JP7382134B2 - Digital map and how to use it to drive autonomously - Google Patents

Digital map and how to use it to drive autonomously Download PDF

Info

Publication number
JP7382134B2
JP7382134B2 JP2018158861A JP2018158861A JP7382134B2 JP 7382134 B2 JP7382134 B2 JP 7382134B2 JP 2018158861 A JP2018158861 A JP 2018158861A JP 2018158861 A JP2018158861 A JP 2018158861A JP 7382134 B2 JP7382134 B2 JP 7382134B2
Authority
JP
Japan
Prior art keywords
lane
vehicle
road
line data
digital map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018158861A
Other languages
Japanese (ja)
Other versions
JP2020034632A (en
Inventor
哲浩 金海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Smart Mobility Co Ltd
Original Assignee
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Smart Mobility Co Ltd filed Critical Advanced Smart Mobility Co Ltd
Priority to JP2018158861A priority Critical patent/JP7382134B2/en
Publication of JP2020034632A publication Critical patent/JP2020034632A/en
Application granted granted Critical
Publication of JP7382134B2 publication Critical patent/JP7382134B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instructional Devices (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Description

本発明はコンピュータで数値として扱えるデジタルマップと、このデジタルマップを使用した自動運転方法に関する。 The present invention relates to a digital map that can be treated as numerical values by a computer, and an automatic driving method using this digital map.

コンピュータで数値として扱えるデジタルマップ(数値地図)を日本デジタル道路地図協会が提供している。このデジタルマップはナビゲーションシステムなどに広く使用されている。 The Japan Digital Road Map Association provides digital maps (digital maps) that can be treated as numerical values on a computer. This digital map is widely used in navigation systems.

日本国政府は、2020年代前半から後半に向けて「準自動運転システム」から「完全自動運転システム」の導入を目指している。この目標の実現に三次元空間情報を持つデジタルマップ(ダイナミックマップ)の実現が欠かせない。また、道路や建物といった時間変化の少ない情報だけでなく、渋滞や周辺車両の進行情報といった刻々と変化する情報も併せ持つことが求められる。
自動車技術会報告で交通事故シミュレータの評価・交通流解析報告がある。内閣府(SIP)による自己位置推定・経路特定のための高精度地図構築のみでなく、すべての車両のための高度道路交通情報データベースとしてのダイナミックマップ構築の動きがある。
The Japanese government is aiming to introduce "semi-automated driving systems" to "fully automated driving systems" in the early to late 2020s. To achieve this goal, it is essential to create digital maps (dynamic maps) that contain three-dimensional spatial information. In addition, it is required to have not only information that does not change over time, such as roads and buildings, but also information that changes from moment to moment, such as information on traffic jams and the progress of nearby vehicles.
The Society of Automotive Engineers of Japan reports on the evaluation and traffic flow analysis of traffic accident simulators. The Cabinet Office (SIP) is moving not only to construct high-precision maps for self-location estimation and route identification, but also to construct dynamic maps as intelligent road traffic information databases for all vehicles.

特許文献1には、車両を自動走行させる際に、他の自動走行車両が手動運転に切り替えたことを示すデータとして、切替位置を示すデジタルマップとして受信することが記載されている。 Patent Document 1 describes that when a vehicle is driven automatically, data indicating that another automatically driven vehicle has switched to manual operation is received as a digital map indicating a switching position.

特許文献2には、自動車を自動運転させてもよい条件として、自動車の現行の車道の少なくとも片側に、構造的分離部が存在すること、自動車の車線は最小車線幅員を有すること、記自動車の車線の曲率半径は、予め決められた閾値よりも大きいこと、周辺検知センサの到達範囲を実質的に制限する凸部及びくぼみが存在しないこと、車線の数は変化しないこと、トンネルは存在しないこと、料金所などの建築物は、車道上に存在しないこと、高速道路インターチェンジは存在しないこと、交通渋滞は存在しないこと、危険状況に関する交通情報は存在しないこと、工事現場の存在に関する情報は存在しないことを挙げている。 Patent Document 2 states that the conditions for allowing a car to operate automatically include that a structural separation part exists on at least one side of the current roadway for the car, and that the car lane has a minimum lane width. The radius of curvature of the lanes is greater than a predetermined threshold, there are no protrusions and depressions that would substantially limit the reach of the surrounding sensor, the number of lanes does not change, and there are no tunnels. , there are no buildings such as toll plazas on the roadway, there are no expressway interchanges, there are no traffic jams, there is no traffic information about dangerous situations, and there is no information about the existence of construction sites. It mentions things.

特許文献3には、自車の位置を計測する地球航法衛星システムGNSSによる車両の位置を修正する方法として、車両の第一の位置を算出し、この第一の位置をデジタルマップの一つの車道に適合させ、これにより車両の第二の位置を算出し、デジタルマップ内で位置を照合することが可能な周囲の物体を特定し、センサを用いて車両と物体の間の実際の距離を検出し、第二の位置と物体の間の算出距離を計算する内容が開示されている。 Patent Document 3 describes a method for correcting the position of a vehicle using the global navigation satellite system GNSS, which measures the position of the own vehicle. , thereby calculating a second position of the vehicle, identifying surrounding objects whose positions can be matched in a digital map, and using sensors to detect the actual distance between the vehicle and the object. However, the content of calculating the calculated distance between the second position and the object is disclosed.

また非特許文献1には、各種交通事故予測シミュレーションシステムが備えている機能レベルや交通状況の再現能力を評価するための標準的な検証・評価手続きを示したマニュアルが示されている。 Further, Non-Patent Document 1 discloses a manual that shows standard verification and evaluation procedures for evaluating the functional level and traffic situation reproduction ability of various traffic accident prediction simulation systems.

特開2017-117456号公報Japanese Patent Application Publication No. 2017-117456 特表2017-530045号公報Special table 2017-530045 publication 特表2017-513020号公報Special table 2017-513020 publication

「交通事故シミュレーションシステム検証マニュアル」公益社団法人 自動車技術会 交通事故予測シミュレーション検定検討委員会 https://www.jase.or.jp/tops/topics/1040/1040-1A“Traffic Accident Simulation System Verification Manual” Society of Automotive Engineers of Japan, Traffic Accident Prediction Simulation Certification Review Committee https://www.jase.or.jp/tops/topics/1040/1040-1A

デジタルマップを用いない従来の自動運転制御では、認識センサが検知した周囲の障害物全てを速度制限の対象として捉えている。このため、自車の走行車線とは重なっていない車線の車両や歩道の歩行者に対してもそれを検知すると減速するなど不要な速度制御が生じている。 Conventional automatic driving control that does not use digital maps considers all surrounding obstacles detected by recognition sensors as subject to speed limits. For this reason, unnecessary speed control occurs, such as slowing down when detecting vehicles in lanes that do not overlap with the own vehicle's driving lane or pedestrians on the sidewalk.

また、従来の自動運転制御では、車線変更を行うにしても隣接車線を判断する情報がないため、周囲の検出物が車線変更の妨げになるか否かを判断できない。 In addition, in conventional automatic driving control, even if a lane change is to be performed, there is no information for determining an adjacent lane, so it is not possible to determine whether surrounding detected objects will interfere with the lane change.

また、従来の自動運転制御では、路肩に駐車している車両を避けるにあたり自車線をそのまま走行できるのか、隣接車線を跨がなければならないかの判断ができない。 Furthermore, with conventional automatic driving control, it is not possible to determine whether a vehicle can continue in its own lane or whether it must cross over into an adjacent lane to avoid a vehicle parked on the shoulder of the road.

更に、交差点で曲がる(右折する)場合に、対向車をかわして通過できるかなど動く障害に対する判断が難しい。 Furthermore, when turning (turning right) at an intersection, it is difficult to judge whether or not it is possible to pass by passing an oncoming vehicle.

先に挙げた特許文献1~3はいずれもデジタルマップに関する内容が記載されているが、自動運転の際に自車線をどのように判断するか、何をもって隣接車線と判断するか、更には自車の走行を妨げる障害物であるか否かの判断について何ら開示も示唆もされていない。
また、非特許文献1についても交通事故のシミュレーションの検証についての開示のみで、デジタルマップをどのようにするかについては何ら開示がない。
Patent Documents 1 to 3 listed above all describe content related to digital maps, but they do not include how to determine the own lane during automatic driving, what determines that it is an adjacent lane, and even more. There is no disclosure or suggestion as to whether or not the object is an obstacle that obstructs the movement of the vehicle.
Furthermore, Non-Patent Document 1 only discloses verification of traffic accident simulation, but does not disclose anything about how to create a digital map.

上記の課題を解決するため、本発明に係る自動運転用のデジタルマップには、決められた走行経路に沿って白線データと道路境界データが定義され、前記白線データは実在する白線の他に、白線が存在しない部分については仮想的な白線データで補完され、また前記道路境界データは実在する境界線の他に、境界線が存在しない部分については仮想的な境界線データで補完された構成とした。
前記マップ上に白線データ、境界線データが存在しない部分としては交差点が挙げられる。
In order to solve the above problems, in the digital map for automatic driving according to the present invention, white line data and road boundary data are defined along a determined driving route, and the white line data includes, in addition to the actual white lines, Portions where white lines do not exist are supplemented with virtual white line data, and the road boundary data has a configuration in which, in addition to real boundaries, portions where no boundary lines exist are supplemented with virtual boundary line data. did.
Intersections are examples of areas where white line data and boundary line data do not exist on the map.

また、上記のデジタルマップを用いた本発明に係る自動運転方法は、決められた走行経路に沿って走行する際に、前記走行経路の法線方向を基準にして左右に存在する最初の白線の間を自車線と判断し、前記走行経路の法線方向を基準にして最初の白線と2番目の白線との間を隣接車線と判断し、前記走行経路の法線方向を基準にして左右に存在する道路境界線の間をセンサにより障害物を検出する認識対象範囲とする。 Further, in the automatic driving method according to the present invention using the digital map described above, when driving along a determined driving route, the first white line existing on the left and right with respect to the normal direction of the driving route is The area between the two lanes is determined to be the own lane, and the area between the first white line and the second white line is determined to be the adjacent lane based on the normal direction of the driving route. The area between existing road boundary lines is set as a recognition target range in which obstacles are detected by sensors.

本発明に係るデジタルマップ及びこのデジタルマップを用いた自動運転方法によれば、自動運転する際に、自車が走行すべき自車線を交差点も含めて正確に判断できる。 According to the digital map and the automatic driving method using this digital map according to the present invention, when driving automatically, it is possible to accurately determine the own lane in which the own vehicle should travel, including intersections.

したがって、障害物が前方に存在した場合でもそれが自車線から大きく外れている場合などには速度を低下させず、効率的な速度制御が可能になる。 Therefore, even if there is an obstacle in front of the vehicle, the speed will not be reduced even if the obstacle is far from the vehicle's own lane, allowing efficient speed control.

また、自車が走行する自車線に隣接する車線も正確に判断でき、隣接車線上の障害物を認識できるので、効率的なタイミング、例えば隣接車線を走行する他車両の通過を待って車線変更ができる。 In addition, it is possible to accurately determine the lane adjacent to the own lane in which the own vehicle is traveling, and to recognize obstacles on the adjacent lane, allowing for efficient timing, for example, changing lanes after waiting for another vehicle traveling in the adjacent lane to pass. Can be done.

更に左右の道路境界線の間をセンサにより障害物を検出する認識対象範囲としたことで、余分な対象、例えば安全な歩道を歩いている歩行者を認識し、減速してしまうなどの不具合が解消できる。 Furthermore, by using sensors to detect obstacles between the left and right road boundaries, the system recognizes unnecessary objects, such as pedestrians walking on safe sidewalks, and avoids problems such as slowing down. It can be resolved.

デジタルマップの作成手順の説明図Illustration of the procedure for creating a digital map マップデータから白線データと道路境界線データを取得したデジタルマップを示す図Diagram showing a digital map with white line data and road boundary line data obtained from map data 白線と道路境界線が補完されたデジタルマップを示す図Diagram showing a digital map with supplemented white lines and road boundaries デジタルマップの数値表現の一例を示す図Diagram showing an example of numerical representation of a digital map (a)は自車線、(b)は隣接車線、(c)はセンサにより障害物を検出する認識対象範囲を説明した図(a) is the own lane, (b) is the adjacent lane, and (c) is a diagram explaining the recognition target range in which obstacles are detected by the sensor. デジタルマップを使用した自動運転方法の説明図Explanatory diagram of automatic driving method using digital map

自動運転に使用するデジタルマップを作成するには、図1に示すように、入手可能なデジタルマップをベースに、白線データと道路境界データを取得する。 To create a digital map for use in automated driving, white line data and road boundary data are acquired based on available digital maps, as shown in Figure 1.

白線データは経路上に存在する白線の位置データを取得し(工程1)、車線を判断するための白線として定義する。また経路の左右に存在するガードレール及び中央分離帯等の位置データを取得し(工程2)、速度制限対象を認識する範囲を道路境界として定義する。
これらのデータから、白線と道路境界を示したのが図2に示すマップである。
For white line data, position data of white lines existing on the route is acquired (step 1) and defined as white lines for determining lanes. In addition, positional data of guardrails, median strips, etc. on the left and right sides of the route is acquired (step 2), and the range in which speed limits are recognized is defined as the road boundary.
The map shown in FIG. 2 shows white lines and road boundaries based on these data.

交差点などには経路に沿って白線が敷かれていないので、自動運転で自車線を認識するには仮想の白線を補完する(工程3)。同様に、ガードレールや中央分離帯がなくとも、速度制限対象として認識する必要のない範囲の道路境界を補完する(工程4)。このようにして、白線と道路境界を補完したのが図3に示すマップである。 Since there are no white lines along the route at intersections, etc., virtual white lines are used to help autonomous driving recognize its own lane (Step 3). Similarly, even if there are no guardrails or median strips, road boundaries in areas that do not need to be recognized as subject to speed restrictions are supplemented (Step 4). The map shown in FIG. 3 is obtained by supplementing white lines and road boundaries in this way.

前記白線と道路境の表現は経度と緯度で行う。図4は道路境界を経度と緯度で表した例である。 The white lines and road boundaries are expressed using longitude and latitude. FIG. 4 is an example of road boundaries expressed in terms of longitude and latitude.

図5(a)は自車線の認識方法を説明しており、自車線は自車両が走行している経路pの法線nを基準として、左右に存在する最初の白線w1、w2の間を自車線と認識する。 Figure 5(a) explains the method of recognizing the own lane, where the own lane is defined between the first white lines w1 and w2 on the left and right, with the normal n of the route p that the own vehicle is traveling as a reference. It is recognized as the own lane.

図5(b)は隣接車線の認識方法を説明しており、隣接車線は左右に存在する最初の白線w1またはw2と、法線nを基準として2つ目の白線w3との間を隣接車線と認識する。 Fig. 5(b) explains the method for recognizing adjacent lanes. I recognize that.

図5(c)は車両が備えたセンサにより障害物を検出する認識対象範囲を説明しており、経路pの法線nを基準として、左右に存在する境界線b1、b2間を認識対象範囲とする。 Figure 5(c) explains the recognition target range in which obstacles are detected by the sensor equipped on the vehicle, and the recognition target range is between the boundary lines b1 and b2 on the left and right, with the normal n of the route p as a reference. shall be.

次に上記デジタルマップを使用した自動運転の一例を図4のフローチャートに従って説明する。
先ず、GPS等の情報に基づき自車両の走行位置を特定し、その走行位置とデジタルマップの白線情報から前記した方法で自車線を認識する(工程5)。
Next, an example of automatic driving using the digital map will be explained according to the flowchart of FIG. 4.
First, the driving position of the own vehicle is specified based on information such as GPS, and the own lane is recognized using the above-described method from the driving position and white line information on the digital map (Step 5).

次に、自車両の走行位置とデジタルマップの白線の位置情報から前記した方法で隣接車線を認識する(工程6)。また走行中は認識対象範囲(境界線b1、b2間)を認識し(工程7)、この認識対象範囲に障害物があるか否かを検出する。 Next, adjacent lanes are recognized using the method described above from the driving position of the own vehicle and the position information of the white lines on the digital map (Step 6). Further, while the vehicle is running, the recognition target range (between the boundaries b1 and b2) is recognized (step 7), and it is detected whether or not there is an obstacle in this recognition target range.

ここで、認識センサにより検出した障害物の位置は自車両を基準にした相対座標であるため、GPS等の情報を基に、自車線内、隣接車線内、道路境界内と同一の座標系に変換し、障害物が自車線内、隣接車線内、道路境界内のどこに位置するかを識別する(工程8)。 Here, the position of the obstacle detected by the recognition sensor is in relative coordinates with respect to the own vehicle, so based on information such as GPS, the position of the obstacle detected by the recognition sensor is set to the same coordinate system as within the own lane, within the adjacent lane, and within the road boundary. Then, it is identified where the obstacle is located within the own lane, within the adjacent lane, or within the road boundary (Step 8).

自車線内、隣接車線内または道路境界内に存在する障害物を制御対象とする。
具体的には、直線走行時で、自車線内に障害物がある場合(一部がかかる場合も含む)には、速度調整(減速または停止)し、自車線内に障害物がない場合にはそのまま走行する。
Obstacles within the own lane, adjacent lanes, or road boundaries are targeted for control.
Specifically, when driving in a straight line, if there is an obstacle within the own lane (including when it is partially covered), the vehicle will adjust the speed (decelerate or stop), and when there is no obstacle within the own lane. continues to run.

隣接車線に車線変更する場合で、隣接車線に障害物がある場合(一部がかかる場合も含む)には、車線変更のタイミングを調整し、隣接車線に障害物がない場合にはそのまま車線変更を行う。 When changing lanes to the adjacent lane, if there is an obstacle in the adjacent lane (including partially covered), adjust the timing of the lane change, and if there is no obstacle in the adjacent lane, continue changing lanes. I do.

交差点で曲がる場合や進行可否判断等、直線走行でも車線変更でもない時に障害物を検出した場合には、その障害物の位置が自車線内、隣接車線内または道路境界内であれば、制御対象とする。 If an obstacle is detected when you are not driving in a straight line or changing lanes, such as when turning at an intersection or determining whether or not to proceed, if the obstacle is located within the own lane, an adjacent lane, or within the road boundary, the control target shall be.

そして、障害物を回避した後、走行が終了していない場合は工程5に戻り、走行が終了した場合にはプログラムも終了する。 After avoiding the obstacle, if the running has not ended, the process returns to step 5, and if the running has ended, the program ends.

w1、w2、w3…白線
b1、b2…境界線
p…経路
n…法線
w1, w2, w3...White line b1, b2...Boundary line p...Route n...Normal line

Claims (1)

道路境界線及び道路上の白線が数値として扱われるデジタルマップの数値情報に基づいたコンピュータによる自動運転方法であって、前記デジタルマップには、障害物を検出する認識対象範囲としての走行経路を基準にして左右に存在する道路境界線データと、走行経路を基準として左右に存在する最初の2本白線データと、この2本の白線データのうちの道路中央寄りの1本の白線データとの間を隣接車線と判断するための白線データと、が定義され、更に経路に沿った白線データ及び道路境界データが存在しない交差点を含む箇所については途切れた白線及び道路境界をつなぐ仮想の白線データ及び道路境界データが補完して定義され、GPS情報に基づいて、自車両の走行位置を特定し、特定した走行位置と前記デジタルマップの情報から、自車線、隣接車線及び道路境界線を認識し、自車両が備えるセンサによって道路境界線間の障害物の有無を検出し、前記コンピュータからの指示により前記自車線内に障害物がある場合には減速又は停止し、自車線内に障害物がない場合にはそのまま走行し、隣接車線に車線変更する場合で且つ隣接車線に障害物がある場合にはタイミングを調整し、障害物がない場合にはそのまま車線変更することを特徴とする自動運転方法。 An automatic driving method using a computer based on numerical information of a digital map in which road boundaries and white lines on the road are treated as numerical values, the digital map having a driving route as a reference range for recognition to detect obstacles. Between the road boundary line data that exists on the left and right, the first two white line data that exists on the left and right with the driving route as a reference, and the one white line data that is closer to the center of the road among these two white line data. white line data for determining adjacent lanes, and furthermore, for locations including intersections where white line data and road boundary data along the route do not exist, virtual white line data and roads that connect interrupted white lines and road boundaries are defined. Boundary data is supplemented and defined, and the driving position of the own vehicle is specified based on the GPS information, and the own lane, adjacent lanes, and road boundaries are recognized from the identified driving position and the information on the digital map, and the driving position of the own vehicle is determined based on the GPS information. Sensors installed in the vehicle detect the presence or absence of obstacles between road boundaries, and according to instructions from the computer, the vehicle decelerates or stops if there is an obstacle within the own lane, and if there is no obstacle within the own lane. The automatic driving method is characterized by driving the vehicle as it is, adjusting the timing when changing lanes to an adjacent lane and when there is an obstacle in the adjacent lane, and changing lanes as it is when there is no obstacle.
JP2018158861A 2018-08-28 2018-08-28 Digital map and how to use it to drive autonomously Active JP7382134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018158861A JP7382134B2 (en) 2018-08-28 2018-08-28 Digital map and how to use it to drive autonomously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018158861A JP7382134B2 (en) 2018-08-28 2018-08-28 Digital map and how to use it to drive autonomously

Publications (2)

Publication Number Publication Date
JP2020034632A JP2020034632A (en) 2020-03-05
JP7382134B2 true JP7382134B2 (en) 2023-11-16

Family

ID=69667911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018158861A Active JP7382134B2 (en) 2018-08-28 2018-08-28 Digital map and how to use it to drive autonomously

Country Status (1)

Country Link
JP (1) JP7382134B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156704A (en) 2016-03-04 2017-09-07 三菱電機株式会社 Fundamental map data
JP2018106017A (en) 2016-12-27 2018-07-05 株式会社オゼットクリエイティブ Device, program, and method for map information creation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6633893B2 (en) * 2015-11-10 2020-01-22 田中 成典 Road feature determination device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017156704A (en) 2016-03-04 2017-09-07 三菱電機株式会社 Fundamental map data
JP2018106017A (en) 2016-12-27 2018-07-05 株式会社オゼットクリエイティブ Device, program, and method for map information creation

Also Published As

Publication number Publication date
JP2020034632A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
US10948924B2 (en) Method and apparatus for controlling an autonomous vehicle
KR102347036B1 (en) Track prediction method and device for obstacle at junction
US11433894B2 (en) Driving assistance method and driving assistance device
EP3088280B1 (en) Autonomous driving vehicle system
CN106355918B (en) Control method, the device and system of automatic driving vehicle
US11130492B2 (en) Vehicle control device, vehicle control method, and storage medium
US20190333373A1 (en) Vehicle Behavior Prediction Method and Vehicle Behavior Prediction Apparatus
US20220234615A1 (en) In-vehicle device and driving assist method
JP7035945B2 (en) Map information system
JP7010981B2 (en) Vehicle control devices, vehicle control methods, and programs
JP2021125054A (en) Peripheral recognition device, peripheral recognition method, and program
RU2768091C1 (en) Driving assistance method and driving assistance device
JP6790638B2 (en) Travel control method and travel control device
JP4899671B2 (en) Traveling track estimation device
KR20190064228A (en) Apparatus and method of providing information of traffic lanes using image sensing and vehicle control method using the same
CN110435646A (en) A kind of blind area target tracking method of vehicle
US11919519B2 (en) Method and device for operating an assistance system of a vehicle, and a vehicle
US20200219399A1 (en) Lane level positioning based on neural networks
JP7382134B2 (en) Digital map and how to use it to drive autonomously
WO2019127076A1 (en) Automated driving vehicle control by collision risk map
WO2021209403A1 (en) Detection of obstacles in a curved road
US20200159218A1 (en) Autonomous driving device
RU2735752C1 (en) Method of determining turn to the right/left and device for determining turn to the right/left for vehicle with driving assistance
CN114729815A (en) Method for recognizing a distance traveled
JP2006031602A (en) Automatic driving system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220420

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220518

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220519

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220722

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220727

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7382134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150