JP7379415B2 - Method for producing catechin conjugate - Google Patents

Method for producing catechin conjugate Download PDF

Info

Publication number
JP7379415B2
JP7379415B2 JP2021092256A JP2021092256A JP7379415B2 JP 7379415 B2 JP7379415 B2 JP 7379415B2 JP 2021092256 A JP2021092256 A JP 2021092256A JP 2021092256 A JP2021092256 A JP 2021092256A JP 7379415 B2 JP7379415 B2 JP 7379415B2
Authority
JP
Japan
Prior art keywords
compound
catechin
group
reaction
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021092256A
Other languages
Japanese (ja)
Other versions
JP2022184417A (en
Inventor
隆太 塩井
真純 岩下
浩二郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2021092256A priority Critical patent/JP7379415B2/en
Priority to PCT/JP2022/022376 priority patent/WO2022255416A1/en
Publication of JP2022184417A publication Critical patent/JP2022184417A/en
Application granted granted Critical
Publication of JP7379415B2 publication Critical patent/JP7379415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)

Description

本発明はカテキン抱合体の製造方法及びその製造中間体に関する。 The present invention relates to a method for producing a catechin conjugate and an intermediate for producing the same.

茶葉に含まれるカテキン類は、コレステロール上昇抑制作用、体脂肪燃焼作用等、様々な優れた生理活性機能を有することが知られている。 Catechins contained in tea leaves are known to have various excellent physiologically active functions, such as suppressing cholesterol rise and burning body fat.

体内に吸収されたカテキン類は、遊離の状態の他、グルクロン酸抱合体、硫酸抱合体、メチル抱合体等の抱合体として存在することが知られている。したがって、斯かる抱合体の体内動態や生物学的活性を検証することはカテキン類の有用性を探る上でも重要である。しかしながら、斯かる代謝物を血液や尿等の体液から直接単離することによっては当該化合物を十分な量で得ることは困難であり、それらを化学的に合成することが求められる。 It is known that catechins absorbed into the body exist not only in a free state but also as conjugates such as glucuronide conjugates, sulfate conjugates, and methyl conjugates. Therefore, it is important to examine the pharmacokinetics and biological activity of such conjugates in exploring the usefulness of catechins. However, it is difficult to obtain a sufficient amount of such metabolites by directly isolating them from body fluids such as blood or urine, and it is necessary to synthesize them chemically.

カテキン又はエピカテキンの抱合体を化学的に合成する手法としては、カテキン類を過剰量の抱合試薬で非選択的に処理し、得られた生成物を分離する方法の他、安価なバルク出発材料を使用し、カップリングによってカテキン骨格を構築する全合成法(例えば、非特許文献1、特許文献1)や、カテキン又はエピカテキンを出発原料としてフェノール基水酸基を選択的に保護し、特定部位を抱合化する半合成法が存在する。全合成法では合成工程数が長いことに加え、不斉中心の構築も必要になるという課題があり、半合成法では水酸基の選択的保護及び脱保護が課題になる。
例えば、非特許文献2、3や特許文献2には、カテキンA環の水酸基をメチル基もしくはアシル基で保護することによりカテキンA環を修飾する方法が開示されている。しかしながら、これらのA環修飾法は、A環のいずれか一方の水酸基の選択的保護に適するとは云えず、また脱保護する際の選択性も良いとは云えない。
Methods for chemically synthesizing conjugates of catechin or epicatechin include a method in which catechins are treated non-selectively with an excess amount of a conjugation reagent and the resulting product is separated, as well as a method using cheap bulk starting materials. A total synthesis method in which a catechin skeleton is constructed by coupling using catechin (e.g., Non-Patent Document 1, Patent Document 1), or a method in which catechin or epicatechin is used as a starting material to selectively protect the phenolic hydroxyl group and a specific site is protected. Semi-synthetic methods of conjugation exist. The total synthetic method requires a long number of synthesis steps and also requires the construction of an asymmetric center, while the semi-synthetic method poses the problem of selective protection and deprotection of hydroxyl groups.
For example, Non-Patent Documents 2 and 3 and Patent Document 2 disclose methods of modifying the catechin A ring by protecting the hydroxyl group of the catechin A ring with a methyl group or an acyl group. However, these A ring modification methods cannot be said to be suitable for selectively protecting either one of the hydroxyl groups of the A ring, nor can they be said to have good selectivity during deprotection.

特表2014-522870号公報Special Publication No. 2014-522870 特開2019-34944号公報JP2019-34944A

Tetrahedron Letters 2012, 53, 1501-1503Tetrahedron Letters 2012, 53, 1501-1503 J. Chem. Soc., Perkin Trans. 1, 2002, 6, 821.J. Chem. Soc., Perkin Trans. 1, 2002, 6, 821. Tetrahedron Letters 1990, 31, 2643-2646Tetrahedron Letters 1990, 31, 2643-2646

本発明は、半合成法により、効率良くカテキン抱合体を製造する方法、及びその製造中間体を提供することに関する。 The present invention relates to a method for efficiently producing a catechin conjugate by a semi-synthetic method, and to providing an intermediate for the production.

本発明者らは、カテキンやエピカテキンカテキン等のカテキン化合物からカテキン抱合体を化学合成すべく検討したところ、以下に示すように、B環のフェノール性水酸基をベンジルオキシカルボニル基(Cbz)で保護した後に、tert-ブチルジメチルシリル(TBS)化剤を反応させると、A環のフェノール性水酸基のいずれか一方のみをTBS化することができ、斯かるシリル化カテキン誘導体(III)を経由して抱合反応を用いることにより、カテキン化合物の5位又は7位の水酸基を効率よく抱合化できることを見出した。 The present inventors investigated the chemical synthesis of catechin conjugates from catechin compounds such as catechin and epicatechin-catechin, and found that the phenolic hydroxyl group of ring B was protected with a benzyloxycarbonyl group (Cbz) as shown below. After that, by reacting with a tert-butyldimethylsilylation agent (TBS), only one of the phenolic hydroxyl groups of the A ring can be converted to TBS, and via the silylated catechin derivative (III), It has been found that by using a conjugation reaction, the 5- or 7-position hydroxyl group of a catechin compound can be efficiently conjugated.

Figure 0007379415000001
Figure 0007379415000001

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がTBS基を示し、R1b及びR2bはいずれか一方がCbz基で他方がTBS基を示し、R1c及びR2cはいずれか一方がCbz基で他方が水素原子を示し、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す)を示す。また、R1b及びR2bはR1a及びR2aに、R1c及びR2cはR1b及びR2bに、R1d及びR2dはR1c及びR2cに、それぞれ対応する。〕 [In the formula, one of R 1a and R 2a is a hydrogen atom and the other is a TBS group, one of R 1b and R 2b is a Cbz group and the other is a TBS group, and R 1c and R 2c are One of them is a Cbz group and the other is a hydrogen atom, and one of R 1d and R 2d is a hydrogen atom and the other is a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (here, M is a hydrogen atom) , an alkali metal atom, an alkaline earth metal atom, or ammonium). Further, R 1b and R 2b correspond to R 1a and R 2a , R 1c and R 2c correspond to R 1b and R 2b , and R 1d and R 2d correspond to R 1c and R 2c , respectively. ]

すなわち、本発明は、以下の1)~3)に係るものである。
1)上記式(I)で表されるカテキン化合物の3′位又は4′位の水酸基をCbz化して式(II)で表される化合物とし、次いで塩基の存在下TBS化剤を反応させる、式(III)で表されるシリル化カテキン誘導体の製造方法。
2)1)の方法により得られた式(III)で表されるシリル化カテキン誘導体の水酸基をCbz化して式(IV)で表されるシリル化カテキン保護誘導体とし、次いで、TBS基を脱離して式(V)で表される化合物とし、次いで、硫酸化、メチル化、グルクロン酸化及びグルコシル化から選ばれる抱合反応に付し、続いて保護基を脱離する、式(VI)で表されるカテキン抱合体の製造方法。
3)上記一般式(III)で表されるシリル化カテキン誘導体又は一般式(IV)で表されるシリル化カテキン保護誘導体。
That is, the present invention relates to the following 1) to 3).
1) Cbz-forming the 3'- or 4'-position hydroxyl group of the catechin compound represented by formula (I) to obtain a compound represented by formula (II), and then reacting with a TBS-forming agent in the presence of a base. A method for producing a silylated catechin derivative represented by formula (III).
2) The hydroxyl group of the silylated catechin derivative represented by formula (III) obtained by the method of 1) is converted into a silylated catechin protected derivative represented by formula (IV) by Cbzation, and then the TBS group is removed. to form a compound represented by formula (V), which is then subjected to a conjugation reaction selected from sulfation, methylation, glucuronidation, and glucosylation, and then the protecting group is removed, and the compound represented by formula (VI) is A method for producing a catechin conjugate.
3) A silylated catechin derivative represented by the above general formula (III) or a silylated catechin protected derivative represented by the general formula (IV).

本発明のカテキン抱合体及びその製造中間体を簡易に効率よく製造することができる。 The catechin conjugate of the present invention and its production intermediate can be produced easily and efficiently.

以下に、本発明のカテキン抱合体の製造法について、各工程ごとに説明する。
本発明のカテキン抱合体の製造方法において、出発原料として用いられる下記式(I):
Below, each step of the method for producing a catechin conjugate of the present invention will be explained.
In the method for producing a catechin conjugate of the present invention, the following formula (I) used as a starting material:

Figure 0007379415000002
で表される化合物には、フラバノールの2位及び3位の不斉炭素原子に関する立体異性体(鏡像異性体、ジアステレオ異性体)の全てが包含される。すなわち、式(I)で表される化合物には、(+)-カテキン(2R,3S)、(-)-カテキン(2S,3R)、(+)-エピカテキン(2S,3S)、(-)-エピカテキン(2R,3R)が包含され、本発明においてはこれらを纏めてカテキン化合物(I)と称する。
また、慣例に従い、フラバノール骨格の二つのベンゼン環をA環及びB環(カテコール部分)とし、両者を結ぶ3つの炭素原子と酸素原子から構成される環をC環と呼ぶ。
Figure 0007379415000002
The compound represented by the above includes all stereoisomers (enantiomers, diastereoisomers) regarding the asymmetric carbon atoms at the 2nd and 3rd positions of flavanol. That is, the compound represented by formula (I) includes (+)-catechin (2R, 3S), (-)-catechin (2S, 3R), (+)-epicatechin (2S, 3S), (- )-epicatechin (2R, 3R), which are collectively referred to as catechin compound (I) in the present invention.
Further, according to custom, the two benzene rings of the flavanol skeleton are referred to as ring A and ring B (catechol moiety), and the ring consisting of three carbon atoms and an oxygen atom connecting the two is referred to as ring C.

1.工程-1

Figure 0007379415000003
1. Process-1
Figure 0007379415000003

本工程は、カテキン化合物(I)の3´位又は4´位の水酸基をベンジルオキシカルボニル(「Cbz」と略記する)化する工程である。 This step is a step in which the hydroxyl group at the 3'-position or 4'-position of the catechin compound (I) is converted to benzyloxycarbonyl (abbreviated as "Cbz").

本工程におけるCbz化は、現在公知のあらゆる方法を採用することができる。
Cbz化試薬としては、例えば、クロロギ酸ベンジル(塩化ベンジルオキシカルボニル(Z-Cl))を用いるSchotten-Baumann法のほか、p-ニトロフェニルエステル(Z-ONp)、N-ヒドロキシスクシンイミドエステル(Z-ONSu)を挙げることができるが、好ましくはクロロギ酸ベンジルである。
Cbz化試薬の使用量は、化合物(I)1モルに対して、Cbz化試薬の使用量は、収率を向上する点から通常1.5モル以上、好ましくは1.7モル以上、より好ましくは1.9モル以上、さらに好ましくは2.0モル以上である。また、Cbz化試薬の使用量は、B環の水酸基を優先的にCbz化する点から、化合物(I)1モルに対して、、通常2.5モル以下、好ましくは2.4モル以下、より好ましくは2.2モル以下、さらに好ましくは2.1モル以下である。さらに、Cbz化試薬の使用量は、化合物(I)1モルに対して、通常1.5~2.5モル、好ましくは1.7~2.4モル、さらに好ましくは1.9~2.2モル、さらに好ましくは2.0~2.1モルである。
For Cbz conversion in this step, any currently known method can be employed.
Examples of Cbzation reagents include the Schotten-Baumann method using benzyl chloroformate (benzyloxycarbonyl chloride (Z-Cl)), p-nitrophenyl ester (Z-ONp), N-hydroxysuccinimide ester (Z- ONSu), preferably benzyl chloroformate.
The amount of Cbzation reagent used is usually 1.5 mol or more, preferably 1.7 mol or more, more preferably 1.5 mol or more, and more preferably 1.5 mol or more, per 1 mol of compound (I). is 1.9 mol or more, more preferably 2.0 mol or more. In addition, the amount of the Cbz-forming reagent to be used is usually 2.5 mol or less, preferably 2.4 mol or less, per 1 mol of compound (I), from the viewpoint of preferentially Cbz-forming the hydroxyl group of the B ring. More preferably it is 2.2 mol or less, and still more preferably 2.1 mol or less. Further, the amount of the Cbzation reagent to be used is generally 1.5 to 2.5 mol, preferably 1.7 to 2.4 mol, and more preferably 1.9 to 2.5 mol, per 1 mol of compound (I). The amount is 2 mol, more preferably 2.0 to 2.1 mol.

反応溶媒としては、ジクロロメタン、クロロホルム等の不活性ハロゲン化炭化水素系溶媒;トルエン等の不活性炭化水素系溶媒;エーテル、テトラヒドロフラン等の不活性エーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミドのようなアミド類;アセトニトリルのようなニトリル類等を挙げることができる。 Reaction solvents include inert halogenated hydrocarbon solvents such as dichloromethane and chloroform; inert hydrocarbon solvents such as toluene; inert ether solvents such as ether and tetrahydrofuran; amides such as dimethylformamide and dimethylacetamide. ; Examples include nitriles such as acetonitrile.

反応は、塩基の存在下に行われ、用いられる塩基としては、トリアルキルアミン(例えば、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の有機塩基、炭酸カリウム等の無機塩基等が挙げられる。
塩基の使用量は、化合物(I)1モルに対して、通常1.5~2.5モル、好ましくは1.7~2.4モル、さらに好ましくは1.90~2.2モル、さらに好ましくは2.00~2.10モルである。
The reaction is carried out in the presence of a base, and the bases used include trialkylamines (for example, trimethylamine, triethylamine, N,N-diisopropylethylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, 4-dimethylamino Pyridine, N,N-dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO ), organic bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and inorganic bases such as potassium carbonate.
The amount of the base to be used is usually 1.5 to 2.5 mol, preferably 1.7 to 2.4 mol, more preferably 1.90 to 2.2 mol, and more preferably 1.90 to 2.2 mol, per 1 mol of compound (I). Preferably it is 2.00 to 2.10 mol.

反応温度としては、-20~60℃の範囲であり、0℃~室温の範囲が好ましい。
反応時間は、通常0.5~5時間程度であり、1~2時間程度が好ましい。
The reaction temperature ranges from -20 to 60°C, preferably from 0°C to room temperature.
The reaction time is usually about 0.5 to 5 hours, preferably about 1 to 2 hours.

2.工程-2

Figure 0007379415000004
2. Process-2
Figure 0007379415000004

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がTBS基を示す。〕 [In the formula, one of R 1a and R 2a represents a hydrogen atom and the other represents a TBS group. ]

続いて、上記工程で得られた化合物(II)のA環のフェノール性水酸基をtert-ブチルジメチルシリル(「TBS」と略記する)化し、シリル化カテキン誘導体(III)を得る。当該誘導体(III)は、文献未記載の新規化合物である。
TBS化は、化合物(II)を塩基の存在下でTBS化剤と反応させることにより行われる。
Subsequently, the phenolic hydroxyl group of the A ring of compound (II) obtained in the above step is converted to tert-butyldimethylsilyl (abbreviated as "TBS") to obtain a silylated catechin derivative (III). The derivative (III) is a new compound that has not been described in any literature.
TBS formation is carried out by reacting compound (II) with a TBS formation agent in the presence of a base.

溶媒としては、反応に悪影響を及ぼさないものであればよく、例えば、非プロトン性極性溶媒、ハロゲン化炭化水素系溶媒、或いはこれらの混合溶媒等が挙げられる。非プロトン性極性溶媒としては、例えばテトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド等が挙げられ、ハロゲン化炭化水素系溶媒としては、例えばジクロロメタン等が挙げられる。より好ましくはN,N-ジメチルホルムアミド、ジクロロメタンである。 The solvent may be any solvent that does not adversely affect the reaction, and examples thereof include aprotic polar solvents, halogenated hydrocarbon solvents, and mixed solvents thereof. Examples of the aprotic polar solvent include tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, and dimethyl sulfoxide, and examples of the halogenated hydrocarbon solvent include dichloromethane. More preferred are N,N-dimethylformamide and dichloromethane.

塩基としては、例えば、トリアルキルアミン(例えば、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の有機塩基が挙げられ、イミダゾール、ピリジン等が挙げられ、好ましくはトリアルキルアミン、より好ましくはトリエチルアミンが挙げられる。 Examples of the base include trialkylamines (eg, trimethylamine, triethylamine, N,N-diisopropylethylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, 4-dimethylaminopyridine, N,N-dimethylaniline, N- Methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4 0] undec-7-ene (DBU), imidazole, pyridine and the like, preferably trialkylamine, more preferably triethylamine.

塩基の使用量は、化合物(II)1モルに対して、通常0.5~2.4モル、好ましくは0.8~2.1モル、さらに好ましくは1.2~1.7モルである。 The amount of the base used is usually 0.5 to 2.4 mol, preferably 0.8 to 2.1 mol, more preferably 1.2 to 1.7 mol, per 1 mol of compound (II). .

TBS化剤としては、例えばtert-ブチルジメチルシリルクロリド(TBS-Cl)、tert-ブチルジメチルシリルトリフルオロメタンスルホネート(TBS-OTf)等が挙げられるが、tert-ブチルジメチルシリルクロリドを用いるのが好ましい。
TBS化剤の使用量は、反応効率の点から、化合物(II)1モルに対して、0.5モル以上、好ましくは1モル以上、さらに好ましくは2モル以上、さらに好ましくは2.5モル以上である。また、TBS化剤の使用量は、反応精度の点から、化合物(II)1モルに対して、7モル以下、好ましくは5モル以下、さらに好ましくは4モル以下、さらに好ましくは3.5モル以下である。TBS化剤の使用量は、A環のフェノール性水酸基のいずれか一方をTBS化する点から、化合物(II)1モルに対して、通常0.5~7モル、好ましくは1~5モル、さらに好ましくは2~4モル、さらに好ましくは2.5~3.5モルである。
Examples of the TBS-forming agent include tert-butyldimethylsilyl chloride (TBS-Cl), tert-butyldimethylsilyl trifluoromethanesulfonate (TBS-OTf), and it is preferable to use tert-butyldimethylsilyl chloride.
From the viewpoint of reaction efficiency, the amount of TBS-forming agent used is 0.5 mol or more, preferably 1 mol or more, more preferably 2 mol or more, and even more preferably 2.5 mol, per 1 mol of compound (II). That's all. In addition, from the viewpoint of reaction accuracy, the amount of the TBS forming agent to be used is 7 mol or less, preferably 5 mol or less, more preferably 4 mol or less, still more preferably 3.5 mol, per 1 mol of compound (II). It is as follows. The amount of the TBS-forming agent to be used is usually 0.5 to 7 mol, preferably 1 to 5 mol, per 1 mol of compound (II), in order to convert either one of the phenolic hydroxyl groups of the A ring into TBS. The amount is more preferably 2 to 4 mol, and even more preferably 2.5 to 3.5 mol.

反応温度は特に限定されず、通常、冷却下、室温下及び加熱下のいずれでも反応が行われる。好ましくは0~60℃、さらに好ましくは10~40℃、さらに好ましくは20~30℃程度の温度条件下、2~3時間、好ましくは0.5~1.5時間反応させるのがよい。 The reaction temperature is not particularly limited, and the reaction is usually carried out under cooling, at room temperature, or under heating. The reaction is preferably carried out at a temperature of 0 to 60°C, more preferably 10 to 40°C, even more preferably 20 to 30°C, for 2 to 3 hours, preferably 0.5 to 1.5 hours.

得られたシリル化カテキン誘導体(III)は、オクタデシルシリル化シリカゲル(ODS)等を充填したカラムを用いた分取HPLCにより、5位TBS化体と7位TBS化体を分離することができる。 The obtained silylated catechin derivative (III) can be separated into a 5-position TBS derivative and a 7-position TBS derivative by preparative HPLC using a column packed with octadecylsilylated silica gel (ODS) or the like.

3.工程-3

Figure 0007379415000005
3. Process-3
Figure 0007379415000005

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がTBS基を示し、R1b及びR2bはいずれか一方がCbz基で他方がTBS基を示し、R1b及びR2bはR1a及びR2aにそれぞれ対応する。〕 [In the formula, one of R 1a and R 2a is a hydrogen atom and the other is a TBS group, one of R 1b and R 2b is a Cbz group and the other is a TBS group, and R 1b and R 2b are Corresponding to R 1a and R 2a , respectively. ]

続いて、上記工程で得られたシリル化カテキン誘導体(III)の残余の水酸基をCbz化し、シリル化カテキン保護誘導体(IV)を得る。当該誘導体(IV)も文献未記載の新規化合物である。
Cbz化は、工程-1で示した方法と同様の方法を採用することができる。
Subsequently, the remaining hydroxyl groups of the silylated catechin derivative (III) obtained in the above step are converted to Cbz to obtain the silylated catechin protected derivative (IV). The derivative (IV) is also a new compound that has not been described in any literature.
For Cbz conversion, a method similar to the method shown in Step-1 can be adopted.

4.工程-4

Figure 0007379415000006
4. Process-4
Figure 0007379415000006

〔式中、R1b及びR2bはいずれか一方がCbz基で他方がTBS基を示し、R1c及びR2cはいずれか一方がCbz基で他方が水素原子を示し、R1c及びR2cはR1b及びR2bにそれぞれ対応する。〕 [In the formula, one of R 1b and R 2b represents a Cbz group and the other represents a TBS group; one of R 1c and R 2c represents a Cbz group and the other represents a hydrogen atom; R 1c and R 2c are Corresponding to R 1b and R 2b , respectively. ]

上記工程で得られたシリル化カテキン保護誘導体(IV)のTBS基を脱離し、化合物(V)を得る。
TBS基の脱離は、公知の方法によって行うことができ、例えば有機溶媒中でフッ化物の塩、又はフッ化水素の付加体を作用させる方法が汎用される。
フッ化物の塩としては、例えばフッ化テトラ-n-ブチルアンモニウム(TBAF)、ジフルオロトリメチルケイ酸トリス(ジメチルアミノ)スルホニウム(TASF)等が挙げられ、フッ化水素の付加体としては、例えばフッ化水素ピリジン、フッ化アンモニウム等が挙げられる。
The TBS group of the silylated catechin protected derivative (IV) obtained in the above step is removed to obtain compound (V).
The TBS group can be removed by a known method, for example, a commonly used method is to use a fluoride salt or a hydrogen fluoride adduct in an organic solvent.
Examples of fluoride salts include tetra-n-butylammonium fluoride (TBAF), tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF), and examples of hydrogen fluoride adducts include fluoride. Examples include hydrogen pyridine and ammonium fluoride.

フッ化物の塩又はフッ化水素付加体の使用量は、化合物(IV)1モルに対して、好ましくは0.5~5モル、より好ましくは1~3モル、より好ましくは1.5~2.5モルである。 The amount of the fluoride salt or hydrogen fluoride adduct to be used is preferably 0.5 to 5 mol, more preferably 1 to 3 mol, more preferably 1.5 to 2 mol, per 1 mol of compound (IV). .5 mol.

この反応で使用される溶媒としては、例えば、テトラヒドロフランや1,4-ジオキサン等のエーテル系溶媒、クロロホルムやジクロロメタンや1、1-ジクロロエタンやクロロベンゼン等のハロゲン化炭化水素系溶媒、アセトンやアセトニトリルやN,N-ジメチルホルムアミド、ジメチルスルホキシド等の極性溶媒が例示される。 Examples of the solvent used in this reaction include ether solvents such as tetrahydrofuran and 1,4-dioxane, halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,1-dichloroethane, and chlorobenzene, acetone, acetonitrile, and N , N-dimethylformamide, dimethylsulfoxide and the like.

フッ化物の塩を用いた反応は、化合物(IV)とフッ化物の塩を溶媒中で攪拌し、0~40℃、好ましくは20~30℃で、1~60分間、好ましくは5~20分間反応させるのがよい。 In the reaction using a fluoride salt, compound (IV) and a fluoride salt are stirred in a solvent at 0 to 40°C, preferably 20 to 30°C, for 1 to 60 minutes, preferably 5 to 20 minutes. It is better to react.

5.工程-5

Figure 0007379415000007
5. Process-5
Figure 0007379415000007

〔式中、R1c及びR2cはいずれか一方がCbz基で他方が水素原子を示し、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す)を示し、R1d及びR2dはR1c及びR2cにそれぞれ対応する。〕 [In the formula, one of R 1c and R 2c is a Cbz group and the other is a hydrogen atom, and one of R 1d and R 2d is a hydrogen atom and the other is a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (here, M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or ammonium), and R 1d and R 2d correspond to R 1c and R 2c , respectively. ]

化合物(V)の抱合体化は、硫酸化、メチル化、グルクロン酸化又はグルコシル化のいずれかであり、化合物(V)に対して、公知の硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体を反応させることにより行われる。
硫酸供与体としては、例えばネオペンチルクロロスルファート、トリクロロエチルクロロスルファート、2,2,2-トリクロロエトキシ-スルフリル-1,2-ジメチルイミダゾリウムトリフレート(2,2,2-trichloroethoxy-sulfuryl-1,2-dimethylimidazolium triflate;SDIS)等が挙げられる。
グルクロン酸供与体としては、2,3,4-トリ-O-アセチル-α-D-メチルグルクロノピラノシル-1-(N-フェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4-トリ-O-アセチル-α-D-メチルグルコピラノシル-1-(N-4-メトキシフェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4-トリ-O-アセチル-α-D-メチルグルクロノピラノシル-1-O-(2,2,2-トリクロロアセトイミダート)、アセトブロモ-α-D-グルクロン酸メチルエステル等が挙げられる。
グルコース供与体としては、2,3,4,6-テトラ-O-アセチル-α-D-グルコピラノシル-1-(N-フェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4,6-テトラ-O-アセチル-α-D-グルクロピラノシル-1-O-(2,2,2-トリクロロアセトイミダート)、α-アセトブロモグルコース等が挙げられる。
メチル供与としては、例えば、ヨウ化メチル、ジメチル硫酸、p-トルエンスルホン酸メチルエステル、メタンスルホン酸メチルエステル等のメチル化剤が挙げられる。
Conjugation of compound (V) is sulfation, methylation, glucuronidation or glucosylation, and compound (V) is conjugated with a known sulfate donor, methyl donor, glucuronide donor or This is done by reacting a glucose donor.
Examples of the sulfuric acid donor include neopentyl chlorosulfate, trichloroethyl chlorosulfate, 2,2,2-trichloroethoxy-sulfuryl-1,2-dimethylimidazolium triflate (2,2,2-trichloroethoxy-sulfuryl- 1,2-dimethylimidazolium triflate (SDIS) and the like.
As the glucuronic acid donor, 2,3,4-tri-O-acetyl-α-D-methylglucuronopyranosyl-1-(N-phenyl)-2,2,2-trifluoroacetimidate, 2,3,4-tri-O-acetyl-α-D-methylglucopyranosyl-1-(N-4-methoxyphenyl)-2,2,2-trifluoroacetimidate, 2,3,4 -tri-O-acetyl-α-D-methylglucuronopyranosyl-1-O-(2,2,2-trichloroacetimidate), acetobromo-α-D-glucuronic acid methyl ester, and the like.
As glucose donors, 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-(N-phenyl)-2,2,2-trifluoroacetimidate, 2,3, Examples include 4,6-tetra-O-acetyl-α-D-gluclopyranosyl-1-O-(2,2,2-trichloroacetimidate) and α-acetobromoglucose.
Examples of methyl donors include methylating agents such as methyl iodide, dimethyl sulfate, p-toluenesulfonic acid methyl ester, and methanesulfonic acid methyl ester.

例えば、硫酸化は、硫酸供与体としてSDISを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、塩基の存在下、カテキン保護誘導体(V)とSDISを撹拌することにより行われる。塩基としては、トリエチルアミン、N、N―ジイソプロピルエチルアミン、ピリジン、イミダゾール、キノリン、ピコリン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の3級アミンが挙げられ、好ましくは1,2-ジメチルイミダゾールが挙げられる。
反応温度は、通常23~27℃程度であり、反応時間は、通常1~12時間程度である。
For example, sulfation is preferably carried out by stirring the catechin protected derivative (V) and SDIS in an ether, chlorine, aprotic or mixed solvent in the presence of a base. It will be done. As a base, triethylamine, N,N-diisopropylethylamine, pyridine, imidazole, quinoline, picoline, 1-methylimidazole, 1,2-dimethylimidazole, 4-dimethylaminopyridine, N,N-dimethylaniline, N-methylmorpholine , 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0 ] Examples include tertiary amines such as undec-7-ene (DBU), preferably 1,2-dimethylimidazole.
The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 12 hours.

グルクロン酸化は、グルクロン酸供与体として2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチルを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、ルイス酸とモレキュラーシーブス4Aの存在下、カテキン保護誘導体(V)と2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチルを撹拌することにより行われる。ルイス酸としては、塩化アルミニウム(III)、ジエチルアルミニウムクロリド、塩化ニッケル(II)(6水和物)、塩化スズ(IV)(5水和物)、塩化チタン(IV)、塩化亜鉛、トリフルオロボラン-エーテル錯体が挙げられ、好ましくはトリフルオロボラン-エーテル錯体が挙げられる。反応温度は、通常23~27℃程度であり、反応時間は、通常1~24時間程度である。 For glucuronidation, a method using methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-D-glucuronate as a glucuronic acid donor is preferred; , catechin protected derivative (V) and 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)- in an aprotic or mixed solvent, in the presence of a Lewis acid and molecular sieves 4A. This is carried out by stirring methyl α-D-glucuronate. Lewis acids include aluminum (III) chloride, diethylaluminum chloride, nickel (II) chloride (hexahydrate), tin (IV) chloride (pentahydrate), titanium (IV) chloride, zinc chloride, and trifluorocarbon. Examples include ran-ether complexes, and preferably trifluoroborane-ether complexes. The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 24 hours.

グルコシル化は、グルコシル供与体として2,3,4,6-テトラ-O-アセチル-β-D-グルコピラノシル2,2,2-トリクロロアセトイミダートを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、ルイス酸とモレキュラーシーブス4Aの存在下、カテキン保護誘導体(V)と2,3,4,6-テトラ-O-アセチル-β-D-グルコピラノシル2,2,2-トリクロロアセトイミダートを撹拌することにより行われる。ルイス酸としては、塩化アルミニウム(III)、ジエチルアルミニウムクロリド、塩化ニッケル(II)(6水和物)、塩化スズ(IV)(5水和物)、塩化チタン(IV)、塩化亜鉛、トリフルオロボラン-エーテル錯体が挙げられ、好ましくはトリフルオロボラン-エーテル錯体が挙げられる。反応温度は、通常23~27℃程度であり、反応時間は、通常1~24時間程度である。 For glucosylation, a method using 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl 2,2,2-trichloroacetimidate as a glucosyl donor is preferred; In a protic or mixed solvent, in the presence of a Lewis acid and molecular sieves 4A, catechin protected derivative (V) and 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl 2,2,2- This is done by stirring trichloroacetimidate. Lewis acids include aluminum (III) chloride, diethylaluminum chloride, nickel (II) chloride (hexahydrate), tin (IV) chloride (pentahydrate), titanium (IV) chloride, zinc chloride, and trifluorocarbon. Examples include ran-ether complexes, and preferably trifluoroborane-ether complexes. The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 24 hours.

メチル化は、例えば非プロトン性極性溶媒中、0℃~室温で化合物(V)とメチル化剤及び塩基とを反応させることにより行うことができる。
ここで、メチル化剤としては、ヨードメタン、硫酸ジメチル、トリフルオロメタンスルホン酸メチル、ジアゾメタン、トリメチルシリルジアゾメタン等を用いるのが好ましく、より好ましくはヨードメタン、硫酸ジメチル、トリフルオロメタンスルホン酸メチルである。非プロトン性極性溶媒とは、N、N-ジメチルホルムアミド、ジメチルスルホキシドもしくはヘキサメチルリン酸トリアミド、又はこれらの混合物及びこれらと不活性溶媒(例えばテトラヒドロフラン、1.2-ジメトキシエタン等)との混合物が挙げられる。
塩基としては、例えばナトリウム、カリウムのようなアルカリ金属;ナトリウムメトキシド、ナトリウムエトキシド、カリウム第3級ブトキシドのようなアルカリ金属アルコキシド;炭酸ナトリウム、炭酸カリウムのような炭酸塩;重炭酸ナトリウム、重炭酸カリウムのような重炭酸塩;水酸化ナトリウム、水酸化カリウムのような金属水酸化物;水素化ナトリウム、水素化カリウムのような金属水素化物等が使用できる。
Methylation can be carried out, for example, by reacting compound (V) with a methylating agent and a base in an aprotic polar solvent at 0° C. to room temperature.
Here, as the methylating agent, it is preferable to use iodomethane, dimethyl sulfate, methyl trifluoromethanesulfonate, diazomethane, trimethylsilyldiazomethane, etc., and more preferably iodomethane, dimethyl sulfate, and methyl trifluoromethanesulfonate. Aprotic polar solvents include N,N-dimethylformamide, dimethylsulfoxide, hexamethylphosphoric triamide, or mixtures thereof and mixtures thereof with inert solvents (e.g., tetrahydrofuran, 1,2-dimethoxyethane, etc.). Can be mentioned.
Bases include, for example, alkali metals such as sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium tert-butoxide; carbonates such as sodium carbonate and potassium carbonate; sodium bicarbonate and bicarbonate; Bicarbonates such as potassium carbonate; metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrides such as sodium hydride and potassium hydride, etc. can be used.

斯くして得られる、カテキン保護誘導体(V)と硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体との反応生成物については、必要に応じて、各供与体に由来するエステル残基等の保護基を脱離すること、併せてB環及びC環のCbz基を脱離することにより、カテキン抱合体(VI)を得る。 The reaction products of the catechin protected derivative (V) and the sulfuric acid donor, methyl donor, glucuronic acid donor or glucose donor obtained in this way may be treated with ester residues derived from each donor as necessary. The catechin conjugate (VI) is obtained by removing the protective group such as Cbz group and the Cbz group of the B ring and C ring.

エステル残基等の保護基の脱離手段としては、例えば加水分解反応が挙げられる。加水分解反応は、酸又は塩基の存在下、反応生成物と水とを適宜溶媒中で接触させることにより実施することができる。ここで、使用可能な酸としては、例えば、塩酸、臭化水素酸、硫酸、リン酸等の無機酸や、酢酸、トリフルオロ酢酸、ギ酸、p-トルエンスルホン酸等の有機酸が挙げられる。塩基としては、例えば、水酸化ナトリウム、水酸化バリウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の炭酸塩、更には酢酸ナトリウム等が挙げられる。
溶媒としては、例えば、エタノール、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサンなどの水混和性有機溶媒が水と共に用いられる。
反応は、通常、約0~100℃、好ましくは室温~50℃で、0.5~3時間、好ましくは0.5~2時間行われる。
Examples of means for removing protective groups such as ester residues include hydrolysis reaction. The hydrolysis reaction can be carried out by bringing the reaction product into contact with water in an appropriate solvent in the presence of an acid or a base. Examples of acids that can be used include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid, trifluoroacetic acid, formic acid, and p-toluenesulfonic acid. Examples of the base include metal hydroxides such as sodium hydroxide and barium hydroxide, carbonates such as sodium carbonate and potassium carbonate, and sodium acetate.
As the solvent, for example, water-miscible organic solvents such as ethanol, ethylene glycol dimethyl ether, tetrahydrofuran, and dioxane are used together with water.
The reaction is usually carried out at about 0 to 100°C, preferably room temperature to 50°C, for 0.5 to 3 hours, preferably 0.5 to 2 hours.

また、B環及びC環のCbz基の脱離手段としては、水素化触媒存在下で加水素分解することにより、行うことができる。 Further, the Cbz groups of the B ring and C ring can be eliminated by hydrogenolysis in the presence of a hydrogenation catalyst.

反応は、水素源(水素、ギ酸又はギ酸アンモニウム等のギ酸類等)の存在下において、適当な溶媒中、水素化触媒の存在下で、カテキン保護誘導体(V)と硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体との反応生成物を撹拌することにより行われる。
溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、エタノール等のアルコール系溶媒、ギ酸、酢酸等の酸性溶媒及びこれらの混合溶媒等が挙げられる。
In the presence of a hydrogen source (hydrogen, formic acid or formic acids such as ammonium formate), in an appropriate solvent, in the presence of a hydrogenation catalyst, the catechin protected derivative (V), a sulfuric acid donor, a methyl donor, etc. , by stirring the reaction product with a glucuronic acid donor or a glucose donor.
Examples of the solvent include ether solvents such as diethyl ether, tetrahydrofuran, and dioxane, alcohol solvents such as methanol and ethanol, acidic solvents such as formic acid and acetic acid, and mixed solvents thereof.

水素化触媒としては、水酸化パラジウム(II)/炭素(Pd(OH)/C)、パラジウム/炭素(Pd/C)等のパラジウム触媒、ラネーニッケル等の水素担持金属触媒等が挙げられる。 Examples of hydrogenation catalysts include palladium catalysts such as palladium (II) hydroxide/carbon (Pd(OH) 2 /C) and palladium/carbon (Pd/C), hydrogen-supported metal catalysts such as Raney nickel, and the like.

水素化触媒の使用量は、化合物(VI)の仕込質量に対して、通常1~300質量%、好ましくは5~200質量%、さらに好ましくは10~150質量%、さらに好ましくは15~100質量%、さらに好ましくは20~50質量%である。 The amount of hydrogenation catalyst used is usually 1 to 300% by mass, preferably 5 to 200% by mass, more preferably 10 to 150% by mass, and even more preferably 15 to 100% by mass, based on the charged mass of compound (VI). %, more preferably 20 to 50% by mass.

反応温度は、通常23~27℃程度であり、反応時間は、通常6~24時間程度である。 The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 6 to 24 hours.

尚、本発明の各反応における目的物の単離は、必要に応じて、有機合成化学で常用される精製法、例えば濾過、洗浄、乾燥、再結晶、各種クロマトグラフィー、蒸留等により行うことができる。 The target product in each reaction of the present invention can be isolated, if necessary, by purification methods commonly used in organic synthetic chemistry, such as filtration, washing, drying, recrystallization, various chromatography, distillation, etc. can.

実施例1 硫酸抱合体の製造
(1)化合物6の合成
Example 1 Production of sulfuric acid conjugate (1) Synthesis of compound 6

Figure 0007379415000008
Figure 0007379415000008

アルゴン雰囲気下、500mL丸底フラスコに化合物1(5g,17mmol)をとり、脱水アセトン(167mL)を加え撹拌し、澄明な溶液を得た。続いて、トリエチルアミン(4.8mL,34mmol)とクロロギ酸ベンジル(4.8mL,34 mmol)を氷浴で冷却下、順次加え、1時間撹拌した。反応後、濾過し、アセトン(80mL)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:クロロホルム-メタノール(20:1,v/v))により精製し、白いアモルファスとして化合物6(7.5g, 13mmol, 80%)を得た。 Compound 1 (5 g, 17 mmol) was placed in a 500 mL round bottom flask under an argon atmosphere, and dehydrated acetone (167 mL) was added and stirred to obtain a clear solution. Subsequently, triethylamine (4.8 mL, 34 mmol) and benzyl chloroformate (4.8 mL, 34 mmol) were added one after another under cooling in an ice bath, and the mixture was stirred for 1 hour. After the reaction, the organic layer was filtered and washed with acetone (80 mL), and the solvent was distilled off under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: chloroform-methanol (20:1, v/v)) to obtain Compound 6 (7.5 g, 13 mmol, 80%) as a white amorphous.

H-NMR(600MHz,acetone-d6)δ7.56(d,J=2.0Hz,1H),7.50(dd,J=8.3,1.8Hz,1H),7.46-7.44(m,4H),7.41-7.36(m,7H),6.04(d,J=2.3Hz,1H),5.95(d,J=2.3Hz,1H),5.27(s,2H),5.26(s,2H),5.07-5.07(m,1H),4.32-4.32(m,1H),2.91(dd,J=17,4.5,Hz,1H),2.79(dd,J=16.4,2.5Hz,1H) 1 H-NMR (600MHz, acetone-d6) δ7.56 (d, J=2.0Hz, 1H), 7.50 (dd, J=8.3, 1.8Hz, 1H), 7.46-7 .44 (m, 4H), 7.41-7.36 (m, 7H), 6.04 (d, J = 2.3Hz, 1H), 5.95 (d, J = 2.3Hz, 1H) , 5.27 (s, 2H), 5.26 (s, 2H), 5.07-5.07 (m, 1H), 4.32-4.32 (m, 1H), 2.91 (dd , J=17,4.5,Hz,1H),2.79(dd,J=16.4,2.5Hz,1H)

13C-NMR(150MHz,acetone-d6)δ157.64,157.62,156.66,153.46,153.40,142.97,142.61,140.20,136.14,129.44,129.41,129.18,126.27,123.37,122.65,99.59,96.38,95.68,79.18,78.72,71.12,66.40,29.12 13C -NMR (150MHz, acetone-d6) δ157.64, 157.62, 156.66, 153.46, 153.40, 142.97, 142.61, 140.20, 136.14, 129.44 , 129.41, 129.18, 126.27, 123.37, 122.65, 99.59, 96.38, 95.68, 79.18, 78.72, 71.12, 66.40, 29 .12

(2) (4-((2′R,3′R)-5′-((tert-Butyldimethylsilyl)oxy)-3′,7′-dihydroxychroman-2′-yl)-1,2-phenylene)dibenzyl biscarbonate(化合物7)及び(4-((2′R,3′R)-7′-((tert-butyldimethylsilyl)oxy)-3′,5′-dihydroxychroman-2′-yl)-1,2-phenylene)dibenzyl biscarbonate(化合物8)の合成 (2) (4-((2'R,3'R)-5'-((tert-Butyldimethylsilyl)oxy)-3',7'-dihydroxychroman-2'-yl)-1,2-phenylene)dibenzyl biscarbonate (compound 7) and (4-((2'R,3'R)-7'-((tert-butyldimethylsilyl)oxy)-3',5'-dihydroxychroman-2'-yl)-1,2- Synthesis of phenylene dibenzyl biscarbonate (compound 8)

Figure 0007379415000009
Figure 0007379415000009

アルゴン雰囲気下、20mL丸底フラスコに化合物6(100mg,0.18mmol)とをとり、脱水ジクロロメタン(4mL)を加え撹拌し、澄明な溶液を得た。続いて、トリエチルアミン(38μL,0.27mmol)とt-ブチルジメチルシリルクロリド(84mg,0.55mmol)を室温で順次加え、1時間撹拌した。反応後、酢酸エチル(10mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(5:2,v/v))により精製し、白いアモルファスとして化合物7(76mg,0.11mmol,61%)と化合物8(29mg,0.04mmol,24%)を得た。 Compound 6 (100 mg, 0.18 mmol) was placed in a 20 mL round bottom flask under an argon atmosphere, and dehydrated dichloromethane (4 mL) was added and stirred to obtain a clear solution. Subsequently, triethylamine (38 μL, 0.27 mmol) and t-butyldimethylsilyl chloride (84 mg, 0.55 mmol) were sequentially added at room temperature, and the mixture was stirred for 1 hour. After the reaction, the reaction mixture was diluted with ethyl acetate (10 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (5:2, v/v)), and compound 7 (76 mg, 0.11 mmol, 61%) and compound 8 (29 mg) were obtained as white amorphous. , 0.04 mmol, 24%).

化合物7:
H-NMR(600MHz,acetone-d6)δ7.54(d,J=1.8Hz,1H),7.50(dd,J=8.6,1.8Hz,1H),7.44-7.46(m,4H),7.36-7.41(m,7H),6.07(d,J=2.3Hz,1H),6.05(d,J=2.2Hz,1H),5.27(s,2H),5.26(s,2H),5.08(s,1H),4.32-4.34(m,1H),4.07(d,J=5.7Hz,1H),2.92(dd,J=16,4.4Hz,1H),2.79(dd,J=16,2.7Hz,1H),1.01(s,9H),0.24(s,6H)
Compound 7:
1 H-NMR (600MHz, acetone-d6) δ7.54 (d, J=1.8Hz, 1H), 7.50 (dd, J=8.6, 1.8Hz, 1H), 7.44-7 .46 (m, 4H), 7.36-7.41 (m, 7H), 6.07 (d, J=2.3Hz, 1H), 6.05 (d, J=2.2Hz, 1H) , 5.27 (s, 2H), 5.26 (s, 2H), 5.08 (s, 1H), 4.32-4.34 (m, 1H), 4.07 (d, J=5 .7Hz, 1H), 2.92 (dd, J=16, 4.4Hz, 1H), 2.79 (dd, J=16, 2.7Hz, 1H), 1.01 (s, 9H), 0 .24 (s, 6H)

13C-NMR(150MHz,acetone-d6)δ157.47,156.79,156.01,153.46,153.41,142.99,142.65,140.08,136.14,129.45,129.42,129.19,126.29,123.40,122.65,103.60,100.22,97.43,78.75,71.13,66.35,26.13,18.82,-4.40,-4.12 13C -NMR (150MHz, acetone-d6) δ157.47, 156.79, 156.01, 153.46, 153.41, 142.99, 142.65, 140.08, 136.14, 129.45 , 129.42, 129.19, 126.29, 123.40, 122.65, 103.60, 100.22, 97.43, 78.75, 71.13, 66.35, 26.13, 18 .82, -4.40, -4.12

化合物8:
H-NMR(600MHz,acetone-d6)δ7.56(d,J=1.8Hz,1H),7.51(dd,J=8.4,1.6Hz,1H),7.44-7.46(m,4H),7.36-7.41(m,7H),6.08(d,J=2.2Hz,1H),5.97(d,J=2.2Hz,1H),5.27(s,2H),5.26(s,2H),5.10(s,1H),4.34-4.37(m,1H),4.07(d,J=5.5Hz1H),2.94(dd,J=16,4.5Hz,1H),2.80-2.83(m,1H),0.97(s,9H),0.19(s,6H)
Compound 8:
1 H-NMR (600MHz, acetone-d6) δ7.56 (d, J=1.8Hz, 1H), 7.51 (dd, J=8.4, 1.6Hz, 1H), 7.44-7 .46 (m, 4H), 7.36-7.41 (m, 7H), 6.08 (d, J=2.2Hz, 1H), 5.97 (d, J=2.2Hz, 1H) , 5.27 (s, 2H), 5.26 (s, 2H), 5.10 (s, 1H), 4.34-4.37 (m, 1H), 4.07 (d, J=5 .5Hz 1H), 2.94 (dd, J=16, 4.5Hz, 1H), 2.80-2.83 (m, 1H), 0.97 (s, 9H), 0.19 (s, 6H) )

13C-NMR(150MHz,acetone-d6)δ157.48,156.61,155.66,153.46,153.41,143.00,142.64,140.08,136.15,129.45,129.42,129.41,126.24,123.40,122.65,101.86,100.76,100.37,78.76,71.13,66.23,26.03,18.74,-4.250,-4.27 13C -NMR (150MHz, acetone-d6) δ157.48, 156.61, 155.66, 153.46, 153.41, 143.00, 142.64, 140.08, 136.15, 129.45 , 129.42, 129.41, 126.24, 123.40, 122.65, 101.86, 100.76, 100.37, 78.76, 71.13, 66.23, 26.03, 18 .74, -4.250, -4.27

(3) (4-((2′R,3′R)-3′,7′-Bis(((benzyloxy)carbonyl)oxy)-5′-((tert-butyldimethylsilyl)oxy)chroman-2′-yl)-1,2-phenylene)dibenzyl biscarbonate(化合物9)及び(4-((2′R,3′R)-3′,5′-Bis(((benzyloxy)carbonyl)oxy)-7′-((tert-butyldimethylsilyl)oxy)chroman-2′-yl)-1,2-phenylene)dibenzyl biscarbonate(化合物11)の合成 (3) (4-((2'R,3'R)-3',7'-Bis((benzyloxy)carbonyl)oxy)-5'-((tert-butyldimethylsilyl)oxy)chroman-2'- yl)-1,2-phenylene)dibenzyl biscarbonate (compound 9) and (4-((2′R,3′R)-3′,5′-Bis((benzyloxy)carbonyl)oxy)-7′- Synthesis of ((tert-butyldimethylsilyl)oxy)chroman-2'-yl)-1,2-phenylene)dibenzyl biscarbonate (compound 11)

Figure 0007379415000010
Figure 0007379415000010

(3-1)化合物9の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物7(1.8g,2.67mmol)とN,N-ジメチルアミノピリジン(0.982g,8.03mmol)をとり、脱水ジクロロメタン(27mL)を加え撹拌し、澄明な溶液を得た。続いて、トリエチルアミン(1.1mL,8.03mmol)とクロロギ酸ベンジル(1.89mL,13mmol)を氷浴で冷却下、順次加え、1時間撹拌した。反応後、酢酸エチル(54mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1,v/v))により精製し、白いアモルファスとして化合物9(1.44g,1.52mmol,57%)を得た。
(3-1) Synthesis of Compound 9 Under an argon atmosphere, compound 7 (1.8 g, 2.67 mmol) and N,N-dimethylaminopyridine (0.982 g, 8.03 mmol) were placed in a 100 mL round bottom flask and dehydrated. Dichloromethane (27 mL) was added and stirred to obtain a clear solution. Subsequently, triethylamine (1.1 mL, 8.03 mmol) and benzyl chloroformate (1.89 mL, 13 mmol) were sequentially added under cooling in an ice bath, and the mixture was stirred for 1 hour. After the reaction, the reaction mixture was diluted with ethyl acetate (54 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 9 (1.44 g, 1.52 mmol, 57%) as a white amorphous. .

H-NMR(600MHz,acetone-d6)δ7.58(d,J=1.9Hz,1H),7.51(dd,J=8.7,1.9Hz,1H),7.25-7.48(m,21H),6.51(d,J=2.2Hz,1H),6.43(d,J=2.2Hz,1H),5.49-5.50(m,1H),5.42(s,1H),5.27(s,4H),5.25(s,2H),4.99(s,2H),3.17(dd,J=17,4.3Hz,1H),3.10(d,J=16Hz,1H),1.01(s,9H),0.26(s,3H),0.23(s,3H) 1 H-NMR (600MHz, acetone-d6) δ7.58 (d, J=1.9Hz, 1H), 7.51 (dd, J=8.7, 1.9Hz, 1H), 7.25-7 .48 (m, 21H), 6.51 (d, J = 2.2Hz, 1H), 6.43 (d, J = 2.2Hz, 1H), 5.49-5.50 (m, 1H) , 5.42 (s, 1H), 5.27 (s, 4H), 5.25 (s, 2H), 4.99 (s, 2H), 3.17 (dd, J=17, 4.3Hz , 1H), 3.10 (d, J=16Hz, 1H), 1.01 (s, 9H), 0.26 (s, 3H), 0.23 (s, 3H)

13C-NMR(150MHz,acetone-d6)δ156.02,155.54,155.05,153.98,153.32,151.38,143.28,143.14,137.91,136.45,136.31,136.09,136.08,129.44,129.42,129.37,129.27,129.23,129.18,129.05,128.91,125.94,123.87,122.42,109.06,105.67,103.67,76.99,71.95,71.19,70.74,70.09,26.04,18.79,-4.20,-4.22 13C -NMR (150MHz, acetone-d6) δ156.02, 155.54, 155.05, 153.98, 153.32, 151.38, 143.28, 143.14, 137.91, 136.45 , 136.31, 136.09, 136.08, 129.44, 129.42, 129.37, 129.27, 129.23, 129.18, 129.05, 128.91, 125.94, 123 .87, 122.42, 109.06, 105.67, 103.67, 76.99, 71.95, 71.19, 70.74, 70.09, 26.04, 18.79, -4. 20, -4.22

(3-2)化合物11の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物8(660mg,0.98mmol)とN,N-ジメチルアミノピリジン(360mg,2.94mmol)をとり、脱水ジクロロメタン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、トリエチルアミン(411μL、0.98mmol)とクロロギ酸ベンジル(692μL,4.90mmol)を氷浴で冷却下、順次加え、1時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1,v/v))により精製し、白いアモルファスとして化合物11(678mg,0.72mmol,74%)を得た。
(3-2) Synthesis of Compound 11 Under an argon atmosphere, compound 8 (660 mg, 0.98 mmol) and N,N-dimethylaminopyridine (360 mg, 2.94 mmol) were placed in a 50 mL round bottom flask, and dehydrated dichloromethane (10 mL) was added. was added and stirred to obtain a clear solution. Subsequently, triethylamine (411 μL, 0.98 mmol) and benzyl chloroformate (692 μL, 4.90 mmol) were sequentially added under cooling in an ice bath, and the mixture was stirred for 1 hour. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 11 (678 mg, 0.72 mmol, 74%) as a white amorphous.

H-NMR(600MHz,acetone-d6)δ7.58(d,J=1.7Hz,1H),7.51(dd,J=8.4,1.6Hz,1H),7.25-7.48(m,21H),6.46(d,J=2.2Hz,1H),6.44(d,J=2.2Hz,1H),5.45(m,1H),5.40(s,1H),5.29(s,2H),5.28(s,2H),5.25(s,2H),4.99(s,2H),3.12(dd,J=17,4.3Hz,1H),2.94(d,J=16Hz,1H),0.99(s,9H),0.23(s,6H) 1 H-NMR (600MHz, acetone-d6) δ7.58 (d, J=1.7Hz, 1H), 7.51 (dd, J=8.4, 1.6Hz, 1H), 7.25-7 .48 (m, 21H), 6.46 (d, J = 2.2Hz, 1H), 6.44 (d, J = 2.2Hz, 1H), 5.45 (m, 1H), 5.40 (s, 1H), 5.29 (s, 2H), 5.28 (s, 2H), 5.25 (s, 2H), 4.99 (s, 2H), 3.12 (dd, J= 17, 4.3Hz, 1H), 2.94 (d, J=16Hz, 1H), 0.99 (s, 9H), 0.23 (s, 6H)

13C-NMR(150MHz,acetone-d6)δ156.08,155.89,155.04,153.50,153.33,153.31,151.36,143.29,143.20,137.80,136.46,136.30,136.10,136.09,129.46,129.45,129.43,129.28,129.20,129.18,129.04,128.86,126.02,123.88,122.45,108.01,106.70,106.18,77.05,71.57,71.21,70.96,70.13,26.17,25.93,18.70,-439,-4.42. 13C -NMR (150MHz, acetone-d6) δ156.08, 155.89, 155.04, 153.50, 153.33, 153.31, 151.36, 143.29, 143.20, 137.80 , 136.46, 136.30, 136.10, 136.09, 129.46, 129.45, 129.43, 129.28, 129.20, 129.18, 129.04, 128.86, 126 .02, 123.88, 122.45, 108.01, 106.70, 106.18, 77.05, 71.57, 71.21, 70.96, 70.13, 26.17, 25.93 , 18.70, -439, -4.42.

(4)化合物10及び化合物12の合成 (4) Synthesis of compound 10 and compound 12

Figure 0007379415000011
Figure 0007379415000011

(4-1)化合物10の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物9(1.4g,1.48mmol)をとり、水含有テトラヒドロフラン(20mL)を加え撹拌し、澄明な溶液を得た。続いて、酢酸(430μL,7.44mmol)とフッ化テトラ-n-ブチルアンモニウムテトラヒドロフラン溶液(3mL,2.97mmol)を室温で順次加え、10分間撹拌した。反応後、酢酸エチル(40mL)で希釈した後、塩化アンモニウム水溶液を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(1:1,v/v))により精製し、白いアモルファスとして化合物10(1.09g,1.32mmol,89%)を得た。
(4-1) Synthesis of Compound 10 Under an argon atmosphere, Compound 9 (1.4 g, 1.48 mmol) was placed in a 100 mL round bottom flask, and water-containing tetrahydrofuran (20 mL) was added and stirred to obtain a clear solution. Subsequently, acetic acid (430 μL, 7.44 mmol) and a tetra-n-butylammonium fluoride tetrahydrofuran solution (3 mL, 2.97 mmol) were sequentially added at room temperature, and the mixture was stirred for 10 minutes. After the reaction, the reaction mixture was diluted with ethyl acetate (40 mL), and then an aqueous ammonium chloride solution was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (1:1, v/v)) to obtain compound 10 (1.09 g, 1.32 mmol, 89%) as a white amorphous. .

H-NMR(600MHz,acetone-d6)δ7.59(d,J=1.9Hz,1H),7.52(dd,J=8.6,1.8Hz,1H),7.25-7.48(m,21H),6.39(m,2H),5.49-5.50(m,1H),5.41(s,1H),5.27(s,2H),5.26(s,2H),5.25(s,2H),5.00(s,2H),3.16(dd,J=18,4.3Hz,1H),3.07(d,J=16Hz,1H) 1 H-NMR (600MHz, acetone-d6) δ7.59 (d, J=1.9Hz, 1H), 7.52 (dd, J=8.6, 1.8Hz, 1H), 7.25-7 .48 (m, 21H), 6.39 (m, 2H), 5.49-5.50 (m, 1H), 5.41 (s, 1H), 5.27 (s, 2H), 5. 26 (s, 2H), 5.25 (s, 2H), 5.00 (s, 2H), 3.16 (dd, J = 18, 4.3Hz, 1H), 3.07 (d, J = 16Hz, 1H)

13C-NMR(150MHz,acetone-d6)δ157.21,156.00,155.11,154.08,153.33,151.52,143.28,143.11,138.04,136.50,136.37,136.10,129.45,129.42,129.37,129.27,129.23,129.19,129.02,128.84,125.95,123.84,122.44,105.06,101.82,101.69,76.99,72.02,71.20,70.67,70.05,26.42 13C -NMR (150MHz, acetone-d6) δ157.21, 156.00, 155.11, 154.08, 153.33, 151.52, 143.28, 143.11, 138.04, 136.50 , 136.37, 136.10, 129.45, 129.42, 129.37, 129.27, 129.23, 129.19, 129.02, 128.84, 125.95, 123.84, 122 .44, 105.06, 101.82, 101.69, 76.99, 72.02, 71.20, 70.67, 70.05, 26.42

(4-2)化合物12の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物11(650mg,0.69mmol)をとり、水含有テトラヒドロフラン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、酢酸(200μL,3.45mmol)とフッ化テトラ-n-ブチルアンモニウムテトラヒドロフラン溶液(1.38mL,1.38mmol)を室温で順次加え、10分間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、塩化アンモニウム水溶液を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1,v/v))により精製し、白いアモルファスとして化合物12(551mg,0.67mmol,97%)を得た。
(4-2) Synthesis of Compound 12 Under an argon atmosphere, Compound 11 (650 mg, 0.69 mmol) was placed in a 50 mL round bottom flask, and water-containing tetrahydrofuran (10 mL) was added and stirred to obtain a clear solution. Subsequently, acetic acid (200 μL, 3.45 mmol) and tetra-n-butylammonium fluoride tetrahydrofuran solution (1.38 mL, 1.38 mmol) were sequentially added at room temperature and stirred for 10 minutes. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and then an aqueous ammonium chloride solution was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain Compound 12 (551 mg, 0.67 mmol, 97%) as a white amorphous.

H-NMR(600MHz,acetone-d6)δ7.57(d,J=1.9Hz,1H),7.51(dd,J=8.4,1.8Hz,1H),7.25-7.48(m,21H),6.40(m,2H),5.41-5.42(m,1H),5.38(s,1H),5.29(s,2H),5.27(s,2H),5.25(s,2H),4.99(s,2H),3.08(dd,J=17,4.3Hz,1H),2.90(d,J=15Hz,1H) 1 H-NMR (600MHz, acetone-d6) δ7.57 (d, J=1.9Hz, 1H), 7.51 (dd, J=8.4, 1.8Hz, 1H), 7.25-7 .48 (m, 21H), 6.40 (m, 2H), 5.41-5.42 (m, 1H), 5.38 (s, 1H), 5.29 (s, 2H), 5. 27 (s, 2H), 5.25 (s, 2H), 4.99 (s, 2H), 3.08 (dd, J = 17, 4.3Hz, 1H), 2.90 (d, J = 15Hz, 1H)

13C-NMR(150MHz,acetone-d6)δ157.84,156.18,155.05,153.58,153.33,151.53,143.27,143.17,137.94,136.48,136.35,136.10,136.08,129.45,129.43,129.28,129.19,129.18,129.02,128.83,126.03,123.87,122.45,103.91,103.52,102.01,77.01,71.72,71.20,70.90,70.09,26.08 13C -NMR (150MHz, acetone-d6) δ157.84, 156.18, 155.05, 153.58, 153.33, 151.53, 143.27, 143.17, 137.94, 136.48 , 136.35, 136.10, 136.08, 129.45, 129.43, 129.28, 129.19, 129.18, 129.02, 128.83, 126.03, 123.87, 122 .45, 103.91, 103.52, 102.01, 77.01, 71.72, 71.20, 70.90, 70.09, 26.08

(5)化合物13及び化合物14の合成 (5) Synthesis of compound 13 and compound 14

Figure 0007379415000012
Figure 0007379415000012

(5-1)化合物13の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物10(100mg,0.12mmol)とSDIS(111mg,0.24mmol)をとり、脱水ジクロロメタン(5mL)を加え撹拌し、澄明な溶液を得た。続いて、1,2-ジメチルイミダゾール(25mg,0.24mmol)を室温で加え、5時間撹拌した。反応後、酢酸エチル(10mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1,v/v))により精製し、白いアモルファスとして化合物13(82mg,0.08mmol,66%)を得た。
(5-1) Synthesis of Compound 13 Under an argon atmosphere, compound 10 (100 mg, 0.12 mmol) and SDIS (111 mg, 0.24 mmol) were placed in a 50 mL round-bottomed flask, and dehydrated dichloromethane (5 mL) was added thereto and stirred. A solution was obtained. Subsequently, 1,2-dimethylimidazole (25 mg, 0.24 mmol) was added at room temperature and stirred for 5 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (10 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative thin layer chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 13 (82 mg, 0.08 mmol, 66%) as a white amorphous. Ta.

H-NMR(600MHz,acetone-d6)δ7.59(d,J=1.8Hz,1H),7.53(dd,J=8.5,1.9Hz,1H),7.24-7.48(m,21H),7.13(d,J=2.2Hz,1H),7.00(d,J=2.2Hz,1H),5.59(m,2H),5.25-5.30(m,8H),4.99(m,2H),3.45(dd,J=17,4.1Hz,1H),3.40(d,J=17Hz,1H) 1 H-NMR (600MHz, acetone-d6) δ7.59 (d, J=1.8Hz, 1H), 7.53 (dd, J=8.5, 1.9Hz, 1H), 7.24-7 .48 (m, 21H), 7.13 (d, J = 2.2Hz, 1H), 7.00 (d, J = 2.2Hz, 1H), 5.59 (m, 2H), 5.25 -5.30 (m, 8H), 4.99 (m, 2H), 3.45 (dd, J=17, 4.1Hz, 1H), 3.40 (d, J=17Hz, 1H)

13C-NMR(150MHz,acetone-d6)δ156.44,154.88,153.72,153.32,153.30,151.31,149.45,143.35,143.32,137.23,136.37,136.10,136.08,136.07,129.51,129.47,129.36,129.29,129.21,129.08,128.88,126.00,123.99,122.46,111.82,110.36,108.72,93.64,81.65,77.47,71.23,71.18,70.82,70.26,26.71 13C -NMR (150MHz, acetone-d6) δ156.44, 154.88, 153.72, 153.32, 153.30, 151.31, 149.45, 143.35, 143.32, 137.23 , 136.37, 136.10, 136.08, 136.07, 129.51, 129.47, 129.36, 129.29, 129.21, 129.08, 128.88, 126.00, 123 .99,122.46,111.82,110.36,108.72,93.64,81.65,77.47,71.23,71.18,70.82,70.26,26.71

(5-2)化合物14の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物12(420mg,0.50mmol)とSDIS(463mg,1.01mmol)をとり、脱水ジクロロメタン(21mL)を加え撹拌し、澄明な溶液を得た。続いて、1,2-ジメチルイミダゾール(98mg,1.01mmol)を室温で加え、2時間撹拌した。反応後、酢酸エチル(42mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1,v/v))により精製し、白いアモルファスとして化合物14(434mg,0.62mmol,82%)を得た。
(5-2) Synthesis of Compound 14 Under an argon atmosphere, compound 12 (420 mg, 0.50 mmol) and SDIS (463 mg, 1.01 mmol) were placed in a 50 mL round-bottomed flask, and dehydrated dichloromethane (21 mL) was added thereto and stirred. A solution was obtained. Subsequently, 1,2-dimethylimidazole (98 mg, 1.01 mmol) was added at room temperature and stirred for 2 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (42 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative thin layer chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain Compound 14 (434 mg, 0.62 mmol, 82%) as a white amorphous. Ta.

H-NMR(600MHz,acetone-d6)δ7.58(d,J=1.9Hz,1H),7.52(dd,J=8.4,1.8Hz,1H),7.24-7.49(m,21H),7.14(d,J=2.3Hz,1H),7.11(d,J=2.3Hz,1H),5.51-5.53(m,1H),5.32(s,2H),5.28(s,2H),5.27(s,2H),5.26(s,2H),3.24(dd,J=17,4.1Hz,1h),3.07(d,J=16Hz,1h) 1 H-NMR (600MHz, acetone-d6) δ7.58 (d, J=1.9Hz, 1H), 7.52 (dd, J=8.4, 1.8Hz, 1H), 7.24-7 .49 (m, 21H), 7.14 (d, J = 2.3Hz, 1H), 7.11 (d, J = 2.3Hz, 1H), 5.51-5.53 (m, 1H) , 5.32 (s, 2H), 5.28 (s, 2H), 5.27 (s, 2H), 5.26 (s, 2H), 3.24 (dd, J=17, 4.1Hz , 1h), 3.07 (d, J=16Hz, 1h)

13C-NMR(150MHz,acetone-d6)δ156.36,154.88,153.32,153.30,153.18,151.34,149.41,143.34,137.21,136.37,136.09,136.07,136.03,129.55,129.50,129.46,129.29,129.21,129.07,128.86,126.00,123.99,122.45,113.43,109.11,108.72,93.65,81.36,77.48,71.39,71.24,70.88,70.24,26.41. 13C -NMR (150MHz, acetone-d6) δ156.36, 154.88, 153.32, 153.30, 153.18, 151.34, 149.41, 143.34, 137.21, 136.37 , 136.09, 136.07, 136.03, 129.55, 129.50, 129.46, 129.29, 129.21, 129.07, 128.86, 126.00, 123.99, 122 .45, 113.43, 109.11, 108.72, 93.65, 81.36, 77.48, 71.39, 71.24, 70.88, 70.24, 26.41.

(6)(2R,3R)-2-(3′,4′-Dihydroxyphenyl)-3,7-dihydroxychroman-5-yl ammonium sulfate(化合物2)及び(2R,3R)-2-(3′,4′-Dihydroxyphenyl)-3,5-dihydroxychroman-7-yl ammonium sulfate(化合物3)の合成 (6) (2R,3R)-2-(3',4'-Dihydroxyphenyl)-3,7-dihydroxychroman-5-yl ammonium sulfate (compound 2) and (2R,3R)-2-(3',4 Synthesis of '-Dihydroxyphenyl)-3,5-dihydroxychroman-7-yl ammonium sulfate (Compound 3)

Figure 0007379415000013
Figure 0007379415000013

(6-1)化合物2の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物13(80mg,77μmol)とギ酸アンモニウム(49mg,0.77mmol)をとり、テトラヒドロフラン-メタノール混合液(8mL,3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(20mg)を室温で加え、フラスコ内を水素置換し、16時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール混合液(32mL,3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取逆相薄層クロマトグラフィー(溶出溶媒:水-メタノール(9:1,v/v))により精製し、白色個体を得た。得られた個体を分取HPLCにより精製し、白色個体として化合物2(26mg,67μmol,87%)を得た。
(6-1) Synthesis of Compound 2 Under an argon atmosphere, compound 13 (80 mg, 77 μmol) and ammonium formate (49 mg, 0.77 mmol) were placed in a 50 mL round bottom flask, and a mixture of tetrahydrofuran and methanol (8 mL, 3:1) was added. was added and stirred to obtain a clear solution. Subsequently, palladium on carbon (20 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 16 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. The obtained residue was purified by preparative reverse phase thin layer chromatography (elution solvent: water-methanol (9:1, v/v)) to obtain a white solid. The obtained solid was purified by preparative HPLC to obtain Compound 2 (26 mg, 67 μmol, 87%) as a white solid.

[分取条件]
分取カラム:L-columnODS,size20mmx259mm5μm
溶離液:A(10mM酢酸酸アンモニウム水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):10%(5分)、10→30%(8分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (10mM ammonium acetate aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 10% (5 minutes), 10 → 30% (8 minutes)

H-NMR(600MHz,DMSO-d6)δ6.89(s,1H),6.65(s,2H),6.53(d,J=2.2Hz,1H),5.93(d,J=2.3Hz,1H),4.72(s,1H),3.97-3.99(m,1H),2.78(dd,J=16,4.4Hz,1H),2.58(dd,J=16,3.2Hz,1H) 1H -NMR (600MHz, DMSO-d6) δ6.89 (s, 1H), 6.65 (s, 2H), 6.53 (d, J = 2.2Hz, 1H), 5.93 (d, J=2.3Hz, 1H), 4.72 (s, 1H), 3.97-3.99 (m, 1H), 2.78 (dd, J=16, 4.4Hz, 1H), 2. 58 (dd, J=16, 3.2Hz, 1H)

HRMScalcd.forC1515[M+H]:371.0431;found:371.0438 HRMScalcd. forC 15 H 15 O 9 S + [M+H] + :371.0431; found:371.0438

(6-2)化合物3の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物14(73mg,70μmol)とギ酸アンモニウム(45mg,0.70mmol)をとり、テトラヒドロフラン-メタノール混合液(8mL,3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(20mg)を室温で加え、フラスコ内を水素置換し、16時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール混合液(32mL,3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取逆相薄層クロマトグラフィー(溶出溶媒:水-メタノール(9:1,v/v))により精製し、白色個体を得た。得られた個体を分取HPLCにより精製し、白色個体として化合物3(17mg,44μmol,63%)を得た。
(6-2) Synthesis of Compound 3 Under an argon atmosphere, compound 14 (73 mg, 70 μmol) and ammonium formate (45 mg, 0.70 mmol) were placed in a 50 mL round bottom flask, and a mixture of tetrahydrofuran and methanol (8 mL, 3:1) was added. was added and stirred to obtain a clear solution. Subsequently, palladium on carbon (20 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 16 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. The obtained residue was purified by preparative reverse phase thin layer chromatography (elution solvent: water-methanol (9:1, v/v)) to obtain a white solid. The obtained solid was purified by preparative HPLC to obtain Compound 3 (17 mg, 44 μmol, 63%) as a white solid.

[分取条件]
分取カラム:L-columnODS,size20mmx259mm5μm
溶離液:A(10mM酢酸アンモニウム水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):10%(5分)、10→20%(12分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (10mM ammonium acetate aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 10% (5 minutes), 10 → 20% (12 minutes)

H-NMR(600MHz,DMSO-d6)δ6.91(s,1H),6.66(s,2H),6.31(d,J=2.0Hz,1H),6.12(d,J=2.0Hz,1H),4.76(s,1H),4.0(m,1H),2.72(dd,J=16,4.3Hz,1H),2.55(dd,J=16,2.6Hz,1H) 1H -NMR (600MHz, DMSO-d6) δ6.91 (s, 1H), 6.66 (s, 2H), 6.31 (d, J = 2.0Hz, 1H), 6.12 (d, J = 2.0Hz, 1H), 4.76 (s, 1H), 4.0 (m, 1H), 2.72 (dd, J = 16, 4.3Hz, 1H), 2.55 (dd, J=16, 2.6Hz, 1H)

HRMScalcd.forC1515[M+H]:371.0431;found:371.0442. HRMScalcd. forC 15 H 15 O 9 S + [M+H] + :371.0431; found: 371.0442.

実施例2 グルクロン酸抱合体の製造
(1)化合物15及び化合物16の合成
Example 2 Production of glucuronide conjugate (1) Synthesis of compound 15 and compound 16

Figure 0007379415000014
Figure 0007379415000014

(1-1)化合物15の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物10(150mg,0.18mmol)、2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチル(60mg,0.54mmol)、そしてモレキュラーシーブス4Å(750mg)をとり、脱水ジクロロメタン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、トリフルオロボランエーテル錯体(460μL,3.63mmol)を0℃で加えた後、室温まで昇温し、16時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1,v/v))により粗精製し、白いアモルファスとして混合物(103mg)を得た。
(1-1) Synthesis of Compound 15 Under an argon atmosphere, compound 10 (150 mg, 0.18 mmol) and 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl) were placed in a 50 mL round bottom flask. Methyl -α-D-glucuronate (60 mg, 0.54 mmol) and molecular sieves 4 Å (750 mg) were taken, and dehydrated dichloromethane (10 mL) was added and stirred to obtain a clear solution. Subsequently, trifluoroborane ether complex (460 μL, 3.63 mmol) was added at 0° C., then the mixture was heated to room temperature and stirred for 16 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was roughly purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain a mixture (103 mg) as a white amorphous.

(1-2)化合物16の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物12(150mg,0.18mmol)、2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチル(260mg,0.54mmol)、そしてモレキュラーシーブス4Å(750mg)をとり、脱水ジクロロメタン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、トリフルオロボランエーテル錯体(460μL,3.63mmol)を0℃で加えた後、室温まで昇温し、16時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1,v/v))により粗精製し、白いアモルファスとして混合物(153mg)を得た。
(1-2) Synthesis of Compound 16 Under argon atmosphere, compound 12 (150 mg, 0.18 mmol), 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl) was placed in a 50 mL round bottom flask. Methyl -α-D-glucuronate (260 mg, 0.54 mmol) and molecular sieves 4 Å (750 mg) were taken, and dehydrated dichloromethane (10 mL) was added and stirred to obtain a clear solution. Subsequently, trifluoroborane ether complex (460 μL, 3.63 mmol) was added at 0° C., then the mixture was heated to room temperature and stirred for 16 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was roughly purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain a mixture (153 mg) as a white amorphous.

(2)(2R,3R,4R,5S,6R)-6-(((2′R,3′R)-2-(3″,4″-Dihydroxyphenyl)-3′,7′-dihydroxychroman-5′-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid(化合物4)及び(2R,3R,4R,5S,6R)-6-(((2′R,3′R)-2-(3″,4″-Dihydroxyphenyl)-3′,5′-dihydroxychroman-7′-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid(化合物5)の合成 (2)(2R,3R,4R,5S,6R)-6-(((2'R,3'R)-2-(3'',4''-Dihydroxyphenyl)-3',7'-dihydroxychroman-5 '-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (compound 4) and (2R,3R,4R,5S,6R)-6-(((2'R,3 'R)-2-(3'',4''-Dihydroxyphenyl)-3',5'-dihydroxychroman-7'-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (compound 5) Synthesis

Figure 0007379415000015
Figure 0007379415000015

(2-1)化合物4の合成
アルゴン雰囲気下、20mL丸底フラスコに化合物15の合成で得られた混合物(103mg)をとり、テトラヒドロフラン-メタノール混合液(4mL,3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(33mg)を室温で加え、フラスコ内を水素置換し、3時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフランーメタノール混合液(32mL,3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。引き続き、脱水メタノール(10mL)とナトリウムメトキシドメタノール溶液(397μL,1.98mmol)を氷浴で冷却下、順次加え、30分間撹拌した。撹拌後、精製水(3.97mL)を加え、さらに室温で30分間撹拌した。その後、エバポレーターにて溶媒を減圧蒸留し、得られた残渣を分取HPLCにより精製し、白色個体として化合物4(17mg,36μmol,20%(3行程収率))を得た。
(2-1) Synthesis of Compound 4 Under an argon atmosphere, the mixture obtained in the synthesis of Compound 15 (103 mg) was placed in a 20 mL round bottom flask, and a tetrahydrofuran-methanol mixture (4 mL, 3:1) was added and stirred. A clear solution was obtained. Subsequently, palladium on carbon (33 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 3 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. Subsequently, dehydrated methanol (10 mL) and sodium methoxide methanol solution (397 μL, 1.98 mmol) were sequentially added while cooling in an ice bath, and the mixture was stirred for 30 minutes. After stirring, purified water (3.97 mL) was added, and the mixture was further stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled under reduced pressure using an evaporator, and the resulting residue was purified by preparative HPLC to obtain Compound 4 (17 mg, 36 μmol, 20% (3-step yield)) as a white solid.

[分取条件]
分取カラム:L-columnODS,size20mmx259mm5μm
溶離液:A(0.1%ギ酸水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):3→10%(5分)、10%(10分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (0.1% formic acid aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 3 → 10% (5 minutes), 10% (10 minutes)

H-NMR(600MHz,DO-acetone-d6(1:9))δ7.00(d,J=1.8Hz,1H),6.78(dd,J=8.1,1.7Hz,1H),6.75(d,J=8.1Hz,1H),6.49(d,J=2.1Hz,1H),6.00(d,J=2.2Hz,1H),4.83(s,1H),4.80d,J=7.2Hz,1H),4.16(m,1H),3.70(d,J=8.5Hz,1H),3.52-3.55(m,3H),2.90(dd,J=16,3.1Hz,1H),2.84(dd,J=16,4.3Hz,1H) 1 H-NMR (600 MHz, D 2 O-acetone-d6 (1:9)) δ7.00 (d, J = 1.8 Hz, 1H), 6.78 (dd, J = 8.1, 1.7 Hz , 1H), 6.75 (d, J = 8.1Hz, 1H), 6.49 (d, J = 2.1Hz, 1H), 6.00 (d, J = 2.2Hz, 1H), 4 .83 (s, 1H), 4.80d, J = 7.2Hz, 1H), 4.16 (m, 1H), 3.70 (d, J = 8.5Hz, 1H), 3.52-3 .55 (m, 3H), 2.90 (dd, J=16, 3.1Hz, 1H), 2.84 (dd, J=16, 4.3Hz, 1H)

HRMScalcd.forC212212Na[M+Na]:489.1003;found:489.1004. HRMScalcd. forC 21 H 22 O 12 Na + [M+Na] + :489.1003; found: 489.1004.

(2-2)化合物5の合成
アルゴン雰囲気下、20mLL丸底フラスコに化合物16の合成で得られた混合物(153mg)をとり、テトラヒドロフラン-メタノール混合液(4mL,3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(50mg)を室温で加え、フラスコ内を水素置換し、3時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフランーメタノール混合液(32mL,3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。引き続き、脱水メタノール(10mL)とナトリウムメトキシドメタノール溶液(591μL,2.94mmol)を氷浴で冷却下、順次加え、30分間撹拌した。撹拌後、精製水(5.91mL)を加え、さらに室温で30分間撹拌した。その後、エバポレーターにて溶媒を減圧蒸留し、得られた残渣を分取HPLCにより精製し、白色個体として化合物5(10mg,21μmol,12%(3行程収率))を得た。
(2-2) Synthesis of compound 5 Under an argon atmosphere, the mixture obtained in the synthesis of compound 16 (153 mg) was placed in a 20 mL round bottom flask, and a tetrahydrofuran-methanol mixture (4 mL, 3:1) was added and stirred. A clear solution was obtained. Subsequently, palladium on carbon (50 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 3 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. Subsequently, dehydrated methanol (10 mL) and sodium methoxide methanol solution (591 μL, 2.94 mmol) were sequentially added while cooling in an ice bath, and the mixture was stirred for 30 minutes. After stirring, purified water (5.91 mL) was added, and the mixture was further stirred at room temperature for 30 minutes. Thereafter, the solvent was distilled under reduced pressure using an evaporator, and the resulting residue was purified by preparative HPLC to obtain Compound 5 (10 mg, 21 μmol, 12% (3-step yield)) as a white solid.

[分取条件]
分取カラム:L-columnODS,size20mmx259mm5μm
溶離液:A(0.1%ギ酸水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):3→10%(5分)、10%(15分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (0.1% formic acid aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 3 → 10% (5 minutes), 10% (15 minutes)

H-NMR(600MHz,DO-acetone-d6(9:1))δ6.89(s,1H),6.78(m,2H),6.18(s,1H),6.16(s,1H),4.87(d,J=6.9Hz,1H),4.79(s,1H),4.18(s,1H),3.68(m,1H),3.41-3.46(m,3H),2.78(dd,J=16,3.1Hz,1H),2.64(d,J=16Hz,1H) 1 H-NMR (600 MHz, D 2 O-acetone-d6 (9:1)) δ6.89 (s, 1H), 6.78 (m, 2H), 6.18 (s, 1H), 6.16 (s, 1H), 4.87 (d, J=6.9Hz, 1H), 4.79 (s, 1H), 4.18 (s, 1H), 3.68 (m, 1H), 3. 41-3.46 (m, 3H), 2.78 (dd, J=16, 3.1Hz, 1H), 2.64 (d, J=16Hz, 1H)

HRMScalcd.forC212212Na[M+Na]:489.1003;found:489.1020. HRMScalcd. forC 21 H 22 O 12 Na + [M+Na] + :489.1003; found: 489.1020.

比較例
本発明の工程-2において、t-ブチルジメチルシリルクロリドに代えて、表1に示す試薬を用いてA環の水酸基保護を検討したが、アリル化試薬の場合、反応性が低く目的の化合物が得られなかった。一方で、t-ブチルジメチルシリルクロリドでは、5置換体ならびに7置換体が良好な収率で得られた。
Comparative Example In Step-2 of the present invention, protection of the hydroxyl group of the A ring was investigated using the reagents shown in Table 1 instead of t-butyldimethylsilyl chloride, but in the case of the allylating reagent, the reactivity was low and the target No compound was obtained. On the other hand, with t-butyldimethylsilyl chloride, penta-substituted and hepta-substituted products were obtained in good yields.

Claims (2)

下記式(I):
Figure 0007379415000017
で表されるカテキン化合物の3′位又は4′位の水酸基をベンジルオキシカルボニル化して下記式(II):
Figure 0007379415000018
で表される化合物とし、塩基の存在下tert-ブチルジメチルシリル化剤を反応させて、下記式(III):
Figure 0007379415000019
〔式中、R 1a 及びR 2a はいずれか一方が水素原子で他方がTBS基を示す。〕
で表されるシリル化カテキン誘導体とし、次いで、その水酸基をベンジルオキシカルボニル化して、下記式(IV):
Figure 0007379415000020
〔式中、R1b及びR2bはいずれか一方がCbz基で他方がTBS基を示す。〕
で表されるシリル化カテキン保護誘導体とし、次いで、TBS基を脱離して下記式(V):
Figure 0007379415000021
〔式中、R1c及びR2cはいずれか一方がCbz基で他方が水素原子を示す。〕
で表される化合物とし、次いで、硫酸化、メチル化、グルクロン酸化及びグルコシル化から選ばれる抱合反応に付し、続いて保護基を脱離する、下記式(VI):
Figure 0007379415000022
〔式中、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す。〕
で表されるカテキン抱合体の製造方法。
The following formula (I):
Figure 0007379415000017
The hydroxyl group at the 3' or 4' position of the catechin compound represented by is benzyloxycarbonylated to form the following formula (II):
Figure 0007379415000018
A compound represented by is reacted with a tert-butyldimethylsilylating agent in the presence of a base to obtain the following formula (III):
Figure 0007379415000019
[In the formula, one of R 1a and R 2a represents a hydrogen atom and the other represents a TBS group. ]
A silylated catechin derivative represented by the following formula (IV) is obtained, and the hydroxyl group is then benzyloxycarbonylated to obtain the following formula (IV):
Figure 0007379415000020
[In the formula, one of R 1b and R 2b represents a Cbz group and the other represents a TBS group. ]
A silylated catechin protected derivative represented by is obtained, and then the TBS group is removed to obtain the following formula (V):
Figure 0007379415000021
[In the formula, one of R 1c and R 2c represents a Cbz group and the other represents a hydrogen atom. ]
A compound represented by the following formula (VI):
Figure 0007379415000022
[In the formula, one of R 1d and R 2d is a hydrogen atom and the other is a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (here, M is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom) Or indicates ammonium.]
A method for producing a catechin conjugate represented by
記一般式(IV)で表されるシリル化カテキン保護誘導体。
Figure 0007379415000023
〔式中、R 1b及びR2bはいずれか一方がCbz基で他方がTBS基を示す。〕
A silylated catechin protected derivative represented by the following general formula (IV).
Figure 0007379415000023
[In the formula , one of R 1b and R 2b represents a Cbz group and the other represents a TBS group. ]
JP2021092256A 2021-06-01 2021-06-01 Method for producing catechin conjugate Active JP7379415B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021092256A JP7379415B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate
PCT/JP2022/022376 WO2022255416A1 (en) 2021-06-01 2022-06-01 Method for producing catechin conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021092256A JP7379415B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate

Publications (2)

Publication Number Publication Date
JP2022184417A JP2022184417A (en) 2022-12-13
JP7379415B2 true JP7379415B2 (en) 2023-11-14

Family

ID=84324157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021092256A Active JP7379415B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate

Country Status (2)

Country Link
JP (1) JP7379415B2 (en)
WO (1) WO2022255416A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007272A (en) 2007-06-27 2009-01-15 Toyama Prefecture New method for producing 3-o-substituted catechin derivative
CN104327034A (en) 2014-09-30 2015-02-04 浙江大学 Selective preparation method for 5-site and 7-site ester catechin molecules
CN111233810A (en) 2020-01-18 2020-06-05 安徽农业大学 Preparation method and application of hydroxycinnamoyl ester type catechin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007272A (en) 2007-06-27 2009-01-15 Toyama Prefecture New method for producing 3-o-substituted catechin derivative
CN104327034A (en) 2014-09-30 2015-02-04 浙江大学 Selective preparation method for 5-site and 7-site ester catechin molecules
CN111233810A (en) 2020-01-18 2020-06-05 安徽农业大学 Preparation method and application of hydroxycinnamoyl ester type catechin

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DOCAMPO-PALACIOS, Maite L. et al.,Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment,ACS Omega,2020年11月12日,Volume 5, Issue 46,pp. 30095-30110
VAN DYK, Martha S. et al.,Selective O-methylation of polyhydroxyflavan-3-ols via benzyl carbonates,Tetrahedron Letters,1990年,Volume 31, Issue 18,pp. 2643-2646

Also Published As

Publication number Publication date
WO2022255416A1 (en) 2022-12-08
JP2022184417A (en) 2022-12-13

Similar Documents

Publication Publication Date Title
TWI697489B (en) A novel synthesis process of polyphenols
EP0418925B1 (en) Method of producing (S)-4-hydroxymethyl-gamma-lactone
JP4476810B2 (en) Chemical intermediate
JP7379415B2 (en) Method for producing catechin conjugate
JP7352596B2 (en) Method for producing catechin conjugate
WO2001064701A1 (en) Process for preparing flavonoids
US7282596B2 (en) Method and intermediate for preparing a prostaglandin F-type compound
KR100556335B1 (en) 6r-3,6-dideoxy-l-arabino-hexopyranosyl heptanoic acid, preparation process for the same and dauer effect thereof
US20150080578A1 (en) Taxane Compounds, Compositions and Methods
CN111518110A (en) Preparation method of ecteinascidin compound and intermediate thereof
JP5078108B2 (en) Sugar donor
JP6201823B2 (en) Method for producing 4'-O-glucosyl-5-O-methylbisaminol
JP5265144B2 (en) Novel process for producing 3-O-substituted-catechin derivatives
Liu et al. A novel free C-12 higher carbon sugar: asymmetric synthesis and reactivity with nucleophiles
JP7041767B2 (en) Manufacturing method of epigallocatechin gallate conjugate
JP2000128818A (en) Thymol derivative having carcinostatic activity and carcinostatic agent including the same
JP4361290B2 (en) Esculetin derivative, method for producing the same, and method for purifying esculetin
CN107793389B (en) Chiral tetrahydropyran derivative and preparation and application thereof
JP2023508962A (en) A novel method for synthesizing decurcin derivatives
US20240109930A1 (en) Triazolyl-methyl substituted alpha-d-galactopyranoside derivatives
KR100618232B1 (en) Method for the preparation of famciclovir
JP2024534989A (en) Novel sugar derivatives and their use for producing novel senolytic agents
JP3953225B2 (en) Method for producing quinoline derivative
US20150119587A1 (en) Process for the preparation of 2-substituted-2-(6-(substituted)-7-methylbenzo[d][1,3]dioxol-4-yl)acetic acid derivatives
CN110862403A (en) Camptothecin-glycolic acid-norcantharidin conjugate and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231101

R151 Written notification of patent or utility model registration

Ref document number: 7379415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151