JP7382528B1 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP7382528B1
JP7382528B1 JP2023100541A JP2023100541A JP7382528B1 JP 7382528 B1 JP7382528 B1 JP 7382528B1 JP 2023100541 A JP2023100541 A JP 2023100541A JP 2023100541 A JP2023100541 A JP 2023100541A JP 7382528 B1 JP7382528 B1 JP 7382528B1
Authority
JP
Japan
Prior art keywords
support ball
rolling surface
seismic isolation
isolation structure
predetermined position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023100541A
Other languages
Japanese (ja)
Inventor
稔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2023100541A priority Critical patent/JP7382528B1/en
Application granted granted Critical
Publication of JP7382528B1 publication Critical patent/JP7382528B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】少ないダンパーで前後左右(水平)方向の振動を吸収可能な免震装置を提供する。【解決手段】免震対象物を支持する免震構造であって、免震対象物とともに水平方向に揺動する上側転動面と、地盤と共に水平方向に揺動する下側転動面と、上側転動面、及び前記下側転動面の間を転動する支持球と、前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、前記付勢手段は、前記支持球に直接付勢力を及ぼすことを特徴とする。【選択図】図1[Problem] To provide a seismic isolation device that can absorb vibrations in the front, rear, left, and right (horizontal) directions with a small number of dampers. [Solution] A seismic isolation structure that supports a seismically isolated object, including an upper rolling surface that swings horizontally with the seismically isolated object, a lower rolling surface that swings horizontally with the ground, A support ball that rolls between an upper rolling surface and the lower rolling surface, and a biasing means that applies a biasing force to the support ball to bias the support ball to a predetermined position, The biasing means is characterized in that it applies a biasing force directly to the support ball. [Selection diagram] Figure 1

Description

本発明は、転がり支承を備えた免震構造に関するもので、さらには、免震対象物を振動方向と逆方向に付勢する付勢手段を有する免震構造に関する。 The present invention relates to a seismic isolation structure equipped with a rolling support, and more particularly to a seismic isolation structure having a biasing means for biasing a seismically isolated object in a direction opposite to the direction of vibration.

一般に、免震装置は、大きく早い振動を小さく遅い振動に変換するアイソレータと、振動エネルギーを吸収して振動を短時間で収束させるダンパーとから構成されている。アイソレータには、積層免震ゴムや、滑り材(滑り支承)、ベアリング(転がり支承)などが用いられ、ダンパーには、コイルバネやオイルダンパーなどが用いられている(特許文献1、特許文献2)。 Generally, a seismic isolation device is comprised of an isolator that converts large, fast vibrations into small, slow vibrations, and a damper that absorbs vibration energy and converges the vibrations in a short time. Laminated seismic isolation rubber, sliding material (sliding bearing), bearing (rolling bearing), etc. are used for the isolator, and coil springs, oil dampers, etc. are used for the damper (Patent Document 1, Patent Document 2). .

例えば、特許文献1では、鉄骨架台の四隅に単球転がり支承を設け、基礎耐圧版の四隅に支承受けSUS平板を水平固定するとともに、引きバネ固定端用のアンカー埋込コンクリート立上台を設けて、鉄骨架台のX、Y方向、及び浮きあがりと共振を防止する引きバネを配置した単球転がり支承と引きバネの伸縮作用を組み合わせた免震装置が提案されている。 For example, in Patent Document 1, single ball rolling bearings are provided at the four corners of a steel frame frame, support receiving SUS flat plates are horizontally fixed at the four corners of the foundation pressure plate, and a concrete stand with an embedded anchor for the fixed end of the tension spring is provided. , a seismic isolation device has been proposed that combines a single ball rolling bearing with tension springs arranged to prevent the X and Y directions of the steel frame frame, as well as uplift and resonance, and the expansion and contraction action of the tension springs.

また、特許文献2では、上下一対の板部材の間を転動する転動体と、該転動体を上下一対の板部材の間に保持する保持器とを備え、該保持器にピニオンを設けるとともに、上下一対の板部材にピニオンと噛合するラックを設けて構成した転がり支承装置が提案されている。特許文献2の転がり支承装置では、積層ゴムとオイルダンパーにより、振動エネルギーを吸収するよう構成されている。 Further, Patent Document 2 includes a rolling element that rolls between a pair of upper and lower plate members, a retainer that holds the rolling element between the pair of upper and lower plate members, and a pinion is provided in the retainer. A rolling bearing device has been proposed in which a pair of upper and lower plate members is provided with a rack that engages with a pinion. The rolling bearing device of Patent Document 2 is configured to absorb vibration energy using laminated rubber and an oil damper.

特開2022-017135号公開公報JP2022-017135 Publication Publication 特開2016-003681号公開公報Japanese Patent Application Publication No. 2016-003681

しかし、特許文献1、及び特許文献2の免震装置では、コイルバネやオイルダンパーからなるダンパーが弾性力を発揮する方向が一方向に限られるため、上下前後左右の3方向それぞれの振動をカバーするダンパーが必要となり、装置が複雑で大掛かりになるという問題が有る。
本発明は、かかる課題に鑑みてなされたものであり、少ないダンパーで前後左右(水平)方向の振動を吸収可能な免震装置の提供を目的とする。
However, in the seismic isolation devices of Patent Document 1 and Patent Document 2, the damper made of a coil spring or oil damper exerts elastic force only in one direction, so it covers vibrations in each of the three directions: up, down, front, back, left, and right. There is a problem that a damper is required, making the device complicated and large-scale.
The present invention has been made in view of this problem, and aims to provide a seismic isolation device that can absorb vibrations in the front, rear, left, and right (horizontal) directions with a small number of dampers.

前記課題を解決するためになされた発明は下記の通りである。
免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、
前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記付勢手段は長手方向に伸縮する弾性体を含み、
前記上側転動面は、板状部材からなる底床の下面からなり、
前記底床は、前記付勢手段を挿通する挿通孔を有し、
前記付勢手段は、前記挿通孔に挿通された状態で、長手方向の一端が前記底床の上面側において固定され、長手方向の他端側が前記底床の下側において前記支持球に連結されていて、
前記付勢手段は、前記弾性体の長手方向の他端に伸縮性を有さない線状体の長手方向の一端が接合されており、前記線状体の長手方向の他端が前記支持球に固定されていることを特徴とする免震構造。
The inventions made to solve the above problems are as follows.
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means for applying a biasing force to the support ball to bias the support ball to a predetermined position;
The biasing force is a tensile force acting between the predetermined position and the support ball,
The biasing means includes an elastic body that expands and contracts in the longitudinal direction,
The upper rolling surface consists of a lower surface of a bottom made of a plate-like member,
The bottom floor has an insertion hole through which the biasing means is inserted,
When the biasing means is inserted into the insertion hole, one longitudinal end thereof is fixed on the upper surface side of the bottom floor, and the other longitudinal end side is connected to the support ball on the lower side of the bottom floor. and
In the biasing means, one longitudinal end of a non-stretchable linear body is joined to the other longitudinal end of the elastic body, and the other longitudinal end of the linear body is connected to the support ball. A seismic isolation structure characterized by being fixed to.

本発明に係る免震構造は、このように支持球に直接付勢力を働かせるので、1つの付勢手段であらゆる方向の振動をカバーできる。 Since the seismic isolation structure according to the present invention exerts a biasing force directly on the support ball in this way, one biasing means can cover vibrations in all directions.

本発明の免震構造は、前記付勢手段が底床の基点(固定具)と支持球の付勢点(接着点)を結ぶ線状の弾性体を含み支持球がいずれの方向に転動しても、線状の弾性体の付勢力により支持球を基の位置に戻すことができる。 In the seismic isolation structure of the present invention, the biasing means includes a linear elastic body connecting the base point (fixing device) of the bottom floor and the biasing point (adhesion point) of the support ball, so that the support ball can roll in any direction. Even if the support ball is moved, the support ball can be returned to its original position by the biasing force of the linear elastic body.

また特に、前記支持球は、付勢手段を固定する頂点(接着点)から底点に向かう子午線方向に溝が設けられていることが好ましい。かかる溝を設けることで、地震等の振動を受けて伸長した前記弾性体と線状体を、支持球で確実に巻き取ることができるので大きな振幅の地震に対しても確実に免震効果を発揮できる。 In particular, it is preferable that the support ball is provided with a groove extending in the meridian direction from the apex (adhesion point) where the biasing means is fixed to the bottom point. By providing such a groove, the elastic body and the linear body, which have been elongated due to vibrations such as an earthquake, can be reliably wound up with the support ball, thereby ensuring a seismic isolation effect even against large amplitude earthquakes. I can demonstrate it.

本発明の免震構造は、前記底床及び前記支持球が中空構造であり、浮力により底床に設置された免震対象物を浮かすようにできることが好ましい。このような構成とすることで、大地震に伴って発生する津波等による浸水の被害も軽減可能となる。 In the seismic isolation structure of the present invention, it is preferable that the bottom floor and the support ball have a hollow structure, and that the seismic isolation object installed on the bottom floor can be floated by buoyancy. With such a configuration, it is possible to reduce damage caused by flooding caused by tsunamis and the like that occur due to large earthquakes.

また、本発明の免震構造は、
免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記支持球が磁性金属からなり、前記底床の前記所定の位置に磁性を有する金属、又は磁石からなる磁着部材が設けられ、またその外側に設けられた支持球受けを介して、前記支持球が前記磁着部材に引き寄せられることにより、前記所定の位置に付勢されるようになっている。この構成では、前記本願発明の付勢構造が磁着部材と磁性金属球により構成されているところ、頑丈な磁性金属の支持球を用いることにより、巨大で重量の大きな免震対象物もしっかりと支えることができる。また、本構成においては、磁着部材と支持球がお互いに働く磁力による引力によって静止状態が保たれているが、地震などでこの磁力を上まわる力が加わると支持球は回転する。
Furthermore, the seismic isolation structure of the present invention is
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means that applies a biasing force to the support ball to bias the support ball to a predetermined position, the biasing force being a tensile force acting between the predetermined position and the support ball;
The support ball is made of a magnetic metal, and a magnetic member made of a magnetic metal or a magnet is provided at the predetermined position of the bottom bed, and the support ball is The ball is attracted to the magnetically attracted member, thereby being biased toward the predetermined position. In this configuration, while the biasing structure of the present invention is composed of a magnetic member and a magnetic metal ball, by using a sturdy magnetic metal support ball, even a huge and heavy seismically isolated object can be firmly supported. It can be supported. In addition, in this configuration, the magnetically attracted member and the support ball are kept stationary due to the mutual magnetic attraction, but if a force exceeding this magnetic force is applied due to an earthquake or the like, the support ball will rotate.

本発明の免震構造は、前記支持球受けが前記支持球をしっかりと保持することで、地震発生の無い静状態で免震対象物をしっかり固定できる。更に、前記支持球受けがベアリングを介して支持球を支持することが好ましい。ベアリングの働きで支持球の転がりがスムーズになるので、より高い免震・除震効果が期待できる。 In the seismic isolation structure of the present invention, the support ball receiver firmly holds the support ball, so that the object to be seismically isolated can be firmly fixed in a static state where no earthquake occurs. Furthermore, it is preferable that the support ball receiver supports the support ball via a bearing. The bearings allow the supporting balls to roll smoothly, so higher seismic isolation and damping effects can be expected.

また、本発明の免震構造は、
免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記支持球が非磁性素材からなり、中空構造であり、その内部に磁石を有し、前記底床の前記所定の位置に磁性を有する金属、又は磁石からなる磁着部材が設けられ、またその外側に設けられた支持球受けを介して、前記支持球が前記磁着部材に引き寄せられることにより、前記所定の位置に付勢される。またこの場合も、前記支持球受けがベアリングであることが特に好ましい。
Furthermore, the seismic isolation structure of the present invention is
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means that applies a biasing force to the support ball to bias the support ball to a predetermined position, the biasing force being a tensile force acting between the predetermined position and the support ball;
The support ball is made of a non-magnetic material and has a hollow structure, and has a magnet therein, and a magnetic member made of a magnetic metal or a magnet is provided at the predetermined position of the bottom bed. The support ball is attracted to the magnetic member through a support ball receiver provided on the outside, and is urged to the predetermined position. Also in this case, it is particularly preferable that the support ball receiver is a bearing.

本発明の免震構造により、簡単な構成で十分な免震・除震効果が得られるので、小型の什器から大型の建築物まで様々な免震対象物を地震の被害から守ることが期待できる。 The seismic isolation structure of the present invention provides sufficient seismic isolation and damping effects with a simple configuration, so it can be expected to protect a variety of seismically isolated objects from damage caused by earthquakes, from small fixtures to large buildings. .

本発明の第1実施形態の免震構造の斜視図である。FIG. 1 is a perspective view of a seismic isolation structure according to a first embodiment of the present invention. 図1の免震構造の正面図である。FIG. 2 is a front view of the base isolation structure shown in FIG. 1. FIG. 図1の免震構造の上面図である。FIG. 2 is a top view of the base isolation structure of FIG. 1. 図1の免震構造において、地面の水平振動により力を受けた時の状態を示す上面図である。FIG. 2 is a top view showing a state in which the base isolation structure of FIG. 1 is subjected to force due to horizontal vibration of the ground. 本発明の第2実施形態の免震構造の正面図である。It is a front view of the seismic isolation structure of 2nd Embodiment of this invention. 図5のA-A断面図である。6 is a sectional view taken along line AA in FIG. 5. FIG. 本発明の第3実施形態の免震構造の下方向からの斜視図である。It is a perspective view from below of the seismic isolation structure of 3rd Embodiment of this invention. 図7の免震構造の正面図である。8 is a front view of the base isolation structure of FIG. 7. FIG. 図8のB-B断面図である。9 is a sectional view taken along line BB in FIG. 8. FIG. 本発明の第4実施形態に係る免震構造における支持球の構造例である。It is a structural example of the support ball in the seismic isolation structure based on 4th Embodiment of this invention.

以下に、本願発明の実施形態を図面を交えながら詳しく説明する。なお、本発明は以下の実施形態に限られるものではない。 Embodiments of the present invention will be described in detail below with reference to the drawings. Note that the present invention is not limited to the following embodiments.

(第1実施形態)
本発明の第1実施形態に係る免震構造1を図1乃至図に示す。免震構造1は底床2の下面を形成する上側転動面21と、支持球3と、付勢手段4と、下側転動面22とを備えている。また、下側転動面22はコンクリート整地された水平面である。ここで「上側」、「下側」というのは地面等に設置された免震構造における支持球3に対しての表現である。
(First embodiment)
A seismic isolation structure 1 according to a first embodiment of the present invention is shown in FIGS. 1 to 4 . The seismic isolation structure 1 includes an upper rolling surface 21 forming the lower surface of the bottom floor 2, a support ball 3, a biasing means 4, and a lower rolling surface 22. Further, the lower rolling surface 22 is a leveled horizontal surface made of concrete. Here, "upper side" and "lower side" are expressions with respect to the support ball 3 in a seismic isolation structure installed on the ground or the like.

底床2は、水平方向に広がる矩形の板状部材からなり、上面で免震対象物A(不図示)を支持し、下面が上側転動面21を構成する。底床2の四隅には、線状体5を挿通する挿通孔7が設けられている。底床2の下面(上側転動面21)の四隅には、挿通孔7を中心にして支持球3を収容する窪み8を備えている。支持球3は地震が起こらない平常時においては窪み8の中に納められている。支持球3を収容する窪み8は、支持球3と略同じ径からなる球面状をなし下方の開口部の直径が支持球3の直径よりも小さく、深さが支持球3の半径より小さく設けられている。底床2の上面には、金属線材を逆V字に折り曲げて形成した固定具6が突設されている。固定具6は、底床2の長辺に沿って2本ずつ計4本が設けられている。 The bottom floor 2 is made of a rectangular plate-like member that spreads in the horizontal direction, supports a seismically isolated object A (not shown) on its upper surface, and forms an upper rolling surface 21 on its lower surface. At the four corners of the bottom floor 2, insertion holes 7 through which the linear bodies 5 are inserted are provided. The four corners of the lower surface (upper rolling surface 21) of the bottom floor 2 are provided with depressions 8 centered around the insertion holes 7 to accommodate the support balls 3. The support ball 3 is housed in the depression 8 during normal times when no earthquake occurs. The recess 8 that accommodates the support ball 3 has a spherical shape with approximately the same diameter as the support ball 3, the diameter of the lower opening is smaller than the diameter of the support ball 3, and the depth is smaller than the radius of the support ball 3. It is being A fixture 6 formed by bending a metal wire into an inverted V shape is protruded from the upper surface of the bottom floor 2. A total of four fixtures 6 are provided, two each along the long sides of the bottom floor 2.

付勢手段4は、長手方向(図2の左右方向)の一端側に設けられ、環状ゴムからなる弾性体41と、長手方向の他端側に設けられ、伸縮性を有しない線状体5とを備えている。付勢手段4は、一端側の弾性体41を固定具6に引き掛け、他端側線状体5を、挿通孔7を介して支持球3の表面の接着点30に連結して、弾性体41が付勢手段4の長手方向に伸縮するよう構成されている。弾性体41は公知の素材であればどのような物でも使用可能である。いくつかを例示すると弾性体41は天然ゴム、合成ゴム、合成樹脂エラストマーなどである。 The biasing means 4 includes an elastic body 41 that is provided at one end in the longitudinal direction (left-right direction in FIG. 2) and made of annular rubber, and a linear body 5 that is provided at the other end in the longitudinal direction and has no elasticity. It is equipped with The biasing means 4 hooks the elastic body 41 on one end to the fixture 6, connects the linear body 5 on the other end to the adhesive point 30 on the surface of the support ball 3 through the insertion hole 7, and 41 is configured to expand and contract in the longitudinal direction of the biasing means 4. The elastic body 41 can be made of any known material. To give some examples, the elastic body 41 is made of natural rubber, synthetic rubber, synthetic resin elastomer, etc.

線状体5は、線状をなし伸縮性を有さなければ特に限定されず、公知のものが使用可能であり、糸、紐、ロープ、金属線、鎖等を使用できる。線状体5は、免震対象物に想定される振動の大きさや立地条件等に合わせて適宜の長さや太さのものを使用する。 The linear body 5 is not particularly limited as long as it has a linear shape and is not stretchable, and any known material can be used, such as thread, string, rope, metal wire, chain, etc. The linear body 5 is used with an appropriate length and thickness depending on the magnitude of vibration expected in the seismically isolated object, location conditions, etc.

免震構造はその使用目的から見て、いざと言う時に確実に機能するために、常日頃の保守・点検が欠かせない。本実施形態に係る免震構造は、弾性体41と線状体5が底床2の上面に配されているので、底床2の上方から簡単に弾性体41と線状体5の状態を確認でき、必要に応じて修理や交換などの操作も底床2の上方から行え、保守・点検がし易いという効果がある。 Given the intended use of seismic isolation structures, regular maintenance and inspection are essential to ensure that they function reliably in times of emergency. In the seismic isolation structure according to this embodiment, since the elastic body 41 and the linear body 5 are arranged on the upper surface of the bottom floor 2, the states of the elastic body 41 and the linear body 5 can be easily checked from above the bottom floor 2. This can be confirmed, and operations such as repair or replacement can be performed from above the bottom floor 2 if necessary, making maintenance and inspection easier.

線状体5の一端は底床2に開けられた挿通孔7を通して底床2の裏面(上側転動面21)に至り、そこで支持球3の接着点30で接合されている。 One end of the linear body 5 passes through an insertion hole 7 made in the bottom floor 2 and reaches the back surface (upper rolling surface 21) of the bottom floor 2, where it is joined at an adhesive point 30 of the support ball 3.

また地震等による外力が加わらない状態(以後、「静状態」と称する)で、4つの支持球3は、窪み8に収容された状態で地面に接しており、弾性体41は弛緩しておらず、支持球3から受ける張力が加わっている。 In addition, in a state where no external force such as an earthquake is applied (hereinafter referred to as a "static state"), the four support balls 3 are in contact with the ground while being accommodated in the depressions 8, and the elastic body 41 is relaxed. Instead, the tension received from the support ball 3 is added.

なお、底床2の上面にある弾性体41及び線状体5の長さが一定であるため支持球3は転がる範囲が制限される。 Note that since the lengths of the elastic body 41 and the linear body 5 on the upper surface of the bottom floor 2 are constant, the range in which the support ball 3 can roll is limited.

図3は、静状態における免震構造1の状態を、図4は地震などによって水平方向の力を受けた際の免震構造1の状態を示している。図4に示すように、水平方向の力を受けて、支持球3が窪み8から離脱して底床2に対し転動することで、地面の揺れが底床2に伝わることが抑制されるため、底床2は、水平方向にほとんど移動しない。こうして、底床2の上に設置される免震対象物に対する地震の振動が軽減される。 FIG. 3 shows the state of the base isolation structure 1 in a static state, and FIG. 4 shows the state of the base isolation structure 1 when subjected to horizontal force due to an earthquake or the like. As shown in FIG. 4, the support ball 3 detaches from the depression 8 and rolls against the bottom floor 2 under the force in the horizontal direction, thereby suppressing the transmission of ground shaking to the bottom floor 2. Therefore, the bottom bed 2 hardly moves in the horizontal direction. In this way, earthquake vibrations to the seismically isolated object installed on the bottom floor 2 are reduced.

免震構造1においては、底床2が水平方向のいずれの方向に力を受け、支持球3が底床2に対し水平方向のいずれの方向に転動した場合であっても、弾性体41は固定具6と挿通孔7を結ぶ直線方向の引張り力を受けることになるため、いずれの方向に対する振動も抑制することが出来る。図1~3に示したように、支持球3と弾性体41の組み合わせを同一直線上に対向するように2組配することで、底床2が受ける振動を抑制する効果が高くなる。 In the seismic isolation structure 1, even if the bottom floor 2 receives force in any horizontal direction and the support ball 3 rolls in any horizontal direction with respect to the bottom floor 2, the elastic body 41 is subjected to a tensile force in the linear direction connecting the fixture 6 and the insertion hole 7, so vibrations in any direction can be suppressed. As shown in FIGS. 1 to 3, by arranging two sets of support balls 3 and elastic bodies 41 so as to face each other on the same straight line, the effect of suppressing vibrations received by the bottom floor 2 is enhanced.

図1の例では、支持球3、弾性体41、線状体5、固定具6で構成される免震構造の構成部分を1つの床面に対して4カ所設けた。また、支持球3を、矩形の底床2の下面四隅付近に設けたが、位置や数は任意である。ただし、支持球3は、底床2に載せる免震対象物を安定して支持するという観点から、3カ所以上設けることが好ましい。 In the example of FIG. 1, the constituent parts of the seismic isolation structure including the support ball 3, the elastic body 41, the linear body 5, and the fixture 6 are provided at four locations on one floor surface. Further, although the supporting balls 3 are provided near the four corners of the lower surface of the rectangular bottom floor 2, the positions and number thereof are arbitrary. However, from the viewpoint of stably supporting the seismically isolated object placed on the bottom floor 2, it is preferable to provide the supporting balls 3 at three or more locations.

底床2は、免震対象物の重量を支えるのに十分な強度を有すれば、素材の種類は問わず、金属板、木板、鉄筋コンクリート、複合素材や異なる素材を組み合わせることも可能である。本実施形態では、免震対象物Aは、付勢手段4を覆い隠さないよう底床2上に設置される。 The bottom floor 2 can be made of any type of material, such as metal plates, wooden plates, reinforced concrete, composite materials, or a combination of different materials, as long as it has sufficient strength to support the weight of the seismically isolated object. In this embodiment, the seismically isolated object A is installed on the bottom floor 2 so as not to cover the biasing means 4.

また、免震対象物Aの床部分を本発明の底床2に見立てて本発明の免震構造1を設けても良いし、免震対象物Aの床部分とは別に、本発明の免震構造1を備えた底床2の上に載置してもよい。 Furthermore, the base isolation structure 1 of the present invention may be provided by using the floor part of the base isolation object A as the bottom floor 2 of the present invention, or the base isolation structure 1 of the present invention may be provided separately from the floor part of the base isolation target A. It may be placed on a bottom floor 2 provided with a seismic structure 1.

支持球3は、底床2とその上の免震対象物の重量を支えるのに十分な強度を有すれば、特に素材は限定されず、免震対象物の重量に合わせて、木、石、樹脂、金属等を適宜に用いることが出来るが、建造物等の重量物を支持する場合は、強度と耐久性に優れる金属製が好ましい。 The material of the support ball 3 is not particularly limited as long as it has sufficient strength to support the weight of the base floor 2 and the seismically isolated object on it, and wood, stone, etc. can be used depending on the weight of the seismically isolated object. , resin, metal, etc. can be used as appropriate, but when supporting heavy objects such as buildings, metal is preferable because of its excellent strength and durability.

図1~図3の免震構造を支持する地盤に水平方向の揺れが加わると、免震対象物はその質量による慣性でもとの位置に留まろうとするため、免震構造物に固定された底床2は、地盤に対し相対的に地盤の揺動方向と逆向きとなり支持球3は静状態における位置から離脱し、地盤の揺動方向に転動する。すると付勢手段4の引っ張る力が働いて支持球3は静止状態の位置に戻される。地震の場合はその繰り返しとなる。こうして底床2及び制振対象物Aの振動が抑制される。 When horizontal shaking is applied to the ground supporting the seismic isolation structure shown in Figures 1 to 3, the seismically isolated object tries to stay in its original position due to inertia due to its mass, so the seismic isolation structure is fixed to the structure. The bottom bed 2 is oriented relative to the ground in the opposite direction to the rocking direction of the ground, and the support ball 3 is removed from its position in the static state and rolls in the rocking direction of the ground. Then, the pulling force of the biasing means 4 acts to return the support ball 3 to its resting position. In the case of an earthquake, this process repeats. In this way, the vibrations of the bottom floor 2 and the vibration damping object A are suppressed.

本実施形態において、底床2及び支持球3を中空構造として、底床2に設置された免震対象物を浮かすことのできるような構成とすれば、大地震により発生が懸念される津波への対応ともなる。すなわち津波などによる免震対象物への浸水被害を免れることができる。 In this embodiment, if the bottom floor 2 and the support ball 3 are made into a hollow structure so that the seismically isolated object installed on the bottom floor 2 can be floated, it is possible to prevent tsunamis that are likely to occur due to a large earthquake. It also corresponds to In other words, it is possible to avoid water damage to seismically isolated objects caused by tsunamis and the like.

図1~図3に示した例では、底床2が支持球3と接する部分に窪み8が設けられている。支持球3は、頂部が窪み8に納まることにより、静状態での免震構造1の安定が良く保たれる。図1~図4では窪み8の設置状態と窪み8と支持球3の当接状態を分かりやすくするように窪みの深さを少し誇張している。窪みの深さが極端に大きくなると、地震の水平方向の揺れにより支持球3が窪み8からずれる際に縦揺れの振動が発生してしまうことが想定される。窪み8の深さを適宜に設計することで、静状態での安定と地震発生時の窪み8から支持球3が脱出する際の縦揺れ振動を抑制することの両立が可能である。 In the example shown in FIGS. 1 to 3, a depression 8 is provided in a portion where the bottom floor 2 contacts the support ball 3. Since the top of the support ball 3 fits into the recess 8, the stability of the seismic isolation structure 1 in a static state is well maintained. In FIGS. 1 to 4, the depth of the recess is slightly exaggerated to make it easier to understand the installation state of the recess 8 and the contact state of the recess 8 and the support ball 3. If the depth of the depression becomes extremely large, it is assumed that pitching vibrations will occur when the support ball 3 is displaced from the depression 8 due to the horizontal shaking of an earthquake. By appropriately designing the depth of the depression 8, it is possible to achieve both stability in a static state and suppression of pitching vibration when the support ball 3 escapes from the depression 8 during an earthquake.

(第2実施形態)
図5、図6には図1~図3に示した免震構造において、底床2に窪み8を設けずに静状態での安定性を保つための構造例を示した。図5、図6の例では、底床2に支持球3を収容する窪みは設けられておらず、支持球3の上端部が水平に切り取られている。静状態において、支持球3はこの水平部分で底床2に接している。これにより、免震対象物の静状態での安定が保たれる。
(Second embodiment)
5 and 6 show an example of a structure in which the base isolation structure shown in FIGS. 1 to 3 does not have a recess 8 in the bottom floor 2 to maintain stability in a static state. In the examples shown in FIGS. 5 and 6, the bottom floor 2 is not provided with a recess for accommodating the support ball 3, and the upper end of the support ball 3 is cut out horizontally. In the static state, the support ball 3 is in contact with the bottom floor 2 at this horizontal portion. This maintains the stability of the seismically isolated object in a static state.

(第3実施形態)
第3実施形態に係る免震構造を図7、図8に示した。この実施形態では、内部固定具15により底床2に磁着部材11が固定されており、更にその磁着部材11を囲むように設けられた支持球受け12に支持球3が収容されている。ここで支持球3は磁性金属からなるので、支持球3と磁着部材11は磁力により互いに引き合い、その引力が免震構造の付勢手段として働く。
(Third embodiment)
A seismic isolation structure according to the third embodiment is shown in FIGS. 7 and 8. In this embodiment, a magnetic member 11 is fixed to the bottom floor 2 by an internal fixture 15, and a support ball 3 is housed in a support ball receiver 12 provided to surround the magnetic member 11. . Here, since the support ball 3 is made of magnetic metal, the support ball 3 and the magnetized member 11 are attracted to each other by magnetic force, and the attractive force acts as a biasing means for the seismic isolation structure.

磁着部材は公知のものが使用できる。支持球3に働く磁力が強いほど付勢手段としての機能に優れる。磁着部材に使用可能な磁石としては、永久磁石の他に電磁石も使用可能である。磁着部材に使用可能な磁性金属としては、鉄、ニッケル等やこれらからなる合金等も挙げられる。 A known magnetic member can be used. The stronger the magnetic force acting on the support ball 3, the better the function as a biasing means. In addition to permanent magnets, electromagnets can also be used as magnets that can be used in the magnetizing member. Examples of magnetic metals that can be used in the magnetizing member include iron, nickel, and alloys made of these.

図7、図8の例では、支持球3は支持球受け12を介して底床2を支持している。このような支持球受け12が存在することで、底床2に固定された磁着部材11が底床2から突出していても支持球3による支持が可能になる。また、磁着部材11と支持球3の間に隙間が設けられることで、底床2内に磁着部材11を格納するための空間を設ける必要が無いだけでなく、底床2の面上に後付けで磁着部材11を設置できるので、免震構造1の製造がより容易に行える。 In the examples shown in FIGS. 7 and 8, the support ball 3 supports the bottom floor 2 via the support ball receiver 12. The presence of such a support ball receiver 12 allows the support ball 3 to support the magnetic member 11 fixed to the bottom floor 2 even if it protrudes from the bottom floor 2. In addition, by providing a gap between the magnetic member 11 and the support ball 3, not only is there no need to provide a space for storing the magnetic member 11 in the bottom floor 2, but also the surface of the bottom bed 2 is Since the magnetic member 11 can be installed as an afterthought, the seismic isolation structure 1 can be manufactured more easily.

本実施形態には、図9(a)に示すように、支持球3が中実の磁性金属であり、支持球受け12にベアリング13が備わっている態様と、図9(b)に示すように、支持球3が非磁性素材からなり、中空構造であり、その内部に磁石14が支持球3に対しフリーの状態で収容され、支持球受け12にベアリング13が備わっている態様と(図9(b)の例では磁石14が磁着部材11に引かれる力により、支持球3の内壁で向い合っている)、図9(c)に示すように、支持球3が中空の磁性金属であり、ベアリングの無い支持球受け12を介して底床2を支持する態様が含まれる。 In this embodiment, as shown in FIG. 9(a), the support ball 3 is made of solid magnetic metal and the support ball receiver 12 is provided with a bearing 13, and as shown in FIG. 9(b), In the second embodiment, the support ball 3 is made of a non-magnetic material and has a hollow structure, and the magnet 14 is housed inside the support ball 3 in a free state relative to the support ball 3, and the support ball receiver 12 is provided with a bearing 13 (Fig. 9(b), the magnets 14 face each other on the inner wall of the support ball 3 due to the force of being attracted by the magnetic member 11), as shown in FIG. 9(c), the support ball 3 is made of hollow magnetic metal. This includes a mode in which the bottom floor 2 is supported via a support ball receiver 12 without a bearing.

ベアリング13を有する図9の(a)と(b)の例では、支持球3はベアリング13と当接しているため、支持球3と支持球受け12の摩擦が小さく支持球3がスムーズに動く。またベアリングが無い同図(c)の例では、支持球受け12の支持球3と当接する部分が面とり加工を施しているのでベアリングを有する場合と同様に支持球3はスムーズに動くことができる。 In the example shown in FIGS. 9A and 9B with the bearing 13, the support ball 3 is in contact with the bearing 13, so the friction between the support ball 3 and the support ball receiver 12 is small and the support ball 3 moves smoothly. . In addition, in the example shown in Fig. 2(c) without a bearing, the part of the support ball receiver 12 that contacts the support ball 3 is chamfered, so the support ball 3 can move smoothly as in the case with a bearing. can.

本実施形態では、磁着部材11、支持球受け12、磁性金属からなる支持球3で構成される免震構造は、四角形の底床2の下面四隅付近に設けたが、位置や数は任意である。ただし、底床に載せる免震対象物を安定して支持するという観点から、支持球3は、3カ所以上設けることが好ましい。 In this embodiment, the seismic isolation structure composed of the magnetic member 11, the support ball receiver 12, and the support balls 3 made of magnetic metal is provided near the four corners of the lower surface of the rectangular bottom floor 2, but the location and number can be determined arbitrarily. It is. However, from the viewpoint of stably supporting the seismically isolated object placed on the bottom floor, it is preferable to provide the support balls 3 at three or more locations.

以上、図1乃至図9を使用して複数の実施形態により本発明を説明したが、これらの実施形態を組み合わせて使用しても構わない。一枚の底床に異なる構成の付勢手段を設ける方法も採用可能であるが、それぞれ別の付勢手段を備えた複数の免震構造の上に1つの免震対象物を載せるという方法も可能である。 Although the present invention has been described above using a plurality of embodiments using FIGS. 1 to 9, these embodiments may be used in combination. Although it is possible to adopt a method in which biasing means of different configurations are provided on a single bottom floor, it is also possible to use a method in which a single seismically isolated object is placed on a plurality of seismic isolation structures each equipped with a different biasing means. It is possible.

本願発明の複数の免震構造を組み合わせる例として、図2又は図5に示した免震構造と図8に示した免震構造の組み合わせを挙げることができる。例えば、図2に示した支持球3と支持球3の間に図9(a)乃至図9(c)で示されるような磁着部材11、支持球受け12と支持球3からなる構造を設置する。弾性体41を含む免震構造は、磁力により付勢する免震構造に比べて強い揺れに対する免震効果が高く、一方支持球受け12を含む免震構造は、前記支持球受け12が支持球3をしっかりと保持するので、静状態において静置を保つ効果が高い。両者を組み合わせることで振動が殆どない状態では完全に静置を保ち、いざ大きな水平振動を受けても確実にそれを抑えることができるものである。 As an example of combining a plurality of seismic isolation structures of the present invention, a combination of the seismic isolation structure shown in FIG. 2 or 5 and the seismic isolation structure shown in FIG. 8 can be cited. For example, a structure consisting of a magnetic member 11, a support ball receiver 12, and a support ball 3 as shown in FIGS. 9(a) to 9(c) is placed between the support balls 3 shown in FIG. Install. A seismic isolation structure including the elastic body 41 has a higher seismic isolation effect against strong shaking than a seismic isolation structure biased by magnetic force.On the other hand, in a seismic isolation structure including the support ball receiver 12, the support ball receiver 12 is a support ball. 3 is firmly held, so it is highly effective in keeping it stationary in a static state. By combining the two, it can remain completely stationary when there is almost no vibration, and even if it is subjected to large horizontal vibrations, it can reliably suppress it.

また、このような組み合わせとすることで、図2で設けられている窪み8、図5で設けられている支持球3の水平面を省略することができ、工程の簡略化やコストの削減の効果も期待できる。 In addition, by using such a combination, it is possible to omit the recess 8 provided in Fig. 2 and the horizontal surface of the support ball 3 provided in Fig. 5, resulting in the effects of process simplification and cost reduction. You can also expect

(第4実施形態)
最後に、第1、第2実施形態の様に、付勢手段4が弾性体41と線状体5とからなる場合において、地震等による外部振動の振幅が大きい場合にも確実に対応可能な実施形態について説明する。大きな振幅の外部振動を受けた場合、それによる支持球3の移動距離も延びる。この際に、線状体5は支持球3に巻き取られることとなるが、巻き取られる長さ、つまり支持球3の移動距離が支持球3の周長よりかなり大きくなると、線状体5は支持球3に二重、三重・・・に巻き付くことになる。この時に、支持球3の表面が滑らかであると、線状体5が支持球3の表面にしっかりと巻き付くことが出来なくなる。線状体5が支持球3の表面にしっかりと巻き付かなかった場合、ゴム弾性による復元が一気に起こるため、具合が悪い。
(Fourth embodiment)
Finally, in the case where the biasing means 4 is composed of the elastic body 41 and the linear body 5 as in the first and second embodiments, it is possible to reliably cope with the case where the amplitude of external vibrations caused by an earthquake or the like is large. An embodiment will be described. When external vibrations of large amplitude are received, the distance that the support ball 3 moves due to the external vibrations also increases. At this time, the linear body 5 is wound around the support ball 3, but if the length of the winding, that is, the moving distance of the support ball 3 is considerably larger than the circumferential length of the support ball 3, the linear body 5 will be wrapped around the support ball 3 in double, triple, etc. fashion. At this time, if the surface of the support ball 3 is smooth, the linear body 5 will not be able to tightly wrap around the surface of the support ball 3. If the linear body 5 is not tightly wrapped around the surface of the support ball 3, the rubber elasticity will restore the body all at once, which will be inconvenient.

そこで、このような事態を防ぐ方策として支持球3の表面に溝を設けることが考えられる。この例が図10である。図10(a)は支持球3を正面から見た図で、図10(b)は上から見た図である。接着点30に線状体5が接合される。球状体3以外の底床、線状体等は省略している。 Therefore, it is conceivable to provide a groove on the surface of the support ball 3 as a measure to prevent such a situation. An example of this is shown in FIG. FIG. 10(a) is a front view of the support ball 3, and FIG. 10(b) is a top view. The linear body 5 is joined to the bonding point 30. The bottom floor, linear bodies, etc. other than the spherical body 3 are omitted.

図10(b)で分るように、球状体3の表面には線状体5を固定する接着点30(頂点3a)から底点3bに向かって等角度で並ぶ16本の溝31が設けられている。このような構造とすることで振幅が大きい地震が起きた際に線状体5及び弾性体41を確実に球状体3で巻き取って除震出来る。のみならず、水平面(頂点面32、底点面33)は上側転動面21、下側転動面22と接しているので静状態での安定性が増す。 As can be seen in FIG. 10(b), the surface of the spherical body 3 is provided with 16 grooves 31 arranged at equal angles from the adhesive point 30 (vertex 3a) to the bottom point 3b for fixing the linear body 5. It is being With such a structure, when an earthquake with large amplitude occurs, the linear body 5 and the elastic body 41 can be reliably wound around the spherical body 3 to absorb vibrations. In addition, since the horizontal surfaces (the apex surface 32 and the bottom surface 33) are in contact with the upper rolling surface 21 and the lower rolling surface 22, stability in a static state is increased.

本願発明の免震構造の下側転動面22は、支持球3が転動しやすいように、平らな水平面であることが好ましい。建築物の免震構造として使用する場合は、整地してコンクリート等で水平に養生した面を下側転動面22としてその上に他の構成を設置すればよい。また、前記のコンクリート等で水平に養生した面の上に適宜鉄板等を載せて下側転動面22としてよい。什器や家具等を載せて使用する場合は、室内の床面を下側転動面22としてその上に他の構成を設置する。この場合、床面の上にカーペット等が敷かれている場合は、そのカーペット等が下側転動面22として機能する。 The lower rolling surface 22 of the seismic isolation structure of the present invention is preferably a flat horizontal surface so that the support ball 3 can easily roll. When used as a seismic isolation structure for a building, other components may be installed on a surface leveled with concrete or the like as the lower rolling surface 22. Further, the lower rolling surface 22 may be formed by appropriately placing an iron plate or the like on the surface cured horizontally with concrete or the like. When using the device with fixtures, furniture, etc. placed thereon, other components are installed on the floor surface of the room as the lower rolling surface 22. In this case, if a carpet or the like is laid on the floor surface, the carpet or the like functions as the lower rolling surface 22.

本願発明の免震構造が適用できる免震対象物の例としては、一戸建てやマンション等の建築物、タンス等の家具や、陳列棚やOAデスク等の什器類が挙げられる。この他に、使用に際して微小な振動からの隔離が必要な分析装置類、例えば大型の走査型電子顕微鏡(SEM)等に対しても好適に適用しうる。 Examples of objects to be seismically isolated to which the seismic isolation structure of the present invention can be applied include buildings such as detached houses and condominiums, furniture such as chests of drawers, and fixtures such as display shelves and OA desks. In addition, the invention can also be suitably applied to analytical instruments that require isolation from minute vibrations during use, such as large-scale scanning electron microscopes (SEMs).

以上、本発明は、前記した実施の形態に限定されるものではない。本発明の分野における通常の知識を有する者であれば想到し得る、各種変形、修正を含む、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは言うまでもない。 As described above, the present invention is not limited to the embodiments described above. It goes without saying that the present invention includes design changes that do not depart from the gist of the present invention, including various modifications and modifications that can be conceived by a person having ordinary knowledge in the field of the present invention. .

1 免震構造
2 底床
21 上側転動面
22 下側転動面
3 支持球
3a 頂点
3b 底点
4 付勢手段
41 弾性体
5 線状体
6 固定具
7 挿通孔
8 窪み
11 磁着部材
12 支持球受け
13 ベアリング
14 磁石
15 内部固定具
30 接着点
31 溝
32 頂点面
33 底点面
1 Seismic isolation structure 2 Bottom floor 21 Upper rolling surface 22 Lower rolling surface 3 Support ball 3a Vertex 3b Bottom point 4 Biasing means 41 Elastic body 5 Linear body 6 Fixture 7 Insertion hole 8 Recess 11 Magnetic member 12 Support ball receiver 13 Bearing 14 Magnet 15 Internal fixture 30 Adhesive point 31 Groove 32 Top surface 33 Bottom point surface

Claims (7)

免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、
前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記付勢手段は長手方向に伸縮する弾性体を含み、
前記上側転動面は、板状部材からなる底床の下面からなり、
前記底床は、前記付勢手段を挿通する挿通孔を有し、
前記付勢手段は、前記挿通孔に挿通された状態で、長手方向の一端が前記底床の上面側において固定され、長手方向の他端側が前記底床の下側において前記支持球に連結されていて、
前記付勢手段は、前記弾性体の長手方向の他端に伸縮性を有さない線状体の長手方向の一端が接合されており、前記線状体の長手方向の他端が前記支持球に固定されていることを特徴とする免震構造。
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means for applying a biasing force to the support ball to bias the support ball to a predetermined position;
The biasing force is a tensile force acting between the predetermined position and the support ball ,
The biasing means includes an elastic body that expands and contracts in the longitudinal direction,
The upper rolling surface consists of a lower surface of a bottom made of a plate-like member,
The bottom floor has an insertion hole through which the biasing means is inserted,
When the biasing means is inserted into the insertion hole, one longitudinal end thereof is fixed on the upper surface side of the bottom floor, and the other longitudinal end side is connected to the support ball on the lower side of the bottom floor. and
In the biasing means, one longitudinal end of a non-stretchable linear body is joined to the other longitudinal end of the elastic body, and the other longitudinal end of the linear body is connected to the support ball. A seismic isolation structure characterized by being fixed to .
前記底床及び/又は前記支持球が中空構造であり、浮力により底床に設置された免震対象物を浮かすことができる請求項記載の免震構造。 2. The seismic isolation structure according to claim 1 , wherein the bottom floor and/or the support ball have a hollow structure, and can float a seismically isolated object installed on the bottom floor by buoyancy. 前記支持球は、付勢手段を固定する頂点から底点に向かう子午線方向に溝が設けられている請求項記載の免震構造。 2. The seismic isolation structure according to claim 1 , wherein the support ball is provided with a groove extending in a meridian direction from an apex to a bottom point at which the biasing means is fixed. 免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記支持球が磁性金属からなり、前記上側転動面の前記所定の位置に磁性を有する金属、又は磁石からなる磁着部材が設けられ、またその外側に設けられた支持球受けを介して、前記支持球が前記磁着部材に引き寄せられることにより、前記所定の位置に付勢される免震構造。
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means that applies a biasing force to the support ball to bias the support ball to a predetermined position, the biasing force being a tensile force acting between the predetermined position and the support ball;
The support ball is made of a magnetic metal, and a magnetic member made of a magnetic metal or a magnet is provided at the predetermined position of the upper rolling surface, and a support ball holder provided on the outside thereof, The seismic isolation structure is biased to the predetermined position by the support ball being attracted to the magnetic member.
免震対象物を支持する免震構造であって、
免震対象物とともに水平方向に揺動する上側転動面と、
地盤と共に水平方向に揺動する下側転動面と、
上側転動面、及び前記下側転動面の間を転動する支持球と、
前記支持球を所定の位置に付勢すべく前記支持球に付勢力を及ぼす付勢手段とを備え、前記付勢力は、前記所定の位置と前記支持球の間に働く引っ張り力であり、
前記支持球が非磁性素材からなり、中空構造であり、その内部に磁石を有し、前記上側転動面の前記所定の位置に磁性を有する金属、又は磁石からなる磁着部材が設けられ、またその外側に設けられた支持球受けを介して、前記支持球が前記磁着部材に引き寄せられることにより、前記所定の位置に付勢される免震構造。
A seismic isolation structure that supports a seismically isolated object,
an upper rolling surface that swings horizontally together with the seismically isolated object;
A lower rolling surface that swings horizontally with the ground;
a support ball rolling between an upper rolling surface and the lower rolling surface;
a biasing means that applies a biasing force to the support ball to bias the support ball to a predetermined position, the biasing force being a tensile force acting between the predetermined position and the support ball;
The support ball is made of a non-magnetic material and has a hollow structure, and has a magnet therein, and a magnetic member made of a magnetic metal or a magnet is provided at the predetermined position of the upper rolling surface, Further, the seismic isolation structure is biased to the predetermined position by attracting the support ball to the magnetic member via a support ball receiver provided on the outside thereof.
前記上側転動面に、前記支持球を転動可能な支持球受けを備える請求項又はに記載の免震構造。 The seismic isolation structure according to claim 4 or 5 , wherein the upper rolling surface is provided with a support ball receiver that allows the support ball to roll. 前記支持球受けがベアリングを介して前記支持球を支持する請求項に記載の免震構造。
The seismic isolation structure according to claim 6 , wherein the support ball receiver supports the support ball via a bearing.
JP2023100541A 2023-06-20 2023-06-20 Seismic isolation structure Active JP7382528B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023100541A JP7382528B1 (en) 2023-06-20 2023-06-20 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023100541A JP7382528B1 (en) 2023-06-20 2023-06-20 Seismic isolation structure

Publications (1)

Publication Number Publication Date
JP7382528B1 true JP7382528B1 (en) 2023-11-16

Family

ID=88729211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023100541A Active JP7382528B1 (en) 2023-06-20 2023-06-20 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP7382528B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161432A (en) 1998-11-30 2000-06-16 Okumura Corp Restoring mechanism in base isolation device
JP2011027251A (en) 2009-06-22 2011-02-10 Atsuyoshi Mantani Device for supporting seismic isolation ball

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161432A (en) 1998-11-30 2000-06-16 Okumura Corp Restoring mechanism in base isolation device
JP2011027251A (en) 2009-06-22 2011-02-10 Atsuyoshi Mantani Device for supporting seismic isolation ball

Similar Documents

Publication Publication Date Title
JP2011237038A (en) Isolation platform
KR101960160B1 (en) Vibration isolation viscoelastic module for earthquake reduction
KR101701810B1 (en) Seismic equipment
KR101765489B1 (en) Power Distributing Board with seismic isolation apparatus using a permanent magnet
KR20200100990A (en) Vibration isolation device with improved restoring force using ball and spring
JP7382528B1 (en) Seismic isolation structure
JP2015078745A (en) Pedestal having base isolation function
JP6175641B2 (en) Seismic isolation device
KR20200100989A (en) Vibration isolation device using ball and spring
JPH03163240A (en) Three-dimensional earthquakeproof device
JP4706958B2 (en) Seismic isolation structure
JP4446491B1 (en) Seismic isolation ball bearing device
KR101928017B1 (en) Vibration Isolation Device
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JP6152406B2 (en) Rubber plate shock absorber and air levitation type seismic isolation device
JPH06158912A (en) Vibration isolation apparatus
JPH0925990A (en) Base isolation device
JPH11315886A (en) Base isolation device
JP2002188319A (en) Base isolation device for dwelling house
JP2008101346A (en) Aseismic control structure
JP2012172511A (en) Seismic isolator using flanged spherical surface roller
JP2008240290A (en) Base-isolating device and its construction method
JP2003313883A (en) Base isolating apparatus and base isolation structure
JP7393123B2 (en) seismic isolation building
JP4923247B2 (en) Isolation device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7382528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150