device. From the transition of the rates, the temperature at which they intersect was calculated as the gelation temperature (see FIG. 8).

実施例及び比較例において使用されたセルロース誘導体とそのゲル化温度は以下の通りである。
MC1:ユニテックフーズ株式会社製ヒートゲル(登録商標)堅、ゲル化温度55.9℃
MC2:ユニテックフーズ株式会社製ヒートゲル(登録商標)堅SL、ゲル化温度54.0℃
MC3:ユニテックフーズ株式会社製ヒートゲル(登録商標)超、ゲル化温度53.3℃
MC4:ユニテックフーズ株式会社製ヒートゲル(登録商標)極、ゲル化温度36.5℃
HPMC1:信越化学工業株式会社製SFE4000、ゲル化温度64.7℃
HPMC2:ユニテックフーズ株式会社製ヒートゾル(登録商標)柔、ゲル化温度61.2℃
HPMC3:ユニテックフーズ株式会社製ヒートゾル(登録商標)緩MH、ゲル化温度72.9℃
HPMC4:ユニテックフーズ株式会社製ヒートゾル(登録商標)緩、ゲル化温度65.7℃
カルボキシメチルセルロース(CMC):日本製紙株式会社製SLD-F1、ゲル化温度なし
The cellulose derivatives used in Examples and Comparative Examples and their gelling temperatures are as follows.
MC1: Heat gel (registered trademark) manufactured by Unitec Foods Co., Ltd. Hard, gelling temperature 55.9°C
MC2: Heatgel (registered trademark) hard SL manufactured by Unitec Foods Co., Ltd., gelling temperature 54.0°C
MC3: Heatgel (registered trademark) manufactured by Unitec Foods Co., Ltd., gelling temperature 53.3°C
MC4: Heatgel (registered trademark) pole manufactured by Unitec Foods Co., Ltd., gelling temperature 36.5°C
HPMC1: SFE4000 manufactured by Shin-Etsu Chemical Co., Ltd., gelation temperature 64.7°C
HPMC2: Heatsol (registered trademark) soft manufactured by Unitec Foods Co., Ltd., gelling temperature 61.2°C
HPMC3: Heatsol (registered trademark) manufactured by Unitec Foods Co., Ltd., slow MH, gelling temperature 72.9°C
HPMC4: Heatsol (registered trademark) manufactured by Unitec Foods Co., Ltd., mild, gelling temperature 65.7°C
Carboxymethyl cellulose (CMC): Nippon Paper Industries Co., Ltd. SLD-F1, no gelling temperature

実施例1
以下の配合及び製法によりブロック状パイ生地を作製した。
パイ生地配合
強力粉 60質量部
薄力粉 40質量部
食塩 0.8質量部
ショートニング1) 6質量部
pH調整剤2) 0.3質量部
水 54質量部
MC1 3.2質量部
1)月島食品工業株式会社製T-ショートW
2)コービオンジャパン株式会社製発酵乳酸50%(PURAC HS50)
Example 1
A block-shaped pie dough was produced using the following formulation and manufacturing method.
Strong flour for puff pastry 60 parts by mass Weak flour 40 parts by mass Salt 0.8 parts by mass Shortening 1) 6 parts by mass pH adjuster 2) 0.3 parts by mass Water 54 parts by mass MC1 3.2 parts by mass 1) Tsukishima Foods Industry Co., Ltd. Made of T-Short W
2) Fermented lactic acid 50% manufactured by Corbion Japan Co., Ltd. (PURAC HS50)

薄力粉、強力粉、ショートニング、水、及びpH調整剤と、食塩とMC1の粉体を低速で2分間、中速で2分間ミキシングし、調製された生地玉を2~5℃の冷蔵庫で2時間から1日やすませた。次に前記生地玉2kgに対して、品温が15~18℃の折り込み用油脂のシートマーガリン(月島食品工業株式会社製プロスパーシートV-1000)1kg(対パイ生地33.3質量%)を前記生地で包み、4ッ折りで2回折り込み後、1時間冷蔵庫で休ませ、4ッ折りを1回行って冷蔵庫で一晩休ませた。翌日、幅100mm、長さ100mm、質量30gに成形した。 Mix soft flour, strong flour, shortening, water, pH adjuster, salt and MC1 powder for 2 minutes at low speed and 2 minutes at medium speed, and store the prepared dough ball in the refrigerator at 2-5℃ for 2 hours. I took a day off. Next, 1 kg (33.3% by mass of puff pastry) of sheet margarine (Prosper Sheet V-1000 manufactured by Tsukishima Foods Co., Ltd.) for folding with a temperature of 15 to 18°C is added to 2 kg of the dough balls. Wrap it in dough, fold it in 4 folds twice, let it rest in the refrigerator for 1 hour, fold it in 4 folds once, and let it rest in the refrigerator overnight. The next day, it was molded to a width of 100 mm, a length of 100 mm, and a mass of 30 g.

成形されたパイ生地を190℃で22~26分間焼成してパイを調理した。前記パイの浮きをノギスで計測した。結果を図1に示す。 The pie was cooked by baking the shaped pie dough at 190° C. for 22 to 26 minutes. The floating of the pie was measured using a caliper. The results are shown in Figure 1.

実施例2
MC1に代えて、HPMC1を使用した以外、実施例1と同様にしてパイを調理した。結果を図1に示す。
Example 2
A pie was prepared in the same manner as in Example 1 except that HPMC1 was used instead of MC1. The results are shown in Figure 1.

比較例1
MC1に代えて、CMCを使用した以外、実施例1と同様にしてパイを調理した。結果を図1に示す。
Comparative example 1
A pie was prepared in the same manner as in Example 1 except that CMC was used instead of MC1. The results are shown in Figure 1.

対照例1
MC1を使用しなかった以外、実施例1と同様にしてパイを調理した。結果を図1に示す。
Control example 1
A pie was prepared as in Example 1 except that MC1 was not used. The results are shown in Figure 1.

ゲル化温度を有しないCMCをセルロース誘導体として含む小麦粉生地層を備えるパイ生地から調理された比較例1のパイの浮きは、セルロース誘導体を含まない小麦粉生地層を備えるパイ生地から調理された対照例1のパイの浮きと同程度であった。一方、熱ゲル化性のあるセルロース誘導体が分散されている小麦粉生地層を備えるパイ生地から調理された実施例1及び2のパイの浮きは、対照例1のパイの浮きより大きかった。 The pie float of Comparative Example 1 was prepared from a pie dough with a flour dough layer containing CMC as a cellulose derivative, which does not have a gelling temperature, compared to the pie float of Comparative Example 1, which was prepared from a pie dough with a flour dough layer without a cellulose derivative. It was about the same as the pie floating in No. 1. On the other hand, the floats of the pies of Examples 1 and 2 prepared from pie doughs having a flour dough layer in which a heat-gelatable cellulose derivative was dispersed were larger than that of the pie of Control Example 1.

実施例3
実施例1と同一の配合でブロック状パイ生地を作製した。薄力粉、強力粉、ショートニング、水、及びpH調整剤と、食塩とMC1の粉体を低速で2分間、中速で2分間ミキシングし、調製された生地玉を2~5℃の冷蔵庫で2時間から1日やすませた。次に前記生地玉2kgに対して、品温が15~18℃の折り込み用油脂のシートマーガリン(月島食品工業株式会社製ラブールガトーシートV)1kg(対パイ生地33.3質量%)を前記生地で包み、3ッ折りで2回折り込み後、1時間冷蔵庫で休ませ、3ッ折りを1回、4ッ折りを1回行って冷蔵庫で一晩休ませた。翌日、幅100mm、長さ100mm、質量20gに成形した。
Example 3
A block-shaped pie dough was prepared using the same formulation as in Example 1. Mix soft flour, strong flour, shortening, water, pH adjuster, salt and MC1 powder for 2 minutes at low speed and 2 minutes at medium speed, and store the prepared dough ball in the refrigerator at 2-5℃ for 2 hours. I took a day off. Next, 1 kg (33.3% by mass of puff pastry) of sheet margarine (Labour Gateau Sheet V manufactured by Tsukishima Foods Co., Ltd.) for folding with a temperature of 15 to 18°C is added to 2 kg of the dough balls. Wrapped it in dough, folded it in 3 folds twice, let it rest in the refrigerator for 1 hour, folded it in 3 folds once, folded it in 4 folds once, and let it rest in the refrigerator overnight. The next day, it was molded to a width of 100 mm, a length of 100 mm, and a mass of 20 g.

成形されたパイ生地を190℃で16~20分間焼成してパイを調理した。前記パイの浮きをノギスで計測した。結果を図2に示す。 The pie was cooked by baking the shaped pie dough at 190° C. for 16 to 20 minutes. The floating of the pie was measured using a caliper. The results are shown in Figure 2.

比較例2
MC1を前記シートマーガリンに挟み込んだ以外、実施例3と同じ条件でパイ生地を焼成し、パイを調理した。結果を図2に示す。
Comparative example 2
A pie dough was baked and a pie was cooked under the same conditions as in Example 3 except that MC1 was sandwiched between the sheet margarine. The results are shown in Figure 2.

対照例2
MC1を使用しない以外、実施例3と同じ条件でパイ生地を焼成し、パイを調理した。結果を図2に示す。
Control example 2
The pie dough was baked and the pie was cooked under the same conditions as in Example 3 except that MC1 was not used. The results are shown in Figure 2.

MC1が分散されていない前記小麦粉生地層とMC1を挟み込んだ油脂層が形成されているパイ生地から調理された比較例2のパイの浮きは、セルロース誘導体を含まない小麦粉生地層を備えるパイ生地から調理された対照例2のパイの浮きとほぼ同じであった。一方、MC1が分散されている小麦粉生地層を備えるパイ生地から調理された実施例3のパイの浮きは、対照例2のパイの浮きより大きかった。 The pie float of Comparative Example 2 prepared from the pie dough in which the flour dough layer in which MC1 is not dispersed and the oil layer sandwiching MC1 is formed from the pie dough having a flour dough layer that does not contain a cellulose derivative. The float was almost the same as that of the cooked pie of Control Example 2. On the other hand, the float of the pie of Example 3 prepared from the pie dough with the flour dough layer in which MC1 was dispersed was greater than the float of the pie of Control Example 2.

実施例4~7
実施例1と同一の配合でブロック状パイ生地を作製した。薄力粉、強力粉、ショートニング、水、及びpH調整剤と、食塩とMC1の粉体を低速で2分間、中速で2分間ミキシングし、調製された生地玉を2~5℃の冷蔵庫で2時間から1日やすませた。次に前記生地玉2kgに対して、品温が15~18℃の折り込み用油脂のシートマーガリン(月島食品工業株式会社製プロスパーシートV-1000)1kg(対パイ生地33.3質量%)を前記生地で包み、3ッ折りで2回折り込み後、1時間冷蔵庫で休ませ、3ッ折りを1回、4ッ折りを1回行って冷蔵庫で一晩休ませた。翌日、幅100mm、長さ100mm、質量20gに成形した。
Examples 4 to 7
A block-shaped pie dough was prepared using the same formulation as in Example 1. Mix soft flour, strong flour, shortening, water, pH adjuster, salt and MC1 powder for 2 minutes at low speed and 2 minutes at medium speed, and store the prepared dough ball in the refrigerator at 2-5℃ for 2 hours. I took a day off. Next, 1 kg (33.3% by mass of puff pastry) of sheet margarine (prosper sheet V-1000 manufactured by Tsukishima Foods Co., Ltd.), which is an oil and fat for folding and whose temperature is 15 to 18°C, is added to 2 kg of the dough balls. Wrapped it in dough, folded it in 3 folds twice, let it rest in the refrigerator for 1 hour, folded it in 3 folds once, folded it in 4 folds once, and let it rest in the refrigerator overnight. The next day, it was molded to a width of 100 mm, a length of 100 mm, and a mass of 20 g.

成形されたパイ生地を190℃で16~20分間焼成してパイを調理した。前記パイの浮きをノギスで計測した。(実施例4)。さらにMC1に代えて、MC2~4を使用した以外、実施例4と同様にしてパイを調理した(実施例5~7)。結果を図3に示す。 The pie was cooked by baking the shaped pie dough at 190° C. for 16 to 20 minutes. The floating of the pie was measured using a caliper. (Example 4). Furthermore, pies were cooked in the same manner as in Example 4, except that MC2 to 4 were used instead of MC1 (Examples 5 to 7). The results are shown in Figure 3.

対照例3
MC1を使用しない以外、実施例4と同じ条件でパイ生地を焼成し、パイを調理した。結果を図3に示す。
Control example 3
The pie dough was baked and the pie was cooked under the same conditions as in Example 4 except that MC1 was not used. The results are shown in Figure 3.

熱ゲル化性のあるセルロース誘導体MC1~4が分散されている小麦粉生地層を備えるパイ生地から調理された実施例4~7のパイの浮きは、対照例3のパイの浮きより大きかった。特にゲル化温度が50℃以上のセルロース誘導体MC1~3が分散されている小麦粉生地層を備えるパイ生地から調理された実施例4~6のパイの浮きは、ゲル化温度が50℃未満のセルロース誘導体MC4が分散されている小麦粉生地層を備えるパイ生地から調理された実施例7のパイの浮きより大きかった。 The floats of the pies of Examples 4-7 prepared from pie doughs comprising a flour dough layer in which thermogelatable cellulose derivatives MC1-4 were dispersed were greater than the floats of the pie of Control Example 3. In particular, the pie floats of Examples 4 to 6 prepared from pie dough comprising a flour dough layer in which cellulose derivatives MC1 to 3 having a gelling temperature of 50°C or higher are dispersed are cellulose having a gelling temperature of lower than 50°C. The float was greater than that of the pie of Example 7, which was prepared from a pie dough with a flour dough layer in which the derivative MC4 was dispersed.

実施例8~11
MC1に代えて、HPMC1~4を使用した以外、実施例4と同様にしてパイを調理した。結果を図4に示す。
Examples 8-11
A pie was prepared in the same manner as in Example 4, except that HPMC1 to 4 were used instead of MC1. The results are shown in Figure 4.

対照例4
MC1を使用しない以外、実施例4と同じ条件でパイ生地を焼成し、パイを調理した。結果を図4に示す。
Control example 4
The pie dough was baked and the pie was cooked under the same conditions as in Example 4 except that MC1 was not used. The results are shown in Figure 4.

熱ゲル化性のあるセルロース誘導体HPMC1~4が分散されている小麦粉生地層を備えるパイ生地から調理された実施例8~11のパイの浮きは、対照例4のパイの浮きより大きかった。 The floats of the pies of Examples 8-11 prepared from pie doughs comprising a flour dough layer in which thermogelatable cellulose derivatives HPMC1-4 were dispersed were greater than the floats of the pie of Control Example 4.

実施例12及び比較例3~6
実施例1と同一の組成のパイ生地を、実施例4と同じ条件で焼成し、パイを調理した(実施例12)。さらにMC1を使用せず、5質量%のMC2の水溶液を48.5g、10質量%のMC2の水溶液を86.8g、1質量%のHPMC2の水溶液を34.4g、2質量%のHPMC2の水溶液を49.0gのそれぞれを最後の4つ折り工程時に生地へ塗布し折り込んだ以外、実施例4と同じ条件でパイ生地を焼成し、パイを調理した(比較例3~6)。結果を図5に示す。
Example 12 and Comparative Examples 3 to 6
A pie dough having the same composition as in Example 1 was baked under the same conditions as in Example 4, and a pie was cooked (Example 12). Furthermore, without using MC1, 48.5 g of 5 mass % MC2 aqueous solution, 86.8 g of 10 mass % MC2 aqueous solution, 34.4 g of 1 mass % HPMC2 aqueous solution, and 2 mass % HPMC2 aqueous solution Pie dough was baked and pies were cooked under the same conditions as in Example 4, except that 49.0 g of each was applied to the dough during the final folding step and folded in. (Comparative Examples 3 to 6). The results are shown in Figure 5.

対照例5
MC1を使用しない以外、実施例12と同じ条件でパイ生地を焼成し、パイを調理した。結果を図5に示す。
Control example 5
The pie dough was baked and the pie was cooked under the same conditions as in Example 12, except that MC1 was not used. The results are shown in Figure 5.

熱ゲル化性のあるセルロース誘導体が分散されていない前記小麦粉生地層と、熱ゲル化性のあるセルロース誘導体を塗布した前記小麦粉生地層と、油脂層とで形成されているパイ生地から調理された比較例3~6のパイの浮きは、セルロース誘導体を含まない小麦粉生地層を備えるパイ生地から調理された対照例5のパイの浮きとほぼ同程度であった。一方、MC1が分散されている小麦粉生地層を備えるパイ生地から調理された実施例12のパイの浮きは、対照例5のパイの浮きより非常に大きかった。 A pie dough prepared from a pie dough formed of the flour dough layer in which a heat-gelatable cellulose derivative is not dispersed, the flour dough layer coated with a heat-gelatable cellulose derivative, and an oil and fat layer. The float of the pies of Comparative Examples 3 to 6 was approximately the same as that of the pie of Comparative Example 5, which was prepared from a pie dough with a flour dough layer that did not contain a cellulose derivative. On the other hand, the float of the pie of Example 12 prepared from the pie dough with the flour dough layer in which MC1 was dispersed was much greater than the float of the pie of Control Example 5.

実施例13~15
パイ生地中のMC1の含有量が0.5質量%、1質量%、又は1.3質量%となるようにして、実施例4と同様にしてパイを調理した。結果を図6に示す。
Examples 13-15
Pies were cooked in the same manner as in Example 4 so that the content of MC1 in the pie dough was 0.5% by mass, 1% by mass, or 1.3% by mass. The results are shown in FIG.

対照例6
MC1を使用しない以外、実施例13~15と同じ条件でパイ生地を焼成し、パイを調理した。結果を図6に示す。
Control example 6
The pie dough was baked and the pie was cooked under the same conditions as in Examples 13 to 15, except that MC1 was not used. The results are shown in FIG.

MC1が分散されている小麦粉生地層を備えるパイ生地から調理された実施例13~15のパイの浮きは、対照例6のパイの浮きより非常に大きかった。パイ生地中のMC1の含有量が大きくなるほど、パイの浮きが大きくなっていた。 The float of the pies of Examples 13-15 prepared from pie doughs with a flour dough layer in which MC1 was dispersed was much greater than the float of the pie of Control Example 6. The higher the content of MC1 in the pie dough, the more the pie became floaty.

実施例16~21
パイ生地中のMC1の含有量が0.5質量%となるようにして、実施例4と同じ条件で焼成し、パイを調理した(実施例16)。
パイ生地中のMC1の含有量が0.5質量%となるようにして、MC1を水に溶かして混合した以外実施例4と同じ条件で焼成し、パイを調理した(実施例17)。
パイ生地中のMC1の含有量が1質量%となるようにして、実施例4と同じ条件で焼成し、パイを調理した(実施例18)。
パイ生地中のMC1の含有量が1質量%となるようにして、MC1を水に溶かして混合した以外実施例4と同じ条件で焼成し、パイを調理した。(実施例19)。
実施例1と同一の組成のパイ生地を、実施例4と同じ条件で焼成し、パイを調理した(実施例20)。
実施例1と同一の組成のパイ生地を、MC1を水に溶かして混合した以外、実施例4と同じ条件で焼成し、パイを調理した(実施例21)。
結果を図7に示す。
Examples 16-21
The pie was baked and cooked under the same conditions as Example 4, with the content of MC1 in the pie dough being 0.5% by mass (Example 16).
A pie was baked and cooked under the same conditions as in Example 4, except that MC1 was dissolved in water and mixed so that the content of MC1 in the pie dough was 0.5% by mass (Example 17).
The pie was baked and cooked under the same conditions as in Example 4, with the content of MC1 in the pie dough being 1% by mass (Example 18).
A pie was baked and cooked under the same conditions as in Example 4, except that MC1 was dissolved in water and mixed so that the content of MC1 in the pie dough was 1% by mass. (Example 19).
A pie dough having the same composition as in Example 1 was baked under the same conditions as in Example 4, and a pie was cooked (Example 20).
A pie dough having the same composition as in Example 1 was baked and a pie was cooked under the same conditions as in Example 4, except that MC1 was dissolved in water and mixed (Example 21).
The results are shown in FIG.

対照例7
MC1を使用しない以外、実施例16と同じ条件でパイ生地を焼成し、パイを調理した。結果を図7に示す。
Control example 7
The pie dough was baked and the pie was cooked under the same conditions as in Example 16 except that MC1 was not used. The results are shown in FIG.

パイ生地の原材料としてのMC1が水溶液であっても粉体であっても、MC1が分散されている小麦粉生地層を備えるパイ生地から調理された実施例16~21のパイの浮きは、対照例7のパイの浮きより非常に大きかった。
Regardless of whether MC1 as a raw material for pie dough is an aqueous solution or a powder, the pie floats of Examples 16 to 21 prepared from pie doughs having a flour dough layer in which MC1 is dispersed are the control examples. It was much bigger than the pie float in number 7.

Claims (7)

生地中に、小麦粉を含有する小麦粉生地層と、油脂層とが形成され、前記小麦粉生地層と、前記油脂層とが交互に重なって多層構造になったベーカリー食品用生地であって、熱ゲル化性のあるセルロース誘導体が前記小麦粉生地層中に分散されて含有されており、
前記セルロース誘導体が、メチルセルロース、ヒドロキシプロピルメチルセルロースからなる群から選ばれる少なくとも1つを含み、
前記セルロース誘導体のゲル化温度が50℃以上であり、
動的粘弾性測定装置を使用し、前記セルロース誘導体の1.3質量%水溶液を、昇温速度3.5℃/分で20℃から90℃まで昇温し、せん断応力1%、周波数1Hz、治具として直径25mm、ギャップ1mmのパラレルプレートで、温度分散測定法により貯蔵弾性率と損失弾性率を測定し、当該貯蔵弾性率と損失弾性率の交点となる温度が当該ゲル化温度であることを特徴とするベーカリー食品用生地。
A dough for bakery food in which a flour dough layer containing wheat flour and an oil and fat layer are formed in the dough, and the flour dough layer and the oil and fat layer are alternately overlapped to form a multilayer structure, and the dough is made of a heat gel. A cellulose derivative having a chemical-oxidizing property is dispersed and contained in the flour dough layer,
The cellulose derivative contains at least one selected from the group consisting of methylcellulose and hydroxypropylmethylcellulose,
The gelling temperature of the cellulose derivative is 50°C or higher,
Using a dynamic viscoelasticity measurement device, a 1.3% by mass aqueous solution of the cellulose derivative was heated from 20°C to 90°C at a heating rate of 3.5°C/min, with a shear stress of 1% and a frequency of 1Hz. Using a parallel plate with a diameter of 25 mm and a gap of 1 mm as a jig, the storage modulus and loss modulus are measured by the temperature dispersion measurement method, and the temperature at which the storage modulus and loss modulus intersect is the gelation temperature. A bakery food dough characterized by:
前記ベーカリー食品が、パイ、デニッシュ、クロワッサン、及びミルフィーユからなる群から選ばれる少なくとも1つであることを特徴とする、請求項1に記載されたベーカリー食品用生地。 The dough for bakery food according to claim 1, wherein the bakery food is at least one selected from the group consisting of pie, danish, croissant, and mille-feuille. 前記セルロース誘導体の前記生地中の含有量が0.5~5質量%の範囲であることを特徴とする、請求項1又は2に記載されたベーカリー食品用生地。 The dough for bakery food according to claim 1 or 2 , wherein the content of the cellulose derivative in the dough is in the range of 0.5 to 5% by mass. 生地中に、小麦粉を含有する小麦粉生地層と、油脂層とが形成され、前記小麦粉生地層と、前記油脂層とが交互に重なって多層構造になったベーカリー食品用生地の製造方法であって、
前記小麦粉生地層の原料中に熱ゲル化性のあるセルロース誘導体を混合して、前記小麦粉生地層を形成する工程、及び
前記小麦粉生地層に油脂組成物を混合又は挟み込んで前記油脂層を形成する油脂層形成工程を含み、
前記セルロース誘導体が、メチルセルロース、ヒドロキシプロピルメチルセルロースからなる群から選ばれる少なくとも1つを含み、
前記セルロース誘導体のゲル化温度が50℃以上であり、
動的粘弾性測定装置を使用し、前記セルロース誘導体の1.3質量%水溶液を、昇温速度3.5℃/分で20℃から90℃まで昇温し、せん断応力1%、周波数1Hz、治具として直径25mm、ギャップ1mmのパラレルプレートで、温度分散測定法により貯蔵弾性率と損失弾性率を測定し、当該貯蔵弾性率と損失弾性率の交点となる温度が当該ゲル化温度であることを特徴とするベーカリー食品用生地の製造方法。
A method for producing dough for bakery food, wherein a flour dough layer containing wheat flour and an oil/fat layer are formed in the dough, and the flour dough layer and the oil/fat layer are alternately overlapped to form a multilayer structure. ,
a step of mixing a thermogelatable cellulose derivative into the raw material for the flour dough layer to form the flour dough layer; and mixing or sandwiching an oil and fat composition into the flour dough layer to form the oil and fat layer. Including oil layer formation process,
The cellulose derivative contains at least one selected from the group consisting of methylcellulose and hydroxypropylmethylcellulose,
The gelling temperature of the cellulose derivative is 50°C or higher,
Using a dynamic viscoelasticity measurement device, a 1.3% by mass aqueous solution of the cellulose derivative was heated from 20°C to 90°C at a heating rate of 3.5°C/min, with a shear stress of 1% and a frequency of 1Hz. Using a parallel plate with a diameter of 25 mm and a gap of 1 mm as a jig, measure the storage modulus and loss modulus using the temperature dispersion measurement method, and the temperature at which the storage modulus and loss modulus intersect is the gelation temperature. A method for producing dough for bakery food, characterized by:
前記ベーカリー食品が、パイ、デニッシュ、クロワッサン、及びミルフィーユからなる群から選ばれる少なくとも1つであることを特徴とする、請求項4に記載されたベーカリー食品用生地の製造方法。5. The method for producing dough for bakery food according to claim 4, wherein the bakery food is at least one selected from the group consisting of pie, danish, croissant, and mille-feuille. 請求項又はの方法で得られたベーカリー食品用生地を焼成する焼成工程を含むことを特徴とするベーカリー食品の製造方法。 A method for producing a bakery food, comprising a baking step of baking the dough for bakery food obtained by the method according to claim 4 or 5 . 請求項に記載されたベーカリー食品の製造方法により製造された、熱ゲル化性のあるセルロース誘導体を含むベーカリー食品。
A bakery food product containing a heat-gelatable cellulose derivative produced by the method for producing a bakery food product according to claim 6 .
JP2023086197A 2023-05-25 2023-05-25 Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food Active JP7383843B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023086197A JP7383843B1 (en) 2023-05-25 2023-05-25 Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023086197A JP7383843B1 (en) 2023-05-25 2023-05-25 Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food

Publications (1)

Publication Number Publication Date
JP7383843B1 true JP7383843B1 (en) 2023-11-20

Family

ID=88833486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023086197A Active JP7383843B1 (en) 2023-05-25 2023-05-25 Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food

Country Status (1)

Country Link
JP (1) JP7383843B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024416A1 (en) 2004-07-30 2006-02-02 Casper Jeffrey L Dough compositions having a moisture barrier, and related methods
JP2016131559A (en) 2015-01-22 2016-07-25 ミヨシ油脂株式会社 Plastic oil and fat composition and food to which plastic oil and fat composition is added
JP2018113910A (en) 2017-01-18 2018-07-26 ミヨシ油脂株式会社 Oil and fat composition for layered food product, and method for producing plastic oil and fat and layered food product using the same
JP2021073872A (en) 2019-11-06 2021-05-20 抗酸化食品株式会社 Method of producing rice bread

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024416A1 (en) 2004-07-30 2006-02-02 Casper Jeffrey L Dough compositions having a moisture barrier, and related methods
JP2016131559A (en) 2015-01-22 2016-07-25 ミヨシ油脂株式会社 Plastic oil and fat composition and food to which plastic oil and fat composition is added
JP2018113910A (en) 2017-01-18 2018-07-26 ミヨシ油脂株式会社 Oil and fat composition for layered food product, and method for producing plastic oil and fat and layered food product using the same
JP2021073872A (en) 2019-11-06 2021-05-20 抗酸化食品株式会社 Method of producing rice bread

Similar Documents

Publication Publication Date Title
JP6126301B2 (en) Low fat laminated dough and low fat laminated confectionery
JP5669316B2 (en) Low-fat oil-in-water emulsion
WO2015012289A1 (en) Chocolate for bakery products and method for manufacturing bakery products
JP5858975B2 (en) Layered flour expanded food dough and layered flour expanded food
TWI469742B (en) Buns
JP6446767B2 (en) Chocolates for inclusion in bakery products and methods for producing bakery products
JP4357129B2 (en) Oil composition for roll-in
JP7383843B1 (en) Dough for bakery food, method for manufacturing dough for bakery food, method for manufacturing bakery food, and bakery food
JP6869613B2 (en) Oil and fat composition for folding
JP2010075138A (en) Bread dough
JP7446788B2 (en) Oil and fat composition for folding
JP2018166414A (en) Roll-in water-in-oil-type emulsion composition
JP7019242B2 (en) East pie
JP4255217B2 (en) Flour processed food
JP4416699B2 (en) Composite laminated bakery dough, layered bakery food and method for producing composite laminated bakery dough.
JP3422508B2 (en) Oil composition
WO2018139030A1 (en) Method for producing bakery food
JPH06169680A (en) Breads and production of bread crumb
JP2014204687A (en) Composite laminate-like dough
JP7248409B2 (en) composite bread dough
JP7411372B2 (en) Oil and fat composition for frozen baked confectionery
JP7171239B2 (en) Sandwich baked sweets
JP2023016246A (en) Method of producing pastry and frozen pastry dough
JP2956889B2 (en) Frozen cooking bread for microwave heating
JP2006223108A (en) Breads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7383843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150