JP7380810B2 - Diapers and systems equipped with enzyme batteries - Google Patents

Diapers and systems equipped with enzyme batteries Download PDF

Info

Publication number
JP7380810B2
JP7380810B2 JP2022186268A JP2022186268A JP7380810B2 JP 7380810 B2 JP7380810 B2 JP 7380810B2 JP 2022186268 A JP2022186268 A JP 2022186268A JP 2022186268 A JP2022186268 A JP 2022186268A JP 7380810 B2 JP7380810 B2 JP 7380810B2
Authority
JP
Japan
Prior art keywords
enzyme
battery
urine
diaper
enzyme battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022186268A
Other languages
Japanese (ja)
Other versions
JP2023024453A (en
Inventor
寛人 渡部
彰彦 八手又
博友 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2023024453A publication Critical patent/JP2023024453A/en
Application granted granted Critical
Publication of JP7380810B2 publication Critical patent/JP7380810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Inert Electrodes (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、酵素電池が搭載されたおむつ並びにシステムに関する。 The present invention relates to diapers and systems equipped with enzyme batteries.

少子高齢社会化による医療費増大や労働力不足などが問題となっている。特に介護現場においては、慢性的な人手不足が問題となり労働環境の改善が急務となっている。
介護作業の中でも、寝たきり患者や高齢者などに対する排泄ケアは介護者に体力的・精神的に過大な負担を負わせている。
通常、介護施設や病院などでは、排泄があった状態で患者を長時間放置することや、おむつ漏れによるシーツやベッドの汚染を防ぐため、定期的におむつの汚れ具合を確認し、おむつ交換がなされている。しかし、この確認作業には、排泄をしていない場合や、交換する必要がない場合も多分に含まれ、本来不必要なおむつ開閉作業や交換する必要のないおむつ交換作業が発生し、介護者への負担を大きくしている。
排尿の有無をセンサーなどによって検知し、排泄有無をおむつの確認無しに知る事ができれば、不必要なおむつ開閉及び交換作業を軽減させることが可能となる。
Increasing medical costs and labor shortages due to the declining birthrate and aging society have become problems. Particularly in nursing care settings, chronic labor shortages are an issue, and there is an urgent need to improve the working environment.
Among nursing care tasks, incontinence care for bedridden patients and the elderly places an excessive physical and mental burden on caregivers.
Normally, in nursing homes and hospitals, diapers are checked regularly and diapers are checked to prevent diapers from being left unattended for long periods of time, and to prevent diaper leaks from contaminating sheets and beds. being done. However, this confirmation work often includes cases where the diaper has not been excreted or when there is no need to change the diaper, resulting in unnecessary diaper opening/closing work and diaper changing work that does not need to be done. This places a heavy burden on people.
If the presence or absence of urination could be detected by a sensor or the like and the presence or absence of urination could be known without checking the diaper, it would be possible to reduce unnecessary diaper opening/closing and changing operations.

改善策として、おむつ内側表面に水分センサーを設置し排尿を検知する方法が報告されている(特許文献1、2)。しかし、従来の水分センサーは駆動に電源を別に必要とするため、電池交換の手間や配線の問題、また、センサーに金属電極が使用される場合では、廃棄の際の分別の手間などが問題となる。 As an improvement measure, a method has been reported in which a moisture sensor is installed on the inner surface of the diaper to detect urination (Patent Documents 1 and 2). However, conventional moisture sensors require a separate power source to operate, which causes issues such as the hassle of battery replacement and wiring, and if the sensor uses metal electrodes, the hassle of separating them when disposing of them. Become.

特開2011 -19726 号公報Japanese Patent Application Publication No. 2011-19726 特開平6 - 3 0 0 7 2 3 号公報JP-A-6-300723

本発明の目的は、酵素電池が搭載されたおむつにより、電池交換の手間がなく、容易に廃棄が可能な排尿を検知するセンサーの電源及び、センサーを提供することである。 An object of the present invention is to provide a power source and a sensor for detecting urination that can be easily disposed of without the hassle of battery replacement using a diaper equipped with an enzyme battery.

本発明者らは、前記課題を解決すべく検討を重ねた結果、本発明に至った。
すなわち本発明は、構成部材として少なくともトップシート、吸水材、およびバックシートを含むおむつであって、前記トップシートと前記バックシートとの間に酵素電池が位置され、
前記酵素電池は、正極および、負極を含んでなり、
前記正極または前記負極の少なくとも一方が酵素を含むことを特徴とする酵素電池が搭載されたおむつに関する。
The present inventors have conducted repeated studies to solve the above problems, and as a result, they have arrived at the present invention.
That is, the present invention provides a diaper including at least a top sheet, a water absorbent material, and a back sheet as constituent members, wherein an enzyme cell is located between the top sheet and the back sheet,
The enzyme battery includes a positive electrode and a negative electrode,
The present invention relates to a diaper equipped with an enzyme battery, characterized in that at least one of the positive electrode and the negative electrode contains an enzyme.

また、本発明は、前記酵素電池が、トップシートと吸水材との間に位置する上記おむつに関する。 Further, the present invention relates to the diaper in which the enzyme cell is located between a top sheet and a water absorbent material.

また、本発明は、前記酵素電池が、吸水材の内部に位置する上記おむつに関する。 Further, the present invention relates to the diaper in which the enzyme battery is located inside the water-absorbing material.

また、本発明は、前記酵素電池が、吸水材とバックシートとの間に位置する上記おむつに関する。 The present invention also relates to the diaper in which the enzyme battery is located between the water absorbent material and the backsheet.

また、本発明は、酵素電池が、おむつの外部より供給された尿中の成分により発電しうる酵素を含有する上記おむつに関する。 Further, the present invention relates to the diaper described above, in which the enzyme battery contains an enzyme capable of generating electricity from components in urine supplied from outside the diaper.

また、本発明は、さらに、酵素電池の内部または近傍に燃料を含有する上記おむつに関する。 Moreover, the present invention further relates to the above-mentioned diaper containing fuel inside or near the enzyme cell.

また、本発明は、尿中に含まれる1種類以上の有機物により発電しうる酵素を含有す
る上記おむつに関する。
The present invention also relates to the above diaper containing an enzyme capable of generating electricity from one or more types of organic substances contained in urine.

また、本発明は、上記おむつを使用して、燃料の残存量と発電量とから排尿量を演算する手段を備えるシステムに関する。 The present invention also relates to a system that uses the diaper described above and includes means for calculating the amount of urine from the remaining amount of fuel and the amount of electricity generated.

また、本発明は、上記おむつを使用し、酵素電池の発電量から、尿中に含まれる1種類
以上の有機物の濃度を演算する手段を備えるシステムに関する。
The present invention also relates to a system that uses the diaper described above and includes means for calculating the concentration of one or more types of organic substances contained in urine from the amount of power generated by the enzyme battery.

また、本発明は、上記おむつを使用し、排尿による酵素電池の発電量の変化から、排尿回数を演算する手段を備えるシステムに関する。 The present invention also relates to a system that uses the diaper described above and includes means for calculating the number of times of urination from changes in the amount of electricity generated by the enzyme cell due to urination.

また、本発明は、さらに、酵素電池の発電に連動する外部伝達手段を備える上記システムに関する。 Moreover, the present invention further relates to the above system including an external transmission means linked to power generation of the enzyme battery.

本発明の酵素電池を搭載したおむつを用いることにより、電池交換の手間がなく、容易に廃棄が可能な排尿を検知するセンサーの電源及び、センサーが実現可能となる。 By using a diaper equipped with the enzyme battery of the present invention, it becomes possible to realize a sensor and a power source for a sensor that detects urination that can be easily disposed of without the hassle of battery replacement.

図1は、本発明における酵素電池が搭載されたおむつに関し、酵素電池の搭載される位置を模式的に示す構成図である(実施例1、4、7)。FIG. 1 is a configuration diagram schematically showing the position where the enzyme battery is mounted in a diaper equipped with the enzyme battery according to the present invention (Examples 1, 4, and 7). 図2は、本発明における酵素電池が搭載されたおむつに関し、酵素電池の搭載される位置を模式的に示す構成図である(実施例2、5)。FIG. 2 is a configuration diagram schematically showing the position where the enzyme battery is mounted in a diaper equipped with the enzyme battery according to the present invention (Examples 2 and 5). 図3は、本発明における酵素電池が搭載されたおむつに関し、酵素電池の搭載される位置を模式的に示す構成図である(実施例3、6)。FIG. 3 is a configuration diagram schematically showing the position where the enzyme battery is mounted in a diaper equipped with the enzyme battery according to the present invention (Examples 3 and 6). 図4は、酵素電池を搭載したおむつ(4)におけるグルコース濃度に対する発電量の変化量を示す図である。FIG. 4 is a diagram showing the amount of change in power generation amount with respect to glucose concentration in a diaper (4) equipped with an enzyme battery. 図5は、酵素電池を搭載したおむつ(1)における超純水投入量に対する発電量の変化量を示す図である。FIG. 5 is a diagram showing the amount of change in power generation amount with respect to the amount of ultrapure water input in the diaper (1) equipped with an enzyme battery.

以下、詳細に本発明について説明する。 The present invention will be explained in detail below.

<酵素電池を搭載したおむつ(トップシート、吸水材、バックシート)>
本発明におけるおむつは、少なくとも、トップシート、吸水材、バックシートを含むものである。トップシートは、肌に直接接し、おむつの最も内側(肌側)を構成する部分で、不織布(ポリプロピレン、ポリエステル、レーヨンなど)や綿などからなり、排泄された尿を速やかに拡散、浸透し、吸水材に送る役割を担う。
吸水材は、綿状パルプ、高分子吸水剤、給水紙などからなり、トップシートから流入した尿を吸水、保水する役割を担う。バックシートは、ポリエチレンフィルムなどからなり、防水機能を有し、尿などの漏れを防止する役割を担う。
<Diapers equipped with enzyme batteries (top sheet, water absorbing material, back sheet)>
The diaper according to the present invention includes at least a top sheet, a water absorbent material, and a back sheet. The top sheet is the part that comes into direct contact with the skin and constitutes the innermost (skin side) of the diaper.It is made of nonwoven fabric (polypropylene, polyester, rayon, etc.) or cotton, and it quickly diffuses and penetrates excreted urine. It plays the role of sending water to the water-absorbing material.
The water-absorbing material is made of cotton-like pulp, polymeric water-absorbing agents, water-supplying paper, etc., and plays the role of absorbing and retaining urine that flows in from the top sheet. The back sheet is made of polyethylene film or the like, has a waterproof function, and plays the role of preventing urine leakage.

酵素電池をおむつに搭載する場合は、トップシートと吸水材とバックシートとを順に有し、酵素電池がトップシートとバックシートの間にある。つまり、トップシートと吸水材の間、吸水材の内部、および吸水材とバックシートの間のいずれかの位置で搭載される。酵素電池がトップシートの内側に搭載されていることは、安定駆動に必要な酵素電池内部への尿の十分な浸透において重要な意味をなす。トップシートの内側にある場合、親水的材料からなるトップシートや、吸水材から酵素電池へ尿が拡散、浸透されるため、酵素電池がトップシートの外側に露出している場合に比べ、酵素電池内へ尿を効果的に供給することが可能となる。また、トップシートの外側に露出していないため、酵素電池が肌に直接触れることを防ぎ、かぶれや、酵素電池の破損などを防止できる。 When an enzyme battery is mounted on a diaper, it has a top sheet, a water absorbent material, and a back sheet in this order, and the enzyme battery is located between the top sheet and the back sheet. That is, it is mounted at any position between the top sheet and the water-absorbing material, inside the water-absorbing material, or between the water-absorbing material and the back sheet. The fact that the enzyme battery is mounted inside the top sheet has an important meaning in ensuring sufficient penetration of urine into the interior of the enzyme battery, which is necessary for stable operation. When the enzyme cell is inside the top sheet, urine diffuses and permeates into the enzyme cell from the top sheet made of hydrophilic material or the water absorbing material, so the enzyme cell is It becomes possible to effectively supply urine into the body. In addition, since the top sheet is not exposed to the outside, the enzyme battery is prevented from coming into direct contact with the skin, thereby preventing rashes and damage to the enzyme battery.

<酵素電池>
酵素電池は、酵素が、糖やアルコール、有機酸等の多様な有機物を酸化し、アノード(負極)で電子及びイオンを発生させ、カソード(正極)側で酸素還元反応させることにより発電しうる発電デバイスである。
電源としての利用の外に、発電の有無や発電量を検知することにより、燃料となる有機物等を対象としたセンサーとして利用することも可能となる。
更に、酵素反応により発電した電力を用いて、同センサーを駆動させることにより、外部から電力供給不要な電源フリーのセンサーとして利用することが出来る。
尿中に含まれる有機物や水などの成分により起きる発電は、2通りがある。一つは、有機物が燃料として発電する場合であり、もう一つは、予め酵素電池の内部または近傍に燃料が位置され、尿中の水により、当該燃料が移動し、酵素と反応して発電する場合である。
すなわち、尿中や尿糖、尿酸等の有機物を燃料及び/又はセンシング対象物として利用される。また、尿などの外部より供給される生体試料中に燃料として利用できる有機物を含まなくても、予め燃料となる有機物をおむつに内蔵することで、外部より供給された水分などの液体成分により、当該燃料が運ばれ、酵素と反応して発電することもできる。このように、本発明では酵素電池は電源としての利用と、センサーとしての利用、およびその両方としての利用が出来る。
酵素電池の構成としては、燃料を酸化するアノードと、酸素還元が起こるカソードと、アノードとカソードを分離するセパレータを含む。但し、アノードとカソードを電気的に分離することができればセパレータは必ずしもなくても構わない。また、アノードからカソード側にイオンを伝達するためのイオン伝導体を含んでいても良い。小型・軽量化や保存安定性等を考慮すると、燃料及び/又はセンシング対象物である尿中に含まれる電解質を使用する形態の酵素電池の方が好ましい場合がある。
アノードとカソードが完全に分離していない、非セパレータ系や紙等をセパレータに使用する形態の酵素電池においては、燃料等に含まれる不純物成分がカソード反応の酸素還元触媒を被毒する場合があり、活性低下、出力不安定化が生じやすいため注意が必要となる。特に白金等の貴金属触媒は被毒されやすいため同系においての使用は好ましくない場合がある。一方、貴金属を含まない酵素電池用炭素触媒はこれら貴金属触媒よりも被毒に強いため、不純物が存在する系においても好適に使用できる。
加えて、不織布やフェルト、紙など易廃棄なセパレータに直接アノード及びカソードを塗布し作製されるデバイスに対して、本発明に用いられる酵素電池用炭素触媒をカソードに使用すると、高価な貴金属や酸素還元酵素を使用せず低コストで、使い捨て可能(易廃棄、リサイクル不要など)なデバイスを実現することが可能となる。
<Enzyme battery>
Enzyme batteries generate electricity by using enzymes to oxidize various organic substances such as sugars, alcohols, and organic acids, generate electrons and ions at the anode (negative electrode), and perform an oxygen reduction reaction at the cathode (positive electrode). It is a device.
In addition to being used as a power source, by detecting the presence or absence of power generation and the amount of power generation, it can also be used as a sensor for detecting organic substances that can be used as fuel.
Furthermore, by driving the sensor using the power generated by the enzyme reaction, it can be used as a power-free sensor that does not require an external power supply.
There are two ways to generate electricity using components such as organic matter and water contained in urine. One is when organic matter is used as fuel to generate electricity, and the other is when fuel is placed inside or near the enzyme cell in advance, and the fuel is moved by the water in the urine and reacts with the enzyme to generate electricity. This is the case.
That is, organic matter in urine, urine sugar, uric acid, etc. is used as a fuel and/or a sensing target. In addition, even if biological samples supplied from the outside such as urine do not contain organic substances that can be used as fuel, by incorporating organic substances that can be used as fuel into the diaper in advance, liquid components such as moisture supplied from the outside can be used as fuel. The fuel can also be transported and reacted with enzymes to generate electricity. Thus, in the present invention, the enzyme battery can be used as a power source, as a sensor, or both.
The structure of an enzyme cell includes an anode that oxidizes fuel, a cathode where oxygen reduction occurs, and a separator that separates the anode and cathode. However, the separator does not necessarily have to be provided as long as the anode and cathode can be electrically separated. Further, it may include an ion conductor for transmitting ions from the anode to the cathode side. In consideration of size, weight reduction, storage stability, etc., an enzyme cell using an electrolyte contained in the fuel and/or urine, which is the object to be sensed, may be preferable in some cases.
In enzyme cells where the anode and cathode are not completely separated, and which use a non-separator system or a separator made of paper, etc., impurities contained in the fuel may poison the oxygen reduction catalyst for the cathode reaction. , caution is required as this tends to cause a decrease in activity and destabilization of the output. In particular, noble metal catalysts such as platinum are easily poisoned, so their use in the same system may be undesirable. On the other hand, carbon catalysts for enzyme batteries that do not contain noble metals are more resistant to poisoning than these noble metal catalysts, and therefore can be suitably used even in systems where impurities are present.
In addition, when the carbon catalyst for enzyme batteries used in the present invention is used as a cathode for devices that are manufactured by directly coating an anode and cathode on easily disposable separators such as nonwoven fabric, felt, or paper, expensive precious metals and oxygen are used. It becomes possible to realize a disposable device (easy disposal, no need for recycling, etc.) at low cost without using reductase.

<回路配線>
回路配線とは、酵素電池において正極および負極と外部デバイスを電気的に接続し、回路を形成するための導電性部材である。回路配線は、正極あるいは負極と別途用意された導電性部材を接続し更に外部デバイスに接続してもよく、正極あるいは負極の導電性支持体をそのまま延長して回路配線として外部デバイスと接続してもよい。回路配線と外部デ
バイスを接続する方法としては特に限定するものではなく、接着剤あるいは粘着剤による接続の他に、スナップボタン、マグネット、クリップ、ファスナー、マジックテープ(登録商標)等を用いた接続が例示できる。
回路配線の材料としては、導電性を有する非金属材料であれば特に限定するものではない。例えば、カーボンペーパーやカーボンクロス、カーボンフェルト等の導電性炭素材料の他、紙類、布類等の非導電性支持体に酵素電池回路配線用導電炭素組成物やポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を塗布、乾燥したものやそれらを併用したものを用いてもよい。廃棄の容易さやコストの観点から非導電性支持体に酵素電池回路配線用導電炭素組成物を塗布、乾燥したものを用いた方が好ましい。特に非導電性支持体は折り曲げ可能な支持体であることが好ましい。更には、紙類の非導電性支持体に酵素電池回路配線用導電炭素組成物を塗布、乾燥したものを用いた方が好ましい。
<Circuit wiring>
Circuit wiring is a conductive member for electrically connecting a positive electrode and a negative electrode to external devices in an enzyme battery to form a circuit. For circuit wiring, the positive or negative electrode may be connected to a separately prepared conductive member and then connected to an external device, or the conductive support of the positive or negative electrode may be extended as it is and connected to the external device as circuit wiring. Good too. There are no particular limitations on the method of connecting circuit wiring and external devices, and in addition to connections using adhesives or adhesives, connections using snap buttons, magnets, clips, fasteners, Velcro (registered trademark), etc. I can give an example.
The material for the circuit wiring is not particularly limited as long as it is a non-metallic material that has conductivity. For example, in addition to conductive carbon materials such as carbon paper, carbon cloth, and carbon felt, conductive carbon compositions for enzyme battery circuit wiring, polyaniline, polyacetylene, polypyrrole, polythiophene, etc. can be used on nonconductive supports such as paper and cloth. A conductive polymer coated and dried or a combination thereof may be used. From the viewpoint of ease of disposal and cost, it is preferable to use a non-conductive support coated with a conductive carbon composition for enzyme cell circuit wiring and dried. In particular, the non-conductive support is preferably a bendable support. Furthermore, it is preferable to use a non-conductive paper support coated with a conductive carbon composition for enzyme cell circuit wiring and dried.

<酵素電池回路配線用導電炭素組成物>
酵素電池回路配線用導電炭素組成物は、少なくとも黒鉛やカーボンブラック、グラフェン系材料などの導電性炭素と、溶剤とバインダーを含む。また、酵素電池回路配線用導電炭素組成物は、必要に応じて分散剤、増粘剤、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤等を配合できる。導電性炭素及び溶剤とバインダー、分散剤の割合は、特に限定されるものではなく、広い範囲内で適宜選択され得る。VOC排出の観点から、水あるいは水性溶剤を用いることが好ましく、それに伴いバインダーおよび分散剤等も水性であることが好ましい。
<Conductive carbon composition for enzyme battery circuit wiring>
The conductive carbon composition for enzyme battery circuit wiring contains at least conductive carbon such as graphite, carbon black, or graphene-based material, a solvent, and a binder. Further, the conductive carbon composition for enzyme cell circuit wiring may contain a dispersant, a thickener, a film-forming aid, an antifoaming agent, a leveling agent, a preservative, a pH adjuster, and the like, as necessary. The ratios of the conductive carbon, the solvent, the binder, and the dispersant are not particularly limited, and can be appropriately selected within a wide range. From the viewpoint of VOC emission, it is preferable to use water or an aqueous solvent, and accordingly, it is preferable that the binder, dispersant, etc. are also aqueous.

<導電性支持体>
酵素電池において、正極および負極に導電性支持体を用いても良い。酵素電池に用いる導電性支持体は、導電性を有する材料であれば特に限定は無い。カーボンペーパーやカーボンクロス等導電性の炭素材料からなる導電層や金属箔、金属メッシュ等が挙げられる。また、回路配線と同様に、紙類、布類等の非導電性支持体に酵素電池回路配線用導電炭素組成物やポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を塗布、乾燥したものやそれらを併用したものを用いてもよい。前記組成物の塗布方法としては、特に限定されるものではなく、酵素電池用回路配線の作製の際に使用するような一般的な方法を適用できる。
廃棄の容易さやコストの観点から、非導電性支持体に酵素電池回路配線用導電炭素組成物を塗布、乾燥したものを用いた方が好ましい。特に非導電性支持体は折り曲げ可能な支持体であることが好ましい。更に、紙類の非導電性支持体に酵素電池回路配線用導電炭素組成物を塗布、乾燥したものを用いた方が好ましい。
<Conductive support>
In the enzyme battery, conductive supports may be used for the positive and negative electrodes. The conductive support used in the enzyme battery is not particularly limited as long as it is a conductive material. Examples include a conductive layer made of conductive carbon material such as carbon paper and carbon cloth, metal foil, and metal mesh. In addition, similar to circuit wiring, conductive carbon compositions for enzyme battery circuit wiring or conductive polymers such as polyaniline, polyacetylene, polypyrrole, polythiophene, etc. are applied to a non-conductive support such as paper or cloth and dried. or a combination thereof may be used. The method for applying the composition is not particularly limited, and general methods such as those used in producing circuit wiring for enzyme batteries can be applied.
From the viewpoint of ease of disposal and cost, it is preferable to use a non-conductive support coated with a conductive carbon composition for enzyme cell circuit wiring and dried. In particular, the non-conductive support is preferably a bendable support. Furthermore, it is preferable to use a paper non-conductive support coated with a conductive carbon composition for enzyme cell circuit wiring and dried.

<酵素電池用負極>
酵素電池用負極では、燃料の酸化反応により発生した電子をカソードに供給する。酵素電池用負極は、導電性支持体やセパレータ等の基材に前記酵素電池回路配線用導電炭素組成物や、導電性炭素材料や酵素電池用炭素触媒などのペーストを直接塗布し乾燥した塗膜や、転写基材などに前記酵素電池回路配線用導電炭素組成物を塗布し乾燥することにより形成された塗膜を支持体やセパレータ等に転写して作製した塗膜に酵素やメディエータを担持させたり、導電性支持体に酵素やメディエータを直接担持させたり、酵素を含む酵素電池回路配線用導電炭素組成物を支持体に塗布し乾燥したりして作製される。
前記組成物の塗布方法としては、特に限定されるものではなく、酵素電池用回路配線の作製の際に使用するような一般的な方法を適用できる。
酵素やメディエータを担持する方法は、上記組成物に含ませて行っても良いし、塗布後乾燥した塗膜や、導電性支持体に後から行っても良い。後から行う場合では、酵素やメディエータを溶解させた液を上記塗膜や、導電性支持体に浸漬等させた後、乾燥させて担持する方法等が使用できる。
<Negative electrode for enzyme batteries>
In the negative electrode for enzyme cells, electrons generated by the oxidation reaction of fuel are supplied to the cathode. The negative electrode for enzyme batteries is a coating film obtained by directly coating a conductive carbon composition for enzyme battery circuit wiring, a paste of a conductive carbon material, a carbon catalyst for enzyme batteries, etc. on a base material such as a conductive support or a separator, and then drying the paste. Alternatively, the coating film formed by applying the conductive carbon composition for enzyme battery circuit wiring onto a transfer substrate, etc. and drying it is transferred to a support, separator, etc., and the enzyme or mediator is supported on the coating film prepared. Alternatively, it can be produced by directly supporting an enzyme or mediator on a conductive support, or by applying a conductive carbon composition for enzyme battery circuit wiring containing an enzyme to a support and drying it.
The method for applying the composition is not particularly limited, and general methods such as those used in producing circuit wiring for enzyme batteries can be applied.
The enzyme or mediator may be supported by including it in the above composition, or it may be carried out afterwards on a coated film dried after application or on a conductive support. If it is carried out later, a method can be used in which the coating film or conductive support is immersed in a solution in which the enzyme or mediator is dissolved, and then dried and supported.

<酵素電池負極用酵素>
本発明における酵素としては、反応により電子を授受できる酵素であれば特に制限はなく、供給する燃料やコスト、デバイスの種類等に応じて適宜選択される。酵素としては、物質代謝など生体内での多くの酸化還元反応を触媒する酸化還元酵素が好ましい。
酵素電池の負極に用いる酵素は電子を放出できるものであればよく、糖や有機酸などのオキシダーゼやデヒドロゲナーゼなどが利用できる。中でも、他の酵素に比べ安価で、安定性が高く、人体の血液や尿などの生体試料に含まれるグルコースを燃料にできるグルコースオキシダーゼやグルコースデヒドロゲナーゼが好ましい場合がある。
<Enzyme for enzyme battery negative electrode>
The enzyme used in the present invention is not particularly limited as long as it can give and receive electrons through reaction, and is appropriately selected depending on the fuel to be supplied, cost, type of device, etc. Preferred enzymes include oxidoreductases that catalyze many redox reactions in living bodies, such as substance metabolism.
The enzyme used for the negative electrode of the enzyme battery may be any enzyme as long as it can release electrons, and oxidases and dehydrogenases of sugars and organic acids can be used. Among these, glucose oxidase and glucose dehydrogenase are preferable because they are cheaper and more stable than other enzymes, and can use glucose contained in biological samples such as human blood and urine as fuel.

<メディエータ>
酵素の種類によって、電極に直接電子を伝達できる直接電子移動型(DET型)酵素と直接電子を伝達できない酵素が存在する。DET型以外の酵素は、燃料の酸化によって生じた電子を酵素から電極(アノード)に伝達するまたは、アノードから受け取った電子を電極(カソード)から酵素に伝達する役割を担うメディエータと併用することが好ましい。メディエータとしては、電極と電子の授受ができる酸化還元物質であれば特に制限はなく、従来公知のものを使用できる。
メディエータの使用方法としては、電極に担持させる方法や電解液に溶解させて使用する方法等がある。メディエータとしては、テトラチアフルバレン、ハイドロキノンや1,4‐ナフトキノン等のキノン類、フェロセン、フェリシアン化物、オスミウム錯体、及びこれら化合物を修飾したポリマー等が例示できる。分別、廃棄の観点から非金属化合物が好ましい。
<Mediator>
Depending on the type of enzyme, there are direct electron transfer (DET) enzymes that can directly transfer electrons to the electrode and enzymes that cannot directly transfer electrons. Enzymes other than the DET type can be used in combination with a mediator that plays the role of transferring electrons generated by oxidation of fuel from the enzyme to the electrode (anode) or transferring electrons received from the anode from the electrode (cathode) to the enzyme. preferable. The mediator is not particularly limited as long as it is a redox substance that can transfer electrons to and from the electrode, and conventionally known mediators can be used.
Methods for using the mediator include a method in which it is supported on an electrode, a method in which it is dissolved in an electrolytic solution, and the like. Examples of the mediator include tetrathiafulvalene, quinones such as hydroquinone and 1,4-naphthoquinone, ferrocene, ferricyanide, osmium complexes, and polymers modified with these compounds. Non-metallic compounds are preferred from the viewpoint of separation and disposal.

<酵素電池用正極>
酵素電池用正極では、アノードで発生した電子を受け取り、電極中の還元反応によりこれを消費する。酵素電池用正極の構造としては、例えば、酸素を電子受容体として使用する酸素還元反応の場合では、反応場となる正極触媒の活性点まで電子及びプロトンの伝導パスや酸素の供給パスが確保されていることが効率的な発電を行う上では好ましい。 酵素電池用正極は、触媒に無機化合物を用いるものと酵素を用いるものがある。導電性支持体(カーボンペーパーや導電性カーボン層など)やセパレータ等の基材に正極触媒を含む組成物を直接塗布し乾燥することにより作製する方法や、転写基材などに前記組成物を塗布し乾燥することにより形成された塗膜を前記導電性支持体やセパレータ等に転写する方法等で作製される。また、正極触媒に酵素を用いるものは、酵素電池用負極と同様の方法で組成物作製、塗布を行ってもよい。
組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。
<Positive electrode for enzyme batteries>
The positive electrode for an enzyme battery receives electrons generated at the anode and consumes them through a reduction reaction within the electrode. For example, in the case of an oxygen reduction reaction that uses oxygen as an electron acceptor, the structure of the positive electrode for an enzyme battery is such that an electron and proton conduction path and an oxygen supply path are secured to the active site of the positive electrode catalyst, which is the reaction site. It is preferable for efficient power generation to be as follows. Positive electrodes for enzyme batteries include those that use inorganic compounds as catalysts and those that use enzymes. A method in which a composition containing a positive electrode catalyst is directly applied to a base material such as a conductive support (carbon paper or a conductive carbon layer) or a separator and dried, or a method in which the composition is applied to a transfer substrate, etc. It is produced by a method of transferring a coating film formed by drying and drying to the above-mentioned conductive support, separator, etc. Further, when an enzyme is used as a positive electrode catalyst, the composition may be prepared and applied in the same manner as for the negative electrode for enzyme batteries.
The method for applying the composition is not particularly limited, and examples include general methods such as knife coater, bar coater, blade coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, and screen printing. methods can be applied.

<酵素電池正極用触媒>
酵素電池正極で無機化合物を触媒として用いる場合、酸素還元触媒として貴金属触媒、卑金属酸化物触媒、酵素電池用炭素触媒などが挙げられる。コストの面などから炭素触媒が好ましい。
貴金属触媒とは、遷移金属元素のうちルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金、金から選択される元素を一種以上含む触媒である。これら貴金属触媒は単体でも別の元素や化合物に担持されたものでも良い。
卑金属酸化物触媒は、ジルコニウム、タンタル、チタン、ニオブ、バナジウム、鉄、マンガン、コバルト、ニッケル、銅、亜鉛、クロム、タングステン、およびモリブデンからなる群より選択された少なくとも1種の卑金属元素を含む酸化物を使用することができ、より好ましくはこれら卑金属元素の炭窒化物や、これら遷移金属元素の炭窒酸化物を使用
することができる。
酵素電池用炭素触媒(以下、単に炭素触媒ともいう)とは、炭素元素を基本骨格とした炭素材料からなり、それらの構成単位間に物理的・化学的な相互作用(結合)を有し、異種元素、たとえばN、B、Pなどのヘテロ原子を含み、更に場合によって卑金属元素が含まれ酸素還元活性を有する触媒材料である。ここでいう卑金属元素とは、遷移金属元素のうち貴金属元素(ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金、金)を除く金属元素であり、卑金属元素としては、コバルト、鉄、ニッケル、マンガン、銅、チタン、バナジウム、クロム、亜鉛、およびスズからなる群より選ばれる一種以上を含有することが好ましい。
ヘテロ元素と卑金属元素を含有することは、酸素還元活性を有する上で重要な意味をなす。酵素電池用炭素触媒は、その触媒活性点として、例えば、炭素材料の基本骨格を構成する炭素の六角網面のエッジ部に導入された窒素原子やその近傍の炭素原子、また触媒表面上に卑金属元素を中心に4個の窒素が平面上に並んだ卑金属-N4構造における窒素原子や卑金属原子などが挙げられる。
酵素電池用炭素触媒は、1種または2種以上の、炭素材料と、窒素元素および/または前記卑金属元素を含有する化合物とを混合し、熱処理を行い作製された炭素触媒であって、従来公知のものを使用できる。炭素触媒に用いられる炭素材料は、無機材料由来の炭素粒子および/または有機材料を熱処理して得られる炭素粒子であれば特に限定されない。
また、酵素を触媒として用いる場合、酵素電池の正極では電子を消費できる酵素であれば良く、ビリルビンオキシダーゼ、ラッカーゼ、アスコルビン酸オキシダーゼなどの還元酵素の一種で、分子状酸素の還元を触媒する酸素還元酵素を用いることが出来る。酸素還元酵素を使用する酵素電池用正極では、電位負荷や副反応における酵素の劣化により無機化合物の触媒より使用耐久性が低いことがある。
<Catalyst for enzyme battery positive electrode>
When an inorganic compound is used as a catalyst in the positive electrode of an enzyme battery, examples of the oxygen reduction catalyst include a noble metal catalyst, a base metal oxide catalyst, and a carbon catalyst for enzyme batteries. Carbon catalysts are preferred from the viewpoint of cost.
A noble metal catalyst is a catalyst containing one or more elements selected from ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold among transition metal elements. These noble metal catalysts may be used alone or supported on other elements or compounds.
The base metal oxide catalyst is an oxidation catalyst containing at least one base metal element selected from the group consisting of zirconium, tantalum, titanium, niobium, vanadium, iron, manganese, cobalt, nickel, copper, zinc, chromium, tungsten, and molybdenum. More preferably, carbonitrides of these base metal elements and carbonitrides of these transition metal elements can be used.
A carbon catalyst for enzyme batteries (hereinafter also simply referred to as a carbon catalyst) is made of a carbon material with a basic skeleton of carbon elements, and has physical and chemical interactions (bonds) between its constituent units. It is a catalytic material that contains different elements, such as heteroatoms such as N, B, and P, and further contains a base metal element in some cases, and has oxygen reduction activity. The base metal elements here refer to transition metal elements other than noble metal elements (ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, and gold), and base metal elements include cobalt, iron, nickel, It is preferable to contain one or more selected from the group consisting of manganese, copper, titanium, vanadium, chromium, zinc, and tin.
Containing a hetero element and a base metal element has an important meaning in terms of having oxygen reduction activity. Carbon catalysts for enzyme batteries use, as catalytic active sites, nitrogen atoms introduced into the edges of the hexagonal network of carbon that constitutes the basic skeleton of the carbon material, carbon atoms in the vicinity, and base metals on the catalyst surface. Examples include nitrogen atoms and base metal atoms in a base metal-N4 structure in which four nitrogen atoms are arranged in a plane around an element.
The carbon catalyst for enzyme cells is a carbon catalyst prepared by mixing one or more carbon materials and a compound containing a nitrogen element and/or the base metal element and heat-treating the mixture, and is a carbon catalyst prepared by heat-treating the mixture and using a conventionally known carbon catalyst. You can use the following. The carbon material used in the carbon catalyst is not particularly limited as long as it is carbon particles derived from an inorganic material and/or carbon particles obtained by heat treating an organic material.
In addition, when an enzyme is used as a catalyst, any enzyme that can consume electrons may be used at the positive electrode of the enzyme battery. Enzymes can be used. A positive electrode for an enzyme battery that uses oxygen reductase may have lower durability in use than an inorganic compound catalyst due to potential load and deterioration of the enzyme during side reactions.

<セパレータ>
セパレータとしては、負極と正極を電気的に分離できる(短絡の防止)ものであれば、特に限定されず従来公知の材料を用いる事ができる。具体的には、ポリエチレン繊維、ポリプロピレン繊維、ガラス繊維、樹脂不織布、ガラス不織布、フェルト、濾紙、和紙等を用いることができる。また、正極と負極が十分な距離を保ち接触による短絡が無い構造を取るならば、セパレータを用いなくてもよい。
<Separator>
The separator is not particularly limited as long as it can electrically separate the negative electrode and the positive electrode (preventing short circuits), and conventionally known materials can be used. Specifically, polyethylene fibers, polypropylene fibers, glass fibers, resin nonwoven fabrics, glass nonwoven fabrics, felt, filter paper, Japanese paper, etc. can be used. Further, if a structure is adopted in which the positive electrode and the negative electrode are kept at a sufficient distance and there is no short circuit due to contact, it is not necessary to use a separator.

<イオン伝導体>
本発明におけるイオン伝導体はアノードとカソードの間でイオンの伝導を行うものである。イオン伝導体の形態はイオン伝導性を有するものであれば特に限定されるものではない。イオン伝導体としては、リン酸塩やナトリウム塩など電解質が溶けている電解液や、固体のポリマー電解質などを使用しても良い。
電解質はおむつに予め内蔵して利用しても良いし、尿中に含まれる電解質を利用して、その両方でも良い。
<Ionic conductor>
The ion conductor in the present invention conducts ions between an anode and a cathode. The form of the ion conductor is not particularly limited as long as it has ion conductivity. As the ion conductor, an electrolytic solution in which an electrolyte such as a phosphate or a sodium salt is dissolved, or a solid polymer electrolyte may be used.
Electrolytes may be stored in the diaper in advance, or electrolytes contained in urine may be used, or both may be used.

<燃料>
本願の酵素電池を動作させるために必要な燃料としては、酵素で分解できる有機物であれば特に限定はされず、D-グルコース等の単糖類、デンプン等の多糖類、有機酸などの有機物であれば幅広く利用できる。
おむつに搭載された酵素電池を動作させる場合では、燃料となる一種以上の有機物を予め酵素電池若しくはおむつに内蔵し、尿の水分中に有機物が溶出、拡散することで酵素電池を動作させたり、尿中に含まれる一種以上の有機物、例えばグルコースなどを利用して酵素電池を動作させたり、燃料となる一種以上の有機物を予め酵素電池若しくはおむつに内蔵し、尿の水分中に溶出した前記有機物と、尿中に含まれる一種以上の有機物を利用して、酵素電池を動作させたりできる。
予め燃料を内蔵する場合では、糖等の固体の燃料が好ましい。またコストや汎用性の観
点からグルコースを利用することが好ましい
<Fuel>
The fuel required to operate the enzyme cell of the present application is not particularly limited as long as it can be decomposed by enzymes, and may be organic substances such as monosaccharides such as D-glucose, polysaccharides such as starch, or organic acids. It is widely available.
When operating an enzyme battery mounted on a diaper, one or more types of organic substances that serve as fuel are built into the enzyme battery or diaper in advance, and the enzyme battery is operated when the organic substances are eluted and diffused into the urine water. One or more organic substances contained in urine, such as glucose, can be used to operate an enzyme battery, or one or more organic substances used as fuel can be built into the enzyme battery or diaper in advance, and the organic substances can be eluted into the urine water. It is also possible to operate an enzyme battery using one or more organic substances contained in urine.
In the case where fuel is stored in advance, solid fuel such as sugar is preferable. In addition, it is preferable to use glucose from the viewpoint of cost and versatility.

本発明における酵素電池を搭載したおむつでは前述の様に、尿の供給により酵素電池で発電した電力を用いた電源やセンサー(水分、有機物)として機能できる。使い方としては、従来の抵抗検知型などのセンサー用の電源として本発明の酵素電池を利用したり、電源及びセンサーとして本発明の酵素電池を1種類以上利用したりすることができる。 As described above, the diaper equipped with the enzyme battery according to the present invention can function as a power source and a sensor (moisture, organic matter) using the power generated by the enzyme battery by supplying urine. As for how to use it, the enzyme battery of the present invention can be used as a power source for a conventional resistance detection type sensor, or one or more types of the enzyme battery of the present invention can be used as a power source and a sensor.

<外部伝達手段を備えるシステム>
本発明における酵素電池を搭載したおむつでは、無線送信機と組み合わせ、センシング情報をワイヤレスで外部に送信するシステムとして使うことができる。
例えば、排尿センサーの場合、予め燃料を内蔵し尿中の水分をセンシング対象とし、また同時に水分を利用し発電し得られた電力で無線送信機を作動したり、予め燃料を内蔵し尿中の水分を利用し発電し得られた電力で無線送信機及び別方式の排尿センサーを作動したり、また、尿糖値センサーの場合、尿中の糖を燃料及びセンシング対象として利用し、得られた電力で無線送信機を作動したり、尿中の糖をセンシング対象として利用し、予め燃料を内蔵し尿中の水分を利用し発電し得られた電力で無線送信機を作動したりできる。<排尿量を演算する手段、有機物の濃度を演算する手段、排尿回数を演算する手段を備えるシステム>
本発明における酵素電池を搭載したおむつでは、発電量、発電量変化は、排尿量、尿中の有機物の濃度、排尿回数などと相関することから、これらの情報から、排尿量、尿中の有機物の濃度、排尿回数を演算により求めるシステムとして使うことができる。演算された情報は、前記、外部伝達手段により、外部に送信することができる。
<System equipped with external communication means>
The diaper equipped with the enzyme battery of the present invention can be combined with a wireless transmitter and used as a system for wirelessly transmitting sensing information to the outside.
For example, in the case of a urination sensor, it is possible to use a built-in fuel to sense the water in urine, and at the same time use the water to generate electricity to operate a wireless transmitter. The generated electricity can be used to operate a wireless transmitter and another type of urination sensor, and in the case of a urine sugar sensor, the sugar in the urine is used as fuel and sensing object, and the electricity obtained can be used to operate a wireless transmitter and another type of urine sensor. It can operate a wireless transmitter, use sugar in urine as a sensing target, store fuel in advance, use water in urine to generate electricity, and operate a wireless transmitter with the electricity generated. <System comprising a means for calculating the amount of urine, a means for calculating the concentration of organic matter, and a means for calculating the number of times of urination>
In the diaper equipped with the enzyme battery of the present invention, the amount of electricity generated and the change in the amount of electricity generated are correlated with the amount of urine, the concentration of organic matter in the urine, the number of times of urination, etc. From this information, the amount of urine and the organic matter in the urine can be determined. It can be used as a system to calculate the concentration of urination and the number of times of urination. The calculated information can be transmitted to the outside by the external transmission means.

以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例における「部」は「質量部」、%は質量%を表す。 EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the following Examples do not limit the scope of the present invention in any way. In addition, "part" in Examples and Comparative Examples represents "part by mass", and % represents mass %.

<酵素電池回路配線用導電炭素組成物の作製>
鱗状黒鉛CB-150(日本黒鉛社製)を18部、ファーネスブラックVULCAN(登録商標)XC72(CABOT社製)を4.5部、バインダーとしてエマルション型アクリル樹脂分散溶液(トーヨーケム社製:W-168)を3部(固形分50%)、分散剤
としてカルボキシメチルセルロース水溶液50部(固形分2%)、溶剤として水49.5部をミキサーに入れて混合し、更にサンドミルに入れて分散を行い、酵素電池回路配線用導電炭素組成物(1)を得た。
<Preparation of conductive carbon composition for enzyme battery circuit wiring>
18 parts of scaly graphite CB-150 (manufactured by Nippon Graphite Co., Ltd.), 4.5 parts of furnace black VULCAN (registered trademark) ) (solid content 50%), 50 parts of a carboxymethyl cellulose aqueous solution (solid content 2%) as a dispersant, and 49.5 parts of water as a solvent were mixed in a mixer, and further put in a sand mill for dispersion. A conductive carbon composition (1) for enzyme battery circuit wiring was obtained.

<酵素電池用回路配線の作製>
前記酵素電池回路配線用導電炭素組成物(1)を、基材となる定性ろ紙No.1(アドバンテック社製)上にドクターブレードを用いて塗布した後、加熱乾燥し、導電層の厚さが80μmとなるよう調整し、酵素電池用回路配線(1)を得た。
<Preparation of circuit wiring for enzyme battery>
The conductive carbon composition (1) for enzyme battery circuit wiring was applied to qualitative filter paper No. 1 as a base material. 1 (manufactured by Advantech) using a doctor blade, the conductive layer was dried by heating, and the thickness of the conductive layer was adjusted to 80 μm to obtain circuit wiring for an enzyme battery (1).

<酵素電池用導電性支持体の作製>
酵素電池用回路配線と同様に、前記酵素電池回路配線用導電炭素組成物を、基材となる定性ろ紙No.1(アドバンテック社製)上にドクターブレードを用いて塗布した後、加熱乾燥し、導電層の厚さが80μmとなるよう調整した。長さ9cm幅8cmの長方形に切り出したものを酵素電池用導電性支持体(1)とした。
<Preparation of conductive support for enzyme battery>
Similarly to the enzyme battery circuit wiring, the conductive carbon composition for enzyme battery circuit wiring was applied to qualitative filter paper No. 1 as a base material. 1 (manufactured by Advantech) using a doctor blade, and then heated and dried to adjust the thickness of the conductive layer to 80 μm. A rectangular piece with a length of 9 cm and a width of 8 cm was cut out as a conductive support for an enzyme battery (1).

<酵素電池用負極の作製>
導電性炭素材料としてファーネスブラックVULCAN(登録商標)XC72(CABOT社製)の組成物をドクターブレードにより、導電性支持体(1)の片端に、加熱乾燥
後の導電性炭素材料の目付け量が2mg/cmとなるように塗布した後、メディエータ
としてテトラチアフルバレンのメタノール溶液と、負極触媒としてグルコースオキシダーゼ水溶液をそれぞれ滴下し、自然乾燥させ酵素電池用負極(1)を得た。
<Preparation of negative electrode for enzyme battery>
As a conductive carbon material, a composition of Furnace Black VULCAN (registered trademark) /cm 2 , a methanol solution of tetrathiafulvalene as a mediator and a glucose oxidase aqueous solution as a negative electrode catalyst were added dropwise, and air-dried to obtain a negative electrode (1) for an enzyme battery.

<酵素電池用炭素触媒の製造>
[製造例1]
グラフェンナノプレートレットxGnP-C-750(XGscience社製)と鉄フタロシアニン P-26(山陽色素社製)を、質量比1/0.5(グラフェンナノプレ
ートレット/鉄フタロシアニン)となるようにそれぞれ秤量し、乾式混合を行い、混合物を
得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、酵素電池用炭素触媒(1)を得た。
<Manufacture of carbon catalyst for enzyme batteries>
[Manufacture example 1]
Graphene nanoplatelets xGnP-C-750 (manufactured by XGscience) and iron phthalocyanine P-26 (manufactured by Sanyo Shiki Co., Ltd.) were each weighed so that the mass ratio was 1/0.5 (graphene nanoplatelets/iron phthalocyanine). Then, dry mixing was performed to obtain a mixture. The above mixture was filled into an alumina crucible and heat-treated in an electric furnace at 800° C. for 2 hours in a nitrogen atmosphere to obtain a carbon catalyst for enzyme cells (1).

<酵素電池用正極の作製>
酵素電池用炭素触媒(1)4.8部、水性液状媒体として水49.2部、更に分散剤としてカルボキシメチルセルロース水溶液40部(固形分2%)をミキサーに入れて混合し、更にサンドミルに入れて分散した。その後、バインダーとしてエマルション型アクリル樹脂分散溶液(トーヨーケム社製:W-168)6部(固形分50%)を加えミキサーで混合し、酵素電池正極用電極組成物(1)を得た。
その後、酵素電池正極用電極組成物(1)を、ドクターブレードにより、導電性支持体(1)およびの片端に、乾燥後の酵素電池用炭素触媒の目付け量が2mg/cmとなる
ように塗布し、待機雰囲気中95℃、60分間乾燥し、酵素電池用正極(1)を得た。
<Preparation of positive electrode for enzyme battery>
4.8 parts of carbon catalyst for enzyme cells (1), 49.2 parts of water as an aqueous liquid medium, and 40 parts of a carboxymethyl cellulose aqueous solution (solid content 2%) as a dispersant were mixed in a mixer, and then put in a sand mill. and dispersed. Thereafter, 6 parts (solid content: 50%) of an emulsion-type acrylic resin dispersion solution (manufactured by Toyochem Co., Ltd.: W-168) was added as a binder and mixed with a mixer to obtain an electrode composition (1) for an enzyme battery positive electrode.
Thereafter, the enzyme battery positive electrode composition (1) was applied to one end of the conductive support (1) using a doctor blade so that the dry carbon catalyst weight was 2 mg/ cm2 . It was coated and dried at 95° C. for 60 minutes in a standby atmosphere to obtain a positive electrode (1) for an enzyme battery.

<酵素電池の作製>
上記作製した酵素電池用回路配線、同正極、同負極に加えて、セパレータに燃料としてグルコース、イオン伝導体として塩化ナトリウムが担持された、ろ紙を貼り合わせて、酵素電池(1)を作製した。セパレータにグルコースと塩化ナトリウムを担持していない以外は同様の方法で、酵素電池(2)を作製した。
<Preparation of enzyme battery>
In addition to the enzyme cell circuit wiring, positive electrode, and negative electrode prepared above, a filter paper on which glucose as a fuel and sodium chloride as an ion conductor was supported was attached to a separator to prepare an enzyme cell (1). An enzyme battery (2) was produced in the same manner except that glucose and sodium chloride were not supported on the separator.

[実施例1~6][比較例1]
<酵素電池が搭載されたおむつの作製>
トップシート、吸水材、およびバックシートからなる介護用おむつ(ライフリー4回分吸収用ユニ・チャーム社製)を解体し、おむつ内部の図1~3に示す位置に、上記で作製した酵素電池(1)をそれぞれに設置した後、元に戻し酵素電池が搭載されたおむつ(1)~(3)を作製した(実施例1~3)
また、酵素電池(1)を酵素電池(2)に変更した以外は酵素電池が搭載されたおむつ(1)~(3)と同様の方法で、酵素電池が搭載されたおむつ(4)~(6)を作製した(実施例4~6)。
また、酵素電池(1)を介護用おむつ(ライフリー4回分吸収用ユニ・チャーム社製)のトップシートの外側に両面テープで貼りつけ、酵素電池が搭載されておむつ(7)を作製した。(比較例1)
[Examples 1 to 6] [Comparative example 1]
<Production of diaper equipped with enzyme battery>
A nursing care diaper (Lifree 4-dose absorption manufactured by Unicharm Co., Ltd.) consisting of a top sheet, a water absorbent material, and a back sheet was disassembled, and the enzyme battery prepared above (1 ) were installed in each, and then returned to their original positions to produce diapers (1) to (3) equipped with enzyme batteries (Examples 1 to 3)
In addition, diapers (4) to (4) equipped with enzyme batteries were prepared in the same manner as diapers (1) to (3) equipped with enzyme batteries, except that enzyme battery (1) was replaced with enzyme battery (2). 6) were produced (Examples 4 to 6).
In addition, the enzyme battery (1) was attached to the outside of the top sheet of a nursing care diaper (Lifree 4-dose absorbent manufactured by Unicharm Co., Ltd.) with double-sided tape, and a diaper (7) was prepared in which the enzyme battery was mounted. (Comparative example 1)

<無線通信回路の構築>
上記作製した酵素電池について、昇圧コンバーター(LTC3108 ストロベリーリ
ナックス(登録商標)社製)、無線モジュール(送信モジュール IM315TX、受信
モジュール IM315RX インタープラン社製)を、おむつ内の酵素電池から昇圧コ
ンバーターへ接続し、昇圧コンバーターから送信モジュールに接続、更に送信モジュールから発信された無線信号を受信モジュールで受信する無線通信回路を構築した。酵素電池正極(1)および負極(1)から昇圧コンバーターへの接続は、回路配線(1)を貼り合わせて行った。
<Construction of wireless communication circuit>
For the enzyme battery produced above, a boost converter (LTC3108 manufactured by Strawberry Linux (registered trademark)) and a wireless module (transmission module IM315TX, reception module IM315RX manufactured by Interplan) were connected from the enzyme battery in the diaper to the boost converter, We constructed a wireless communication circuit that connects the boost converter to the transmitter module, and also uses the receiver module to receive the wireless signal sent from the transmitter module. The enzyme battery positive electrode (1) and negative electrode (1) were connected to the boost converter by bonding circuit wiring (1) together.

<酵素電池が搭載されたおむつの無線送信の評価>
実施例1~3のおむつのトップシートに、尿中の水分を模擬し、超純水を投入したところ、いずれにおいても受信モジュールで信号の受信が確認された。これは、水の投入によって酵素電池まで到達した水中に、ろ紙内のグルコース及び塩化ナトリウムが溶解、拡散し、それぞれ燃料およびイオン伝導体として機能し酵素電池が発電していることを示している。実施例1および2のおむつであれば150mLの水を一度に投入したところ無線の信号の受信が確認された。一方、実施例3のおむつの場合は600mL以上の投入したところではじめて無線の信号の受信が確認された。これは、実施例3の場合では、吸水材の許容量を超えた段階ではじめて投入した水が酵素電池に到達し、発電が生じたためと考えられる。
実施例4~6に関して、超純水をグルコースが0.01M溶解したpH7の0.1Mリン酸緩衝液に変更した以外は、実施例1~3と同様の方法で、無線モジュールの動作を検証したところ、同様の挙動が見られた。これは尿中のグルコースを燃料として、機能し酵素電池が発電していることを示している。
<Evaluation of wireless transmission of diapers equipped with enzyme batteries>
When ultrapure water was poured into the top sheets of the diapers of Examples 1 to 3 to simulate moisture in urine, signal reception was confirmed by the receiving module in all cases. This shows that the glucose and sodium chloride in the filter paper are dissolved and diffused into the water that reached the enzyme cell when water was added, and function as a fuel and an ion conductor, respectively, and the enzyme cell generates electricity. In the case of the diapers of Examples 1 and 2, reception of wireless signals was confirmed when 150 mL of water was poured at once. On the other hand, in the case of the diaper of Example 3, reception of a wireless signal was confirmed only after 600 mL or more was put into the diaper. This is considered to be because, in the case of Example 3, the injected water reached the enzyme cell for the first time when the amount exceeded the allowable amount of the water-absorbing material, and power generation occurred.
Regarding Examples 4 to 6, the operation of the wireless module was verified in the same manner as Examples 1 to 3, except that the ultrapure water was changed to a 0.1M phosphate buffer solution with pH 7 in which 0.01M glucose was dissolved. Similar behavior was observed. This shows that the enzyme cell is functioning and generating electricity using glucose in the urine as fuel.

実施例1~6より、尿中の成分(水分や有機物)でおむつ内に搭載された酵素電池が駆動可能であることが明らかとなった。また同時に、電源不要で且つ、廃棄も容易で生体に安全な材料で構成された排尿センサーを搭載されたおむつが実現でき、また、発電した電力で送信機が動作することで、センシング情報をワイヤレス、例えば、受信機や携帯端末などに送信できることが可能になる。 From Examples 1 to 6, it was revealed that the enzyme battery mounted inside the diaper could be driven by components in urine (moisture and organic matter). At the same time, it is possible to create a diaper equipped with a urine sensor that does not require a power source, is easy to dispose of, and is made of biologically safe materials.Also, by operating the transmitter using the generated electricity, sensing information can be transmitted wirelessly. For example, it becomes possible to transmit to a receiver, a mobile terminal, etc.

<酵素電池が搭載されたおむつの安定駆動の評価>
実施例4~6及び比較例1の酵素電池が搭載されたおむつを用いて、酵素電池の安定駆動の評価を行った。模擬尿としてグルコースが0.01M溶解したpH7の0.1Mリン酸緩衝液を用いた。実施例4~6及び比較例1のおむつを各4個ずつ作製し(lot1~4)、おむつの内側に模擬尿を投入し無線モジュールが動作するかを検証した。結果を表1に示す。
<Evaluation of stable drive of diapers equipped with enzyme batteries>
Using diapers equipped with the enzyme batteries of Examples 4 to 6 and Comparative Example 1, stable operation of the enzyme batteries was evaluated. A 0.1M phosphate buffer solution with pH 7 in which 0.01M glucose was dissolved was used as a simulated urine. Four diapers each of Examples 4 to 6 and Comparative Example 1 were produced (lots 1 to 4), and simulated urine was put inside the diapers to verify whether the wireless module operated. The results are shown in Table 1.


安定駆動の評価基準を以下に示す。 The evaluation criteria for stable drive are shown below.

(安定駆動評価)
〇:無線モジュールが動作する
×:無線モジュールが動作しない
(Stable drive evaluation)
〇: Wireless module works ×: Wireless module does not work

表1より、実施例4~6のおむつは比較例1に比べ、酵素電池が安定して駆動できることがわかる。これは発電に必要な酵素電池内部への模擬尿の浸透において、酵素電池がトップシートの外側に露出している比較例1とは異なり、実施例4~6では、トップシートの内側にあることで親水的材料からなるトップシートや吸水材から酵素電池へ尿が十分に拡散、浸透されるため、安定した駆動に繋がったと考えられる。
From Table 1, it can be seen that the diapers of Examples 4 to 6 can drive the enzyme battery more stably than Comparative Example 1. This is different from Comparative Example 1 in which the enzyme cell is exposed outside the top sheet when simulated urine penetrates into the inside of the enzyme cell necessary for power generation, but in Examples 4 to 6, the enzyme cell is inside the top sheet. It is believed that urine is sufficiently diffused and permeated into the enzyme cell from the top sheet and water-absorbing material made of hydrophilic materials, leading to stable operation.

[実施例7]
<尿糖に対するセンシング能評価>
酵素電池が搭載されたおむつ(4)の酵素電池用正極を作用極、酵素電池用負極を対極として、ポテンショ・ガルバノスタット(VersaSTAT3、Princeton Applied Research社製)に接続し、糖尿病患者の尿を模擬し、グルコース濃度が0.001~0.01M溶解したpH7の0.1Mリン酸緩衝液を、おむつの内
側に投入し、室温下におけるLSV測定において、グルコース(センシング対象物)濃度に対する発電量の変化を調べた。その結果を図4に示す。
図4から明らかなように、グルコース濃度の変化に応じて比例的に発電量が変化することが見出されたことから、本発明により作製された酵素電池が搭載されたおむつ(4)では、発電量の履歴を調べることで尿中のグルコース濃度を検知できるセンサーとして使用できることが分かった。
[Example 7]
<Evaluation of sensing ability for urine sugar>
The positive electrode for the enzyme battery of the diaper (4) equipped with the enzyme battery was used as the working electrode, and the negative electrode for the enzyme battery was used as the counter electrode, and connected to a potentio-galvanostat (VersaSTAT3, manufactured by Princeton Applied Research) to simulate the urine of a diabetic patient. Then, a 0.1M phosphate buffer solution with a pH of 7 in which a glucose concentration of 0.001 to 0.01M was dissolved was poured into the inside of the diaper, and in the LSV measurement at room temperature, the amount of electricity generated relative to the glucose (sensing target) concentration was measured. We investigated the changes. The results are shown in FIG.
As is clear from FIG. 4, it was found that the amount of power generation changes proportionally with changes in glucose concentration, so in the diaper (4) equipped with the enzyme battery produced according to the present invention, By examining the history of power generation, it was found that the device could be used as a sensor to detect glucose concentration in urine.

[実施例8]
<排尿量センシング>
酵素電池が搭載されたおむつ(1)に150、300、600mLの超純水をそれぞれ投入してから30分経過後、酵素電池用正極を作用極、酵素電池用負極を対極として、ポテンショ・ガルバノスタット(VersaSTAT3、Princeton Applied Research社製)に接続し、室温下におけるLSV測定から発電量を調べた。その結果を図5に示す。
図5から明らかなように、超純水の投入量に応じて比例的に発電量が減衰することが見出された。これは投入した液量に応じて、燃料として内蔵したグルコースが溶出し、残存したグルコース量に応じた発電量となっていることを示している。このことから酵素電池が搭載されたおむつ(1)では、残存している燃料の量に応じた発電量を調べることで、排尿量をセンシング出来る可能性が示唆された。
[Example 8]
<Urine volume sensing>
After 30 minutes have passed after pouring 150, 300, and 600 mL of ultrapure water into the diaper (1) equipped with the enzyme battery, the positive electrode for the enzyme battery is used as the working electrode, and the negative electrode for the enzyme battery is used as the counter electrode. It was connected to a STAT (VersaSTAT3, manufactured by Princeton Applied Research), and the amount of power generation was investigated by LSV measurement at room temperature. The results are shown in FIG.
As is clear from FIG. 5, it was found that the amount of power generation attenuated proportionally depending on the amount of ultrapure water input. This indicates that the glucose stored as fuel is eluted according to the amount of liquid added, and the amount of power generated is proportional to the amount of remaining glucose. This suggests that the diaper (1) equipped with an enzyme cell may be able to sense the amount of urine urinated by checking the amount of power generated according to the amount of remaining fuel.

[実施例9]
<排尿回数センシング>
実施例4の酵素電池が搭載されたおむつを用いて150mLの擬似尿として超純水を投入後、90分及び180分経過後に、更にそれぞれ150mLの超純水を投入し、無線モジュールが動作するかを検証した。その結果を表2に示す。
表2から明らかなように、超純水の投入直後においてのみ無線モジュールの動作が確認された。
これは超純水投入後90分経過した状態に比べ超純水投入直後では、酵素電池内部が十分に濡れており、反応に必要なイオンの拡散が十分に生じ、送信モジュールの動作に必要な発電量を得る事ができたためと考えられる。これにより、液の投入による発電量の変化を検出し、排尿回数をセンシング可能であることが分かった。
[Example 9]
<Urine frequency sensing>
Using the diaper equipped with the enzyme battery of Example 4, after adding 150 mL of ultrapure water as simulated urine, after 90 minutes and 180 minutes, 150 mL of ultrapure water was added, and the wireless module was activated. We verified that The results are shown in Table 2.
As is clear from Table 2, the operation of the wireless module was confirmed only immediately after adding ultrapure water.
This shows that immediately after adding ultrapure water, the inside of the enzyme cell is sufficiently wet, and the ions necessary for the reaction are sufficiently diffused, compared to the state 90 minutes have passed after adding ultrapure water. This is thought to be because the amount of power generation could be obtained. With this, it was found that it was possible to detect changes in the amount of electricity generated due to the injection of liquid and to sense the number of urination cycles.

(無線の動作)
〇:無線モジュールが動作する
×:無線モジュールが動作しない
(Wireless operation)
〇: Wireless module works ×: Wireless module does not work

1・・・酵素電池、2・・・トップシート、3・・・吸水材、4・・・バックシート
1... Enzyme battery, 2... Top sheet, 3... Water absorbing material, 4... Back sheet

Claims (9)

酵素電池が搭載されたおむつを使用し、燃料の残存量と発電量とから排尿量を演算する手段を備えるシステムであって、
前記おむつが、構成部材として少なくともトップシート、吸水材、およびバックシートを含むおむつであって、前記トップシートと前記バックシートとの間に酵素電池が位置され、前記酵素電池は、正極および、負極を含んでなり、前記正極または前記負極の少なくとも一方が酵素を含み、さらに、酵素電池の内部または近傍に燃料を含有することを特徴とするシステム
A system that uses a diaper equipped with an enzyme battery and includes means for calculating the amount of urine from the remaining amount of fuel and the amount of electricity generated,
The diaper includes at least a top sheet, a water-absorbing material, and a back sheet as structural members, and an enzyme battery is located between the top sheet and the back sheet, and the enzyme battery has a positive electrode and a negative electrode. A system characterized in that at least one of the positive electrode or the negative electrode contains an enzyme, and further contains a fuel inside or near the enzyme cell .
前記酵素電池が、トップシートと吸水材との間に位置する請求項1記載のシステム The system of claim 1, wherein the enzyme cell is located between a topsheet and a water absorbent material. 前記酵素電池が、吸水材の内部に位置する請求項1記載のシステム2. The system of claim 1, wherein the enzyme cell is located inside a water-absorbing material. 前記酵素電池が、吸水材とバックシートとの間に位置する請求項1記載のシステム The system of claim 1, wherein the enzyme cell is located between a water absorbing material and a backsheet. 酵素電池が、おむつの外部より供給された尿中の成分により発電しうる酵素を含有する請求項1~4何れか記載のシステム The system according to any one of claims 1 to 4, wherein the enzyme battery contains an enzyme capable of generating electricity from components in urine supplied from outside the diaper. 尿中に含まれる1種類以上の有機物により発電しうる酵素を含有する請求項1~何れか記載のシステム The system according to any one of claims 1 to 5 , which contains an enzyme capable of generating electricity from one or more types of organic substances contained in urine. 素電池の発電量から、尿中に含まれる1種類以上の有機物の濃度を演算する手段を備える請求項6記載のシステム。 7. The system according to claim 6, further comprising means for calculating the concentration of one or more organic substances contained in urine from the amount of power generated by the enzyme battery. 尿による酵素電池の発電量の変化から、排尿回数を演算する手段を備える請求項1~7何れか記載のシステム。 8. The system according to claim 1, further comprising means for calculating the number of times of urination from changes in the amount of electricity generated by the enzyme battery due to urination . さらに、酵素電池の発電に連動する外部伝達手段を備える請求項1~8何れか記載のシステム。 The system according to any one of claims 1 to 8, further comprising an external transmission means linked to the power generation of the enzyme battery.
JP2022186268A 2018-06-27 2022-11-22 Diapers and systems equipped with enzyme batteries Active JP7380810B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018121800 2018-06-27
JP2018121800 2018-06-27
JP2018160908A JP2020006129A (en) 2018-06-27 2018-08-30 Diaper mounted with enzyme battery and system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018160908A Division JP2020006129A (en) 2018-06-27 2018-08-30 Diaper mounted with enzyme battery and system

Publications (2)

Publication Number Publication Date
JP2023024453A JP2023024453A (en) 2023-02-16
JP7380810B2 true JP7380810B2 (en) 2023-11-15

Family

ID=69149960

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018160908A Pending JP2020006129A (en) 2018-06-27 2018-08-30 Diaper mounted with enzyme battery and system
JP2022186268A Active JP7380810B2 (en) 2018-06-27 2022-11-22 Diapers and systems equipped with enzyme batteries

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018160908A Pending JP2020006129A (en) 2018-06-27 2018-08-30 Diaper mounted with enzyme battery and system

Country Status (1)

Country Link
JP (2) JP2020006129A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165464A (en) 2010-02-09 2011-08-25 Mitsubishi Rayon Co Ltd Fuel cell
JP2013094175A (en) 2011-10-27 2013-05-20 Unicharm Corp Electromotive module and disposable wearing article
JP2013157317A (en) 2012-01-05 2013-08-15 Toyo Ink Sc Holdings Co Ltd Catalyst paste composition for fuel cell, catalyst layer formed using the same, and joined body
WO2018062419A1 (en) 2016-09-30 2018-04-05 学校法人東京理科大学 Power generation device, power generation method, and concentration measurement method
JP2018068583A (en) 2016-10-28 2018-05-10 学校法人立命館 Urine detection electrode, manufacturing method thereof, and urine detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165464A (en) 2010-02-09 2011-08-25 Mitsubishi Rayon Co Ltd Fuel cell
JP2013094175A (en) 2011-10-27 2013-05-20 Unicharm Corp Electromotive module and disposable wearing article
JP2013157317A (en) 2012-01-05 2013-08-15 Toyo Ink Sc Holdings Co Ltd Catalyst paste composition for fuel cell, catalyst layer formed using the same, and joined body
WO2018062419A1 (en) 2016-09-30 2018-04-05 学校法人東京理科大学 Power generation device, power generation method, and concentration measurement method
JP2018068583A (en) 2016-10-28 2018-05-10 学校法人立命館 Urine detection electrode, manufacturing method thereof, and urine detection device

Also Published As

Publication number Publication date
JP2020006129A (en) 2020-01-16
JP2023024453A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
CN109374713B (en) Sweat monitors sensor-based system, patch and preparation method thereof
Yu et al. Electrochemical reduction of oxygen with iron phthalocyanine in neutral media
Liu et al. Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis
Shitanda et al. Based disk-type self-powered glucose biosensor based on screen-printed biofuel cell array
AU2009291267B2 (en) Electrode system for measuring an analyte concentration under in-vivo conditions
Cao et al. Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers
Varanasi et al. Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts
US20200028195A1 (en) Power generation device, power generation method, and concentration measurement method
Nguyen et al. Printable nonenzymatic glucose biosensors using carbon nanotube-PtNP nanocomposites modified with AuRu for improved selectivity
Kulkarni et al. Characteristics of two self-powered glucose biosensors
Hao et al. A mediator-free self-powered glucose biosensor based on a hybrid glucose/MnO 2 enzymatic biofuel cell
Ahmadalinezhad et al. Synthesis and electrochemical study of nanoporous palladium–cadmium networks for non-enzymatic glucose detection
Zeng et al. Ni/β-Mo2C as noble-metal-free anodic electrocatalyst of microbial fuel cell based on Klebsiella pneumoniae
JP7380810B2 (en) Diapers and systems equipped with enzyme batteries
Rahman et al. Fabrication of selective and sensitive chemical sensor development based on flower-flake La2ZnO4 nanocomposite for effective non-enzymatic sensing of hydrogen peroxide by electrochemical method
Zhong et al. Stretchable Liquid Metal-Based Metal-Polymer Conductors for Fully Screen-Printed Biofuel Cells
Majdecka et al. Nanostructuring carbon supports for optimal electrode performance in biofuel cells and hybrid fuel cells
US20220378628A1 (en) Moisture, gas and fluid-enabled sensors
El Ichi-Ribault et al. Laccase-based biocathodes: Comparison of chitosan and Nafion
JP2020036690A (en) Diaper having enzyme battery mounted thereon
WO2022034857A1 (en) Composite film, sensor element comprising said composite film, body fat percentage measuring device, and electrochemical cell device, and wearable measuring device comprising said sensor element
Yoshida et al. Totally organic electrical skin patch powered by flexible biobattery
JP2019216082A (en) Enzyme battery positive electrode catalyst, enzyme battery positive electrode paste composition, and use thereof
Mei et al. Nonenzymatic sensing of glucose at neutral pH values and low working potential using a glassy carbon electrode modified with platinum-iron alloy nanoparticles on a carbon support
Jiang et al. Sponge-inspired MXene@ CeO2 detector for ultra-sensitive detection of glucose

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151