JP7381365B2 - water treatment equipment - Google Patents

water treatment equipment Download PDF

Info

Publication number
JP7381365B2
JP7381365B2 JP2020030386A JP2020030386A JP7381365B2 JP 7381365 B2 JP7381365 B2 JP 7381365B2 JP 2020030386 A JP2020030386 A JP 2020030386A JP 2020030386 A JP2020030386 A JP 2020030386A JP 7381365 B2 JP7381365 B2 JP 7381365B2
Authority
JP
Japan
Prior art keywords
flow path
inner tube
water
treated
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020030386A
Other languages
Japanese (ja)
Other versions
JP2021133287A (en
Inventor
吏 草野
冬比古 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2020030386A priority Critical patent/JP7381365B2/en
Publication of JP2021133287A publication Critical patent/JP2021133287A/en
Application granted granted Critical
Publication of JP7381365B2 publication Critical patent/JP7381365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水処理装置に関し、特に、被処理水に紫外光を照射する水処理装置に関する。 The present invention relates to a water treatment device, and particularly to a water treatment device that irradiates water to be treated with ultraviolet light.

近年、飲料水等の被処理水を殺菌する技術として、紫外線照射を用いる技術が検討されている。このような紫外線照射を用いて被処理水を殺菌する技術には、被処理水が流れる流路と、この流路内を流れる被処理水に紫外線を照射する光源と、を備える水処理装置が用いられる。特許文献1には、この種の水処理装置が開示されている。 In recent years, a technique using ultraviolet irradiation has been studied as a technique for sterilizing water to be treated such as drinking water. Such technology for sterilizing water to be treated using ultraviolet irradiation includes a water treatment device that includes a flow path through which the water to be treated flows and a light source that irradiates the water to be treated with ultraviolet rays flowing in this flow path. used. Patent Document 1 discloses this type of water treatment device.

特許文献1には、処理槽の内部を、仕切り部材によって流入部に連通する往路側流路と流出部に連通する復路側流路とに区画形成する水処理装置が開示されている。また、特許文献1には、仕切り部材に、紫外線を照射する紫外線LED(Ultra Violet-Light Emitting Diode)を設け、紫外線LEDからの紫外線が照射される一方の流路を紫外線照射流路とし、他方の流路を紫外線LEDを冷却するための冷却流路とすることが開示されている。 Patent Document 1 discloses a water treatment device in which the inside of a treatment tank is divided into an outgoing flow path communicating with an inflow portion and a return flow path communicating with an outflow portion by a partition member. Further, in Patent Document 1, an ultraviolet LED (Ultra Violet-Light Emitting Diode) that irradiates ultraviolet rays is provided in a partition member, one channel to which ultraviolet rays from the ultraviolet LED is irradiated is used as an ultraviolet irradiation channel, and the other is an ultraviolet irradiation channel. It is disclosed that the flow path is used as a cooling flow path for cooling an ultraviolet LED.

特開2014-161767号公報Japanese Patent Application Publication No. 2014-161767

特許文献1の水処理装置によれば、紫外線照射流路内を流れる被処理水に紫外線LEDからの紫外線を照射することによって被処理水の紫外線処理を行うことができる。更に、特許文献1の水処理装置によれば、冷却流路内を流れる被処理水によって紫外線LEDを冷却することができる。つまり、特許文献1の水処理装置では、紫外線LEDの冷却用の流体を流す通路を、上述の流路とは別に設ける必要がない。 According to the water treatment device of Patent Document 1, the water to be treated can be treated with ultraviolet light by irradiating the water flowing through the ultraviolet irradiation channel with ultraviolet rays from the ultraviolet LED. Furthermore, according to the water treatment device of Patent Document 1, the ultraviolet LED can be cooled by the water to be treated flowing in the cooling channel. That is, in the water treatment device of Patent Document 1, there is no need to provide a passage through which the fluid for cooling the ultraviolet LEDs flows, separate from the above-mentioned flow passage.

しかしながら、特許文献1の水処理装置では、紫外線照射流路と冷却流路とが折り返して連なるように流路全体が区画形成される。そのため、水処理装置内の流路が複雑化し易く、依然として改善の余地がある。 However, in the water treatment device of Patent Document 1, the entire flow path is formed into sections such that the ultraviolet irradiation flow path and the cooling flow path are folded back and connected. Therefore, the flow path within the water treatment device tends to become complicated, and there is still room for improvement.

本発明は、被処理水の紫外線処理と紫外線LEDの冷却とを、簡易な流路を用いて実現可能な水処理装置を提供することを目的とする。 An object of the present invention is to provide a water treatment device that can perform ultraviolet treatment of water to be treated and cool ultraviolet LEDs using a simple flow path.

本発明の第1の態様としての水処理装置は、紫外線を用いて被処理水を紫外線処理する水処理装置であって、前記被処理水が流れる流路が内部に形成されている流路区画体と、前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、前記流路区画体は、前記内管部の径方向外側に位置する流路に面する内壁に凸部を備える。 A water treatment device according to a first aspect of the present invention is a water treatment device that performs ultraviolet treatment on water to be treated using ultraviolet rays, and includes a channel section in which a channel through which the water to be treated flows is formed. and an ultraviolet LED that irradiates the water to be treated flowing in the flow path with ultraviolet rays, and the flow path partitioning body is configured to extend from the upstream side of the flow path to the downstream side of the flow path in the flow path. The ultraviolet LED is held in a holding area of a peripheral wall of the inner tube and is capable of irradiating ultraviolet rays toward the water to be treated flowing radially outside the inner tube. The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end, and the flow path dividing body is A convex portion is provided on the inner wall facing the flow path located on the radially outer side.

本発明の第2の態様としての水処理装置は、紫外線を用いて被処理水を紫外線処理する水処理装置であって、前記被処理水が流れる流路が内部に形成されている流路区画体と、前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、前記流路区画体は、前記内管部を含む略円筒状の本体部と、前記本体部の外周面から径方向の外側に向かって突出する流入口部と、前記本体部の外周面から径方向の外側に向かって突出する流出口部と、を備え、前記流入口部及び前記流出口部の少なくとも一方は、前記本体部の外周面との連結位置から、前記本体部の外周面の法線方向に対して傾斜する方向に延在している。 A water treatment device according to a second aspect of the present invention is a water treatment device that performs ultraviolet treatment on water to be treated using ultraviolet rays, and includes a channel section in which a channel through which the water to be treated flows is formed. and an ultraviolet LED that irradiates the water to be treated flowing in the flow path with ultraviolet rays, and the flow path partitioning body is configured to extend from the upstream side of the flow path to the downstream side of the flow path in the flow path. The ultraviolet LED is held in a holding area of a peripheral wall of the inner tube and is capable of irradiating ultraviolet rays toward the water to be treated flowing radially outside the inner tube. The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end, and the flow path dividing body is configured to close the inner tube portion. a substantially cylindrical main body, an inlet that protrudes radially outward from the outer circumferential surface of the main body, and an outlet that protrudes radially outward from the outer circumferential surface of the main body. , at least one of the inflow port and the outflow port extends from a connection position with the outer circumferential surface of the main body in a direction inclined with respect to a normal direction of the outer circumferential surface of the main body. ing.

本発明の1つの実施形態として、前記流入口部及び前記流出口部それぞれは、前記本体部の外周面との連結位置から、前記本体部の外周面の法線方向に対して傾斜する方向に延在している。 In one embodiment of the present invention, each of the inflow port and the outflow port extends from a connection position with the outer circumferential surface of the main body in a direction inclined with respect to a normal direction of the outer circumferential surface of the main body. Extending.

本発明の第3の態様としての水処理装置は、紫外線を用いて被処理水を紫外線処理する水処理装置であって、前記被処理水が流れる流路が内部に形成されている流路区画体と、前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、前記内管部は、流路上流側で閉鎖され、流路下流側で開放されており、前記紫外線LEDを含み、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能な第1発光部と、前記紫外線LEDを含み、前記内管部の底壁に保持され、前記底壁の流路上流側を流れる前記被処理水に向かって紫外線を照射可能な第2発光部と、を備える。 A water treatment device according to a third aspect of the present invention is a water treatment device that performs ultraviolet treatment on water to be treated using ultraviolet rays, and includes a channel section in which a channel through which the water to be treated flows is formed. and an ultraviolet LED that irradiates the water to be treated flowing in the flow path with ultraviolet rays, and the flow path partitioning body is configured to extend from the upstream side of the flow path to the downstream side of the flow path in the flow path. an inner tube portion extending toward the inner tube portion, the inner tube portion being closed on the upstream side of the flow path and open on the downstream side of the flow path, containing the ultraviolet LED, and having a holding area on the peripheral wall of the inner tube portion; a first light emitting section that is held on the bottom wall of the inner tube section and includes a first light emitting section capable of irradiating ultraviolet rays toward the water to be treated flowing on the radially outer side of the inner tube section, and the ultraviolet LED; A second light emitting section capable of irradiating ultraviolet rays toward the water to be treated flowing on the upstream side of the bottom wall.

本発明の1つの実施形態として、前記第2発光部での単位面積当たりの発光面積は、前記第1発光部での前記単位面積当たりの発光面積よりも大きい。 As one embodiment of the present invention, the light emitting area per unit area of the second light emitting section is larger than the light emitting area per unit area of the first light emitting section.

本発明の1つの実施形態として、前記第1発光部での前記発光面積は、流路上流側よりも流路下流側で大きくなる。 In one embodiment of the present invention, the light emitting area of the first light emitting section is larger on the downstream side of the flow path than on the upstream side of the flow path.

本発明の1つの実施形態としての水処理装置は、前記紫外線LEDを含み、前記内管部より流路上流側で前記流路に面する前記流路区画体の内壁に保持され、前記内管部より流路上流側の前記流路を流れる前記被処理水に向かって紫外線を照射可能な第3発光部を備える。 The water treatment device as one embodiment of the present invention includes the ultraviolet LED, is held on the inner wall of the flow path sectioning body facing the flow path on the upstream side of the flow path than the inner pipe portion, and A third light emitting part is provided that can irradiate ultraviolet rays toward the water to be treated flowing in the flow path on the upstream side of the flow path.

本発明の1つの実施形態としての水処理装置は、前記紫外線LEDを含み、前記内管部より流路下流側で前記流路に面する前記流路区画体の内壁に保持され、前記内管部より流路下流側の前記流路を流れる前記被処理水に向かって紫外線を照射可能な第4発光部を備える。 The water treatment device as one embodiment of the present invention includes the ultraviolet LED, is held on the inner wall of the flow path sectioning body facing the flow path on the downstream side of the flow path from the inner pipe portion, and A fourth light emitting part is provided that can irradiate ultraviolet rays toward the water to be treated flowing in the flow path on the downstream side of the flow path.

本発明の第4の態様としての水処理装置は、紫外線を用いて被処理水を紫外線処理する水処理装置であって、前記被処理水が流れる流路が内部に形成されている流路区画体と、前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、前記流路区画体は、前記内管部の軸方向に延在し、前記内管部を前記内管部の流路上流側及び流路下流側から支持する支持部を備える。 A water treatment device according to a fourth aspect of the present invention is a water treatment device for treating water to be treated with ultraviolet rays using ultraviolet rays, the flow path section having a flow path through which the water to be treated flows. and an ultraviolet LED that irradiates the water to be treated flowing in the flow path with ultraviolet rays, and the flow path partitioning body is configured to extend from the upstream side of the flow path to the downstream side of the flow path in the flow path. The ultraviolet LED is held in a holding area of a peripheral wall of the inner tube and is capable of irradiating ultraviolet rays toward the water to be treated flowing radially outside the inner tube. The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end, and the flow path dividing body is A support portion is provided that extends in the axial direction and supports the inner tube portion from an upstream side of the flow path and a downstream side of the flow path of the inner tube portion.

本発明の1つの実施形態として、前記流路区画体は、前記内管部を複数備え、各内管部は、前記支持部により支持されている。 In one embodiment of the present invention, the flow path partitioning body includes a plurality of the inner tube sections, and each inner tube section is supported by the support section.

本発明によれば、被処理水の紫外線処理と紫外線LEDの冷却とを、簡易な流路を用いて実現可能な水処理装置を提供することができる。 According to the present invention, it is possible to provide a water treatment device that can perform ultraviolet treatment of water to be treated and cool ultraviolet LEDs using a simple flow path.

本発明の一実施形態としての水処理装置の概要を示す概要図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the outline of the water treatment apparatus as one embodiment of this invention. 図1に概要を示す水処理装置の断面図である。FIG. 2 is a sectional view of the water treatment device schematically shown in FIG. 1. FIG. 図2に示す水処理装置の二重管部を構成する二重管部材を示す図である。It is a figure which shows the double pipe member which comprises the double pipe part of the water treatment apparatus shown in FIG. 図2に示す内管部の周壁に保持されている状態の紫外線LEDの概要を示す概要図である。FIG. 3 is a schematic diagram showing an outline of the ultraviolet LED held on the peripheral wall of the inner tube section shown in FIG. 2; 図2に示す水処理装置を更に大型化した状態を示す断面図である。FIG. 3 is a sectional view showing a state in which the water treatment device shown in FIG. 2 is further enlarged. 図1に示す水処理装置の第1変形例としての水処理装置の概要を示す概要図である。2 is a schematic diagram showing an outline of a water treatment device as a first modification of the water treatment device shown in FIG. 1. FIG. 図1に示す水処理装置の第2変形例としての水処理装置の概要を示す概要図である。FIG. 2 is a schematic diagram showing an outline of a water treatment device as a second modification example of the water treatment device shown in FIG. 1. FIG. 図1に示す水処理装置の第3変形例としての水処理装置の概要を示す概要図である。FIG. 2 is a schematic diagram showing an outline of a water treatment device as a third modification of the water treatment device shown in FIG. 1; 図1に示す水処理装置の第4変形例としての水処理装置の概要を示す概要図である。It is a schematic diagram which shows the outline of the water treatment apparatus as a 4th modification of the water treatment apparatus shown in FIG. 図1に示す水処理装置の第5変形例としての水処理装置の概要を示す概要図である。It is a schematic diagram which shows the outline of the water treatment apparatus as a 5th modification of the water treatment apparatus shown in FIG. 図1に示す水処理装置の第6変形例としての水処理装置の概要を示す概要図である。It is a schematic diagram which shows the outline of the water treatment apparatus as a 6th modification of the water treatment apparatus shown in FIG. 図1に示す水処理装置の第7変形例としての水処理装置の概要を示す概要図であり、図12(a)は水処理装置の断面概要図であり、図12(b)は水処理装置を本体部の底面側から見た側面概要図である。12(a) is a cross-sectional schematic diagram of the water treatment device; FIG. 12(b) is a water treatment device as a seventh modification of the water treatment device shown in FIG. 1; FIG. 3 is a schematic side view of the device viewed from the bottom side of the main body. 図1に示す水処理装置の第8変形例としての水処理装置の概要を示す概要図である。It is a schematic diagram which shows the outline of the water treatment apparatus as an 8th modification of the water treatment apparatus shown in FIG. 図1に示す水処理装置の第9変形例としての水処理装置の概要を示す概要図である。It is a schematic diagram showing the outline of a water treatment device as a ninth modification of the water treatment device shown in FIG. 1. 図1に示す水処理装置の第10変形例としての水処理装置の斜視図である。It is a perspective view of the water treatment apparatus as a 10th modification of the water treatment apparatus shown in FIG. 図15に示す水処理装置の断面図である。FIG. 16 is a sectional view of the water treatment device shown in FIG. 15. 図1に示す水処理装置の第11変形例としての水処理装置の断面図であり、図17(a)は水処理装置についての内管部の軸方向に沿う断面での断面図であり、図17(b)は水処理装置についての内管部の軸方向に直交する断面での断面図である。17(a) is a cross-sectional view of a water treatment device as an eleventh modification of the water treatment device shown in FIG. 1, and FIG. FIG. 17(b) is a cross-sectional view of the inner pipe section of the water treatment device taken perpendicular to the axial direction.

以下、本発明に係る水処理装置の実施形態について図面を参照して例示説明する。各図において共通する部材・部位には同一の符号を付している。 EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the water treatment apparatus based on this invention will be illustrated and described with reference to drawings. Common members and parts in each figure are designated by the same reference numerals.

図1は、本発明に係る水処理装置の一実施形態としての水処理装置1の概要を示す概要図である。図1に示すように、水処理装置1は、流路区画体10と、紫外線LED20と、を備える。水処理装置1は、紫外線を用いて被処理水を紫外線処理することができる。以下、説明の便宜上、特に区別する場合を除き、水処理装置1により紫外線処理される前の未処理水、及び、水処理装置1により紫外線処理された後の処理水、の両方を単に「被処理水」と記載する。また、図1では、被処理水の流れを破線矢印により示している。 FIG. 1 is a schematic diagram showing an overview of a water treatment device 1 as an embodiment of the water treatment device according to the present invention. As shown in FIG. 1, the water treatment device 1 includes a flow path dividing body 10 and an ultraviolet LED 20. The water treatment device 1 can perform ultraviolet treatment on water to be treated using ultraviolet light. For convenience of explanation, unless otherwise specified, both untreated water before being treated with ultraviolet light by the water treatment device 1 and treated water after being treated with ultraviolet light by the water treatment device 1 will be simply referred to as “treated water”. "treated water". Moreover, in FIG. 1, the flow of the water to be treated is shown by broken line arrows.

図1に示すように、流路区画体10の内部には、被処理水が流れる流路10aが形成されている。紫外線LED20は、流路10a内を流れる被処理水に対して紫外線を照射する。これにより、流路10a内を流れる被処理水を紫外線処理することができる。 As shown in FIG. 1, a flow path 10a through which water to be treated flows is formed inside the flow path partitioning body 10. The ultraviolet LED 20 irradiates ultraviolet light to the water to be treated flowing in the flow path 10a. Thereby, the water to be treated flowing in the flow path 10a can be treated with ultraviolet light.

図1に示すように、流路区画体10は内管部30を備える。内管部30は、流路10a内において、流路上流側から流路下流側に向かって延在している。以下、説明の便宜上、流路10aの流路上流側から流路下流側に向かう方向を「送水方向A」と記載する場合がある。 As shown in FIG. 1, the flow path partitioning body 10 includes an inner tube portion 30. As shown in FIG. The inner tube portion 30 extends from the upstream side of the flow path toward the downstream side of the flow path within the flow path 10a. Hereinafter, for convenience of explanation, the direction from the upstream side of the flow path 10a toward the downstream side of the flow path may be referred to as "water feeding direction A."

図1に示すように、紫外線LED20は、内管部30の周壁の保持領域GAに保持されている。また、紫外線LED20は、内管部30の径方向Bの外側を流れる被処理水に向かって紫外線を照射可能である。以下、説明の便宜上、流路10aのうち内管部30の径方向Bの外側の部分を、「環状処理空間16a」と記載する。 As shown in FIG. 1, the ultraviolet LED 20 is held in a holding area GA of the peripheral wall of the inner tube part 30. Moreover, the ultraviolet LED 20 can irradiate ultraviolet rays toward the water to be treated flowing outside the inner tube portion 30 in the radial direction B. Hereinafter, for convenience of explanation, a portion of the flow path 10a outside the inner tube portion 30 in the radial direction B will be referred to as an "annular processing space 16a."

内管部30は、流路上流側で閉鎖されている。その一方で、内管部30は、流路下流側で開放されている。より具体的に、内管部30の内部に形成されている内管空間30aは、保持領域GAに対して流路上流側で閉鎖されている。その一方で、内管空間30aは、保持領域GAに対して流路下流側で開放されている。すなわち、内管部30の流路下流側の端部は、開放口31が形成されている開放端である。開放口31は、内管部30の流路下流側の環状の端面により形作られている。開放口31の大きさは、内管部30の軸方向Cに直交する内管空間30aの断面積と同じである。つまり、内管空間30aの流路下流側の端部は、部分的にも閉鎖されていない。その一方で、本実施形態の内管部30の流路上流側の端部には、内管空間30aを閉鎖する底板部32が設けられている。内管空間30aの流路上流側の端部は、底板部32により完全に閉鎖されている。 The inner tube portion 30 is closed on the upstream side of the flow path. On the other hand, the inner tube section 30 is open on the downstream side of the flow path. More specifically, the inner tube space 30a formed inside the inner tube section 30 is closed on the upstream side of the flow path with respect to the holding area GA. On the other hand, the inner tube space 30a is open to the holding area GA on the downstream side of the flow path. That is, the downstream end of the inner tube portion 30 in the flow path is an open end in which the open port 31 is formed. The open port 31 is formed by an annular end surface of the inner tube portion 30 on the downstream side of the flow path. The size of the opening 31 is the same as the cross-sectional area of the inner tube space 30a perpendicular to the axial direction C of the inner tube portion 30. In other words, the downstream end of the flow path of the inner tube space 30a is not even partially closed. On the other hand, a bottom plate portion 32 that closes the inner tube space 30a is provided at the upstream end of the inner tube portion 30 of this embodiment. The upstream end of the inner tube space 30a is completely closed by the bottom plate portion 32.

このような内管部30を流路10a内に設けることで、紫外線LED20による被処理水の紫外線処理と、被処理水による紫外線LED20の冷却とを、行うことができる。 By providing such an inner tube portion 30 in the flow path 10a, it is possible to perform ultraviolet treatment of the water to be treated by the ultraviolet LEDs 20 and to cool the ultraviolet LEDs 20 by the water to be treated.

図1を参照して、被処理水による紫外線LED20の冷却について説明する。流路10a内に上述の内管部30を配置することで、ベルヌーイの定理に基づき発生する被処理水の流速差及び圧力差を利用して、内管部30内の内管空間30aで被処理水を循環させることができる。内管空間30aを循環する被処理水により、内管部30を介して、内管部30に保持されている紫外線LED20を冷却することができる。 With reference to FIG. 1, cooling of the ultraviolet LED 20 by water to be treated will be described. By arranging the above-mentioned inner pipe section 30 in the flow path 10a, the flow rate difference and pressure difference of the water to be treated generated based on Bernoulli's theorem can be used to reduce the amount of water in the inner pipe space 30a in the inner pipe section 30. Treated water can be circulated. The ultraviolet LED 20 held in the inner tube part 30 can be cooled via the inner tube part 30 by the water to be treated circulating in the inner tube space 30a.

より具体的には、図1に示すように、流路10a内に上述の内管部30を配置することで、ベルヌーイの定理に基づき、環状処理空間16aの位置での被処理水の流速及び圧力を、環状処理空間16aよりも流路下流側の位置での被処理水の流速及び圧力よりも、高くすることができる。そのため、内管部30内の内周面近傍の被処理水は、環状処理空間16aを通過した直後の被処理水に引っ張られて、開放口31から流路下流側に移動する。このように、内管部30内の内周面近傍で開放口31を通じて内管空間30a外へと出ていく被処理水の流れ(図1の破線矢印AR1を参照)が形成される。更に、この流れが形成されることにより、開放口31の中央領域から内管空間30a内に流入する被処理水の流れ(図1の破線矢印AR2を参照)も形成される。つまり、内管部30の開放口31の中央領域から内管空間30a内に流入し、内管部30の内壁に沿って流れ、内管部30内の内周面近傍から開放口31を通じて内管空間30a外へと流出する、被処理水の一連の循環経路が形成される。このように被処理水が循環することで、常に低温の水が内管部30内に供給されて、冷却効果が持続する。そのため、内管空間30a内の循環経路を流れる被処理水により、内管部30を介して、内管部30に保持されている紫外線LED20を冷却することができる。 More specifically, as shown in FIG. 1, by arranging the above-mentioned inner pipe section 30 in the flow path 10a, the flow rate and the flow rate of the water to be treated at the position of the annular treatment space 16a can be adjusted based on Bernoulli's theorem. The pressure can be made higher than the flow rate and pressure of the water to be treated at a position downstream of the flow path from the annular treatment space 16a. Therefore, the water to be treated in the vicinity of the inner peripheral surface in the inner pipe portion 30 is pulled by the water to be treated that has just passed through the annular treatment space 16a, and moves from the open port 31 to the downstream side of the flow path. In this way, a flow of the water to be treated (see broken line arrow AR1 in FIG. 1) is formed near the inner peripheral surface of the inner tube portion 30 through the opening 31 and out of the inner tube space 30a. Furthermore, by forming this flow, a flow of the water to be treated flowing into the inner tube space 30a from the central region of the opening 31 is also formed (see broken line arrow AR2 in FIG. 1). That is, it flows into the inner tube space 30a from the central region of the open port 31 of the inner tube section 30, flows along the inner wall of the inner tube section 30, and flows into the inner tube space 30a from near the inner peripheral surface of the inner tube section 30 through the open port 31. A series of circulation paths for the water to be treated flowing out of the pipe space 30a is formed. By circulating the water to be treated in this manner, low-temperature water is always supplied into the inner pipe section 30, and the cooling effect is maintained. Therefore, the ultraviolet LED 20 held in the inner tube section 30 can be cooled via the inner tube section 30 by the water to be treated flowing through the circulation path in the inner tube space 30a.

なお、本実施形態では、被処理水の流路10a内の流速が0.5m/sec~3.0m/secとなるように設計されており、レイノルズ数が大きい場合を想定している。これに対して、被処理水の流路10a内の流速が非常に小さく(例えば0.1m/sec等)、レイノルズ数も非常に小さい場合(例えば2500未満)などは、内管部30内の循環経路は、図1に示す循環経路と異なる。具体的に、被処理水は、内管部30の内周面近傍の位置で開放口31から内管空間30aに入り込み、内管部30の内壁に沿って流れ、開放口31の中央領域を通じて内管空間30a外へと流出する。換言すれば、被処理水は、内管部30内において、図1に示す循環経路とは逆方向に循環する。したがって、被処理水の流速によらず、被処理水の内管部30内での循環経路を形成することができる。そのため、被処理水の流速によらず、内管部30内の被処理水による紫外線LED20の冷却が可能である。 In this embodiment, the flow velocity in the flow path 10a of the water to be treated is designed to be 0.5 m/sec to 3.0 m/sec, assuming a case where the Reynolds number is large. On the other hand, when the flow velocity in the flow path 10a of the water to be treated is very low (for example, 0.1 m/sec, etc.) and the Reynolds number is also very small (for example, less than 2500), the The circulation route is different from the circulation route shown in FIG. Specifically, the water to be treated enters the inner tube space 30a from the open port 31 at a position near the inner peripheral surface of the inner tube section 30, flows along the inner wall of the inner tube section 30, and flows through the central region of the open port 31. It flows out of the inner tube space 30a. In other words, the water to be treated circulates within the inner pipe section 30 in a direction opposite to the circulation path shown in FIG. Therefore, a circulation path for the water to be treated within the inner pipe section 30 can be formed regardless of the flow rate of the water to be treated. Therefore, the ultraviolet LED 20 can be cooled by the water to be treated in the inner tube section 30 regardless of the flow rate of the water to be treated.

なお、本実施形態の内管部30の内管空間30aは、保持領域GAに対して流路上流側で閉鎖されると共に、保持領域GAに対して流路下流側で開放されているが、この構成に限られない。詳細は後述するが、流路下流側で閉鎖されていると共に、流路上流側で開放されている内管部30としてもよい(図10参照)すなわち、内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されていればよい。 Note that the inner tube space 30a of the inner tube portion 30 of this embodiment is closed on the upstream side of the flow path with respect to the holding area GA, and is open on the downstream side of the flow path with respect to the holding area GA. It is not limited to this configuration. Although details will be described later, the inner tube portion 30 may be closed on the downstream side of the flow path and open on the upstream side of the flow path (see FIG. 10). It is sufficient that it is closed at one end on the downstream side of the flow path and opened at the other end.

以下、本実施形態の水処理装置1の各部材の詳細について説明する。図2は、水処理装置1の断面図である。図3は、水処理装置1の二重管部16を構成する二重管部材400を示す図である。 Hereinafter, details of each member of the water treatment device 1 of this embodiment will be explained. FIG. 2 is a sectional view of the water treatment device 1. FIG. 3 is a diagram showing a double pipe member 400 that constitutes the double pipe section 16 of the water treatment device 1.

[流路区画体10]
図2に示すように、本実施形態の流路区画体10は、略円筒状の本体部11と、この本体部11の軸方向(本実施形態では内管部30の軸方向Cと同じ方向。以下、「軸方向C」と記載する。)の一端側で外周面から径方向Bの外側に向かって突出する円筒状の流入口部12と、本体部11の軸方向Cの他端側で外周面から径方向Bの外側に向かって突出する円筒状の流出口部13と、を備える。本実施形態の流路区画体10が区画する流路10aは、本体部11内の本体流路11aと、流入口部12内の流入口12aと、流出口部13内の流出口13aと、により構成されている。図2では、流路口部12及び流出口部13の位置のみに、破線矢印により被処理水の流れを示している。
[Flow path partition body 10]
As shown in FIG. 2, the flow path partitioning body 10 of this embodiment has a substantially cylindrical main body 11 and an axial direction of this main body 11 (in this embodiment, the same direction as the axial direction C of the inner tube part 30). A cylindrical inlet portion 12 protrudes outward in the radial direction B from the outer peripheral surface at one end side (hereinafter referred to as “axial direction C”), and the other end side of the main body portion 11 in the axial direction C. and a cylindrical outlet portion 13 protruding outward in the radial direction B from the outer circumferential surface. The flow path 10a defined by the flow path partitioning body 10 of this embodiment includes a main body flow path 11a in the main body portion 11, an inlet 12a in the inlet portion 12, an outlet 13a in the outlet portion 13, It is made up of. In FIG. 2, the flow of the water to be treated is shown by broken line arrows only at the positions of the channel opening 12 and the outlet 13.

詳細は後述するが、流入口部12は、本体部11の軸方向Cの一端側に位置する底面から軸方向Cの外側(図2では左側)に向かって突出する構成としてもよい(図6参照)。また、詳細は後述するが、流出口部13は、本体部11の軸方向Cの他端側に位置する底面から軸方向Cの外側(図2では右側)に向かって突出する構成としてもよい(図6参照)。 Although details will be described later, the inlet port 12 may be configured to protrude toward the outside in the axial direction C (to the left in FIG. 2) from the bottom surface located on one end side of the main body 11 in the axial direction C (FIG. 6 reference). Although details will be described later, the outlet portion 13 may be configured to protrude toward the outside in the axial direction C (to the right in FIG. 2) from the bottom surface of the main body portion 11 located on the other end side in the axial direction C. (See Figure 6).

本体部11は、流入部14と、流出部15と、二重管部16と、を備える。 The main body portion 11 includes an inflow portion 14 , an outflow portion 15 , and a double pipe portion 16 .

流入部14には、本体流路11aの流入空間14aが形成されている。流入部14は、円筒状の流入管部14bと、環状フランジ部14cと、を備える。流入空間14aは、流路上流側の一端が閉鎖され、流路下流側の他端が開放されている。つまり、流入管部14bの流路下流側の端部は開放端である。環状フランジ部14cは、流入管部14bの流路下流側の他端から径方向Bの外側に突出している。 The inflow portion 14 is formed with an inflow space 14a of the main body channel 11a. The inflow portion 14 includes a cylindrical inflow pipe portion 14b and an annular flange portion 14c. One end of the inflow space 14a on the upstream side of the flow path is closed, and the other end on the downstream side of the flow path is open. In other words, the downstream end of the flow path of the inflow pipe portion 14b is an open end. The annular flange portion 14c projects outward in the radial direction B from the other downstream end of the flow path of the inflow pipe portion 14b.

流入管部14bの外周面から上述の円筒状の流入口部12が突出している。被処理水は、本体部11の外部から、流入口部12の流入口12aを通じて、流入管部14b内の流入空間14aに流入する。 The above-mentioned cylindrical inlet portion 12 protrudes from the outer peripheral surface of the inflow pipe portion 14b. The water to be treated flows from the outside of the main body part 11 through the inlet 12a of the inlet part 12 into the inflow space 14a in the inflow pipe part 14b.

流出部15には、本体流路11aの流出空間15aが形成されている。流出部15は、円筒状の流出管部15bと、環状フランジ部15cと、を備える。流出空間15aは、流路上流側の一端が開放され、流路下流側の他端が閉鎖されている。つまり、流出管部15bの流路上流側の端部は開放端である。環状フランジ部15cは、流出管部15bの流路上流側の一端から径方向Bの外側に突出している。 In the outflow portion 15, an outflow space 15a of the main body channel 11a is formed. The outflow portion 15 includes a cylindrical outflow pipe portion 15b and an annular flange portion 15c. One end of the outflow space 15a on the upstream side of the flow path is open, and the other end on the downstream side of the flow path is closed. In other words, the upstream end of the outflow pipe portion 15b is an open end. The annular flange portion 15c projects outward in the radial direction B from one end on the upstream side of the flow path of the outflow pipe portion 15b.

流出管部15bの外周面から上述の円筒状の流出口部13が突出している。被処理水は、流出空間15aから、流出口部13の流出口13aを通じて、本体部11の外部に流出する。 The above-mentioned cylindrical outlet portion 13 protrudes from the outer peripheral surface of the outlet pipe portion 15b. The water to be treated flows out of the main body part 11 from the outflow space 15a through the outflow port 13a of the outflow port part 13.

二重管部16は、上述の流入部14と流出部15との間に位置する。具体的に、二重管部16は、流路上流側の一端で、流入部14と連続している。また、二重管部16は、流路下流側の他端で、流出部15と連続している。 The double pipe section 16 is located between the inflow section 14 and the outflow section 15 described above. Specifically, the double pipe section 16 is continuous with the inflow section 14 at one end on the upstream side of the flow path. Further, the double pipe portion 16 is continuous with the outflow portion 15 at the other downstream end of the flow path.

より具体的に、二重管部16は、内管部30としての円筒状の管部と、この内管部30の径方向Bの外側を取り囲む外管部40としての円筒状の管部と、上流側環状フランジ部16bと、下流側環状フランジ部16cと、連結部16dと、を備える。 More specifically, the double tube section 16 includes a cylindrical tube section as an inner tube section 30 and a cylindrical tube section as an outer tube section 40 surrounding the outside of the inner tube section 30 in the radial direction B. , an upstream annular flange portion 16b, a downstream annular flange portion 16c, and a connecting portion 16d.

内管部30は、外管部40内で、外管部40の軸方向としての送水方向Aに延在している。内管部30の中心軸は、外管部40と中心軸と略一致している。そのため、本実施形態の外管部40の軸方向は、内管部30の軸方向Cと同じ方向である。換言すれば、内管部30は、外管部40と中心軸が略一致するように同心円状に配置されている。内管部30は、後述する連結部16dにより、外管部40内での位置が保持されている。内管部30と外管部40との間に、上述の環状処理空間16aが区画されている。 The inner tube section 30 extends within the outer tube section 40 in the water supply direction A, which is the axial direction of the outer tube section 40 . The central axis of the inner tube part 30 substantially coincides with the central axis of the outer tube part 40. Therefore, the axial direction of the outer tube section 40 in this embodiment is the same as the axial direction C of the inner tube section 30. In other words, the inner tube section 30 and the outer tube section 40 are arranged concentrically so that their central axes substantially coincide with each other. The inner tube portion 30 is held in position within the outer tube portion 40 by a connecting portion 16d, which will be described later. The above-mentioned annular processing space 16a is defined between the inner tube section 30 and the outer tube section 40.

内管部30の内部に形成されている内管空間30aは、上述したように、流路上流側の一端が閉鎖されており、流路下流側の他端が開放されている。 As described above, the inner tube space 30a formed inside the inner tube section 30 has one end on the upstream side of the flow path closed and the other end on the downstream side of the flow path open.

内管部30の周壁には、上述したように、紫外線LED20が保持されている。紫外線LED20の詳細は後述する。 As described above, the ultraviolet LED 20 is held on the peripheral wall of the inner tube portion 30. Details of the ultraviolet LED 20 will be described later.

外管部40は、上述したように内管部30の径方向Bの外側を取り囲む。外管部40と内管部30との間には、環状処理空間16aが形成されている。この環状処理空間16aの流路上流側の一端、及び、流路下流側の他端は、開放されている。 The outer tube section 40 surrounds the outer side of the inner tube section 30 in the radial direction B as described above. An annular processing space 16a is formed between the outer tube section 40 and the inner tube section 30. One end on the upstream side of the flow path and the other end on the downstream side of the flow path of this annular processing space 16a are open.

図2に示すように、流入部14の流入空間14aは、二重管部16の環状処理空間16aと連通している。また、図2に示すように、流出部15の流出空間15aは、二重管部16の環状処理空間16aと連通している。したがって、本体部11の外部から流入口12aに流入した被処理水は、流入空間14a、環状処理空間16a、流出空間15aを順に通過して、流出口13aから本体部11の外部に流出する。被処理水は、環状処理空間16aを通過する際に、紫外線LED20からの紫外線照射により殺菌され、未処理水から処理水へと紫外線処理される。 As shown in FIG. 2, the inflow space 14a of the inflow section 14 communicates with the annular processing space 16a of the double pipe section 16. Further, as shown in FIG. 2, the outflow space 15a of the outflow section 15 communicates with the annular processing space 16a of the double pipe section 16. Therefore, the water to be treated that has flowed into the inlet 12a from the outside of the main body 11 passes through the inflow space 14a, the annular treatment space 16a, and the outflow space 15a in this order, and flows out of the main body 11 from the outlet 13a. When the water to be treated passes through the annular treatment space 16a, it is sterilized by ultraviolet irradiation from the ultraviolet LED 20, and the untreated water is treated with ultraviolet light.

連結部16dは、内管部30の外壁と外管部40の内壁とを連結している。図3に示すように、本実施形態の連結部16dは、内管部30の外壁の周方向の異なる位置から径方向Bの外側に放射状に延在する複数のスポーク部により構成されている。そのため、環状処理空間16aは、周方向に隣接するスポーク部の間の間隙を通じて、流路上流側の一端から流路下流側の他端まで連通している。 The connecting portion 16d connects the outer wall of the inner tube portion 30 and the inner wall of the outer tube portion 40. As shown in FIG. 3, the connecting portion 16d of this embodiment is constituted by a plurality of spoke portions that extend radially outward in the radial direction B from different positions in the circumferential direction of the outer wall of the inner tube portion 30. Therefore, the annular processing space 16a communicates from one end on the upstream side of the flow path to the other end on the downstream side of the flow path through the gap between the circumferentially adjacent spoke parts.

なお、連結部16dは、本実施形態の構成に限られない。連結部16dは、内管部30の外管部40内における位置を保持でき、かつ、環状処理空間16aでの被処理水の流通を可能にする連通口(例えば本実施形態のスポーク部間の間隙)を区画する構成であれば、その構成は特に限定されない。 Note that the connecting portion 16d is not limited to the configuration of this embodiment. The connecting portion 16d is a communication port that can maintain the position of the inner tube portion 30 within the outer tube portion 40 and allows the flow of water to be treated in the annular treatment space 16a (for example, a communication port between the spoke portions of this embodiment). The structure is not particularly limited as long as it partitions a gap).

また、内管部30の周壁に保持される紫外線LED20から流路区画体10の外部まで延びる導線等の信号線は、例えば、連結部16dとしての複数のスポーク部内を通じて流路区画体10の外部まで引き出すことができる。 Further, a signal line such as a conducting wire extending from the ultraviolet LED 20 held on the peripheral wall of the inner tube section 30 to the outside of the channel section 10 may be passed through a plurality of spoke sections as the connecting section 16d to the outside of the channel section 10. You can pull it out.

上流側環状フランジ部16bは、外管部40の流路上流側の一端から径方向Bの外側に突出している。また、下流側環状フランジ部16cは、外管部40の流路下流側の他端から径方向Bの外側に突出している。 The upstream annular flange portion 16b projects outward in the radial direction B from one end of the outer tube portion 40 on the upstream side of the flow path. Further, the downstream annular flange portion 16c protrudes outward in the radial direction B from the other end of the outer tube portion 40 on the downstream side of the flow path.

ここで、本実施形態の流路区画体10は、流入口部12及び流入部14を構成する流路入口部材200と、流出口部13及び流出部15を構成する流路出口部材300と、二重管部16を構成する二重管部材400と、が接続されることで形成されている。 Here, the channel partitioning body 10 of the present embodiment includes a channel inlet member 200 that constitutes the inlet portion 12 and the inlet portion 14, a channel outlet member 300 that constitutes the outlet portion 13 and the outlet portion 15, It is formed by connecting the double pipe member 400 that constitutes the double pipe section 16.

具体的に、二重管部材400の上述の上流側環状フランジ部16bは、流路入口部材200の上述の環状フランジ部14cと、ボルト及びナット、ロックピン等の接合部材を用いて接合される。重ね合わされた上流側環状フランジ部16b及び環状フランジ部14cは、周方向の異なる位置で、ボルト等の接合部材を用いて接合される。より具体的に、本実施形態の上流側環状フランジ部16b及び環状フランジ部14cそれぞれには、複数のボルト挿通孔が形成されている。この複数のボルト挿通孔は、周方向に所定間隔を空けて複数配置されている。また、この複数のボルト挿通孔は、周方向全域に亘って形成されている。上流側環状フランジ部16b及び環状フランジ部14cは、互いのボルト挿通孔が連通するように重ね合わされ、このボルト挿通孔を利用して、ボルト及びナットを用いて接合される。これにより、流路入口部材200及び二重管部材400は、流入空間14aと環状処理空間16aとが液密な状態で接続される。なお、二重管部材400の上述の下流側環状フランジ部16cと、流路出口部材300の上述の環状フランジ部15cと、の接合についても同様である。これにより、流路出口部材300及び二重管部材400は、流出空間15aと環状処理空間16aとが液密な状態で接続される。 Specifically, the above-mentioned upstream annular flange part 16b of the double pipe member 400 is joined to the above-mentioned annular flange part 14c of the flow path inlet member 200 using a joining member such as a bolt, a nut, a lock pin, etc. . The overlapping upstream annular flange portion 16b and annular flange portion 14c are joined at different positions in the circumferential direction using joining members such as bolts. More specifically, a plurality of bolt insertion holes are formed in each of the upstream annular flange portion 16b and the annular flange portion 14c of this embodiment. The plurality of bolt insertion holes are arranged at predetermined intervals in the circumferential direction. Further, the plurality of bolt insertion holes are formed over the entire circumferential area. The upstream annular flange portion 16b and the annular flange portion 14c are overlapped so that their bolt insertion holes communicate with each other, and are joined using bolts and nuts using the bolt insertion holes. Thereby, in the flow path inlet member 200 and the double pipe member 400, the inflow space 14a and the annular processing space 16a are connected in a liquid-tight state. The same applies to the connection between the downstream annular flange portion 16c of the double pipe member 400 and the annular flange portion 15c of the flow path outlet member 300. Thereby, in the flow path outlet member 300 and the double pipe member 400, the outflow space 15a and the annular processing space 16a are connected in a liquid-tight state.

但し、流路区画体10は、流入部14、流出部15及び二重管部16が、分離不能に一体で形成されていてもよい。しかしながら、本実施形態の流路区画体10のように、流入部14を構成する流路入口部材200、流出部15を構成する流路出口部材300、及び、二重管部16を構成する二重管部材400は、相互に着脱可能な構成とすることが好ましい。このようにすることで、例えば、紫外線LED20の故障時などにおいて、二重管部材400を流路入口部材200及び流路出口部材300から着脱することにより、内管部30が保持する紫外線LED20の洗浄、交換等を容易に行うことができる。つまり、水処理装置1の保守点検作業の効率を高めることができる。 However, in the flow path partitioning body 10, the inflow part 14, the outflow part 15, and the double pipe part 16 may be integrally formed inseparably. However, like the channel partitioning body 10 of the present embodiment, the channel inlet member 200 that constitutes the inflow section 14, the channel outlet member 300 that constitutes the outflow section 15, and the two that constitute the double pipe section 16. It is preferable that the heavy pipe members 400 are configured to be mutually attachable and detachable. By doing this, for example, in the event of a failure of the ultraviolet LED 20, the double tube member 400 can be attached and detached from the channel inlet member 200 and the channel outlet member 300, and the ultraviolet LED 20 held by the inner tube section 30 can be removed. Cleaning, replacement, etc. can be easily performed. In other words, the efficiency of maintenance and inspection work for the water treatment device 1 can be improved.

なお、二重管部16の内管部30は、例えば、ステンレス、アルミニウム、銅などの熱伝導率の高い金属により構成されている。このようにすることで、紫外線LED20の冷却効率を高めることができる。また、流路区画体10のうち上述の内管部30を除く部分についても、内管部30と同様、例えば、ステンレス、アルミニウム、銅などの金属により構成することができる。 The inner tube section 30 of the double tube section 16 is made of a metal with high thermal conductivity, such as stainless steel, aluminum, or copper. By doing so, the cooling efficiency of the ultraviolet LED 20 can be increased. Further, the portions of the flow path partitioning body 10 other than the above-mentioned inner tube portion 30 can also be made of metal such as stainless steel, aluminum, copper, etc., similarly to the inner tube portion 30.

一例として、外管部40の内径ID1を100mm~500mmとした場合には、内管部30の内径ID2を40mm~200mm、内管空間30aの軸方向長さLを40mm~600mmの範囲で設定することが好ましい。また、別の一例として、外管部40の内径ID1を500mm~1000mmとした場合には、内管部30の内径ID2を200mm~600mm、内管空間30aの軸方向長さLを200mm~1200mmの範囲で設定することが好ましい。これら2つの例のように各部の寸法を設定すれば、内管部30内の被処理水の上述した循環経路を容易に形成することができる。特に、L/ID2が0.1以上となる寸法関係とすることが好ましく、1以上~10未満となる寸法関係とすることがより好ましい。また、ID2/ID1が0.3≦ID2/ID1≦0.8となる寸法関係にすることが好ましく、0.4≦ID2/ID1≦0.7となる寸法関係とすることがより好ましい。このようにすることで、内管部30内に被処理水が流入し易く、かつ、流入した被処理水が内管空間30aの流路上流側の端部まで行き届き易くなる。これにより、内管部30内で被処理水が滞留し難い循環経路を、より形成し易くなる。 As an example, when the inner diameter ID1 of the outer tube part 40 is set to 100 mm to 500 mm, the inner diameter ID2 of the inner tube part 30 is set to 40 mm to 200 mm, and the axial length L of the inner tube space 30a is set to a range of 40 mm to 600 mm. It is preferable to do so. As another example, when the inner diameter ID1 of the outer tube part 40 is 500 mm to 1000 mm, the inner diameter ID2 of the inner tube part 30 is 200 mm to 600 mm, and the axial length L of the inner tube space 30a is 200 mm to 1200 mm. It is preferable to set it within the range of . By setting the dimensions of each part as in these two examples, it is possible to easily form the above-mentioned circulation path for the water to be treated in the inner tube part 30. In particular, it is preferable to have a dimensional relationship where L/ID2 is 0.1 or more, and more preferably a dimensional relationship where L/ID2 is 1 or more and less than 10. Further, it is preferable that ID2/ID1 satisfy a dimensional relationship of 0.3≦ID2/ID1≦0.8, and more preferably that 0.4≦ID2/ID1≦0.7. By doing so, it becomes easy for the water to be treated to flow into the inner pipe section 30, and the water to be treated that has flowed in can easily reach the end on the upstream side of the channel of the inner pipe space 30a. This makes it easier to form a circulation path in which the water to be treated is less likely to accumulate within the inner pipe portion 30.

また、流路区画体10の本体部11内の全体容積に対する内管部30内の容積の比を0.2~0.8となるように設定することが好ましい。このようにすることで、内管部30内の被処理水の上述した循環経路を、より容易に形成することができる。 Further, it is preferable to set the ratio of the volume inside the inner tube section 30 to the total volume inside the main body section 11 of the flow path dividing body 10 to be 0.2 to 0.8. By doing so, the above-mentioned circulation path of the water to be treated in the inner pipe section 30 can be formed more easily.

[紫外線LED20]
図4は、内管部30の周壁に保持されている状態の紫外線LED20の概要を示す概要図である。図4に示すように、紫外線LED20は、紫外線光源としてのLED素子21と、このLED素子21を支持するLED基板22と、LED素子21及びLED基板22を被覆するガラス被覆材23と、を備える。
[Ultraviolet LED 20]
FIG. 4 is a schematic diagram showing an outline of the ultraviolet LED 20 held on the peripheral wall of the inner tube part 30. As shown in FIG. 4, the ultraviolet LED 20 includes an LED element 21 as an ultraviolet light source, an LED substrate 22 that supports the LED element 21, and a glass covering material 23 that covers the LED element 21 and the LED substrate 22. .

LED素子21の中心波長又はピーク波長は、例えば処理対象微生物の感受性に応じて、適宜設定することができる。本実施形態のLED素子21は、中心波長又はピーク波長が約200nm~350nmの範囲に含まれる深紫外光を出力する。特に、LED素子21は、殺菌効率の高い波長である260nm~300nm付近の紫外光を出力することが好ましい。このようなLED素子21として、例えば、窒化アルミニウムガリウム(AlGaN)を用いた構成が知られている。 The center wavelength or peak wavelength of the LED element 21 can be appropriately set, for example, depending on the sensitivity of the microorganism to be treated. The LED element 21 of this embodiment outputs deep ultraviolet light whose center wavelength or peak wavelength is within the range of approximately 200 nm to 350 nm. In particular, it is preferable that the LED element 21 outputs ultraviolet light in the vicinity of 260 nm to 300 nm, which is a wavelength with high sterilization efficiency. As such an LED element 21, a structure using aluminum gallium nitride (AlGaN), for example, is known.

LED基板22は電気回路を備えている。LED素子21は、LED基板22の電気回路に電気的に接続されている。紫外線LED20は、LED基板22を内管部30の外周面に取り付けることで、内管部30の周壁に保持されている。 The LED board 22 includes an electric circuit. The LED element 21 is electrically connected to the electric circuit of the LED board 22. The ultraviolet LED 20 is held on the peripheral wall of the inner tube section 30 by attaching the LED board 22 to the outer peripheral surface of the inner tube section 30 .

また、LED基板22の電気回路は、信号線50と電気的に接続されている。図4に示すように、信号線50は、内管部30の周壁に形成された貫通孔を通じて、内管部30の外周面側から内周面側に引き出されるように配線されている。信号線50は、内管部30の内周面に沿って配線され、上述した連結部16d(図3参照)を通じて、流路区画体10の外部に引き出される。なお、信号線50の外周面は、内部導体の外周を被覆する絶縁材により構成されている。 Further, the electric circuit of the LED board 22 is electrically connected to the signal line 50. As shown in FIG. 4, the signal line 50 is routed through a through hole formed in the peripheral wall of the inner tube section 30 so as to be drawn out from the outer circumference side of the inner tube section 30 to the inner circumference side. The signal line 50 is wired along the inner circumferential surface of the inner tube section 30, and is drawn out to the outside of the flow path partitioning body 10 through the above-mentioned connecting section 16d (see FIG. 3). Note that the outer peripheral surface of the signal line 50 is made of an insulating material that covers the outer periphery of the internal conductor.

図3に示すように、内管部30の外周面には、複数の紫外線LED20が取り付けられている。具体的に、本実施形態では、内管部30の周方向の異なる位置に複数の紫外線LED20が取り付けられている。また、本実施形態では、内管部30の軸方向Cの異なる位置に複数の紫外線LED20が取り付けられている。紫外線LED20の取り付け数、及び、取り付け位置は、紫外線LED20の性能、被処理水に含まれるクリプトスポリジウムや病原細菌などの処理対象微生物の種類、被処理水の流速、流路区画体10の流路構成など、に応じて適宜設計することができる。また、図4では、1つの紫外線LED20が、1つのLED素子21を備える構成を示しているが、1つの紫外線LED20が、複数のLED素子21を備えてもよい。かかる場合には、例えば、LED基板22上に複数のLED素子21が支持され、これら複数のLED素子21を覆うようにガラス被覆材23が被覆される。 As shown in FIG. 3, a plurality of ultraviolet LEDs 20 are attached to the outer peripheral surface of the inner tube section 30. Specifically, in this embodiment, a plurality of ultraviolet LEDs 20 are attached to different positions in the circumferential direction of the inner tube portion 30. Further, in this embodiment, a plurality of ultraviolet LEDs 20 are attached to different positions in the axial direction C of the inner tube portion 30. The number of ultraviolet LEDs 20 to be installed and the installation positions depend on the performance of the ultraviolet LEDs 20, the type of microorganisms to be treated such as Cryptosporidium and pathogenic bacteria contained in the water to be treated, the flow rate of the water to be treated, and the flow path of the flow path partitioning body 10. It can be designed as appropriate depending on the configuration, etc. Moreover, although FIG. 4 shows a configuration in which one ultraviolet LED 20 includes one LED element 21, one ultraviolet LED 20 may include a plurality of LED elements 21. In such a case, for example, a plurality of LED elements 21 are supported on the LED substrate 22, and the glass covering material 23 is coated so as to cover the plurality of LED elements 21.

以上のように、本実施形態の水処理装置1では、被処理水は、流路区画体10の外部から、流入口12a、流入空間14a、環状処理空間16a、流出空間15a、流出口13aの順に進み、流路区画体10の外部へと排出される。被処理水は、この一連の流れにおいて、環状処理空間16aを通過する際に、紫外線LED20により紫外線処理される。また、環状処理空間16aを通過した被処理水の作用により、内管部30の内管空間30aでの被処理水の上述した循環経路(図1参照)が形成される。そのため、内部を循環する被処理水により内管部30は常に冷却された状態となり、内管部30に保持されている紫外線LED20は、内管部30を介して冷却される。 As described above, in the water treatment apparatus 1 of the present embodiment, the water to be treated is supplied from the outside of the flow path section 10 to the inlet 12a, the inlet space 14a, the annular treatment space 16a, the outlet space 15a, and the outlet 13a. The liquid flows in sequence and is discharged to the outside of the channel partitioning body 10. In this series of flows, the water to be treated is treated with ultraviolet light by the ultraviolet LED 20 when passing through the annular treatment space 16a. Furthermore, the above-described circulation path (see FIG. 1) of the water to be treated in the inner tube space 30a of the inner tube portion 30 is formed by the action of the water to be treated that has passed through the annular treatment space 16a. Therefore, the inner tube section 30 is always cooled by the water to be treated circulating inside, and the ultraviolet LED 20 held in the inner tube section 30 is cooled via the inner tube section 30.

次に、水処理装置1の大型化について説明する。図5は、図2に示す水処理装置1を更に大型化した状態を示す断面図である。図5では、流路口部12及び流出口部13の位置のみに、破線矢印により被処理水の流れを示している。上述したように、図2に示す流路区画体10は、流入口部12及び流入部14を構成する流路入口部材200と、流出口部13及び流出部15を構成する流路出口部材300と、二重管部16を構成する二重管部材400と、が接続されることで形成されているが、図5に示すように、二重管増設部材500を用いることにより、流路区画体10を更に大型化することができる。これにより、二重管部材400の環状処理空間16aを延長させ、紫外線処理能力を更に高めることができる。 Next, increasing the size of the water treatment device 1 will be explained. FIG. 5 is a sectional view showing a state in which the water treatment apparatus 1 shown in FIG. 2 is further enlarged. In FIG. 5, the flow of the water to be treated is shown by broken line arrows only at the positions of the channel opening 12 and the outlet 13. As described above, the channel partitioning body 10 shown in FIG. and a double pipe member 400 constituting the double pipe section 16. However, as shown in FIG. 5, by using a double pipe extension member 500, the flow path section The body 10 can be made even larger. Thereby, the annular processing space 16a of the double tube member 400 can be extended, and the ultraviolet processing ability can be further improved.

図5に示す水処理装置1の流路区画体10は、流路入口部材200、流路出口部材300、二重管部材400、及び、二重管増設部材500により構成されている。流路入口部材200、流路出口部材300及び二重管部材400は図2と同様であるため、ここでは説明を省略する。 The channel partitioning body 10 of the water treatment apparatus 1 shown in FIG. 5 includes a channel inlet member 200, a channel outlet member 300, a double pipe member 400, and a double pipe extension member 500. The flow path inlet member 200, the flow path outlet member 300, and the double pipe member 400 are the same as those in FIG. 2, so their description will be omitted here.

二重管増設部材500は、増設内管部530としての円筒状の管部と、この増設内管部530の径方向Bの外側を取り囲む増設外管部540としての円筒状の管部と、上流側環状フランジ部516bと、下流側環状フランジ部516cと、連結部(不図示)と、を備える。増設外管部540、上流側環状フランジ部516b、下流側環状フランジ部516c及び連結部それぞれは、二重管部材400の外管部40、上流側環状フランジ部16b、下流側環状フランジ部16c及び連結部16dそれぞれと同様であるためここでは説明を省略する。 The double pipe extension member 500 includes a cylindrical pipe part as an extension inner pipe part 530, a cylindrical pipe part as an extension outer pipe part 540 surrounding the outside of the extension inner pipe part 530 in the radial direction B, It includes an upstream annular flange portion 516b, a downstream annular flange portion 516c, and a connecting portion (not shown). The additional outer tube portion 540, the upstream annular flange portion 516b, the downstream annular flange portion 516c, and the connecting portion are respectively the outer tube portion 40, the upstream annular flange portion 16b, the downstream annular flange portion 16c, and the connecting portion of the double tube member 400. Since it is the same as each of the connecting portions 16d, a description thereof will be omitted here.

二重管増設部材500の増設内管部530は、二重管部材400の内管部30と比較して、増設内管部530の内部に形成されている増設内管空間530aの流路上流側の端部が閉鎖されていない点で構成が相違している。つまり、増設内管部530の流路上流側及び流路下流側の端部はいずれも開放端である。なお、増設内管部530は、内管部30と同様、紫外線LED20を保持している。 Compared to the inner pipe part 30 of the double pipe member 400, the extension inner pipe part 530 of the double pipe extension member 500 is located on the upper stream side of the extension inner pipe space 530a formed inside the extension inner pipe part 530. The configuration differs in that the side ends are not closed. In other words, both the upstream and downstream ends of the expansion inner pipe section 530 are open ends. Note that, like the inner tube section 30, the additional inner tube section 530 holds the ultraviolet LED 20.

図5に示すように、二重管部材400の流路下流側に二重管増設部材500を接続することにより、二重管部材400の内管部30の流路下流側の開放端と、二重管増設部材500の増設内管部530の流路上流側の開放端と、を接続することができる。これにより、二重管部材400の内管部30内の内管空間30aと、二重管増設部材500の増設内管部530内の増設内管空間530aと、を連通させることができる。 As shown in FIG. 5, by connecting the double pipe extension member 500 to the downstream side of the flow path of the double pipe member 400, the open end of the inner pipe part 30 of the double pipe member 400 on the downstream side of the flow path, An open end on the upstream side of the flow path of the extension inner pipe section 530 of the double pipe extension member 500 can be connected. Thereby, the inner tube space 30a in the inner tube section 30 of the double tube member 400 and the expansion inner tube space 530a in the expansion inner tube section 530 of the double tube extension member 500 can be communicated with each other.

内管空間30a及び増設内管空間530aは、例えば、内管部30の開放端と増設内管部530の開放端との間に弾性体等のシール部材を挟み込ませて介在させることで、液密に連通する。 The inner tube space 30a and the additional inner tube space 530a can be formed by, for example, interposing a sealing member such as an elastic body between the open end of the inner tube section 30 and the open end of the additional inner tube section 530, so that the liquid can be removed. communicate closely.

更に、図5に示すように、二重管部材400の流路下流側に二重管増設部材500を接続することにより、二重管部材400の環状処理空間16aの流路下流側と、二重管増設部材500の増設環状処理空間516aの流路上流側と、を連通させることができる。換言すれば、二重管部材400の環状処理空間16aを、二重管増設部材500の増設環状処理空間516aにより延長することができる。そのため、被処理水が紫外線LED20により紫外線処理される領域が長くなり、水処理装置1の紫外線処理能力が更に高められる。 Furthermore, as shown in FIG. 5, by connecting the double pipe extension member 500 to the flow path downstream side of the double pipe member 400, the flow path downstream side of the annular processing space 16a of the double pipe member 400 and the two The flow upstream side of the expanded annular processing space 516a of the heavy pipe expansion member 500 can be communicated. In other words, the annular processing space 16a of the double pipe member 400 can be extended by the additional annular processing space 516a of the double pipe extension member 500. Therefore, the area where the water to be treated is treated with ultraviolet light by the ultraviolet LED 20 becomes longer, and the ultraviolet treatment ability of the water treatment device 1 is further enhanced.

なお、二重管部材400及び二重管増設部材500は、上述した二重管部材400及び流路入口部材200の接続構成と同様、環状フランジ部を利用して接続される。このような接続構成とすることで、二重管増設部材500を容易に増設することができる。 Note that the double pipe member 400 and the double pipe extension member 500 are connected using an annular flange portion, similar to the connection configuration of the double pipe member 400 and the channel inlet member 200 described above. With such a connection configuration, the double pipe extension member 500 can be easily added.

以上のように、二重管部材400の流路下流側に二重管増設部材500を接続することにより、流路区画体10を更に大型化し、水処理装置1の紫外線処理能力が更に高めることができる。 As described above, by connecting the double pipe extension member 500 to the downstream side of the flow path of the double pipe member 400, the flow path partitioning body 10 can be further enlarged, and the ultraviolet treatment ability of the water treatment device 1 can be further increased. I can do it.

なお、図5に示す例では、流路出口部材300と二重管部材400との間に1つの二重管増設部材500を増設したが、2つ以上の任意の数の二重管増設部材500を増設してもよい。このように、任意の数の二重管増設部材500を増設可能とすることで、水処理装置1における流路入口部材200及び流路出口部材300の位置についても固定されず、二重管増設部材500の増設数に対応させた位置とすることができる。つまり、流入口12a及び流出口13aの位置の設計自由度を向上させることができる。逆に、流路入口部材200及び流路出口部材300の位置が固定されている場合であっても、二重管増設部材500の増設数を調整することにより、流路入口部材200及び流路出口部材300の固定位置に合わせた流路区画体10を実現できる。 In the example shown in FIG. 5, one double pipe extension member 500 is added between the flow path outlet member 300 and the double pipe member 400, but any number of double pipe extension members of two or more may be added. 500 may be added. In this way, by making it possible to add an arbitrary number of double pipe extension members 500, the positions of the channel inlet member 200 and the channel outlet member 300 in the water treatment device 1 are not fixed, and the double pipe extension members 500 can be added. The positions can be set in accordance with the number of members 500 added. In other words, the degree of freedom in designing the positions of the inlet 12a and the outlet 13a can be improved. Conversely, even if the positions of the channel inlet member 200 and the channel outlet member 300 are fixed, by adjusting the number of double pipe extension members 500, the channel inlet member 200 and the channel outlet member 300 can be fixed. It is possible to realize a flow path partitioning body 10 that matches the fixed position of the outlet member 300.

次に、上述した水処理装置1の変形例について説明する。図6は、上述した水処理装置1の第1変形例としての水処理装置100aの概要を示す概要図である。図6では、破線矢印により被処理水の流れを示している。図6に示す水処理装置100aは、図1に示す水処理装置1と比較して、流入口部12及び流出口部13の位置が異なり、その他の構成は共通する。そのため、ここでは水処理装置100aと図1に示す水処理装置1の相違点のみについて説明し、共通する構成の説明は省略する。 Next, a modification of the water treatment device 1 described above will be described. FIG. 6 is a schematic diagram showing an outline of a water treatment device 100a as a first modification of the water treatment device 1 described above. In FIG. 6, the flow of the water to be treated is shown by broken line arrows. The water treatment apparatus 100a shown in FIG. 6 is different from the water treatment apparatus 1 shown in FIG. 1 in the positions of the inlet section 12 and the outlet section 13, and the other configurations are the same. Therefore, only the differences between the water treatment device 100a and the water treatment device 1 shown in FIG. 1 will be described here, and description of common configurations will be omitted.

図6に示すように、水処理装置100aの流入口部12は、本体部11の軸方向Cの一端側に位置する底面から軸方向Cの外側(図6では左側)に向かって突出している。また、図6に示すように、水処理装置100aの流出口部13は、本体部11の軸方向Cの他端側に位置する底面から軸方向Cの外側(図6では右側)に向かって突出している。 As shown in FIG. 6, the inlet portion 12 of the water treatment device 100a protrudes toward the outside in the axial direction C (left side in FIG. 6) from the bottom surface located on one end side of the main body portion 11 in the axial direction C. . Further, as shown in FIG. 6, the outflow port 13 of the water treatment device 100a extends outward in the axial direction C (to the right in FIG. 6) from the bottom surface located on the other end side of the main body 11 in the axial direction C. It stands out.

図1に示す水処理装置1では、流入口部12及び流出口部13が、流路区画体10の略円筒状の本体部11の外周面から径方向Bの外側に突出しているため、環状処理空間16aの被処理水の流速及び圧力について、周方向の位置によるばらつきが生じる。具体的に、図1に示す水処理装置1では、流入口部12及び流出口部13が設けられている周方向の位置に対して径方向Bで対向する反対側(図1では下側)で、環状処理空間16aの被処理水の流速及び圧力が高くなる傾向がある。 In the water treatment device 1 shown in FIG. 1, the inlet port 12 and the outlet port 13 protrude outward in the radial direction B from the outer circumferential surface of the substantially cylindrical main body 11 of the flow path partitioning body 10, so that the inlet port 12 and the outlet port 13 have an annular shape. The flow rate and pressure of the water to be treated in the treatment space 16a vary depending on the position in the circumferential direction. Specifically, in the water treatment device 1 shown in FIG. 1, the opposite side (lower side in FIG. 1) facing in the radial direction B with respect to the circumferential position where the inlet port 12 and the outlet port 13 are provided. Therefore, the flow rate and pressure of the water to be treated in the annular treatment space 16a tend to increase.

これに対して、流入口部12及び流出口部13を図6に示す位置に配置することで、環状処理空間16aの周方向の位置による被処理水の流速差及び圧力差を軽減できる。そのため、環状処理空間16aの周方向の位置による紫外線処理能力の差を軽減することができる。 On the other hand, by arranging the inlet portion 12 and the outlet portion 13 at the positions shown in FIG. 6, it is possible to reduce the flow velocity difference and pressure difference of the water to be treated depending on the position in the circumferential direction of the annular treatment space 16a. Therefore, it is possible to reduce the difference in ultraviolet processing ability depending on the circumferential position of the annular processing space 16a.

図7は、上述した水処理装置1の第2変形例としての水処理装置100bの概要を示す概要図である。図7では、破線矢印により被処理水の流れを示している。図7に示す水処理装置100bは、図1に示す水処理装置1と比較して、ガイド部60の有無が異なり、その他の構成は共通する。そのため、ここでは水処理装置100bと図1に示す水処理装置1の相違点のみについて説明し、共通する構成の説明は省略する。 FIG. 7 is a schematic diagram showing an outline of a water treatment device 100b as a second modification of the water treatment device 1 described above. In FIG. 7, the flow of the water to be treated is shown by broken line arrows. The water treatment device 100b shown in FIG. 7 differs from the water treatment device 1 shown in FIG. 1 in the presence or absence of a guide portion 60, and the other configurations are the same. Therefore, only the differences between the water treatment device 100b and the water treatment device 1 shown in FIG. 1 will be described here, and description of common configurations will be omitted.

図7に示す流路区画体10は、内管部30よりも流路下流側にガイド部60を備える。ガイド部60は、内管部30の開放口31を通じて内管空間30aに被処理水を案内する。 The flow path partitioning body 10 shown in FIG. 7 includes a guide portion 60 on the downstream side of the flow path than the inner pipe portion 30. As shown in FIG. The guide section 60 guides the water to be treated into the inner tube space 30a through the opening 31 of the inner tube section 30.

より具体的に、図7に示す流路区画体10の流路10aを区画する内壁は突出部60aを備える。図7に示すように、突出部60aは、内管部30よりも流路下流側で、内管部30の開放口31と、内管部30の軸方向Cで対向する位置に設けられている。つまり、突出部60aは、流路区画体10の内壁のうち、流路区画体10の本体部11の軸方向Cの流路下流側に位置する部分に設けられている。この突出部60aは、流路区画体10の内壁から開放口31に向かって突出している。突出部60aは、例えば、開放口31側の頂部60a1に向かって細くなる錐状又は錐台状の突起によりとすることができる。図7に示す例では、ガイド部60が突出部60aにより構成されている。このようなガイド部60を設けることで、図7に示すように、環状処理空間16aを通過する被処理水を、より効率的に内管部30内に誘導することができる。そのため、内管部30に保持される紫外線LED20の冷却効率を、より高めることができる。 More specifically, the inner wall of the flow path dividing body 10 shown in FIG. 7 that defines the flow path 10a includes a protrusion 60a. As shown in FIG. 7, the protruding portion 60a is provided at a position facing the opening 31 of the inner tube portion 30 in the axial direction C of the inner tube portion 30 on the downstream side of the flow path than the inner tube portion 30. There is. In other words, the protruding portion 60a is provided in a portion of the inner wall of the channel dividing body 10 located on the downstream side of the channel in the axial direction C of the main body portion 11 of the channel dividing body 10. The protruding portion 60a protrudes from the inner wall of the flow path partitioning body 10 toward the opening 31. The protruding portion 60a may be, for example, a conical or truncated conical protrusion that becomes thinner toward the apex 60a1 on the side of the opening 31. In the example shown in FIG. 7, the guide portion 60 is constituted by a protrusion 60a. By providing such a guide portion 60, as shown in FIG. 7, the water to be treated passing through the annular treatment space 16a can be more efficiently guided into the inner tube portion 30. Therefore, the cooling efficiency of the ultraviolet LED 20 held in the inner tube part 30 can be further improved.

図7では、ガイド部60を上述の突出部60aにより構成しているが、被処理水の流れをガイドし、内管部30内に被処理水を誘導する構成であれば、その構成は特に限定されない。したがって、ガイド部60は、錐状又は錐台状の突起に限られない。また、ガイド部60を、流路区画体10の内壁の別の位置に設けてもよい。したがって、ガイド部60は、例えば、内管部30よりも流路下流側で、内管部30の軸方向Cと直交するように突出する突出部であってもよい。また、ガイド部60を、流路区画体10の内壁に複数設けてもよい。更に、ガイド部60を、流路区画体10の流路10a内に取り付ける別部材により構成してもよい。 In FIG. 7, the guide portion 60 is constituted by the above-mentioned protruding portion 60a, but if the configuration is such that it guides the flow of the water to be treated and guides the water to be treated into the inner pipe portion 30, the configuration may be changed in particular. Not limited. Therefore, the guide portion 60 is not limited to a conical or truncated conical projection. Further, the guide portion 60 may be provided at another position on the inner wall of the channel partitioning body 10. Therefore, the guide portion 60 may be, for example, a protruding portion that protrudes perpendicularly to the axial direction C of the inner tube portion 30 on the downstream side of the flow path than the inner tube portion 30 . Further, a plurality of guide portions 60 may be provided on the inner wall of the channel partitioning body 10. Furthermore, the guide portion 60 may be constituted by a separate member that is attached within the flow path 10a of the flow path partitioning body 10.

図8は、上述した水処理装置1の第3変形例としての水処理装置100cの概要を示す概要図である。図8では、流路口部12及び流出口部13の位置のみに、破線矢印により被処理水の流れを示している。図8に示す水処理装置100cは、図1に示す水処理装置1と比較して、内管部30の数、及び、ガイド部60の有無、が異なる。図8に示すように、流路区画体10内の流路10aにおいて、複数の内管部30を配置してもよい。複数の内管部30は、送水方向Aに離間して配置されている。図8では、3つの内管部30の中心軸が一致するように、3つの内管部30が軸方向Cに一列に配置されている。 FIG. 8 is a schematic diagram showing an outline of a water treatment device 100c as a third modification of the water treatment device 1 described above. In FIG. 8, the flow of the water to be treated is shown by broken line arrows only at the positions of the channel opening 12 and the outlet 13. The water treatment apparatus 100c shown in FIG. 8 differs from the water treatment apparatus 1 shown in FIG. 1 in the number of inner tube parts 30 and the presence or absence of the guide part 60. As shown in FIG. 8, a plurality of inner pipe portions 30 may be arranged in the flow path 10a within the flow path partitioning body 10. The plurality of inner tube parts 30 are arranged apart from each other in the water supply direction A. In FIG. 8, the three inner tube sections 30 are arranged in a line in the axial direction C so that the central axes of the three inner tube sections 30 coincide.

また、図8に示すように、内管部30の流路上流側の底面には、ガイド部60としての突出部60aを設けてもよい。このようにすることで、ガイド部60が設けられた内管部30よりも流路上流側に位置する別の内管部30の内管空間30aに、被処理水を誘導することができる。 Further, as shown in FIG. 8, a protrusion 60a serving as a guide portion 60 may be provided on the bottom surface of the inner tube portion 30 on the upstream side of the flow path. By doing so, the water to be treated can be guided to the inner tube space 30a of another inner tube section 30 located upstream of the inner tube section 30 in which the guide section 60 is provided.

図9は、上述した水処理装置1の第4変形例としての水処理装置100dの概要を示す概要図である。図9では、破線矢印により被処理水の流れを示している。図9に示す水処理装置100dは、図1に示す水処理装置1と比較して、内管部30の流路下流側の開放端の形状が異なり、その他の構成は共通する。そのため、ここでは水処理装置100dと図1に示す水処理装置1の相違点のみについて説明し、共通する構成の説明は省略する。 FIG. 9 is a schematic diagram showing an outline of a water treatment device 100d as a fourth modification of the water treatment device 1 described above. In FIG. 9, the flow of the water to be treated is shown by broken line arrows. The water treatment device 100d shown in FIG. 9 is different from the water treatment device 1 shown in FIG. 1 in the shape of the open end of the inner pipe portion 30 on the downstream side of the flow path, and the other configurations are the same. Therefore, only the differences between the water treatment device 100d and the water treatment device 1 shown in FIG. 1 will be described here, and description of common configurations will be omitted.

図9に示す内管部30の流路下流側の端面は、内管部30の軸方向Cに対して傾斜している。開放口31は、この傾斜する端面により形成されている。換言すれば、図9に示す内管部30の流路下流側の環状の端面は、軸方向Cに傾斜する環状の平面により構成されている。 The end surface of the inner tube section 30 on the downstream side of the flow path shown in FIG. 9 is inclined with respect to the axial direction C of the inner tube section 30. The opening 31 is formed by this inclined end surface. In other words, the annular end surface on the downstream side of the flow path of the inner tube portion 30 shown in FIG. 9 is constituted by an annular plane inclined in the axial direction C.

このような構成とすることで、内管部30の開放端を構成する環状平面の先端33側と基端34側とで、被処理水の流速差及び圧力差を生じさせることができる。そのため、ベルヌーイの定理に基づく被処理水の内管部30内での循環を、より促進することができる。 With such a configuration, a difference in flow rate and pressure of the water to be treated can be generated between the distal end 33 side and the proximal end 34 side of the annular plane forming the open end of the inner tube section 30. Therefore, the circulation of the water to be treated within the inner pipe section 30 based on Bernoulli's theorem can be further promoted.

また、図9に示すように、内管部30の開放端の先端33がある周方向の位置は、流入口部12及び流出口部13が設けられている周方向の位置と、径方向Bで対向している。図9に示す水処理装置100dにおいて、環状処理空間16aを通過する被処理水の流速及び圧力は、流入口部12及び流出口部13が設けられている周方向の位置(内管部30の開放端の基端34がある周方向の位置)よりも、内管部30の開放端の先端33がある周方向の位置で高くなる。そのため、図9に示す水処理装置100dでは、図9に示す内管部30の周壁に取り付けられる紫外線LED20の数を、内管部30の開放端の先端33の周方向位置を含む所定の周方向領域で、内管部30の開放端の基端34の周方向位置を含む所定の周方向領域よりも、多くしている。これにより、環状処理空間16aの周方向位置による被処理水の流速差に基づく紫外線処理能力のばらつきを、軽減することができる。 Further, as shown in FIG. 9, the position in the circumferential direction where the tip 33 of the open end of the inner tube part 30 is located is the position in the circumferential direction where the inlet port part 12 and the outlet part 13 are provided, and the position in the radial direction B are facing each other. In the water treatment apparatus 100d shown in FIG. 9, the flow rate and pressure of the water to be treated passing through the annular treatment space 16a are determined at the positions in the circumferential direction where the inlet portion 12 and the outlet portion 13 are provided (inner pipe portion 30). The position in the circumferential direction where the tip 33 of the open end of the inner tube part 30 is located is higher than the position in the circumferential direction where the proximal end 34 of the open end is located. Therefore, in the water treatment device 100d shown in FIG. 9, the number of ultraviolet LEDs 20 attached to the peripheral wall of the inner pipe part 30 shown in FIG. The direction area is larger than a predetermined circumferential area including the circumferential position of the proximal end 34 of the open end of the inner tube part 30. Thereby, it is possible to reduce variations in the ultraviolet treatment ability based on the difference in flow velocity of the water to be treated depending on the circumferential position of the annular treatment space 16a.

図10は、上述した水処理装置1の第5変形例としての水処理装置100eの断面図である。図10では、流路口部12及び流出口部13の位置のみに、破線矢印により被処理水の流れを示している。図10に示す水処理装置100eは、図1、図2等に示す水処理装置1と比較して、内管部30の開放端の位置が異なり、その他の構成は共通する。そのため、ここでは水処理装置100eと図1、図2等に示す水処理装置1の相違点のみについて説明し、共通する構成の説明は省略する。 FIG. 10 is a sectional view of a water treatment device 100e as a fifth modification of the water treatment device 1 described above. In FIG. 10, the flow of the water to be treated is shown by broken line arrows only at the positions of the channel opening 12 and the outlet 13. The water treatment device 100e shown in FIG. 10 differs from the water treatment device 1 shown in FIGS. 1, 2, etc. in the position of the open end of the inner pipe portion 30, and the other configurations are the same. Therefore, only the differences between the water treatment apparatus 100e and the water treatment apparatus 1 shown in FIGS. 1, 2, etc. will be described here, and description of common configurations will be omitted.

図10に示す内管部30は、流路下流側で閉鎖されている。その一方で、図10に示す内管部30は、流路上流側で開放されている。より具体的に、図10に示す内管部30の内部に形成されている内管空間30aは、保持領域GAに対して流路下流側で閉鎖されている。その一方で、図10に示す内管空間30aは、保持領域GAに対して流路上流側で開放されている。すなわち、図10に示す内管部30の流路上流側の端部は、開放口31が形成されている開放端である。開放口31は、内管部30の流路上流側の環状の端面により形作られている。開放口31の大きさは、内管部30の軸方向Cに直交する内管空間30aの断面積と同じである。つまり、内管空間30aの流路上流側の端部は、部分的にも閉鎖されていない。その一方で、図10に示す内管部30の流路下流側の端部には、内管空間30aを閉鎖する底板部32が設けられている。内管空間30aの流路下流側の端部は、底板部32により完全に閉鎖されている。 The inner tube section 30 shown in FIG. 10 is closed on the downstream side of the flow path. On the other hand, the inner tube section 30 shown in FIG. 10 is open on the upstream side of the flow path. More specifically, the inner tube space 30a formed inside the inner tube section 30 shown in FIG. 10 is closed on the downstream side of the flow path with respect to the holding area GA. On the other hand, the inner tube space 30a shown in FIG. 10 is open on the upstream side of the flow path with respect to the holding area GA. That is, the upstream end of the inner tube section 30 shown in FIG. 10 is an open end in which the open port 31 is formed. The open port 31 is formed by an annular end surface on the upstream side of the flow path of the inner tube portion 30 . The size of the opening 31 is the same as the cross-sectional area of the inner tube space 30a perpendicular to the axial direction C of the inner tube portion 30. In other words, the upstream end of the inner tube space 30a is not even partially closed. On the other hand, a bottom plate portion 32 that closes the inner tube space 30a is provided at the downstream end of the flow path of the inner tube portion 30 shown in FIG. The end of the inner tube space 30a on the downstream side of the flow path is completely closed by the bottom plate portion 32.

図2等に示すような内管部30にすると、流路10a内に未処理水が滞留し難く、図10に示す構成と比較して、紫外線処理の効率が高い。これに対して、図10に示すような内管部30とすれば、図2等に示す構成と比較して、底板部32を紫外線LED20の保持領域GAとして利用し易くなる。図2等に示す内管部30の底板部32の流路上流側の面に紫外線LED20を取り付けると、流入口部12から流入し得る小石や粒子が直接的にガラス被覆材23(図4参照)に衝突する可能性がある。そのため、紫外線LED20が破損するおそれがある。これに対して、図10に示す内管部30の底板部32の流路下流側の面は、小石や粒子は衝突し難い。そのため、図10に示す内管部30の底板部32は、紫外線LED20の保持領域GAとして利用し易く、より多くの紫外線LED20を配置することができる。但し、紫外線LED20の数は、必要となる紫外線処理能力に応じて決定され、図10に示すように、底板部32を保持領域GAとして利用しない構成であってもよい。 When the inner tube part 30 is configured as shown in FIG. 2, etc., untreated water is less likely to remain in the flow path 10a, and the efficiency of ultraviolet treatment is higher than that of the configuration shown in FIG. On the other hand, if the inner tube section 30 is configured as shown in FIG. 10, the bottom plate section 32 can be more easily used as the holding area GA of the ultraviolet LED 20, compared to the configuration shown in FIG. 2 and the like. When the ultraviolet LED 20 is attached to the upstream surface of the flow path of the bottom plate part 32 of the inner tube part 30 shown in FIG. ) may collide. Therefore, there is a possibility that the ultraviolet LED 20 may be damaged. On the other hand, pebbles and particles are unlikely to collide with the surface of the bottom plate section 32 of the inner tube section 30 shown in FIG. 10 on the downstream side of the flow path. Therefore, the bottom plate part 32 of the inner tube part 30 shown in FIG. 10 can be easily used as the holding area GA of the ultraviolet LEDs 20, and more ultraviolet LEDs 20 can be arranged. However, the number of ultraviolet LEDs 20 is determined depending on the required ultraviolet processing ability, and as shown in FIG. 10, the configuration may be such that the bottom plate part 32 is not used as the holding area GA.

また、図10の流路区画体10の本体部11内の全体容積に対する内管部30内の容積の比を0.1~0.8となるように設定することが好ましい。このようにすることで、内管部30内で未処理水が滞留することを、より抑制できる。 Further, it is preferable that the ratio of the volume inside the inner tube section 30 to the total volume inside the main body section 11 of the flow path partitioning body 10 in FIG. 10 is set to 0.1 to 0.8. By doing so, it is possible to further suppress retention of untreated water within the inner pipe portion 30.

本発明に係る水処理装置は、上述した実施形態及び変形例に記載されている具体的な構成に限られず、特許請求の範囲を逸脱しない限り、種々の変形・変更が可能である。上述した実施形態及び変形例に示す水処理装置では、複数の紫外線LEDが内管部の周壁の外周面に取り付けられているが、1つ以上の紫外線LEDを、内管部の底板部の外面に更に取り付けてもよい。但し、上述したように、底板部の外面に紫外線LEDを取り付ける場合には、図10に示す内管部30の構成を採用することが好ましい。また、上述した実施形態及び変形例に示す水処理装置の流路内に、内管部内の被処理水に乱流を引き起こすような乱流形成部材を更に配置してもよい。乱流形成部材としては、例えば、内管部の開放口の近傍に配置される球状体などが挙げられる。 The water treatment device according to the present invention is not limited to the specific configurations described in the embodiments and modifications described above, and various modifications and changes can be made without departing from the scope of the claims. In the water treatment apparatus shown in the above-described embodiments and modified examples, a plurality of ultraviolet LEDs are attached to the outer circumferential surface of the peripheral wall of the inner tube part, and one or more ultraviolet LEDs are attached to the outer surface of the bottom plate part of the inner tube part. It may be further attached to. However, as described above, when attaching an ultraviolet LED to the outer surface of the bottom plate part, it is preferable to adopt the configuration of the inner tube part 30 shown in FIG. 10. Furthermore, a turbulent flow forming member that causes turbulence in the water to be treated in the inner pipe portion may be further disposed within the flow path of the water treatment apparatus shown in the embodiments and modifications described above. Examples of the turbulent flow forming member include a spherical body disposed near the opening of the inner tube portion.

以下、本発明に係る水処理装置の更なる変形例について説明する。 Hereinafter, further modified examples of the water treatment apparatus according to the present invention will be described.

図11は、図1に示す水処理装置1の第6変形例としての水処理装置100fの概要を示す概要図である。図11に示す水処理装置100fは、図1に示す水処理装置1と比較して、流路区画体10が、内管部30の径方向B外側に位置する流路10aに面する内壁に凸部70を備える点で相違し、その他の構成は共通している。 FIG. 11 is a schematic diagram showing an outline of a water treatment device 100f as a sixth modification example of the water treatment device 1 shown in FIG. In the water treatment apparatus 100f shown in FIG. 11, compared to the water treatment apparatus 1 shown in FIG. The difference is that a convex portion 70 is provided, and the other configurations are the same.

図11に示すように、流路区画体10の内部には、被処理水が流れる流路10aが形成されている。紫外線LED20は、流路10a内を流れる被処理水に対して紫外線を照射する。これにより、流路10a内を流れる被処理水を紫外線処理することができる。 As shown in FIG. 11, a flow path 10a through which water to be treated flows is formed inside the flow path partitioning body 10. The ultraviolet LED 20 irradiates ultraviolet light to the water to be treated flowing in the flow path 10a. Thereby, the water to be treated flowing in the flow path 10a can be treated with ultraviolet light.

図11に示すように、流路区画体10は内管部30を備える。内管部30は、流路10a内において、送水方向Aに向かって延在している。図11に示すように、紫外線LED20は、内管部30の周壁の保持領域GAに保持されている。また、紫外線LED20は、内管部30の径方向Bの外側の環状処理空間16aを流れる被処理水に向かって紫外線を照射可能である。 As shown in FIG. 11, the flow path partitioning body 10 includes an inner pipe portion 30. As shown in FIG. The inner tube portion 30 extends in the water supply direction A within the flow path 10a. As shown in FIG. 11, the ultraviolet LED 20 is held in a holding area GA of the peripheral wall of the inner tube part 30. Further, the ultraviolet LED 20 can irradiate ultraviolet rays toward the water to be treated flowing in the annular treatment space 16a outside the inner tube portion 30 in the radial direction B.

内管部30は、流路上流側で閉鎖されている。その一方で、内管部30は、流路下流側で開放されている。但し、内管部30は、流路下流側で閉鎖され、流路上流側で開放されていてもよい。 The inner tube portion 30 is closed on the upstream side of the flow path. On the other hand, the inner tube section 30 is open on the downstream side of the flow path. However, the inner tube portion 30 may be closed on the downstream side of the flow path and open on the upstream side of the flow path.

上述したように、図11に示す流路区画体10は、内管部30の径方向Bの外側に位置する流路に面する内壁に凸部70を備える。このような凸部70を設けることにより、紫外線LED20から紫外線が照射される、内管部30の径方向Bの外側の位置において、被処理水が滞留し易くなる。そのため、紫外線LED20による紫外線処理の効率を高めることができる。 As described above, the flow path partitioning body 10 shown in FIG. 11 includes the convex portion 70 on the inner wall facing the flow path located on the outside in the radial direction B of the inner tube portion 30. By providing such a convex portion 70, the water to be treated tends to stay at a position outside the inner tube portion 30 in the radial direction B, where the ultraviolet rays are irradiated from the ultraviolet LED 20. Therefore, the efficiency of ultraviolet treatment by the ultraviolet LED 20 can be increased.

具体的に、図11に示す流路区画体10は、内管部30の外周面から径方向Bの外側に向かって突出する凸部70を備える。また、図11に示す流路区画体10は、外管部40の内周面から径方向Bの内側に向かって突出する凸部70を備える。図11に示すように、内管部30の外周面から突出する凸部70の軸方向Cの位置と、外管部40の内周面から突出する凸部70の軸方向Cの位置と、は異なる。但し、凸部70は、内管部30の外周面、及び、外管部40の内周面、いずれか一方のみから突出していてもよい。内管部30の周壁に紫外線LED20が配置されることを考慮すれば、凸部70は、少なくとも外管部40の内周面から突出していることが好ましい。内管部30の外周面、及び、外管部40の内周面、の両方から凸部70を突出させる構成とすることで、被処理水が、より滞留し易くなる。そのため、紫外線LED20による被処理水の紫外線処理の効率を、より高めることができる。 Specifically, the flow path partitioning body 10 shown in FIG. 11 includes a convex portion 70 that protrudes outward in the radial direction B from the outer circumferential surface of the inner tube portion 30. Further, the flow path partitioning body 10 shown in FIG. 11 includes a convex portion 70 that protrudes inward in the radial direction B from the inner circumferential surface of the outer tube portion 40. As shown in FIG. 11, the position in the axial direction C of the convex part 70 protruding from the outer circumferential surface of the inner tube part 30, the position in the axial direction C of the convex part 70 protruding from the inner circumferential surface of the outer tube part 40, is different. However, the convex portion 70 may protrude only from either the outer circumferential surface of the inner tube section 30 or the inner circumferential surface of the outer tube section 40. Considering that the ultraviolet LED 20 is arranged on the peripheral wall of the inner tube part 30, it is preferable that the convex part 70 protrudes from at least the inner circumferential surface of the outer tube part 40. By having the convex portion 70 protrude from both the outer circumferential surface of the inner tube section 30 and the inner circumferential surface of the outer tube section 40, it becomes easier for the water to be treated to stay. Therefore, the efficiency of ultraviolet treatment of the water to be treated by the ultraviolet LED 20 can be further improved.

また、図11に示す流路区画体10は、軸方向Cの異なる位置に配置される複数の凸部70を備える。より具体的に、本例の流路区画体10は、内管部30の外周面から突出する複数の凸部70を備える。また、本例の流路区画体10は、外管部40の内周面から突出する複数の凸部70を備える。内管部30の外周面から突出する凸部70と、外管部40の内周面から突出する凸部70とは、軸方向Cに交互に配置されている。このように、凸部70を軸方向Cの異なる位置に配置することで、凸部70を軸方向Cの一箇所のみに配置する場合と比較して、内管部30の径方向Bの外側を流れる被処理水が、より滞留し易くなる。そのため、紫外線LED20による被処理水の紫外線処理の効率を、より高めることができる。 Further, the flow path partitioning body 10 shown in FIG. 11 includes a plurality of convex portions 70 arranged at different positions in the axial direction C. More specifically, the channel partitioning body 10 of this example includes a plurality of convex portions 70 protruding from the outer circumferential surface of the inner tube portion 30. Further, the flow path partitioning body 10 of this example includes a plurality of convex portions 70 protruding from the inner circumferential surface of the outer tube portion 40. The convex portions 70 protruding from the outer circumferential surface of the inner tube portion 30 and the convex portions 70 protruding from the inner circumferential surface of the outer tube portion 40 are alternately arranged in the axial direction C. In this way, by arranging the convex portions 70 at different positions in the axial direction C, compared to the case where the convex portions 70 are disposed only at one location in the axial direction C, the outer side of the inner tube portion 30 in the radial direction B is The water to be treated flowing through becomes more likely to stagnate. Therefore, the efficiency of ultraviolet treatment of the water to be treated by the ultraviolet LED 20 can be further improved.

凸部70は、例えば、内管部30の外周面から径方向Cの外側に突出する環状板又は螺旋板としてもよい。また、凸部70は、外管部40の内周面から径方向Cの内側に突出する環状板又は螺旋板としてもよい。更に、凸部70は、例えば、内管部30の外周面、及び、外管部40の内周面、の周方向に所定距離を隔てて複数配置されている板状突起であってもよい。このように、凸部70は、内管部30の径方向Bの外側で、被処理水の流れを阻害して、被処理水を滞留させるものであれば、その形状は特に限定されない。 The convex portion 70 may be, for example, an annular plate or a spiral plate that protrudes outward in the radial direction C from the outer peripheral surface of the inner tube portion 30. Further, the convex portion 70 may be an annular plate or a spiral plate that protrudes inward in the radial direction C from the inner circumferential surface of the outer tube portion 40. Further, the convex portions 70 may be, for example, a plurality of plate-shaped protrusions arranged at a predetermined distance in the circumferential direction of the outer circumferential surface of the inner tube portion 30 and the inner circumferential surface of the outer tube portion 40. . As described above, the shape of the convex portion 70 is not particularly limited as long as it obstructs the flow of the water to be treated on the outside of the inner tube portion 30 in the radial direction B and allows the water to be treated to stay there.

凸部70の構成材料は、例えばPTFE、PFA、ETFEなどのフッ素系樹脂とすることが好ましい。フッ素系樹脂は、例えばステンレス等の金属と比較して、絶対反射率が高く、かつ、拡散反射比率が高い。そのため、内管部30の径方向Bの外側を流れる被処理水の紫外線処理の効率を高めることができる。 The material constituting the convex portion 70 is preferably a fluororesin such as PTFE, PFA, ETFE, or the like. Fluororesin has a higher absolute reflectance and a higher diffuse reflection ratio than, for example, metals such as stainless steel. Therefore, the efficiency of ultraviolet treatment of the water to be treated flowing on the outside of the inner tube portion 30 in the radial direction B can be increased.

図12は、図1に示す水処理装置1の第7変形例としての水処理装置100gの概要を示す概要図である。具体的に、図12(a)は、水処理装置100gの断面概要図であり、図12(b)は、水処理装置100gを本体部11の底面側から見た側面概要図である。 FIG. 12 is a schematic diagram showing an outline of a water treatment device 100g as a seventh modification of the water treatment device 1 shown in FIG. Specifically, FIG. 12(a) is a schematic cross-sectional view of the water treatment device 100g, and FIG. 12(b) is a schematic side view of the water treatment device 100g viewed from the bottom side of the main body 11.

図12に示す水処理装置100gは、図1に示す水処理装置1と比較して、流入口部12の位置、及び、流出口部13の位置、が相違し、その他の構成は共通している。 The water treatment apparatus 100g shown in FIG. 12 is different from the water treatment apparatus 1 shown in FIG. There is.

図12(a)、図12(b)に示す流路区画体10は、内管部30を含む略円筒状の本体部11と、この本体部11の外周面から径方向Bの外側に向かって突出する流入口部12と、本体部11の外周面から径方向Bの外側に向かって突出する流出口部13と、を備える。本体部11は、内管部30と、この内管部30の径方向Bの外側を覆う外管部40と、を備える。 The flow path partitioning body 10 shown in FIGS. 12(a) and 12(b) includes a substantially cylindrical main body 11 including an inner tube 30, and a direction extending outward in the radial direction B from the outer circumferential surface of the main body 11. The main body part 11 has an inflow port 12 that projects outward, and an outflow port 13 that projects outward in the radial direction B from the outer circumferential surface of the main body 11. The main body portion 11 includes an inner tube portion 30 and an outer tube portion 40 that covers the outside of the inner tube portion 30 in the radial direction B.

図12(b)に示すように、流入口部12は、本体部11の外周面との連結位置から、本体部11の外周面の法線方向Dに対して傾斜する方向に延在している。このようにすることで、流入口部12から本体部11内に流入した被処理水は、内管部30の径方向Bの外側で、外管部40の内周面に沿うように、内管部30の周囲を旋回しながら送水方向Aに進行し易くなる(図12(a)、図12(b)における破線矢印参照)。つまり、内管部30の周囲で、被処理水の旋回流が発生し易くなる。そのため、被処理水が、内管部30の径方向Bの外側を、直線状に送水方向Aに移動する場合と比較して、被処理水が内管部30の径方向Bの外側に滞留する時間を長くすることができる。これにより、紫外線LED20による紫外線処理の効率を高めることができる。 As shown in FIG. 12(b), the inlet port 12 extends from the connection position with the outer circumferential surface of the main body 11 in a direction inclined with respect to the normal direction D of the outer circumferential surface of the main body 11. There is. By doing so, the water to be treated that has flowed into the main body part 11 from the inflow port part 12 flows inside the inner pipe part 30 along the inner circumferential surface of the outer pipe part 40 on the outside of the inner pipe part 30 in the radial direction B. It becomes easier to proceed in the water supply direction A while turning around the pipe portion 30 (see broken line arrows in FIGS. 12(a) and 12(b)). In other words, a swirling flow of the water to be treated is likely to occur around the inner pipe portion 30. Therefore, compared to the case where the water to be treated moves linearly in the water supply direction A on the outside in the radial direction B of the inner pipe part 30, the water to be treated stays on the outside in the radial direction B of the inner pipe part 30. You can increase the time it takes to do so. Thereby, the efficiency of ultraviolet treatment by the ultraviolet LED 20 can be increased.

なお、図12に示す流入口部12は、本体部11の外周面から直線状に延在する円筒状の形状であるが、この構成に限られない。流入口12は、例えば、本体部11の外周面から湾曲して延在していてもよく、角筒状の形状であってもよい。 Note that although the inlet portion 12 shown in FIG. 12 has a cylindrical shape extending linearly from the outer circumferential surface of the main body portion 11, it is not limited to this configuration. For example, the inflow port 12 may extend in a curved manner from the outer peripheral surface of the main body portion 11, or may have a rectangular cylindrical shape.

更に、図12に示す水処理装置100gでは、流入口部12のみならず、流出口部13についても、本体部11の外周面との連結位置から、本体部11の外周面の法線方向Dに対して傾斜する方向に延在している。特に、図12に示す例では、図12(a)、図12(b)に示すように、流入口部12及び流出口部13は、略円筒状の本体部11の同じ半筒部分で、略平行な方向に延在している。また、図12に示す例では、図12(b)に示すように、流入口部12及び流出口部13は、略円筒状の本体部11の周方向で異なる位置に配置されている。このようにすることで、被処理水の旋回流が、内管部30の流路下流側で、流出口部13に進入し易くなる。但し、被処理水の旋回流が、内管部30の流路下流側で、流出口部13に進入し難いように、流出口部13が本体部11に連結される本体部11の周方向における位置を、他の位置にしてもよい。 Furthermore, in the water treatment device 100g shown in FIG. It extends in a direction inclined to the In particular, in the example shown in FIG. 12, as shown in FIGS. 12(a) and 12(b), the inlet port 12 and the outlet port 13 are the same semi-cylindrical portion of the substantially cylindrical main body 11, They extend in substantially parallel directions. Furthermore, in the example shown in FIG. 12, the inflow port 12 and the outflow port 13 are arranged at different positions in the circumferential direction of the substantially cylindrical main body 11, as shown in FIG. 12(b). By doing so, the swirling flow of the water to be treated can easily enter the outlet portion 13 on the downstream side of the flow path of the inner tube portion 30. However, in order to prevent the swirling flow of the water to be treated from entering the outlet section 13 on the downstream side of the flow path of the inner pipe section 30, the outlet section 13 is connected to the main body section 11 in the circumferential direction. The position may be set to another position.

図13は、図1に示す水処理装置1の第8変形例としての水処理装置100hの概要を示す概要図である。図13に示す水処理装置100hは、図1に示す水処理装置1と比較して、流入口部12及び流出口部13の位置が相違する。また、図13に示す水処理装置100hは、図1に示す水処理装置1と比較して、紫外線LED20の配置位置、及び、配置分布、が相違する。図13に示す水処理装置100hのその他の構成は、図1に示す水処理装置1と共通する。 FIG. 13 is a schematic diagram showing an outline of a water treatment device 100h as an eighth modification example of the water treatment device 1 shown in FIG. 1. The water treatment device 100h shown in FIG. 13 is different from the water treatment device 1 shown in FIG. 1 in the positions of the inlet portion 12 and the outlet portion 13. Moreover, the water treatment apparatus 100h shown in FIG. 13 is different from the water treatment apparatus 1 shown in FIG. 1 in the arrangement position and arrangement distribution of the ultraviolet LEDs 20. Other configurations of the water treatment device 100h shown in FIG. 13 are common to the water treatment device 1 shown in FIG. 1.

流入口部12及び流出口部13の位置は、図6に示す第1変形例と同様であるため、ここでは説明を省略する。 The positions of the inflow port 12 and the outflow port 13 are the same as in the first modification shown in FIG. 6, so their description will be omitted here.

図13に示す水処理装置100hでは、第1発光部71と、第2発光部72と、を備える。第1発光部71は、紫外線LED20を含み、内管部30の周壁の保持領域GAに保持され、内管部30の径方向Bの外側を流れる被処理水に向かって紫外線を照射することができる。より具体的に、図13に示す第1発光部71は、保持領域GAに保持される複数の紫外線LED20により構成されている。また、第2発光部72は、紫外線LED20を含み、内管部30の底壁としての底板部32に保持され、底板部32の流路上流側を流れる被処理水に向かって紫外線を照射することができる。 A water treatment device 100h shown in FIG. 13 includes a first light emitting section 71 and a second light emitting section 72. The first light emitting section 71 includes an ultraviolet LED 20, is held in a holding area GA of the peripheral wall of the inner tube section 30, and is capable of irradiating ultraviolet rays toward the water to be treated flowing outside the inner tube section 30 in the radial direction B. can. More specifically, the first light emitting section 71 shown in FIG. 13 is composed of a plurality of ultraviolet LEDs 20 held in the holding area GA. Further, the second light emitting section 72 includes an ultraviolet LED 20, is held by the bottom plate section 32 as a bottom wall of the inner tube section 30, and irradiates ultraviolet light toward the water to be treated flowing on the flow upstream side of the bottom plate section 32. be able to.

このように、内管部30の周壁に保持される紫外線LED20を含む第1発光部71に加えて、内管部30の流路上流側の底壁としての底板部32に保持される紫外線LED20を含む第2発光部72を設けることで、紫外線処理の効率を高めることができる。 In this way, in addition to the first light emitting part 71 including the ultraviolet LED 20 held on the peripheral wall of the inner tube part 30, the ultraviolet LED 20 held on the bottom plate part 32 as the bottom wall on the upstream side of the flow path of the inner tube part 30. By providing the second light emitting section 72 including the above, the efficiency of ultraviolet light treatment can be improved.

特に、図13に示す例では、流入口部12が本体部11の軸方向Cの底面から軸方向Cの外側(図2では左側)に向かって突出しているため、流入口部12から本体部11内に流入する被処理水は、内管部30の底板部32に跳ね返り、底板部32の流路上流側に滞留し易い。そのため、底板部32に設ける第2発光部72については、単位面積当たりの発光面積を大きくし、被処理水の紫外線処理の効率を、より高めることが好ましい。特に、被処理水は、内管部30の径方向Bの外側の位置よりも、内管部30の流路上流側の位置で滞留し易い。そのため、第2発光部72での単位面積当たりの発光面積は、例えば、第1発光部71での単位面積当たりの発光面積よりも大きくすることが好ましい。このようにすれば、被処理水の紫外線処理の効率を、より高めることができる。なお、単位面積当たりの発光面積は、例えば、単位面積当たりに配置される紫外線LED20の数を増減させることで調整することができる。 In particular, in the example shown in FIG. 13, the inlet port 12 protrudes from the bottom surface of the main body 11 in the axial direction C toward the outside in the axial direction C (left side in FIG. 2). The water to be treated that flows into the inner pipe 11 bounces off the bottom plate 32 of the inner tube 30 and tends to stay on the upstream side of the flow path of the bottom plate 32. Therefore, it is preferable that the second light emitting section 72 provided in the bottom plate part 32 has a large light emitting area per unit area to further improve the efficiency of ultraviolet treatment of the water to be treated. In particular, the water to be treated is more likely to stay at a position on the upstream side of the flow path of the inner pipe part 30 than at a position outside the inner pipe part 30 in the radial direction B. Therefore, the light emitting area per unit area of the second light emitting section 72 is preferably larger than the light emitting area per unit area of the first light emitting section 71, for example. In this way, the efficiency of ultraviolet treatment of the water to be treated can be further improved. Note that the light emitting area per unit area can be adjusted, for example, by increasing or decreasing the number of ultraviolet LEDs 20 arranged per unit area.

また、第1発光部71での発光面積は、流路上流側よりも流路下流側で大きくなるようにすることが好ましい。図13に示す水処理装置100hにおいて、被処理水の内管部30の径方向Bの外側の位置における流速は、流路上流側よりも流路下流側で遅くなる。そのため、第1発光部71での発光面積を流路下流側で大きくすることで、内管部30の径方向Bの外側の位置における、被処理水の紫外線処理の効率を、より高めることができる。 Further, it is preferable that the light emitting area of the first light emitting section 71 is larger on the downstream side of the flow path than on the upstream side of the flow path. In the water treatment apparatus 100h shown in FIG. 13, the flow velocity of the water to be treated at the outer position in the radial direction B of the inner pipe portion 30 is slower on the downstream side of the flow path than on the upstream side of the flow path. Therefore, by increasing the light emitting area of the first light emitting section 71 on the downstream side of the flow path, it is possible to further improve the efficiency of ultraviolet treatment of the water to be treated at the outer position in the radial direction B of the inner tube section 30. can.

なお、図13において、第2発光部72の任意の位置での単位面積当たりの発光面積は、第1発光部71の任意の位置での単位面積当たりの発光面積よりも大きい。 Note that in FIG. 13, the light emitting area per unit area of the second light emitting section 72 at an arbitrary position is larger than the light emitting area per unit area of the first light emitting section 71 at an arbitrary position.

図14は、図1に示す水処理装置1の第9変形例としての水処理装置100iの概要を示す概要図である。図14に示す水処理装置100iは、図13に示す水処理装置100hに加えて、第3発光部73及び第4発光部74を備える点で構成が相違するが、その他の構成は図13に示す水処理装置100hと共通する。 FIG. 14 is a schematic diagram showing an outline of a water treatment device 100i as a ninth modification example of the water treatment device 1 shown in FIG. The water treatment device 100i shown in FIG. 14 has a different configuration from the water treatment device 100h shown in FIG. 13 in that it includes a third light emitting section 73 and a fourth light emitting section 74, but the other structure is the same as that in FIG. This is common to the water treatment device 100h shown in FIG.

図14に示すように、第3発光部73は、紫外線LED20を含み、内管部30より流路上流側で流路10aに面する流路区画体10の内壁に保持されている。そして、第3発光部73は、内管部30より流路上流側の流路10aを流れる被処理水に向かって紫外線を照射できる。第1発光部71及び第2発光部72に加えて、第3発光部73を設けることで、被処理水の紫外線処理の効率を、より高めることができる。 As shown in FIG. 14, the third light emitting section 73 includes the ultraviolet LED 20, and is held on the inner wall of the channel dividing body 10 facing the channel 10a on the upstream side of the channel from the inner tube section 30. The third light emitting section 73 can irradiate ultraviolet rays toward the water to be treated flowing through the channel 10a on the upstream side of the channel from the inner tube section 30. By providing the third light emitting section 73 in addition to the first light emitting section 71 and the second light emitting section 72, the efficiency of ultraviolet treatment of the water to be treated can be further improved.

また、図14に示すように、第4発光部74は、紫外線LED20を含み、内管部30より流路下流側で流路10aに面する流路区画体10の内壁に保持されている。そして、第4発光部74は、内管部30より流路下流側の流路10aを流れる被処理水に向かって紫外線を照射できる。第1発光部71及び第2発光部72に加えて、第4発光部74を設けることで、被処理水の紫外線処理の効率を、より高めることができる。 Further, as shown in FIG. 14, the fourth light emitting section 74 includes the ultraviolet LED 20, and is held on the inner wall of the channel partitioning body 10 facing the channel 10a on the downstream side of the channel from the inner tube section 30. The fourth light emitting section 74 can irradiate ultraviolet rays toward the water to be treated flowing through the flow path 10a on the downstream side of the flow path from the inner tube section 30. By providing the fourth light emitting section 74 in addition to the first light emitting section 71 and the second light emitting section 72, the efficiency of ultraviolet treatment of the water to be treated can be further improved.

なお、第3発光部73は、内管部30の流路上流側で、本体部11の内周面の周方向全域に亘って配置されていることが好ましい。更に、第3発光部73は、流入口部12が設けられている本体部11の軸方向Cの一端側(図14では左側)の底板部の内面にも、配置されていることが好ましい。このようにすることで、被処理水の紫外線処理の効率を、更に高めることができる。 Note that the third light emitting section 73 is preferably disposed on the upstream side of the flow path of the inner tube section 30 over the entire circumferential area of the inner circumferential surface of the main body section 11 . Furthermore, it is preferable that the third light emitting section 73 is also disposed on the inner surface of the bottom plate section on one end side in the axial direction C (left side in FIG. 14) of the main body section 11 where the inlet section 12 is provided. By doing so, the efficiency of ultraviolet treatment of the water to be treated can be further improved.

また、第4発光部74についても、内管部30の流路下流側で、本体部11の内周面の周方向全域に亘って配置されていることが好ましい。更に、第4発光部74は、流出口部13が設けられている本体部11の軸方向Cの他端側(図14では右側)の底板部の内面にも、配置されていることが好ましい。このようにすることで、被処理水の紫外線処理の効率を、更に高めることができる。 Further, the fourth light emitting section 74 is also preferably disposed on the downstream side of the flow path of the inner tube section 30 over the entire circumferential direction of the inner circumferential surface of the main body section 11 . Furthermore, it is preferable that the fourth light emitting section 74 is also arranged on the inner surface of the bottom plate section on the other end side (right side in FIG. 14) of the main body section 11 in the axial direction C, where the outlet section 13 is provided. . By doing so, the efficiency of ultraviolet treatment of the water to be treated can be further improved.

図15は、図1に示す水処理装置1の第10変形例としての水処理装置100jの斜視図である。図16は、図15に示す水処理装置100jについての内管部30の軸方向Cに沿う断面での断面図である。図15では、内管部30の周壁に保持される紫外線LED20の一部が省略して描かれている(図15において省略部分を二点鎖線により表示)。図15、図16に示す水処理装置100jは、図1に示す水処理装置1と比較して、主に内管部30の支持構成が相違する。 FIG. 15 is a perspective view of a water treatment device 100j as a tenth modification of the water treatment device 1 shown in FIG. FIG. 16 is a cross-sectional view of the water treatment device 100j shown in FIG. 15 taken along the axial direction C of the inner pipe portion 30. In FIG. 15, a part of the ultraviolet LED 20 held on the peripheral wall of the inner tube part 30 is omitted (in FIG. 15, the omitted part is indicated by a two-dot chain line). The water treatment device 100j shown in FIGS. 15 and 16 differs from the water treatment device 1 shown in FIG. 1 mainly in the support structure of the inner pipe portion 30.

図15、図16に示す流路区画体10は、内管部30の軸方向Cに延在し、内管部30を内管部30の流路上流側及び流路下流側から支持する支持部75を備える。より具体的に、図15、図16に示す支持部75は、内管部30の底板部32から流路上流側に突出する棒状の上流支持部75aと、内管部30の解放端から流路下流側に突出する棒状の下流支持部75bと、を備える。上流支持部75a及び下流支持部75bは、軸方向Cに直線状に延在しており、本体部11の軸方向Cの両側の底板部11bに対して、ボルト等の締結部材により着脱可能に締結されている。 The flow path partitioning body 10 shown in FIGS. 15 and 16 extends in the axial direction C of the inner tube section 30, and supports the inner tube section 30 from the upstream side and the downstream side of the flow path of the inner tube section 30. 75. More specifically, the support section 75 shown in FIG. 15 and FIG. It includes a rod-shaped downstream support portion 75b that protrudes toward the downstream side of the road. The upstream support portion 75a and the downstream support portion 75b extend linearly in the axial direction C, and are removable from the bottom plate portions 11b on both sides of the main body portion 11 in the axial direction C using fastening members such as bolts. It has been concluded.

図15、図16に示すように、本体部11の片側の底板部11bは、本体部11のその他の部分から着脱可能なカバー部材76により構成されている。そのため、図15、図16に示す水処理装置100jによれば、本体部11の軸方向Cの一方側(図15、図16では左側)の底板部11bから締結部材を取り外し、内管部30及び支持部75を、カバー部材76と共に、本体部11の軸方向Cの他方側(図15、図16では右側)から、引き出すことができる。このようにすることで、簡単に内管部30を外部に取り出すことができる。そのため、図15、図16に示す水処理装置100jによれば、内管部30の保守点検、交換等が容易になる。 As shown in FIGS. 15 and 16, the bottom plate portion 11b on one side of the main body portion 11 is constituted by a cover member 76 that is detachable from other parts of the main body portion 11. As shown in FIGS. Therefore, according to the water treatment device 100j shown in FIGS. 15 and 16, the fastening member is removed from the bottom plate portion 11b on one side in the axial direction C of the main body portion 11 (the left side in FIGS. 15 and 16), and the inner tube portion 30 is removed. The support portion 75 and the cover member 76 can be pulled out from the other side of the main body portion 11 in the axial direction C (the right side in FIGS. 15 and 16). By doing so, the inner tube portion 30 can be easily taken out to the outside. Therefore, according to the water treatment apparatus 100j shown in FIGS. 15 and 16, maintenance, inspection, replacement, etc. of the inner pipe portion 30 are facilitated.

なお、図15、図16に示す上流支持部75a及び下流支持部75bは、内管部30の周方向に所定間隔を隔てて4本配置されているが、その本数、及び、周方向の配置位置については特に限定されない。 Note that four upstream support parts 75a and four downstream support parts 75b shown in FIGS. 15 and 16 are arranged at predetermined intervals in the circumferential direction of the inner tube part 30, but the number and arrangement in the circumferential direction The location is not particularly limited.

図17は、図1に示す水処理装置1の第11変形例としての水処理装置100kの断面図である。具体的に、図17(a)は水処理装置100kについての内管部30の軸方向Cに沿う断面での断面図であり、図17(b)は水処理装置100kについての内管部30の軸方向Cに直交する断面での断面図である。図17に示す水処理装置100kは、図15、図16に示す内管部30及び支持部75が、流路10a内に複数配置されている点で、図15、図16に示す水処理装置100jと構成が相違する。図17(a)、図17(b)に示すように、流路区画体10は、周壁に紫外線LED20を保持する内管部30を複数備えてもよい。そして、図17(a)に示すように、各内管部30は、支持部75により支持されていてもよい。図17に示す流路区画体10は、流路10a内に4つの内管部30を備えるが、内管部30の数は特に限定されない。また、各内管部30から突設される支持部75の数についても特に限定されない。 FIG. 17 is a sectional view of a water treatment device 100k as an eleventh modification of the water treatment device 1 shown in FIG. Specifically, FIG. 17(a) is a cross-sectional view taken along the axial direction C of the inner pipe portion 30 of the water treatment device 100k, and FIG. 17(b) is a cross-sectional view of the inner pipe portion 30 of the water treatment device 100k. FIG. The water treatment device 100k shown in FIG. 17 has a plurality of inner pipe portions 30 and support portions 75 shown in FIGS. The configuration is different from 100j. As shown in FIGS. 17(a) and 17(b), the channel dividing body 10 may include a plurality of inner tube portions 30 holding the ultraviolet LEDs 20 on the peripheral wall. As shown in FIG. 17(a), each inner tube portion 30 may be supported by a support portion 75. Although the flow path partitioning body 10 shown in FIG. 17 includes four inner tube portions 30 in the flow path 10a, the number of inner tube portions 30 is not particularly limited. Further, the number of support portions 75 protruding from each inner tube portion 30 is not particularly limited.

本発明は、水処理装置に関し、特に、被処理水に紫外光を照射する水処理装置に関する。 The present invention relates to a water treatment device, and particularly to a water treatment device that irradiates water to be treated with ultraviolet light.

1:水処理装置
10:流路区画体
10a:流路
11:本体部
11a:本体流路
11b:底板部
12:流入口部
12a:流入口
13:流出口部
13a:流出口
14:流入部
14a:流入空間
14b:流入管部
14c:環状フランジ部
15:流出部
15a:流出空間
15b:流出管部
15c:環状フランジ部
16:二重管部
16a:環状処理空間
16b:上流側環状フランジ部
16c:下流側環状フランジ部
16d:連結部
20:紫外線LED
21:LED素子
22:LED基板
23:ガラス被覆材
30:内管部
30a:内管空間
31:開放口
32:底板部
33:開放端の先端
34:開放端の基端
40:外管部
50:信号線
60:ガイド部
60a:突出部
60a1:頂部
70:凸部
71:第1発光部
72:第2発光部
73:第3発光部
74:第4発光部
75:支持部
75a:上流支持部
75b:下流支持部
76:カバー部材
100a~100k:水処理装置
200:流路入口部材
300:流路出口部材
400:二重管部材
500:二重管増設部材
516a:増設環状処理空間
516b:上流側環状フランジ部
516c:下流側環状フランジ部
530:増設内管部
530a:増設内管空間
540:増設外管部
A:送液方向
B:内管部の径方向
C:内管部の軸方向
D:本体部の外周面の法線方向
L:内管空間の軸方向長さ
AR1、AR2:被処理水の流れ
GA:内管部の紫外線LEDの保持領域
ID1:外管部の内径
ID2:内管部の内径
1: Water treatment device 10: Channel partition body 10a: Channel 11: Main body section 11a: Main channel section 11b: Bottom plate section 12: Inlet section 12a: Inlet 13: Outlet section 13a: Outlet 14: Inlet section 14a: Inflow space 14b: Inflow pipe part 14c: Annular flange part 15: Outflow part 15a: Outflow space 15b: Outflow pipe part 15c: Annular flange part 16: Double pipe part 16a: Annular processing space 16b: Upstream annular flange part 16c: Downstream annular flange portion 16d: Connection portion 20: Ultraviolet LED
21: LED element 22: LED board 23: Glass covering material 30: Inner tube portion 30a: Inner tube space 31: Open port 32: Bottom plate portion 33: Open end tip 34: Open end base end 40: Outer tube portion 50 : Signal line 60: Guide section 60a: Protrusion section 60a1: Top section 70: Convex section 71: First light emitting section 72: Second light emitting section 73: Third light emitting section 74: Fourth light emitting section 75: Support section 75a: Upstream support Part 75b: Downstream support part 76: Cover members 100a to 100k: Water treatment device 200: Channel inlet member 300: Channel outlet member 400: Double pipe member 500: Double pipe extension member 516a: Extension annular processing space 516b: Upstream annular flange part 516c: Downstream annular flange part 530: Extension inner pipe part 530a: Extension inner pipe space 540: Extension outer pipe part A: Liquid feeding direction B: Radial direction of the inner pipe part C: Axis of the inner pipe part Direction D: Normal direction of the outer circumferential surface of the main body L: Axial length of the inner tube space AR1, AR2: Flow of water to be treated GA: Holding area of the ultraviolet LED in the inner tube ID1: Inner diameter ID2 of the outer tube : Inner diameter of inner tube part

Claims (9)

紫外線を用いて被処理水を紫外線処理する水処理装置であって、
前記被処理水が流れる流路が内部に形成されている流路区画体と、
前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、
前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、
前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、
前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、
前記流路区画体は、前記内管部の径方向外側に位置する流路に面する内壁に凸部を備える、水処理装置。
A water treatment device for treating water to be treated with ultraviolet light using ultraviolet light,
a channel partitioning body in which a channel through which the water to be treated flows is formed;
an ultraviolet LED that irradiates ultraviolet light to the water to be treated flowing in the flow path,
The flow path partitioning body includes an inner pipe portion extending from an upstream side of the flow path toward a downstream side of the flow path within the flow path,
The ultraviolet LED is held in a holding area of the peripheral wall of the inner tube portion and is capable of irradiating ultraviolet light toward the water to be treated flowing radially outside the inner tube portion,
The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end side,
In the water treatment device, the flow path partitioning body includes a convex portion on an inner wall facing the flow path located on the radially outer side of the inner pipe portion.
紫外線を用いて被処理水を紫外線処理する水処理装置であって、
前記被処理水が流れる流路が内部に形成されている流路区画体と、
前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、
前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、
前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、
前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、
前記流路区画体は、
前記内管部を含む略円筒状の本体部と、
前記本体部の外周面から径方向の外側に向かって突出する流入口部と、
前記本体部の外周面から径方向の外側に向かって突出する流出口部と、を備え、
前記流入口部は、前記本体部の外周面との連結位置から、前記本体部の外周面の法線方向に対して前記本体部の周方向に傾斜する方向に延在している、水処理装置。
A water treatment device for treating water to be treated with ultraviolet light using ultraviolet light,
a channel partitioning body in which a channel through which the water to be treated flows is formed;
an ultraviolet LED that irradiates ultraviolet light to the water to be treated flowing in the flow path,
The flow path partitioning body includes an inner pipe portion extending from an upstream side of the flow path toward a downstream side of the flow path within the flow path,
The ultraviolet LED is held in a holding area of the peripheral wall of the inner tube portion, and is capable of irradiating ultraviolet light toward the water to be treated flowing radially outside the inner tube portion,
The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end side,
The flow path partition body is
a substantially cylindrical main body portion including the inner tube portion;
an inflow port projecting radially outward from the outer circumferential surface of the main body;
an outflow port projecting radially outward from the outer circumferential surface of the main body,
The inlet port extends from a connection position with the outer circumferential surface of the main body in a direction inclined in the circumferential direction of the main body with respect to the normal direction of the outer circumferential surface of the main body. Device.
前記流入口部及び前記流出口部それぞれは、前記本体部の外周面との連結位置から、前記本体部の外周面の法線方向に対して前記本体部の周方向に傾斜する方向に延在している、請求項2に記載の水処理装置。 Each of the inflow port and the outflow port extends from a connection position with the outer circumferential surface of the main body in a direction that is inclined in the circumferential direction of the main body with respect to the normal direction of the outer circumferential surface of the main body. The water treatment device according to claim 2. 紫外線を用いて被処理水を紫外線処理する水処理装置であって、
前記被処理水が流れる流路が内部に形成されている流路区画体と、
前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、
前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、
前記内管部は、流路上流側で閉鎖され、流路下流側で開放されており、
前記紫外線LEDを含み、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能な第1発光部と、
前記紫外線LEDを含み、前記内管部の底壁に保持され、前記底壁の流路上流側を流れる前記被処理水に向かって紫外線を照射可能な第2発光部と、を備える、水処理装置。
A water treatment device for treating water to be treated with ultraviolet light using ultraviolet light,
a channel partitioning body in which a channel through which the water to be treated flows is formed;
an ultraviolet LED that irradiates ultraviolet light to the water to be treated flowing in the flow path,
The flow path partitioning body includes an inner pipe portion extending from an upstream side of the flow path toward a downstream side of the flow path within the flow path,
The inner tube portion is closed on the upstream side of the flow path and opened on the downstream side of the flow path,
a first light emitting section that includes the ultraviolet LED, is held in a holding area of a peripheral wall of the inner tube section, and is capable of irradiating ultraviolet rays toward the water to be treated that flows radially outward of the inner tube section;
a second light emitting section that includes the ultraviolet LED, is held on the bottom wall of the inner tube section, and is capable of irradiating ultraviolet rays toward the water to be treated flowing on the upstream side of the flow path of the bottom wall. Device.
前記第2発光部での単位面積当たりの発光面積は、前記第1発光部での前記単位面積当たりの発光面積よりも大きい、請求項4に記載の水処理装置。 The water treatment device according to claim 4, wherein a light emitting area per unit area of the second light emitting section is larger than a light emitting area per unit area of the first light emitting section. 前記第1発光部での前記発光面積は、流路上流側よりも流路下流側で大きくなる、請求項5に記載の水処理装置。 The water treatment device according to claim 5, wherein the light emitting area of the first light emitting section is larger on the downstream side of the flow path than on the upstream side of the flow path. 前記紫外線LEDを含み、前記内管部より流路上流側で前記流路に面する前記流路区画体の内壁に保持され、前記内管部より流路上流側の前記流路を流れる前記被処理水に向かって紫外線を照射可能な第3発光部を備える、請求項4~6のいずれか1つに記載の水処理装置。 The light source includes the ultraviolet LED, is held on the inner wall of the flow path partitioning body facing the flow path on the upstream side of the flow path from the inner tube portion, and flows through the flow path on the upstream side of the flow path from the inner tube portion. The water treatment device according to any one of claims 4 to 6, comprising a third light emitting section capable of irradiating ultraviolet rays toward the treated water. 前記紫外線LEDを含み、前記内管部より流路下流側で前記流路に面する前記流路区画体の内壁に保持され、前記内管部より流路下流側の前記流路を流れる前記被処理水に向かって紫外線を照射可能な第4発光部を備える、請求項4~7のいずれか1つに記載の水処理装置。 The cover includes the ultraviolet LED, is held on the inner wall of the flow path partitioning body facing the flow path on the downstream side of the flow path from the inner tube portion, and flows through the flow path on the downstream side of the flow path from the inner tube portion. The water treatment device according to any one of claims 4 to 7, comprising a fourth light emitting section capable of irradiating ultraviolet rays toward the treated water. 紫外線を用いて被処理水を紫外線処理する水処理装置であって、
前記被処理水が流れる流路が内部に形成されている流路区画体と、
前記流路内を流れる前記被処理水に対して紫外線を照射する紫外線LEDと、を備え、
前記流路区画体は、前記流路内において、流路上流側から流路下流側に向かって延在する内管部を備え、
前記紫外線LEDは、前記内管部の周壁の保持領域に保持され、前記内管部の径方向外側を流れる前記被処理水に向かって紫外線を照射可能であり、
前記内管部は、流路上流側及び流路下流側のいずれか一端側で閉鎖されており、他端側で開放されており、
前記流路区画体は、前記内管部の軸方向に延在し、前記内管部を前記内管部の流路上流側及び流路下流側から支持する支持部を備える、水処理装置。
A water treatment device for treating water to be treated with ultraviolet light using ultraviolet light,
a channel partitioning body in which a channel through which the water to be treated flows is formed;
an ultraviolet LED that irradiates ultraviolet light to the water to be treated flowing in the flow path,
The flow path partitioning body includes an inner pipe portion extending from an upstream side of the flow path toward a downstream side of the flow path within the flow path,
The ultraviolet LED is held in a holding area of the peripheral wall of the inner tube portion, and is capable of irradiating ultraviolet light toward the water to be treated flowing radially outside the inner tube portion,
The inner tube portion is closed at one end of the upstream side of the flow path and the downstream side of the flow path, and is open at the other end side,
A water treatment device, wherein the flow path partitioning body includes a support portion that extends in the axial direction of the inner tube portion and supports the inner tube portion from an upstream side of the flow path and a downstream side of the flow path of the inner tube portion.
JP2020030386A 2020-02-26 2020-02-26 water treatment equipment Active JP7381365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030386A JP7381365B2 (en) 2020-02-26 2020-02-26 water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030386A JP7381365B2 (en) 2020-02-26 2020-02-26 water treatment equipment

Publications (2)

Publication Number Publication Date
JP2021133287A JP2021133287A (en) 2021-09-13
JP7381365B2 true JP7381365B2 (en) 2023-11-15

Family

ID=77659611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030386A Active JP7381365B2 (en) 2020-02-26 2020-02-26 water treatment equipment

Country Status (1)

Country Link
JP (1) JP7381365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024000655A (en) * 2022-06-21 2024-01-09 スタンレー電気株式会社 fluid sterilizer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081227A (en) 2003-09-08 2005-03-31 Nippon Koki Kogyo Kk Bath water sterilization apparatus
JP2006121031A (en) 2004-05-19 2006-05-11 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
JP2009532200A (en) 2006-04-01 2009-09-10 ピー.ダブリュ.サーキッツ リミテッド Fluid treatment device with ultraviolet light emitting diode
WO2013008843A1 (en) 2011-07-14 2013-01-17 ハリソン東芝ライティング株式会社 Ultraviolet light irradiation device
JP2014161767A (en) 2013-02-22 2014-09-08 Saitama Univ Ultraviolet irradiating water treatment apparatus
JP2016123930A (en) 2014-12-26 2016-07-11 野村マイクロ・サイエンス株式会社 Pure water production apparatus
JP2017051290A (en) 2015-09-07 2017-03-16 日機装株式会社 Sterilizing apparatus
JP2018161247A (en) 2017-03-24 2018-10-18 東芝ライテック株式会社 Fluid sterilization device
CN109956517A (en) 2017-12-14 2019-07-02 丰田合成株式会社 Ultraviolet light sterilizing unit and fluid sterilizing unit
JP2019141292A (en) 2018-02-20 2019-08-29 スタンレー電気株式会社 Fluid sterilizer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700314B1 (en) * 2009-05-11 2017-01-26 트로잔 테크놀로지스 Fluid treatment system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005081227A (en) 2003-09-08 2005-03-31 Nippon Koki Kogyo Kk Bath water sterilization apparatus
JP2006121031A (en) 2004-05-19 2006-05-11 Dainippon Screen Mfg Co Ltd Substrate treating apparatus
JP2009532200A (en) 2006-04-01 2009-09-10 ピー.ダブリュ.サーキッツ リミテッド Fluid treatment device with ultraviolet light emitting diode
WO2013008843A1 (en) 2011-07-14 2013-01-17 ハリソン東芝ライティング株式会社 Ultraviolet light irradiation device
JP2014161767A (en) 2013-02-22 2014-09-08 Saitama Univ Ultraviolet irradiating water treatment apparatus
JP2016123930A (en) 2014-12-26 2016-07-11 野村マイクロ・サイエンス株式会社 Pure water production apparatus
JP2017051290A (en) 2015-09-07 2017-03-16 日機装株式会社 Sterilizing apparatus
JP2018161247A (en) 2017-03-24 2018-10-18 東芝ライテック株式会社 Fluid sterilization device
CN109956517A (en) 2017-12-14 2019-07-02 丰田合成株式会社 Ultraviolet light sterilizing unit and fluid sterilizing unit
JP2019141292A (en) 2018-02-20 2019-08-29 スタンレー電気株式会社 Fluid sterilizer

Also Published As

Publication number Publication date
JP2021133287A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
CN108472396B (en) Fluid sterilizing device
CN110944679B (en) Fluid disinfection apparatus and method
JP6530681B2 (en) Sterilizer
US10745296B2 (en) Fluid processing apparatus having multiple rectifying plates
TWI696585B (en) Fluid sterilization device
US4179616A (en) Apparatus for sanitizing liquids with ultra-violet radiation and ozone
US10173909B2 (en) Tubular fluid purification apparatus
CN106629989B (en) Overcurrent type axial overturning water outlet sterilization and disinfection device and water purification equipment
JP6681314B2 (en) Water treatment apparatus and water treatment method
CN111320229B (en) Fluid sterilization device
JP7381365B2 (en) water treatment equipment
JP6153343B2 (en) UV irradiation water treatment equipment
EA006061B1 (en) Sterilization of liquids using ultra-violet light
BR102016009086A2 (en) disinfectant device and method for disinfecting liquid flowing within it and tap
KR20200049434A (en) Fluid treatment device
JP2018140001A (en) Fluid sterilizer
EP0003879B1 (en) Apparatus for sanitising liquids
US20100310433A1 (en) Device for treatment of fluids
JP6669910B1 (en) Water treatment equipment
KR102229602B1 (en) UV Sterilizing module and water purifier including the same
CN111001019A (en) Device and apparatus for disinfecting a fluid
CN212425512U (en) Device for changing water flow distribution in ultraviolet sterilizer
JPH10272460A (en) Spiral flowing water type ultraviolet sterilization device
WO2007082337A1 (en) Improvements relating to water treatment apparatus
JP7348102B2 (en) water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7381365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150