JP7383370B2 - Motor temperature prediction method and device - Google Patents

Motor temperature prediction method and device Download PDF

Info

Publication number
JP7383370B2
JP7383370B2 JP2018006094A JP2018006094A JP7383370B2 JP 7383370 B2 JP7383370 B2 JP 7383370B2 JP 2018006094 A JP2018006094 A JP 2018006094A JP 2018006094 A JP2018006094 A JP 2018006094A JP 7383370 B2 JP7383370 B2 JP 7383370B2
Authority
JP
Japan
Prior art keywords
motor
heat generation
temperature
generation coefficient
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018006094A
Other languages
Japanese (ja)
Other versions
JP2019126204A (en
Inventor
勲 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Transport Machinery Co Ltd
Original Assignee
IHI Transport Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Transport Machinery Co Ltd filed Critical IHI Transport Machinery Co Ltd
Priority to JP2018006094A priority Critical patent/JP7383370B2/en
Publication of JP2019126204A publication Critical patent/JP2019126204A/en
Application granted granted Critical
Publication of JP7383370B2 publication Critical patent/JP7383370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動機温度予測方法及び装置に関するものである。 The present invention relates to a method and apparatus for predicting motor temperature.

一般に、石炭火力発電所において、石炭を搬送するベルトコンベヤの場合、石炭に金属片等の異物が混入していることが検知されると、一旦、ベルトコンベヤの運転を停止し、金属片等の異物を除去した後、ベルトコンベヤの運転を再開することが行われる。 Generally, in the case of a belt conveyor that transports coal at a coal-fired power plant, if it is detected that foreign matter such as metal pieces is mixed in with the coal, the belt conveyor is temporarily stopped and the belt conveyor is stopped. After removing the foreign matter, the belt conveyor is restarted.

このため、前記ベルトコンベヤに用いられる電動機は、始動、運転、停止、再始動が繰り返し行われる。 Therefore, the electric motor used in the belt conveyor is repeatedly started, operated, stopped, and restarted.

前記電動機は、特に始動時の発熱が大きく、運転、停止、再始動を繰り返していると熱が蓄積するため、停止後、電動機を再始動するまでの待機時間をある程度設ける必要がある。 The electric motor generates a large amount of heat, especially when started, and heat accumulates when the electric motor is repeatedly operated, stopped, and restarted. Therefore, it is necessary to provide a certain amount of standby time after stopping the electric motor before restarting the electric motor.

従来、前記電動機を再始動するまでの停止時間は、ある程度余裕を持って最も長く掛かると思われる時間に設定されている。 Conventionally, the stop time until the electric motor is restarted is set to the longest time with some margin.

尚、電動機の停止時間を演算する装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。 Note that, for example, Patent Document 1 shows the general state of the art related to a device that calculates the stop time of an electric motor.

特開平8-191537号公報Japanese Patent Application Publication No. 8-191537

しかしながら、従来のように、電動機を再始動するまでの停止時間を想定される最長の時間に設定するのでは、運転できない時間が必要以上に長引いて全体の運転に支障を来たす虞があり、改善が望まれていた。 However, if we set the stop time before restarting the motor to the longest expected time, as in the past, there is a risk that the period during which the motor cannot be operated will be longer than necessary, which will hinder overall operation. was desired.

又、特許文献1に開示されている装置では、予め設定された電動機の運転時の熱時定数と停止時の熱時定数と許容始動回数とを単に使用しているだけであるため、時々刻々変化する電動機の周囲温度や負荷状態に対応することが困難となっていた。 Furthermore, the device disclosed in Patent Document 1 simply uses preset thermal time constants during operation, thermal time constants during stoppage, and allowable number of starts of the motor, so that It has become difficult to respond to the changing ambient temperature and load conditions of the motor.

本発明は、上記従来の問題点に鑑みてなしたもので、電動機の周囲温度や負荷状態に応じて停止時間を必要最小限に抑えることができ、再始動可能な時間を高精度に把握し得る電動機温度予測方法及び装置を提供しようとするものである。 The present invention was made in view of the above-mentioned conventional problems, and it is possible to reduce the stop time to the necessary minimum depending on the ambient temperature and load condition of the motor, and to grasp the restartable time with high precision. The present invention aims to provide a method and apparatus for predicting motor temperature.

上記目的を達成するために、本発明の電動機温度予測方法は、電動機の設置個所における周囲温度θを計測する周囲温度計測工程と、
電動機温度θを計測する電動機温度計測工程と、
前記電動機の運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づき負荷率δを求める負荷率演算工程と、
前記電動機の学習運転を行い、発熱係数Qと熱時定数Tとを取得する学習運転工程と、
該学習運転工程で取得された発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求める予測曲線演算工程と
を有し、
前記電動機の微小時間Δtにおける温度変化Δθは、発熱係数Q、熱時定数T、電動機温度θ、周囲温度θに基づいて
Δθ={Q-1/T(θ-θ)}Δt
=Q・Δt-{1/T(θ-θ)}・Δt
で求められ、前記発熱係数Qは、予め設定された始動係数α及び固有発熱係数Qと、前記負荷率演算工程で求められた負荷率δとに基づいて
Q=α・δ・Q
と表されることから、
Δθ={α・δ・Q-1/T(θ-θ)}Δt
=α・δ・Q・Δt-{1/T(θ-θ)}・Δt
となり、
前記学習運転工程において、発熱係数Qを取得すると共に、前記周囲温度計測工程で計測された周囲温度θと、前記電動機温度計測工程で計測された電動機温度θとを含む複数のデータから熱時定数Tを取得し、
前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I=0[%]
P/P=0[%]
である場合、電動機は停止していると判定され、負荷率δは
δ=0
とされて、停止時における発熱係数Qは
Q=α・δ・Q
=0
となり、停止時における熱時定数Tは
T=T
と設定され、
I/I≧110[%]
P/P≧110[%]
である場合、電動機は始動時であると判定され、負荷率δは
δ=1
と設定され、始動時の始動係数αは2又は3
と設定され、始動時における発熱係数Qは
Q=α・δ・Q
α・Q
となり、始動時における熱時定数Tは
T=T
と設定され、
I/I<110[%]
P/P<110[%]
である場合、電動機は運転時(定格範囲内)であると判定され、始動係数αは
α=1
と設定され、運転時における発熱係数Qは
Q=α・δ・Q
=δ・Q
となり、運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づく負荷率δと固有発熱係数Qとから求められて、運転時における熱時定数Tは始動時と略等しくなるため、
T=T(但し、T>T)
と設定されるようにすることができる。
In order to achieve the above object, the motor temperature prediction method of the present invention includes an ambient temperature measuring step of measuring the ambient temperature θ 0 at the location where the motor is installed;
a motor temperature measurement step of measuring motor temperature θ;
A load factor calculation step of calculating a load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/ PR of the power value P to the rated power value P R during operation of the electric motor;
a learning operation step of performing a learning operation of the electric motor to obtain a heat generation coefficient Q and a thermal time constant T;
A prediction curve for determining a prediction curve of the motor temperature θ during normal operation based on the heat generation coefficient Q and thermal time constant T acquired in the learning operation process, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ. It has a calculation process and
The temperature change Δθ of the electric motor in a minute time Δt is based on the heat generation coefficient Q, thermal time constant T, motor temperature θ, and ambient temperature θ 0 Δθ={Q-1/T(θ-θ 0 )}Δt
=Q・Δt−{1/T(θ−θ 0 )}・Δt
The heat generation coefficient Q is calculated based on the preset starting coefficient α and specific heat generation coefficient Q0 , and the load factor δ obtained in the load factor calculation step.Q=α・δ・Q0
Since it is expressed as
Δθ={α・δ・Q 0 −1/T(θ−θ 0 )}Δt
= α・δ・Q 0・Δt−{1/T(θ−θ 0 )}・Δt
Then,
In the learning operation step, the heat generation coefficient Q is obtained, and the thermal time is calculated from a plurality of data including the ambient temperature θ 0 measured in the ambient temperature measurement step and the motor temperature θ measured in the motor temperature measurement step. Get the constant T,
The ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R =0 [%]
P/P R =0 [%]
If , the motor is determined to be stopped, and the load factor δ is δ=0
The heat generation coefficient Q when stopped is Q=α・δ・Q 0
=0
Therefore, the thermal time constant T at the time of stopping is T=T s
is set,
I/I R ≧110 [%]
P/P R ≧110 [%]
If , the motor is determined to be starting, and the load factor δ is δ=1
is set, and the starting coefficient α at startup is 2 or 3.
The heat generation coefficient Q at startup is Q=α・δ・Q 0
= α・Q 0
Therefore, the thermal time constant T at startup is T=T d
is set,
I/I R <110 [%]
P/P R <110 [%]
If , the motor is determined to be in operation (within the rated range), and the starting coefficient α is α=1
The heat generation coefficient Q during operation is set as Q=α・δ・Q 0
=δ・Q 0
Then, it is determined from the load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/P R of the power value P to the rated power value P R and the specific heat generation coefficient Q 0 during operation. Therefore, the thermal time constant T during operation is approximately equal to that during startup, so
T=T d (However, T s > T d )
It can be set as follows.

一方、本発明の電動機温度予測装置は、電動機の設置個所における周囲温度θを計測する周囲温度計と、
電動機温度θを計測する電動機温度計と、
前記電動機の運転時における電流値I又は電力値Pを計測する計測器と、
該計測器で計測された電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づき負荷率δを求め、前記電動機の学習運転を行った際、発熱係数Qと熱時定数Tとを取得し、該発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求める演算装置と
を備え、
前記電動機の微小時間Δtにおける温度変化Δθは、発熱係数Q、熱時定数T、電動機温度θ、周囲温度θに基づいて
Δθ={Q-1/T(θ-θ)}Δt
=Q・Δt-{1/T(θ-θ)}・Δt
で求められ、前記発熱係数Qは、予め設定された始動係数α及び固有発熱係数Qと、前記負荷率δとに基づいて
Q=α・δ・Q
と表されることから、
Δθ={α・δ・Q-1/T(θ-θ)}Δt
=α・δ・Q・Δt-{1/T(θ-θ)}・Δt
となり、
前記演算装置において、前記学習運転時に、発熱係数Qを取得すると共に、前記周囲温度計で計測された周囲温度θと、前記電動機温度計で計測された電動機温度θとを含む複数のデータから熱時定数Tを取得し、
前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I=0[%]
P/P=0[%]
である場合、電動機は停止していると判定され、負荷率δは
δ=0
とされて、停止時における発熱係数Qは
Q=α・δ・Q
=0
となり、停止時における熱時定数Tは
T=T
と設定され、
I/I≧110[%]
P/P≧110[%]
である場合、電動機は始動時であると判定され、負荷率δは
δ=1
と設定され、始動時の始動係数αは2又は3
と設定され、始動時における発熱係数Qは
Q=α・δ・Q
=α・Q
となり、始動時における熱時定数Tは
T=T
と設定され、
I/I<110[%]
P/P<110[%]
である場合、電動機は運転時(定格範囲内)であると判定され、始動係数αは
α=1
と設定され、運転時における発熱係数Qは
Q=α・δ・Q
=δ・Q
となり、運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づく負荷率δと固有発熱係数Qとから求められて、運転時における熱時定数Tは始動時と略等しくなるため、
T=T(但し、T>T)
と設定されるようにすることができる。
On the other hand, the motor temperature prediction device of the present invention includes an ambient temperature meter that measures the ambient temperature θ 0 at the location where the motor is installed;
a motor thermometer that measures motor temperature θ;
a measuring device that measures a current value I or a power value P during operation of the electric motor;
The load factor δ is determined based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/PR R of the power value P to the rated power value P R measured by the measuring device, and the learning of the motor is performed. When operating, the heat generation coefficient Q and thermal time constant T are acquired, and normal operation is performed based on the heat generation coefficient Q and thermal time constant T, the current ambient temperature θ 0 , motor temperature θ, and load factor δ. and an arithmetic device for calculating a prediction curve of motor temperature θ at
The temperature change Δθ of the electric motor in a minute time Δt is based on the heat generation coefficient Q, thermal time constant T, motor temperature θ, and ambient temperature θ 0 Δθ={Q-1/T(θ-θ 0 )}Δt
=Q・Δt−{1/T(θ−θ 0 )}・Δt
The heat generation coefficient Q is calculated based on the preset starting coefficient α and specific heat generation coefficient Q0 , and the load factor δ . Q=α・δ・Q0
Since it is expressed as
Δθ={α・δ・Q 0 −1/T(θ−θ 0 )}Δt
= α・δ・Q 0・Δt−{1/T(θ−θ 0 )}・Δt
Then,
In the arithmetic device, during the learning operation, a heat generation coefficient Q is obtained, and from a plurality of data including an ambient temperature θ 0 measured by the ambient temperature meter and a motor temperature θ measured by the motor thermometer. Obtain the thermal time constant T,
The ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R =0 [%]
P/P R =0 [%]
If , the motor is determined to be stopped, and the load factor δ is δ=0
The heat generation coefficient Q when stopped is Q=α・δ・Q 0
=0
Therefore, the thermal time constant T at the time of stopping is T=T s
is set,
I/I R ≧110 [%]
P/P R ≧110 [%]
If , the motor is determined to be starting, and the load factor δ is δ=1
is set, and the starting coefficient α at startup is 2 or 3.
The heat generation coefficient Q at startup is Q=α・δ・Q 0
=α・Q 0
Therefore, the thermal time constant T at startup is T=T d
is set,
I/I R <110 [%]
P/P R <110 [%]
If , the motor is determined to be in operation (within the rated range), and the starting coefficient α is α=1
The heat generation coefficient Q during operation is set as Q=α・δ・Q 0
=δ・Q 0
Then, it is determined from the load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/P R of the power value P to the rated power value P R and the specific heat generation coefficient Q 0 during operation. Therefore, the thermal time constant T during operation is approximately equal to that during startup, so
T=T d (However, T s > T d )
It can be set as follows.

本発明の電動機温度予測方法及び装置によれば、電動機の周囲温度や負荷状態に応じて停止時間を必要最小限に抑えることができ、再始動可能な時間を高精度に把握し得るという優れた効果を奏し得る。 According to the motor temperature prediction method and device of the present invention, the stop time can be minimized according to the ambient temperature and load condition of the motor, and the time when restarting is possible can be grasped with high precision. It can be effective.

本発明の電動機温度予測方法及び装置の実施例を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a motor temperature prediction method and apparatus of the present invention. 本発明の電動機温度予測方法及び装置の実施例を示すフローチャートである。1 is a flowchart showing an embodiment of a motor temperature prediction method and apparatus of the present invention. 本発明の電動機温度予測方法及び装置の実施例における発熱係数Qと熱時定数Tとの振り分けの仕方を示すフローチャートである。2 is a flowchart showing how to allocate heat generation coefficient Q and thermal time constant T in an embodiment of the motor temperature prediction method and device of the present invention. 本発明の電動機温度予測方法及び装置の実施例における電動機温度θの予測曲線を示す線図である。FIG. 3 is a diagram showing a predicted curve of motor temperature θ in an embodiment of the motor temperature prediction method and apparatus of the present invention.

以下、本発明の実施の形態を添付図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1~図4は本発明の電動機温度予測方法及び装置の実施例である。 1 to 4 are examples of the motor temperature prediction method and apparatus of the present invention.

図1において、10は電動機を示し、本実施例の電動機温度予測装置は、周囲温度計20と、電動機温度計30と、計測器40と、演算装置50と、表示装置60とを備えている。 In FIG. 1, 10 indicates a motor, and the motor temperature prediction device of this embodiment includes an ambient thermometer 20, a motor thermometer 30, a measuring device 40, an arithmetic device 50, and a display device 60. .

前記周囲温度計20は、電動機10の設置個所における周囲温度θを計測するようになっている。 The ambient temperature meter 20 is adapted to measure the ambient temperature θ 0 at the location where the electric motor 10 is installed.

前記電動機温度計30は、電動機温度θを計測するようになっている。 The motor thermometer 30 is adapted to measure the motor temperature θ.

前記計測器40は、電流計又は電力計であり、前記電動機10の電流値I又は電力値Pを計測するようになっている。 The measuring device 40 is an ammeter or a wattmeter, and is adapted to measure the current value I or the power value P of the electric motor 10.

前記演算装置50は、前記計測器40で計測された電流値I又は電力値Pに基づき負荷率δを求め、前記電動機10の学習運転を行った際、前記周囲温度計20で計測された周囲温度θと、前記電動機温度計30で計測された電動機温度θと、前記負荷率δと、予め設定された電動機10の始動係数α及び固有発熱係数Qとに基づき発熱係数Qと熱時定数Tとを取得し、該発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求めるようになっている。 The calculation device 50 calculates the load factor δ based on the current value I or the power value P measured by the measuring device 40, and calculates the load factor δ based on the current value I or the power value P measured by the measuring device 40, and when performing a learning operation of the electric motor 10, the The heat generation coefficient Q and the thermal time are determined based on the temperature θ 0 , the motor temperature θ measured by the motor thermometer 30, the load factor δ, and the preset starting coefficient α and specific heat generation coefficient Q 0 of the electric motor 10. A constant T is obtained, and a predicted curve of the motor temperature θ during normal operation is obtained based on the heat generation coefficient Q and thermal time constant T, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ. It has become.

前記表示装置60は、前記演算装置50で求められた電動機温度θの予測曲線を表示するようになっている(図4参照)。 The display device 60 displays a predicted curve of the motor temperature θ determined by the arithmetic device 50 (see FIG. 4).

前記電動機10の学習運転時には、下記の理論式が用いられる。即ち、前記電動機10の微小時間Δtにおける温度変化Δθは、
[数1]
Δθ={Q-1/T(θ-θ)}Δt
で求められる。ここで、[数1]式における発熱係数Qは、
[数2]
Q=α・δ・Q
と表されるため、[数1]式は、
[数3]
Δθ={α・δ・Q-1/T(θ-θ)}Δt
となる。
During the learning operation of the electric motor 10, the following theoretical formula is used. That is, the temperature change Δθ of the electric motor 10 in the minute time Δt is:
[Number 1]
Δθ={Q-1/T(θ-θ 0 )}Δt
is required. Here, the heat generation coefficient Q in the formula [Equation 1] is
[Number 2]
Q=α・δ・Q 0
Therefore, the formula [Math. 1] is
[Number 3]
Δθ={α・δ・Q 0 −1/T(θ−θ 0 )}Δt
becomes.

前記始動係数α及び固有発熱係数Qは予め設定される数値で、前記負荷率δは電流値I又は電力値Pに基づいて求められるため、前記電動機10の学習運転時に、複数のデータを計測して上記の理論式に代入した連立方程式を解くことにより、発熱係数Qと熱時定数Tとを取得することができる。 The starting coefficient α and the specific heat generation coefficient Q0 are preset values, and the load factor δ is obtained based on the current value I or the power value P. Therefore, a plurality of data are measured during the learning operation of the electric motor 10. By solving the simultaneous equations substituted into the above theoretical equation, the heat generation coefficient Q and the thermal time constant T can be obtained.

又、本実施例の電動機温度予測方法は、図2に示す如く、周囲温度計測工程(ステップS10)と、電動機温度計測工程(ステップS20)と、負荷率演算工程(ステップS30)と、学習運転工程(ステップS40)と、予測曲線演算工程(ステップS50)とを有している。 Further, as shown in FIG. 2, the motor temperature prediction method of this embodiment includes an ambient temperature measurement step (step S10), a motor temperature measurement step (step S20), a load factor calculation step (step S30), and a learning operation. The process includes a step (step S40) and a prediction curve calculation step (step S50).

前記周囲温度計測工程は、電動機10の設置個所における周囲温度θを計測する工程である。 The ambient temperature measuring step is a step of measuring the ambient temperature θ 0 at the location where the electric motor 10 is installed.

前記電動機温度計測工程は、電動機温度θを計測する工程である。 The motor temperature measuring step is a step of measuring the motor temperature θ.

前記負荷率演算工程は、前記電動機10の電流値I又は電力値Pに基づき負荷率δを求める工程である。 The load factor calculation step is a step of calculating the load factor δ based on the current value I or the power value P of the electric motor 10.

前記学習運転工程は、前記電動機10の学習運転を行い、前記周囲温度計測工程で計測された周囲温度θと、前記電動機温度計測工程で計測された電動機温度θと、前記負荷率演算工程で求められた負荷率δと、予め設定された電動機10の始動係数α及び固有発熱係数Qとに基づき発熱係数Qと熱時定数Tとを取得する工程である。 In the learning operation step, a learning operation of the electric motor 10 is performed, and the ambient temperature θ 0 measured in the ambient temperature measurement step, the motor temperature θ measured in the motor temperature measurement step, and the load factor calculation step are determined. This is a step of obtaining a heat generation coefficient Q and a thermal time constant T based on the obtained load factor δ, the preset starting coefficient α and the specific heat generation coefficient Q0 of the electric motor 10.

前記予測曲線演算工程は、前記学習運転工程で取得された発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求める工程である。 The prediction curve calculation step calculates the motor temperature θ during normal operation based on the heat generation coefficient Q and thermal time constant T acquired in the learning operation step, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ. This is the process of finding a predicted curve.

尚、前記予測曲線演算工程で求められた電動機温度θの予測曲線は、表示装置60(図1参照)に、例えば、図4に示す如く、表示され、図2のフローチャートにおいて、更新時間が経過したか否かの判定(ステップS60参照)で更新時間が経過したと判定された後、運転終了であるか否かの判定(ステップS70参照)で運転終了でなければ、前記予測曲線演算工程に戻って新たに電動機温度θの予測曲線が求められるようになっている。前記更新時間は、例えば、1分程度に設定することができるが、1分に限定されるものではなく、必要に応じて変更すれば良い。 The predicted curve of the motor temperature θ obtained in the predicted curve calculation step is displayed on the display device 60 (see FIG. 1), for example, as shown in FIG. 4, and in the flowchart of FIG. After it is determined that the update time has elapsed in the determination of whether or not the operation has been completed (see step S60), if the operation is not completed in the determination of whether or not the operation has been completed (see step S70), the step of calculating the predicted curve is performed. A new prediction curve for motor temperature θ is now determined. The update time can be set to about 1 minute, for example, but is not limited to 1 minute and may be changed as necessary.

前記演算装置50において、前記電動機10の学習運転(学習運転工程)時、前記発熱係数Qと熱時定数Tはそれぞれ、図3に示す如く、前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率に基づき停止時と始動時と運転時とに分けて取得されるようになっている。これは、電動機10の運転状態の遷移(停止・始動・運転)に応じて異なる発熱係数Qと熱時定数Tを選定する必要があるためである。 In the arithmetic unit 50, during the learning operation (learning operation process) of the electric motor 10, the heat generation coefficient Q and the thermal time constant T are, as shown in FIG. 3, the ratio of the current value I to the rated current value IR , or Based on the ratio of the power value P to the rated power value PR , the power is acquired separately at the time of stop, the time of start, and the time of operation. This is because it is necessary to select different heat generation coefficients Q and thermal time constants T depending on the transition of the operating state of the electric motor 10 (stopping, starting, running).

因みに、前記熱時定数Tは、温度変化に対する応答性の度合い即ち電動機10がある温度から別のある温度まで変化するのに要する時間を表す定数であって、電動機10の停止時と運転時(始動時)で変化し、停止時における熱時定数Tは運転時(始動時)における熱時定数Tより大きくなる。これは、電動機10の停止時には冷却ファン(図示せず)が停止しており、電動機10の運転時(始動時)には冷却ファンが駆動されるためである。例えば、電動機10が周囲温度θより高い温度で停止されると冷却ファンも停止するため、温度は緩やかに低下し冷えるのに時間が掛かるのに対し、電動機10が周囲温度θより高い温度の状態からそのまま運転が継続されると冷却ファンも回っているため、停止時より温度が速く低下し冷える時間が短くなる。 Incidentally, the thermal time constant T is a constant representing the degree of responsiveness to temperature changes, that is, the time required for the electric motor 10 to change from one temperature to another, and is a constant that represents the degree of responsiveness to temperature changes, that is, the time required for the electric motor 10 to change from one temperature to another. The thermal time constant T s at the time of stopping is larger than the thermal time constant T d during operation (at the time of starting). This is because the cooling fan (not shown) is stopped when the electric motor 10 is stopped, and the cooling fan is driven when the electric motor 10 is operated (started). For example, if the electric motor 10 is stopped at a temperature higher than the ambient temperature θ 0 , the cooling fan will also stop, so the temperature will gradually decrease and it will take time to cool down, whereas the electric motor 10 will be at a temperature higher than the ambient temperature θ 0 . If operation is continued from this state, the cooling fan will also be running, so the temperature will drop faster and the cooling time will be shorter than when it is stopped.

次に、上記実施例の作用を説明する。 Next, the operation of the above embodiment will be explained.

電動機10の設置個所における周囲温度θは周囲温度計20で計測され(図2のステップS10の周囲温度計測工程参照)、電動機温度θは電動機温度計30で計測され(図2のステップS20の電動機温度計測工程参照)、前記電動機10の電流値I又は電力値Pは計測器40で計測され、演算装置50へ入力され、前記演算装置50において、計測器40で計測された電流値I又は電力値Pに基づき負荷率δが求められる(図2のステップS30の負荷率演算工程参照)。 The ambient temperature θ 0 at the location where the electric motor 10 is installed is measured by the ambient temperature meter 20 (see the ambient temperature measurement step in step S10 in FIG. 2), and the motor temperature θ is measured by the motor thermometer 30 (see the step S20 in FIG. 2). The current value I or the power value P of the electric motor 10 is measured by the measuring device 40 and inputted to the calculation device 50, and the current value I or the power value P measured by the measuring device 40 is The load factor δ is determined based on the power value P (see the load factor calculation step in step S30 in FIG. 2).

先ず、前記電動機10の学習運転が行われる(図2のステップS40の学習運転工程参照)。前記電動機10の学習運転時には、前記周囲温度計20で計測された周囲温度θと、前記電動機温度計30で計測された電動機温度θと、前記負荷率δと、予め設定された電動機10の始動係数α及び固有発熱係数Qとに基づき発熱係数Qと熱時定数Tとが取得される。前記電動機10の学習運転時には、想定されるさまざまな運転が行われ、複数のデータが計測されて[数1]式に代入され、連立方程式を解くことにより、発熱係数Qと熱時定数Tとが取得される。 First, a learning operation of the electric motor 10 is performed (see the learning operation process in step S40 in FIG. 2). During the learning operation of the electric motor 10, the ambient temperature θ 0 measured by the ambient temperature meter 20, the motor temperature θ measured by the motor thermometer 30, the load factor δ, and the preset temperature of the electric motor 10 are determined. A heat generation coefficient Q and a thermal time constant T are obtained based on the starting coefficient α and the intrinsic heat generation coefficient Q0 . During the learning operation of the electric motor 10, various assumed operations are performed, a plurality of data are measured and substituted into the formula [Equation 1], and the heat generation coefficient Q and thermal time constant T are calculated by solving the simultaneous equations. is obtained.

前記発熱係数Qと熱時定数Tはそれぞれ、図3に示す如く、前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率に基づき停止時と始動時と運転時とに分けて取得される。 As shown in FIG. 3, the heat generation coefficient Q and the thermal time constant T are determined at the time of stopping and starting, respectively, based on the ratio of the current value I to the rated current value IR or the ratio of the power value P to the rated power value PR . It is obtained separately for when driving and when driving.

前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I=0[%]
P/P=0[%]
である場合、電動機10は停止していると判定され、負荷率δは
δ=0
とされて、停止時における発熱係数Qは
Q=α・δ・Q
=0
となり、停止時における熱時定数Tは
T=T
と設定される。
The ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R =0 [%]
P/P R =0 [%]
If , the electric motor 10 is determined to be stopped, and the load factor δ is δ=0
The heat generation coefficient Q when stopped is Q=α・δ・Q 0
=0
Therefore, the thermal time constant T at the time of stopping is T=T s
is set.

又、前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I≧110[%]
P/P≧110[%]
である場合、電動機10は始動時であると判定され、負荷率δは
δ=1
と設定され、始動時における発熱係数Qは
Q=α・δ・Q
=α・Q
となり、始動時における熱時定数Tは
T=T
と設定される。尚、始動時の始動係数αは、例えば、2や3といった数値として設定される。
Further, the ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R ≧110 [%]
P/P R ≧110 [%]
If so, it is determined that the electric motor 10 is starting, and the load factor δ is δ=1
The heat generation coefficient Q at startup is Q=α・δ・Q 0
=α・Q 0
Therefore, the thermal time constant T at startup is T=T d
is set. Note that the starting coefficient α at the time of starting is set as a numerical value such as 2 or 3, for example.

更に又、前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I<110[%]
P/P<110[%]
である場合、電動機10は運転時(定格範囲内)であると判定され、始動係数αは
α=1
と設定され、運転時における発熱係数Qは
Q=α・δ・Q
=δ・Q
となり、運転時における熱時定数Tは始動時と略等しくなるため、
T=T
と設定される。
Furthermore, the ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R <110 [%]
P/P R <110 [%]
If so, it is determined that the electric motor 10 is in operation (within the rated range), and the starting coefficient α is α=1
The heat generation coefficient Q during operation is set as Q=α・δ・Q 0
=δ・Q 0
Therefore, the thermal time constant T during operation is approximately equal to that during startup, so
T= Td
is set.

そして、前記発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線が求められる(図2のステップS50の予測曲線演算工程参照)。 Then, a predicted curve of the motor temperature θ during normal operation is determined based on the heat generation coefficient Q and thermal time constant T, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ (step S50 in FIG. 2). (See prediction curve calculation process).

前記演算装置50で求められた電動機温度θの予測曲線は表示装置60に表示され、図2のフローチャートにおいて、予め設定された更新時間が経過したか否かの判定が行われ(ステップS60参照)、更新時間が経過していると判断されると、その時点で運転終了であるか否かの判定が行われ(ステップS70参照)、運転終了でなければ、前記ステップS50の予測曲線演算工程に戻って新たに電動機温度θの予測曲線が求められる。 The predicted curve of the motor temperature θ obtained by the calculation device 50 is displayed on the display device 60, and in the flowchart of FIG. 2, it is determined whether a preset update time has elapsed (see step S60). If it is determined that the update time has elapsed, it is determined whether or not the operation has ended at that point (see step S70), and if the operation has not ended, the process proceeds to the predicted curve calculation step of step S50. Then, a new prediction curve for the motor temperature θ is determined.

前記表示装置60に表示される電動機温度θの予測曲線は、例えば、図4に示すようなものとなる。即ち、始動開始から電動機温度θが上昇し、始動完了後は、冷却ファンも回っているため、温度上昇勾配が徐々に緩やかとなる。ある時点(例えば、始動開始からおよそ50分経過した時点)で電動機10を停止し、直後に再始動すると、電動機温度θが停止時の温度(図4の例ではおよそ70[℃])から上昇し、最高許容温度(例えば、95[℃])に到達するものの、冷却ファンの作動で電動機温度θは低下していく。その後、ある時点(例えば、始動開始から90分経過した時点)で電動機10を停止すると、冷却ファンも停止するため、電動機温度θは運転時より緩やかな勾配で次第に低下していく。ここで、例えば、始動開始から停止・再始動を経ておよそ65分経過後の時点(電動機温度θはおよそ76[℃])で仮に電動機10を停止し、直後に再始動すると、電動機温度θが最高許容温度を超えて100[℃]近くまで上昇してしまうことが判る。これにより、オペレータは、電動機温度θの予測曲線から停止・再始動できる時間を精度良く把握することが可能となる。 The predicted curve of the motor temperature θ displayed on the display device 60 is, for example, as shown in FIG. That is, the motor temperature θ increases from the start of starting, and after the completion of starting, the cooling fan is also rotating, so the temperature increase gradient gradually becomes gentler. If the electric motor 10 is stopped at a certain point (for example, about 50 minutes after starting) and restarted immediately after, the motor temperature θ will rise from the temperature at the time of stop (approximately 70 [°C] in the example of FIG. 4). Although the maximum allowable temperature (for example, 95 [° C.]) is reached, the motor temperature θ continues to decrease due to the operation of the cooling fan. Thereafter, when the electric motor 10 is stopped at a certain point (for example, 90 minutes after starting), the cooling fan is also stopped, so the electric motor temperature θ gradually decreases at a gentler gradient than during operation. Here, for example, if the electric motor 10 is temporarily stopped after approximately 65 minutes have elapsed from the start of startup through stopping and restarting (motor temperature θ is approximately 76 [°C]) and then restarted immediately after, the motor temperature θ will be It can be seen that the temperature rises to nearly 100 [°C], exceeding the maximum allowable temperature. Thereby, the operator can accurately grasp the time when the motor can be stopped and restarted from the predicted curve of the motor temperature θ.

この結果、本実施例の場合、従来のように、電動機10を再始動するまでの停止時間を想定される最長の時間に設定するのとは異なり、運転できない時間が必要以上に長引くようなことが避けられ、全体の運転が効率良く行われる。 As a result, in the case of this embodiment, unlike the conventional case where the stop time before restarting the electric motor 10 is set to the longest expected time, the time when the motor 10 cannot be operated becomes longer than necessary. is avoided, and the overall operation is carried out efficiently.

又、特許文献1に開示されている装置のように、予め設定された電動機10の運転時の熱時定数と停止時の熱時定数と許容始動回数とを単に使用しているだけではなく、本実施例では、学習運転で取得された発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を予測曲線演算工程で求めているため、時々刻々変化する電動機10の周囲温度や負荷状態を考慮した精度の高い対応が可能となる。 Furthermore, unlike the device disclosed in Patent Document 1, the present invention does not simply use preset thermal time constants during operation, thermal time constants during stoppage, and allowable number of starts of the electric motor 10; In this example, a prediction curve of the motor temperature θ during normal operation is created based on the heat generation coefficient Q and thermal time constant T obtained in the learning operation, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ. Since it is obtained in the prediction curve calculation process, it is possible to respond with high precision in consideration of the constantly changing ambient temperature and load condition of the electric motor 10.

こうして、電動機10の周囲温度や負荷状態に応じて停止時間を必要最小限に抑えることができ、再始動可能な時間を高精度に把握し得る。 In this way, the stop time can be minimized depending on the ambient temperature and load condition of the electric motor 10, and the restartable time can be determined with high accuracy.

尚、本発明の電動機温度予測方法及び装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the motor temperature prediction method and device of the present invention are not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

10 電動機
20 周囲温度計
30 電動機温度計
40 計測器
50 演算装置
60 表示装置
10 Electric motor 20 Ambient thermometer 30 Motor thermometer 40 Measuring device 50 Arithmetic device 60 Display device

Claims (2)

電動機の設置個所における周囲温度θを計測する周囲温度計測工程と、
電動機温度θを計測する電動機温度計測工程と、
前記電動機の運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づき負荷率δを求める負荷率演算工程と、
前記電動機の学習運転を行い、発熱係数Qと熱時定数Tとを取得する学習運転工程と、
該学習運転工程で取得された発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求める予測曲線演算工程と
を有し、
前記電動機の微小時間Δtにおける温度変化Δθは、発熱係数Q、熱時定数T、電動機温度θ、周囲温度θに基づいて
Δθ={Q-1/T(θ-θ)}Δt
=Q・Δt-{1/T(θ-θ)}・Δt
で求められ、前記発熱係数Qは、予め設定された始動係数α及び固有発熱係数Qと、前記負荷率演算工程で求められた負荷率δとに基づいて
Q=α・δ・Q
と表されることから、
Δθ={α・δ・Q-1/T(θ-θ)}Δt
=α・δ・Q・Δt-{1/T(θ-θ)}・Δt
となり、
前記学習運転工程において、発熱係数Qを取得すると共に、前記周囲温度計測工程で計測された周囲温度θと、前記電動機温度計測工程で計測された電動機温度θとを含む複数のデータから熱時定数Tを取得し、
前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I=0[%]
P/P=0[%]
である場合、電動機は停止していると判定され、負荷率δは
δ=0
とされて、停止時における発熱係数Qは
Q=α・δ・Q
=0
となり、停止時における熱時定数Tは
T=T
と設定され、
I/I≧110[%]
P/P≧110[%]
である場合、電動機は始動時であると判定され、負荷率δは
δ=1
と設定され、始動時の始動係数αは2又は3
と設定され、始動時における発熱係数Qは
Q=α・δ・Q
=α・Q
となり、始動時における熱時定数Tは
T=T
と設定され、
I/I<110[%]
P/P<110[%]
である場合、電動機は運転時(定格範囲内)であると判定され、始動係数αは
α=1
と設定され、運転時における発熱係数Qは
Q=α・δ・Q
=δ・Q
となり、運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づく負荷率δと固有発熱係数Qとから求められて、運転時における熱時定数Tは始動時と略等しくなるため、
T=T(但し、T>T)
と設定される電動機温度予測方法。
an ambient temperature measurement step of measuring ambient temperature θ 0 at the location where the electric motor is installed;
a motor temperature measurement step of measuring motor temperature θ;
A load factor calculation step of calculating a load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/ PR of the power value P to the rated power value P R during operation of the electric motor;
a learning operation step of performing a learning operation of the electric motor to obtain a heat generation coefficient Q and a thermal time constant T;
A prediction curve for determining a prediction curve of the motor temperature θ during normal operation based on the heat generation coefficient Q and thermal time constant T acquired in the learning operation process, the current ambient temperature θ 0 , the motor temperature θ, and the load factor δ. It has a calculation process and
The temperature change Δθ of the electric motor in a minute time Δt is based on the heat generation coefficient Q, thermal time constant T, motor temperature θ, and ambient temperature θ 0 Δθ={Q-1/T(θ-θ 0 )}Δt
=Q・Δt−{1/T(θ−θ 0 )}・Δt
The heat generation coefficient Q is calculated based on the preset starting coefficient α and specific heat generation coefficient Q0 , and the load factor δ obtained in the load factor calculation step.Q=α・δ・Q0
Since it is expressed as
Δθ={α・δ・Q 0 −1/T(θ−θ 0 )}Δt
= α・δ・Q 0・Δt−{1/T(θ−θ 0 )}・Δt
Then,
In the learning operation step, the heat generation coefficient Q is obtained, and the thermal time is calculated from a plurality of data including the ambient temperature θ 0 measured in the ambient temperature measurement step and the motor temperature θ measured in the motor temperature measurement step. Get the constant T,
The ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R =0 [%]
P/P R =0 [%]
If , the motor is determined to be stopped, and the load factor δ is δ=0
The heat generation coefficient Q when stopped is Q=α・δ・Q 0
=0
Therefore, the thermal time constant T at the time of stopping is T=T s
is set,
I/I R ≧110 [%]
P/P R ≧110 [%]
If , the motor is determined to be starting, and the load factor δ is δ=1
is set, and the starting coefficient α at startup is 2 or 3.
The heat generation coefficient Q at startup is Q=α・δ・Q 0
=α・Q 0
Therefore, the thermal time constant T at startup is T=T d
is set,
I/I R <110 [%]
P/P R <110 [%]
If , the motor is determined to be in operation (within the rated range), and the starting coefficient α is α=1
The heat generation coefficient Q during operation is set as Q=α・δ・Q 0
=δ・Q 0
Then, it is determined from the load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/P R of the power value P to the rated power value P R and the specific heat generation coefficient Q 0 during operation. Therefore, the thermal time constant T during operation is approximately equal to that during startup, so
T=T d (However, T s > T d )
A motor temperature prediction method that is set as follows.
電動機の設置個所における周囲温度θを計測する周囲温度計と、
電動機温度θを計測する電動機温度計と、
前記電動機の運転時における電流値I又は電力値Pを計測する計測器と、
該計測器で計測された電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づき負荷率δを求め、前記電動機の学習運転を行った際、発熱係数Qと熱時定数Tとを取得し、該発熱係数Q及び熱時定数Tと、現時点での周囲温度θ、電動機温度θ及び負荷率δとに基づき通常運転時における電動機温度θの予測曲線を求める演算装置と
を備え、
前記電動機の微小時間Δtにおける温度変化Δθは、発熱係数Q、熱時定数T、電動機温度θ、周囲温度θに基づいて
Δθ={Q-1/T(θ-θ)}Δt
=Q・Δt-{1/T(θ-θ)}・Δt
で求められ、前記発熱係数Qは、予め設定された始動係数α及び固有発熱係数Qと、前記負荷率δとに基づいて
Q=α・δ・Q
と表されることから、
Δθ={α・δ・Q-1/T(θ-θ)}Δt
=α・δ・Q・Δt-{1/T(θ-θ)}・Δt
となり、
前記演算装置において、前記学習運転時に、発熱係数Qを取得すると共に、前記周囲温度計で計測された周囲温度θと、前記電動機温度計で計測された電動機温度θとを含む複数のデータから熱時定数Tを取得し、
前記電流値Iの定格電流値Iに対する比率又は前記電力値Pの定格電力値Pに対する比率が
I/I=0[%]
P/P=0[%]
である場合、電動機は停止していると判定され、負荷率δは
δ=0
とされて、停止時における発熱係数Qは
Q=α・δ・Q
=0
となり、停止時における熱時定数Tは
T=T
と設定され、
I/I≧110[%]
P/P≧110[%]
である場合、電動機は始動時であると判定され、負荷率δは
δ=1
と設定され、始動時の始動係数αは2又は3
と設定され、始動時における発熱係数Qは
Q=α・δ・Q
=α・Q
となり、始動時における熱時定数Tは
T=T
と設定され、
I/I<110[%]
P/P<110[%]
である場合、電動機は運転時(定格範囲内)であると判定され、始動係数αは
α=1
と設定され、運転時における発熱係数Qは
Q=α・δ・Q
=δ・Q
となり、運転時における電流値Iの定格電流値Iに対する比率I/I又は電力値Pの定格電力値Pに対する比率P/Pに基づく負荷率δと固有発熱係数Qとから求められて、運転時における熱時定数Tは始動時と略等しくなるため、
T=T(但し、T>T)
と設定される電動機温度予測装置。
an ambient temperature meter that measures ambient temperature θ 0 at the location where the electric motor is installed;
a motor thermometer that measures motor temperature θ;
a measuring device that measures a current value I or a power value P during operation of the electric motor;
The load factor δ is determined based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/PR R of the power value P to the rated power value P R measured by the measuring device, and the learning of the motor is performed. When operating, the heat generation coefficient Q and thermal time constant T are acquired, and normal operation is performed based on the heat generation coefficient Q and thermal time constant T, the current ambient temperature θ 0 , motor temperature θ, and load factor δ. and an arithmetic device for calculating a prediction curve of motor temperature θ at
The temperature change Δθ of the electric motor in a minute time Δt is based on the heat generation coefficient Q, thermal time constant T, motor temperature θ, and ambient temperature θ 0 Δθ={Q-1/T(θ-θ 0 )}Δt
=Q・Δt−{1/T(θ−θ 0 )}・Δt
The heat generation coefficient Q is calculated based on the preset starting coefficient α and specific heat generation coefficient Q0 , and the load factor δ . Q=α・δ・Q0
Since it is expressed as
Δθ={α・δ・Q 0 −1/T(θ−θ 0 )}Δt
= α・δ・Q 0・Δt−{1/T(θ−θ 0 )}・Δt
Then,
In the arithmetic device, during the learning operation, a heat generation coefficient Q is obtained, and from a plurality of data including an ambient temperature θ 0 measured by the ambient temperature meter and a motor temperature θ measured by the motor thermometer. Obtain the thermal time constant T,
The ratio of the current value I to the rated current value I R or the ratio of the power value P to the rated power value P R is I/I R =0 [%]
P/P R =0 [%]
If , the motor is determined to be stopped, and the load factor δ is δ=0
The heat generation coefficient Q when stopped is Q=α・δ・Q 0
=0
Therefore, the thermal time constant T at the time of stopping is T=T s
is set,
I/I R ≧110 [%]
P/P R ≧110 [%]
If , the motor is determined to be starting, and the load factor δ is δ=1
is set, and the starting coefficient α at startup is 2 or 3.
The heat generation coefficient Q at startup is Q=α・δ・Q 0
=α・Q 0
Therefore, the thermal time constant T at startup is T=T d
is set,
I/I R <110 [%]
P/P R <110 [%]
If , the motor is determined to be in operation (within the rated range), and the starting coefficient α is α=1
The heat generation coefficient Q during operation is set as Q=α・δ・Q 0
=δ・Q 0
Then, it is determined from the load factor δ based on the ratio I/I R of the current value I to the rated current value I R or the ratio P/P R of the power value P to the rated power value P R and the specific heat generation coefficient Q 0 during operation. Therefore, the thermal time constant T during operation is approximately equal to that during startup, so
T=T d (However, T s > T d )
A motor temperature prediction device that is set as
JP2018006094A 2018-01-18 2018-01-18 Motor temperature prediction method and device Active JP7383370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018006094A JP7383370B2 (en) 2018-01-18 2018-01-18 Motor temperature prediction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018006094A JP7383370B2 (en) 2018-01-18 2018-01-18 Motor temperature prediction method and device

Publications (2)

Publication Number Publication Date
JP2019126204A JP2019126204A (en) 2019-07-25
JP7383370B2 true JP7383370B2 (en) 2023-11-20

Family

ID=67399261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018006094A Active JP7383370B2 (en) 2018-01-18 2018-01-18 Motor temperature prediction method and device

Country Status (1)

Country Link
JP (1) JP7383370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116736115B (en) * 2023-08-14 2023-10-20 山东开创电气有限公司 Temperature monitoring method and system for coal mine belt conveying motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167436A (en) 2014-03-03 2015-09-24 ファナック株式会社 Numerical controller including heat radiation characteristics estimation unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167436A (en) 2014-03-03 2015-09-24 ファナック株式会社 Numerical controller including heat radiation characteristics estimation unit

Also Published As

Publication number Publication date
JP2019126204A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US10032686B2 (en) Motor drive device and method capable of notifying malfunction in fluid flow in heat sink
US9494932B2 (en) Monitoring device, monitoring method, and recording medium
US9869992B2 (en) Thermal displacement correction device for working machine
JP5127799B2 (en) Power demand monitoring apparatus and power demand monitoring method
JP6636513B2 (en) Method and apparatus for signaling permission to completely shut down an aircraft gas turbine engine
US20170023956A1 (en) Motor driving device and detection method for detecting malfunction in heat radiation performance of heatsink
JP7383370B2 (en) Motor temperature prediction method and device
JP2002101668A (en) Life time estimation method of semiconductor power converter and semiconductor power converter
JP2008275466A (en) Lifetime evaluation device of high temperature apparatus, lifetime evaluation method and program of high temperature apparatus
CN111722657A (en) Transformer temperature control method and transformer
CN104736990A (en) Ultrasonic fatigue testing device and ultrasonic fatigue testing method
TW202212713A (en) Motor device, gear motor, detection method, and computer product
JP6484525B2 (en) Alarm device and process control system
JP2009060767A (en) Diagnosis system of insulation deterioration of rotating machine
JPWO2018073943A1 (en) Life prediction device
JP2012067611A (en) Fan inspection device, blower, device with fan, and fan failure predicting method
JP2010122163A (en) Electronic thermometer
US20230173725A1 (en) Controller and program for injection molding machine
JP2007092563A (en) Pump test device, pump operation assist device, and pump bearing temperature calculation device
WO2017077565A1 (en) Pid control device and pid control method
KR102343793B1 (en) Data processing apparatus, data processing system, data processing method, data processing program and storage medium
JP2014228508A (en) Measurement device and measurement method
FR3092870B1 (en) PROCESS FOR DIAGNOSING AN INSUFFICIENT COOLING FLUID IN A THERMAL ENGINE COOLING CIRCUIT
JP4895794B2 (en) Core monitoring device
US10520546B1 (en) Automatic power supply system capable of adjusting the power supply automatically

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221014

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221024

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221025

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221118

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7383370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150