JP7352596B2 - Method for producing catechin conjugate - Google Patents

Method for producing catechin conjugate Download PDF

Info

Publication number
JP7352596B2
JP7352596B2 JP2021092255A JP2021092255A JP7352596B2 JP 7352596 B2 JP7352596 B2 JP 7352596B2 JP 2021092255 A JP2021092255 A JP 2021092255A JP 2021092255 A JP2021092255 A JP 2021092255A JP 7352596 B2 JP7352596 B2 JP 7352596B2
Authority
JP
Japan
Prior art keywords
group
compound
reaction
catechin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021092255A
Other languages
Japanese (ja)
Other versions
JP2022184416A (en
Inventor
隆太 塩井
真純 岩下
浩二郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2021092255A priority Critical patent/JP7352596B2/en
Priority to PCT/JP2022/022377 priority patent/WO2022255417A1/en
Publication of JP2022184416A publication Critical patent/JP2022184416A/en
Application granted granted Critical
Publication of JP7352596B2 publication Critical patent/JP7352596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明はカテキン抱合体の製造方法及びその製造中間体に関する。 The present invention relates to a method for producing a catechin conjugate and an intermediate for producing the same.

茶葉に含まれるカテキン類は、コレステロール上昇抑制作用、体脂肪燃焼作用等、様々な優れた生理活性機能を有することが知られている。 Catechins contained in tea leaves are known to have various excellent physiologically active functions, such as suppressing cholesterol rise and burning body fat.

体内に吸収されたカテキン類は、遊離の状態の他、グルクロン酸抱合体、硫酸抱合体、メチル抱合体等の抱合体として存在することが知られている。したがって、斯かる抱合体の体内動態や生物学的活性を検証することはカテキン類の有用性を探る上でも重要である。しかしながら、斯かる代謝物を血液や尿等の体液から直接単離することによっては当該化合物を十分な量で得ることは困難であり、それらを化学的に合成することが求められる。 It is known that catechins absorbed into the body exist not only in a free state but also as conjugates such as glucuronide conjugates, sulfate conjugates, and methyl conjugates. Therefore, it is important to examine the pharmacokinetics and biological activity of such conjugates in exploring the usefulness of catechins. However, it is difficult to obtain a sufficient amount of such metabolites by directly isolating them from body fluids such as blood or urine, and it is necessary to synthesize them chemically.

カテキン又はエピカテキンの抱合体を化学的に合成する手法としては、カテキン類を過剰量の抱合試薬で非選択的に処理し、得られた生成物を分離する方法の他、安価なバルク出発材料を使用し、カップリングによってカテキン骨格を構築する全合成法(例えば、非特許文献1、特許文献1)や、カテキン又はエピカテキンを出発原料としてフェノール基水酸基を選択的に保護し、特定部位を抱合化する半合成法が存在する。全合成法では合成工程数が長いことに加え、不斉中心の構築も必要になるという課題があり、半合成法では水酸基の選択的保護及び脱保護が課題になる。
例えば、非特許文献2には、下記式で示されるように、カテキンの水酸基をジ-tert-ブチルジクロロシランで保護することによりカテキンのメチル抱合体を製造する方法が開示されている。しかしながら、この方法では反応で得られた3′置換体及び4′置換体の混合物としてその後の合成も行っており、分離性に欠けることが課題と考えられる。
Methods for chemically synthesizing conjugates of catechin or epicatechin include a method in which catechins are treated non-selectively with an excess amount of a conjugation reagent and the resulting product is separated, as well as a method using cheap bulk starting materials. A total synthesis method in which a catechin skeleton is constructed by coupling using catechin (e.g., Non-Patent Document 1, Patent Document 1), or a method in which catechin or epicatechin is used as a starting material to selectively protect the phenolic hydroxyl group and a specific site is protected. Semi-synthetic methods of conjugation exist. The total synthetic method requires a long number of synthesis steps and also requires the construction of an asymmetric center, while the semi-synthetic method poses the problem of selective protection and deprotection of hydroxyl groups.
For example, Non-Patent Document 2 discloses a method for producing a methyl conjugate of catechin by protecting the hydroxyl group of catechin with di-tert-butyldichlorosilane as shown in the following formula. However, in this method, the subsequent synthesis is performed as a mixture of the 3'-substituted product and the 4'-substituted product obtained in the reaction, and the problem is considered to be a lack of separability.

Figure 0007352596000001
Figure 0007352596000001

Tetrahedron Letters 2012, 53, 1501-1503Tetrahedron Letters 2012, 53, 1501-1503 J. Chem. Soc., Perkin Trans. 1, 2002, 821-830J. Chem. Soc., Perkin Trans. 1, 2002, 821-830

特表2014-522870号公報Special table 2014-522870 publication

本発明は、半合成法により、効率良くカテキン抱合体を製造する方法、及びその製造中間体を提供することに関する。 The present invention relates to a method for efficiently producing a catechin conjugate by a semi-synthetic method, and to providing an intermediate for the production.

本発明者らは、カテキンやエピカテキンカテキン等のカテキン化合物からカテキン抱合体を化学合成すべく検討したところ、下記式(II)で示されるアリル化体を経由し、フェノール性水酸基をベンジル基(Bn)で保護した後、残余の水酸基をベンジルオキシカルボニル基(Cbz)で保護した後に、抱合反応に付す方法を用いることにより、カテキン化合物の3′位又は4′位(B環)の水酸基を効率よく抱合化できることを見出した。 The present inventors investigated the chemical synthesis of catechin conjugates from catechin compounds such as catechin and epicatechin catechin, and found that the phenolic hydroxyl group was converted into a benzyl group ( Bn), the remaining hydroxyl group is protected with a benzyloxycarbonyl group (Cbz), and then the hydroxyl group at the 3' or 4' position (B ring) of the catechin compound is protected by a conjugation reaction. We found that conjugation can be carried out efficiently.

Figure 0007352596000002
Figure 0007352596000002

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がアリル基を示し、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示し、R1c及びR2cはいずれか一方がベンジル基で他方が水素原子を示し、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す)を示す。また、R1b及びR2bはR1a及びR2aに、R1c及びR2cはR1b及びR2bに、R1d及びR2dはR1c及びR2cに、それぞれ対応する。〕 [In the formula, one of R 1a and R 2a is a hydrogen atom and the other is an allyl group, one of R 1b and R 2b is a benzyl group and the other is an allyl group, and R 1c and R 2c are One of them is a benzyl group and the other is a hydrogen atom, and one of R 1d and R 2d is a hydrogen atom and the other is a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (where M is a hydrogen atom) , an alkali metal atom, an alkaline earth metal atom, or ammonium). Further, R 1b and R 2b correspond to R 1a and R 2a , R 1c and R 2c correspond to R 1b and R 2b , and R 1d and R 2d correspond to R 1c and R 2c , respectively. ]

すなわち、本発明は、以下の1)~3)に係るものである。
1)上記式(I)で表されるカテキン化合物の3′位又は4′位の水酸基をアリル化して、アリル化カテキン化合物(II)とし、次いでフェノール性水酸基をベンジル化して、式(III)で表される化合物とし、次いで残余の水酸基をベンジルオキシカルボニル化する、式(IV)で表されるアリル化カテキン保護誘導体の製造方法。
2)1)の方法により得られた式(IV)で表されるアリル化カテキン保護誘導体のアリル基を脱離して式(V)で表されるカテキン保護誘導体とし、次いで、硫酸化、メチル化、グルクロン酸化及びグルコシル化から選ばれる抱合反応に付し、続いて保護基を脱離する、式(VI)で表されるカテキン抱合体の製造方法。
3)上記一般式(IV)で表されるアリル化カテキン保護誘導体又は一般式(V)で表されるカテキン保護誘導体。
That is, the present invention relates to the following 1) to 3).
1) Allylate the hydroxyl group at the 3' or 4' position of the catechin compound represented by the above formula (I) to obtain an allylated catechin compound (II), and then benzylate the phenolic hydroxyl group to form the formula (III) A method for producing an allylated catechin protected derivative represented by formula (IV), which comprises preparing a compound represented by formula (IV), and then benzyloxycarbonylating the remaining hydroxyl group.
2) The allyl group of the allylated catechin protected derivative represented by formula (IV) obtained by the method of 1) is removed to obtain the catechin protected derivative represented by formula (V), and then sulfated and methylated. A method for producing a catechin conjugate represented by formula (VI), which comprises subjecting it to a conjugation reaction selected from , glucuronidation and glucosylation, and subsequently removing a protecting group.
3) An allylated catechin protected derivative represented by the general formula (IV) or a catechin protected derivative represented by the general formula (V).

本発明のカテキン抱合体及びその製造中間体を簡易に効率よく製造することができる。 The catechin conjugate of the present invention and its production intermediate can be produced simply and efficiently.

以下に、本発明のカテキン抱合体の製造法について、各工程ごとに説明する。
本発明のカテキン抱合体の製造方法において、出発原料として用いられる下記式(I):
Below, each step of the method for producing a catechin conjugate of the present invention will be explained.
In the method for producing a catechin conjugate of the present invention, the following formula (I) used as a starting material:

Figure 0007352596000003
で表される化合物には、フラバノールの2位及び3位の不斉炭素原子に関する立体異性体(鏡像異性体、ジアステレオ異性体)の全てが包含される。すなわち、式(I)で表される化合物には、(+)-カテキン(2R,3S)、(-)-カテキン(2S,3R)、(+)-エピカテキン(2S,3S)、(-)-エピカテキン(2R,3R)が包含され、本発明においてはこれらを纏めてカテキン化合物(I)と称する。
また、慣例に従い、フラバノール骨格の二つのベンゼン環をA環及びB環(カテコール部分)とし、両者を結ぶ3つの炭素原子と酸素原子から構成される環をC環と呼ぶ。
Figure 0007352596000003
The compound represented by the above includes all stereoisomers (enantiomers, diastereoisomers) regarding the asymmetric carbon atoms at the 2nd and 3rd positions of flavanol. That is, the compound represented by formula (I) includes (+)-catechin (2R, 3S), (-)-catechin (2S, 3R), (+)-epicatechin (2S, 3S), (- )-epicatechin (2R, 3R), which are collectively referred to as catechin compound (I) in the present invention.
Further, according to custom, the two benzene rings of the flavanol skeleton are referred to as ring A and ring B (catechol moiety), and the ring consisting of three carbon atoms and an oxygen atom connecting the two is referred to as ring C.

1.工程-1

Figure 0007352596000004
1. Process-1
Figure 0007352596000004

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がアリル基を示す。〕 [In the formula, one of R 1a and R 2a represents a hydrogen atom and the other represents an allyl group. ]

本工程は、カテキン化合物(I)の3´位又は4´位の水酸基をアリル化する工程である。
ここで用いられるアリル化試薬としては特に限定されないが、好ましくはハロゲン化アリルが挙げられる。ハロゲン化アリルとしては、好ましくは臭化アリル、塩化アリル、ヨウ化アリルが挙げられ、より好ましくは、臭化アリルである。
This step is a step in which the hydroxyl group at the 3'-position or 4'-position of the catechin compound (I) is allylated.
The allylating reagent used here is not particularly limited, but preferably includes allyl halides. As the allyl halide, preferably allyl bromide, allyl chloride, and allyl iodide are mentioned, and allyl bromide is more preferable.

アリル化試薬としてハロゲン化アリルを用いた場合の使用量は、カテキン化合物(1)1モルに対して、ハロゲン化アリル化合物、5~50モル、好ましくは10~30モル、より好ましくは17~22モルである。 When allyl halide is used as an allylation reagent, the amount of allyl halide compound to be used is 5 to 50 mol, preferably 10 to 30 mol, more preferably 17 to 22 mol, per 1 mol of catechin compound (1). It is a mole.

本反応に用いられる溶媒は、アリル化反応に悪影響を与えない溶媒であればよく、例えば塩化メチレン、クロロホルム等のハロゲン系炭化水素溶媒;ジエチルエーテル、ジイソプロピルエーテル、THF、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒等;N,N-ジメチルホルムアミド(DMF)等の非プロトン性極性溶媒等;あるいはこれらの混合溶媒が挙げられる。好ましくはアセトン、メチルエチルケトン等のケトン系溶媒が挙げられる。 The solvent used in this reaction may be any solvent that does not adversely affect the allylation reaction, such as halogenated hydrocarbon solvents such as methylene chloride and chloroform; ether solvents such as diethyl ether, diisopropyl ether, THF, and dioxane; Examples include ketone solvents such as acetone and methyl ethyl ketone; aprotic polar solvents such as N,N-dimethylformamide (DMF); and mixed solvents thereof. Preferably, ketone solvents such as acetone and methyl ethyl ketone are used.

アリル化反応は、通常アルカリ性条件下で行われる。アルカリ性試薬としては、例えばアルカリ金属水酸化物、炭酸アルカリ金属塩が挙げられ、好ましくは水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウムを用いることができる。さらに好ましくは、水酸化カリウム、炭酸カリウムであり、より好ましくは炭酸カリウムである。 The allylation reaction is usually carried out under alkaline conditions. Examples of the alkaline reagent include alkali metal hydroxides and alkali metal carbonates, and preferably potassium hydroxide, sodium hydroxide, sodium carbonate, and potassium carbonate can be used. More preferred are potassium hydroxide and potassium carbonate, and more preferred is potassium carbonate.

アルカリ性試薬の使用量は、カテキン化合物(I)1モルに対して、アルカリ試薬1~10モル、好ましくは3~5モルである。 The amount of alkaline reagent used is 1 to 10 mol, preferably 3 to 5 mol, per 1 mol of catechin compound (I).

アリル化反応は、活性化剤の存在下で行われてもよく、斯かる活性化剤としては、例えばヨウ化ナトリウム、ヨウ化カリウム等のアルカリ金属ヨウ化物が挙げられる。 The allylation reaction may be carried out in the presence of an activating agent, and examples of such activating agents include alkali metal iodides such as sodium iodide and potassium iodide.

アリル化反応は、通常0~70℃で行うことができ、好ましくは、10~40℃、さらに好ましくは20~30℃である。
反応時間は、通常1~48時間が好ましく、より好ましくは18~24時間である。
The allylation reaction can be carried out usually at 0 to 70°C, preferably at 10 to 40°C, more preferably at 20 to 30°C.
The reaction time is usually preferably 1 to 48 hours, more preferably 18 to 24 hours.

得られたアリル化体(II)は、オクタデシルシリル化シリカゲル(ODS)等を充填したカラムを用いた分取HPLCにより、3´アリル化体と4´アリル化体を分離することができる。 The obtained allylated form (II) can be separated into 3' allylated form and 4' allylated form by preparative HPLC using a column packed with octadecylsilylated silica gel (ODS) or the like.

2.工程-2

Figure 0007352596000005
2. Process-2
Figure 0007352596000005

〔式中、R1a及びR2aはいずれか一方が水素原子で他方がアリル基を示し、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示し、R1b及びR2bはR1a及びR2aにそれぞれ対応する。〕 [In the formula, one of R 1a and R 2a is a hydrogen atom and the other is an allyl group, one of R 1b and R 2b is a benzyl group and the other is an allyl group, and R 1b and R 2b are Corresponding to R 1a and R 2a , respectively. ]

続いて、上記工程で得られたアリル化体(II)のフェノール性水酸基をベンジル化し、化合物(III)を得る。
ベンジル化は、公知の方法に従って又は準じて行うことができる。すなわち、アリル化体(II)を塩基の存在下でハロゲン化ベンジルと反応させることにより行うことができる。
Subsequently, the phenolic hydroxyl group of the allylated compound (II) obtained in the above step is benzylated to obtain compound (III).
Benzylation can be carried out according to or analogously to a known method. That is, it can be carried out by reacting the allylated compound (II) with a benzyl halide in the presence of a base.

溶媒としては、反応に悪影響を及ぼさないものであればよく、例えば、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、非プロトン性極性溶媒、ハロゲン化炭化水素系溶媒、或いはこれらの混合溶媒等が挙げられる。好ましくは、テトラヒドロフラン、アセトン、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒が挙げられ、より好ましくはN,N-ジメチルホルムアミドである。 The solvent may be any solvent that does not adversely affect the reaction, such as ketone solvents, ether solvents, ester solvents, aprotic polar solvents, halogenated hydrocarbon solvents, or mixed solvents thereof. Can be mentioned. Preferred are aprotic polar solvents such as tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide, and more preferred is N,N-dimethylformamide.

塩基としては、公知の無機塩基及び有機塩基を使用できる。無機塩基としては、例えば、アルカリ金属、炭酸水素アルカリ金属、アルカリ金属水酸化物、炭酸アルカリ金属、アルカリ金属低級(C1-4)アルコキシド、アルカリ金属水素化物(例えば、水素化ナトリウム、水素化カリウム等)等が挙げられる。有機塩基としては、トリアルキルアミン(例えば、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等が挙げられる。また、これらの塩基が液状の場合、溶媒として兼用することができる。これらの塩基は、1種単独で又は2種以上混合して使用される。好ましくはアルカリ金属水素化物であり、より好ましくは水素化ナトリウムである。 As the base, known inorganic bases and organic bases can be used. Examples of inorganic bases include alkali metals, alkali metal hydrogen carbonates, alkali metal hydroxides, alkali metal carbonates, alkali metal lower (C 1-4 ) alkoxides, alkali metal hydrides (e.g., sodium hydride, potassium hydride). etc.) etc. Examples of organic bases include trialkylamines (for example, trimethylamine, triethylamine, N,N-diisopropylethylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, 4-dimethylaminopyridine, N,N-dimethylaniline, N-methyl Morpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4. 0] undec-7-ene (DBU) and the like. Furthermore, when these bases are in liquid form, they can also be used as a solvent. These bases may be used alone or in a mixture of two or more. Preferably it is an alkali metal hydride, more preferably sodium hydride.

塩基の使用量は、アリル化体(II)1モルに対して、通常1~4.5モル、好ましくは2~4モル、さらに好ましくは2.9~3.1モルある。 The amount of the base used is usually 1 to 4.5 mol, preferably 2 to 4 mol, and more preferably 2.9 to 3.1 mol, per 1 mol of allylated compound (II).

ハロゲン化ベンジルとしては、例えば塩化ベンジル、臭化ベンジル、ヨウ化ベンジル等が挙げられる。これらは、1種単独で又は2種以上混合して使用される。これらの中でも、臭化ベンジルが好ましい。
ハロゲン化ベンジルの使用量は、アリル化体(II)1モルに対して、通常1~4.5モル、好ましくは2~4モル、さらに好ましくは2.5~3.5モル、さらに好ましくは3.1~3.3モルである。
Examples of the benzyl halide include benzyl chloride, benzyl bromide, and benzyl iodide. These may be used alone or in a mixture of two or more. Among these, benzyl bromide is preferred.
The amount of benzyl halide to be used is usually 1 to 4.5 mol, preferably 2 to 4 mol, more preferably 2.5 to 3.5 mol, even more preferably The amount is 3.1 to 3.3 moles.

反応温度は特に限定されず、通常、冷却下、室温下及び加熱下のいずれでも反応が行われる。好ましくは0~50℃、さらに好ましくは10~40℃、さらに好ましくは20~30℃程度の温度条件下、0.5~24時間、好ましくは1~2時間反応させるのがよい。 The reaction temperature is not particularly limited, and the reaction is usually carried out under cooling, at room temperature, or under heating. The reaction is preferably carried out at a temperature of 0 to 50°C, more preferably 10 to 40°C, even more preferably 20 to 30°C, for 0.5 to 24 hours, preferably 1 to 2 hours.

3.工程-3

Figure 0007352596000006
3. Process-3
Figure 0007352596000006

〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示す。〕 [In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group. ]

続いて、上記工程で得られた化合物(III)の3位の水酸基をベンジルオキシカルボニル(「Cbz」又は「Z」と称される)化し、化合物(IV)を得る。当該化合物(IV)は、脱離容易な保護基を有するアリル化カテキン保護誘導体であり、カテキン抱合体の製造中間体として有用な文献未記載の新規化合物である。 Subsequently, the hydroxyl group at the 3-position of compound (III) obtained in the above step is converted to benzyloxycarbonyl (referred to as "Cbz" or "Z") to obtain compound (IV). The compound (IV) is an allylated catechin protected derivative having a protecting group that is easily removed, and is a novel compound that has not been described in any literature and is useful as an intermediate in the production of catechin conjugates.

本工程におけるCbz化は、現在公知のあらゆる方法を採用することができる。
Cbz化試薬としては、例えば、クロロギ酸ベンジル(塩化ベンジルオキシカルボニル(Z-Cl))を用いるSchotten-Baumann法のほか、p-ニトロフェニルエステル(Z-ONp)、N-ヒドロキシスクシンイミドエステル(Z-ONSu)を挙げることができるが、好ましくはクロロギ酸ベンジルである。
Cbz化試薬の使用量は、化合物(III)1モルに対して、通常0.5~10モル、好ましくは1~5モル、さらに好ましくは1.5~2.5モル、さらに好ましくは1.9~2.1モルである。
For Cbz conversion in this step, any currently known method can be employed.
Examples of Cbzation reagents include the Schotten-Baumann method using benzyl chloroformate (benzyloxycarbonyl chloride (Z-Cl)), p-nitrophenyl ester (Z-ONp), N-hydroxysuccinimide ester (Z- ONSu), preferably benzyl chloroformate.
The amount of Cbz-forming reagent to be used is usually 0.5 to 10 mol, preferably 1 to 5 mol, more preferably 1.5 to 2.5 mol, even more preferably 1.5 mol, per 1 mol of compound (III). The amount is 9 to 2.1 moles.

反応溶媒としては、ジクロロメタン、クロロホルム等の不活性ハロゲン化炭化水素系溶媒;トルエン等の不活性炭化水素系溶媒;エーテル、テトラヒドロフラン等の不活性エーテル系溶媒;ジメチルホルムアミド、ジメチルアセトアミドのようなアミド類;アセトニトリルのようなニトリル類等を挙げることができる。 Reaction solvents include inert halogenated hydrocarbon solvents such as dichloromethane and chloroform; inert hydrocarbon solvents such as toluene; inert ether solvents such as ether and tetrahydrofuran; amides such as dimethylformamide and dimethylacetamide. ; Examples include nitriles such as acetonitrile.

反応は、塩基の存在下に行われ、用いられる塩基としては、トリアルキルアミン(例えば、トリメチルアミン、トリエチルアミン、N,N-ジイソプロピルエチルアミン等)、ピリジン、キノリン、ピペリジン、イミダゾール、ピコリン、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の有機塩基、炭酸カリウム等の無機塩基等が挙げられる。
塩基の使用量は、化合物(III)1モルに対して、通常1~5モル、好ましくは1.5~2.5モル、さらに好ましくは1.9~2.1モルである。
The reaction is carried out in the presence of a base, and the bases used include trialkylamines (for example, trimethylamine, triethylamine, N,N-diisopropylethylamine, etc.), pyridine, quinoline, piperidine, imidazole, picoline, 4-dimethylamino Pyridine, N,N-dimethylaniline, N-methylmorpholine, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO ), organic bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and inorganic bases such as potassium carbonate.
The amount of the base used is usually 1 to 5 mol, preferably 1.5 to 2.5 mol, more preferably 1.9 to 2.1 mol, per 1 mol of compound (III).

反応温度としては、-20~60℃の範囲であり、0℃~室温の範囲が好ましい。
反応時間は、通常0.5~24時間程度であり、2~3時間程度が好ましい。
The reaction temperature ranges from -20 to 60°C, preferably from 0°C to room temperature.
The reaction time is usually about 0.5 to 24 hours, preferably about 2 to 3 hours.

4.工程-4

Figure 0007352596000007
4. Process-4
Figure 0007352596000007

〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示し、R1c及びR2cはいずれか一方がベンジル基で他方が水素原子を示し、R1c及びR2cはR1b及びR2bにそれぞれ対応する。〕 [In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group, one of R 1c and R 2c represents a benzyl group and the other represents a hydrogen atom, and R 1c and R 2c are Corresponding to R 1b and R 2b , respectively. ]

上記工程で得られたアリル化カテキン保護誘導体(IV)のアリル基を脱離し、カテキン保護誘導体(V)を得る。当該誘導体(V)も文献未記載の新規化合物である。
アリル基の脱離は、例えば、酢酸パラジウム、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリスジベンジリデンアセトンジパラジウム等のパラジウム触媒存在下、ギ酸又はそのアンモニウム塩等の水素源やモルホリン等の求核試薬を用いることにより行うことができる。
触媒の使用量は、化合物(IV)1モルに対して、好ましくは0.05~1モル、より好ましくは0.1~0.5モル、より好ましくは0.2~0.3モルである。
また、水素源やモルホリン等の求核試薬の使用量は、化合物(IV)1モルに対して、好ましくは0.5~5モル、より好ましくは1~3モル、より好ましくは1.5~2.5モルである。
この工程で使用する溶媒としては、例えば、テトラヒドロフランや1,4-ジオキサン等のエーテル系溶媒が例示される。
The allyl group of the allylated catechin protected derivative (IV) obtained in the above step is removed to obtain the catechin protected derivative (V). The derivative (V) is also a new compound that has not been described in any literature.
Desorption of the allyl group is carried out, for example, in the presence of a palladium catalyst such as palladium acetate, tetrakis(triphenylphosphine)palladium(0), or trisdibenzylideneacetone dipalladium, using a hydrogen source such as formic acid or its ammonium salt, or a hydrogen source such as morpholine. This can be done by using nuclear reagents.
The amount of the catalyst used is preferably 0.05 to 1 mol, more preferably 0.1 to 0.5 mol, and more preferably 0.2 to 0.3 mol, per 1 mol of compound (IV). .
The amount of the hydrogen source and nucleophilic reagent such as morpholine to be used is preferably 0.5 to 5 mol, more preferably 1 to 3 mol, and even more preferably 1.5 to 5 mol, per 1 mol of compound (IV). It is 2.5 moles.
Examples of the solvent used in this step include ether solvents such as tetrahydrofuran and 1,4-dioxane.

反応は、化合物(IV)と触媒を溶媒中で攪拌し、これに水素源やモルホリン等の求核試薬を加えることにより行われるが、反応温度は0~40℃、好ましくは24~27℃で、反応時間は0.5~5時間、好ましくは1~2時間が挙げられる。 The reaction is carried out by stirring the compound (IV) and the catalyst in a solvent and adding a hydrogen source and a nucleophilic reagent such as morpholine to the mixture, and the reaction temperature is 0 to 40°C, preferably 24 to 27°C. The reaction time is 0.5 to 5 hours, preferably 1 to 2 hours.

5.工程-5

Figure 0007352596000008
5. Process-5
Figure 0007352596000008

〔式中、R1c及びR2cはいずれか一方がベンジル基で他方が水素原子を示し、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す)を示し、R1d及びR2dはR1c及びR2cにそれぞれ対応する。〕 [In the formula, one of R 1c and R 2c is a benzyl group and the other is a hydrogen atom, and R 1d and R 2d are one of a hydrogen atom and the other a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (here, M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, or ammonium), and R 1d and R 2d correspond to R 1c and R 2c , respectively. ]

カテキン保護誘導体(V)の抱合体化は、硫酸化、メチル化、グルクロン酸化又はグルコシル化のいずれかであり、カテキン保護誘導体(V)に対して、公知の硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体を反応させることにより行われる。
硫酸供与体としては、例えばネオペンチルクロロスルファート、トリクロロエチルクロロスルファート、2,2,2-トリクロロエトキシ-スルフリル-1,2-ジメチルイミダゾリウムトリフレート(2,2,2-trichloroethoxy-sulfuryl-1,2-dimethylimidazolium triflate;SDIS)等が挙げられる。
グルクロン酸供与体としては、2,3,4-トリ-O-アセチル-α-D-メチルグルクロノピラノシル-1-(N-フェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4-トリ-O-アセチル-α-D-メチルグルコピラノシル-1-(N-4-メトキシフェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4-トリ-O-アセチル-α-D-メチルグルクロノピラノシル-1-O-(2,2,2-トリクロロアセトイミダート)、アセトブロモ-α-D-グルクロン酸メチルエステル等が挙げられる。
グルコース供与体としては、2,3,4,6-テトラ-O-アセチル-α-D-グルコピラノシル-1-(N-フェニル)-2,2,2-トリフルオロアセトイミダート、2,3,4,6-テトラ-O-アセチル-α-D-グルクロピラノシル-1-O-(2,2,2-トリクロロアセトイミダート)、α-アセトブロモグルコース等が挙げられる。
メチル供与体としては、例えば、ヨウ化メチル、ジメチル硫酸、p-トルエンスルホン酸メチルエステル、メタンスルホン酸メチルエステル等のメチル化剤が挙げられる。
The conjugation of the catechin protected derivative (V) is sulfation, methylation, glucuronidation or glucosylation, and the conjugation of the catechin protected derivative (V) is with a known sulfate donor, methyl donor, glucuronide. It is carried out by reacting an acid donor or a glucose donor.
Examples of the sulfuric acid donor include neopentyl chlorosulfate, trichloroethyl chlorosulfate, 2,2,2-trichloroethoxy-sulfuryl-1,2-dimethylimidazolium triflate (2,2,2-trichloroethoxy-sulfuryl- 1,2-dimethylimidazolium triflate (SDIS) and the like.
As the glucuronic acid donor, 2,3,4-tri-O-acetyl-α-D-methylglucuronopyranosyl-1-(N-phenyl)-2,2,2-trifluoroacetimidate, 2,3,4-tri-O-acetyl-α-D-methylglucopyranosyl-1-(N-4-methoxyphenyl)-2,2,2-trifluoroacetimidate, 2,3,4 -tri-O-acetyl-α-D-methylglucuronopyranosyl-1-O-(2,2,2-trichloroacetimidate), acetobromo-α-D-glucuronic acid methyl ester, and the like.
As glucose donors, 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-(N-phenyl)-2,2,2-trifluoroacetimidate, 2,3, Examples include 4,6-tetra-O-acetyl-α-D-gluclopyranosyl-1-O-(2,2,2-trichloroacetimidate) and α-acetobromoglucose.
Examples of the methyl donor include methylating agents such as methyl iodide, dimethyl sulfate, p-toluenesulfonic acid methyl ester, and methanesulfonic acid methyl ester.

例えば、硫酸化は、硫酸供与体としてSDISを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、塩基の存在下、カテキン保護誘導体(V)とSDISを撹拌することにより行われる。塩基としては、トリエチルアミン、N、N―ジイソプロピルエチルアミン、ピリジン、イミダゾール、キノリン、ピコリン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、4-ジメチルアミノピリジン、N,N-ジメチルアニリン、N-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)等の3級アミンが挙げられ、好ましくは1,2-ジメチルイミダゾールが挙げられる。
反応温度は、通常23~27℃程度であり、反応時間は、通常1~12時間程度である。
For example, sulfation is preferably carried out by stirring the catechin protected derivative (V) and SDIS in an ether, chlorine, aprotic or mixed solvent in the presence of a base. It will be done. As a base, triethylamine, N,N-diisopropylethylamine, pyridine, imidazole, quinoline, picoline, 1-methylimidazole, 1,2-dimethylimidazole, 4-dimethylaminopyridine, N,N-dimethylaniline, N-methylmorpholine , 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), 1,4-diazabicyclo[2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0 ] Examples include tertiary amines such as undec-7-ene (DBU), preferably 1,2-dimethylimidazole.
The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 12 hours.

グルクロン酸化は、グルクロン酸供与体として2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチルを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、ルイス酸とモレキュラーシーブス4Aの存在下、カテキン保護誘導体(V)と2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチルを撹拌することにより行われる。ルイス酸としては、塩化アルミニウム(III)、ジエチルアルミニウムクロリド、塩化ニッケル(II)(6水和物)、塩化スズ(IV)(5水和物)、塩化チタン(IV)、塩化亜鉛、トリフルオロボラン-エーテル錯体が挙げられ、好ましくはトリフルオロボラン-エーテル錯体が挙げられる。反応温度は、通常23~27℃程度であり、反応時間は、通常1~24時間程度である。 For glucuronidation, a method using methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-D-glucuronate as a glucuronic acid donor is preferred; , catechin protected derivative (V) and 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)- in the presence of a Lewis acid and molecular sieves 4A in an aprotic or mixed solvent thereof. This is carried out by stirring methyl α-D-glucuronate. Lewis acids include aluminum (III) chloride, diethylaluminum chloride, nickel (II) chloride (hexahydrate), tin (IV) chloride (pentahydrate), titanium (IV) chloride, zinc chloride, and trifluorocarbon. Examples include ran-ether complexes, and preferably trifluoroborane-ether complexes. The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 24 hours.

グルコシル化は、グルコシル供与体として2,3,4,6-テトラ-O-アセチル-β-D-グルコピラノシル2,2,2-トリクロロアセトイミダートを用いる方法が好ましく、エーテル系、塩素系、非プロトン性又はその混合溶媒中、ルイス酸とモレキュラーシーブス4Aの存在下、カテキン保護誘導体(V)と2,3,4,6-テトラ-O-アセチル-β-D-グルコピラノシル2,2,2-トリクロロアセトイミダートを撹拌することにより行われる。ルイス酸としては、塩化アルミニウム(III)、ジエチルアルミニウムクロリド、塩化ニッケル(II)(6水和物)、塩化スズ(IV)(5水和物)、塩化チタン(IV)、塩化亜鉛、トリフルオロボラン-エーテル錯体が挙げられ、好ましくはトリフルオロボラン-エーテル錯体が挙げられる。反応温度は、通常23~27℃程度であり、反応時間は、通常1~24時間程度である。 For glucosylation, a method using 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl 2,2,2-trichloroacetimidate as a glucosyl donor is preferred; In a protic or mixed solvent, in the presence of a Lewis acid and molecular sieves 4A, catechin protected derivative (V) and 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl 2,2,2- This is done by stirring trichloroacetimidate. Lewis acids include aluminum(III) chloride, diethylaluminum chloride, nickel(II) chloride (hexahydrate), tin(IV) chloride (pentahydrate), titanium(IV) chloride, zinc chloride, and trifluorocarbons. Examples include ran-ether complexes, and preferably trifluoroborane-ether complexes. The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 1 to 24 hours.

メチル化は、例えば非プロトン性極性溶媒中、0℃~室温でカテキン保護誘導体(V)とメチル化剤及び塩基とを反応させることにより行うことができる。
ここで、メチル化剤としては、ヨードメタン、硫酸ジメチル、トリフルオロメタンスルホン酸メチル、ジアゾメタン、トリメチルシリルジアゾメタン等を用いるのが好ましく、より好ましくはヨードメタン、硫酸ジメチル、トリフルオロメタンスルホン酸メチルである。非プロトン性極性溶媒としては、N、N-ジメチルホルムアミド、ジメチルスルホキシドもしくはヘキサメチルリン酸トリアミド、又はこれらの混合物及びこれらと不活性溶媒(例えばテトラヒドロフラン、1.2-ジメトキシエタン等)との混合物が挙げられる。
塩基としては、例えばナトリウム、カリウムのようなアルカリ金属;ナトリウムメトキシド、ナトリウムエトキシド、カリウム第3級ブトキシドのようなアルカリ金属アルコキシド;炭酸ナトリウム、炭酸カリウムのような炭酸塩;重炭酸ナトリウム、重炭酸カリウムのような重炭酸塩;水酸化ナトリウム、水酸化カリウムのような金属水酸化物;水素化ナトリウム、水素化カリウムのような金属水素化物等が使用できる。
Methylation can be carried out, for example, by reacting the catechin protected derivative (V) with a methylating agent and a base in an aprotic polar solvent at 0° C. to room temperature.
Here, as the methylating agent, it is preferable to use iodomethane, dimethyl sulfate, methyl trifluoromethanesulfonate, diazomethane, trimethylsilyldiazomethane, etc., and more preferably iodomethane, dimethyl sulfate, and methyl trifluoromethanesulfonate. As the aprotic polar solvent, N,N-dimethylformamide, dimethylsulfoxide or hexamethylphosphoric triamide, or mixtures thereof and mixtures thereof with inert solvents (for example, tetrahydrofuran, 1,2-dimethoxyethane, etc.) can be used. Can be mentioned.
Bases include, for example, alkali metals such as sodium and potassium; alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium tert-butoxide; carbonates such as sodium carbonate and potassium carbonate; sodium bicarbonate and bicarbonate; Bicarbonates such as potassium carbonate; metal hydroxides such as sodium hydroxide and potassium hydroxide; metal hydrides such as sodium hydride and potassium hydride, etc. can be used.

斯くして得られる、カテキン保護誘導体(V)と硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体との反応生成物については、必要に応じて、各供与体に由来するエステル残基等の保護基を脱離すること、併せてA環及びC環の水酸基保護基(ベンジル基及びベンジルオキシカルボニル基)を脱離することにより、カテキン抱合体(VI)を得る。 The reaction products of the catechin protected derivative (V) and the sulfuric acid donor, methyl donor, glucuronic acid donor or glucose donor obtained in this way may be treated with ester residues derived from each donor as necessary. The catechin conjugate (VI) is obtained by removing the protective groups such as the group and the hydroxyl protecting groups (benzyl group and benzyloxycarbonyl group) of the A ring and the C ring.

エステル残基等の保護基の脱離手段としては、例えば加水分解反応が挙げられる。加水分解反応は、酸又は塩基の存在下、反応生成物と水とを適宜溶媒中で接触させることにより実施することができる。ここで、使用可能な酸としては、例えば、塩酸、臭化水素酸、硫酸、リン酸等の無機酸や、酢酸、トリフルオロ酢酸、ギ酸、p-トルエンスルホン酸等の有機酸が挙げられる。塩基としては、例えば、水酸化ナトリウム、水酸化バリウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の炭酸塩、更には酢酸ナトリウム等が挙げられる。
溶媒としては、例えば、エタノール、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサンなどの水混和性有機溶媒が水と共に用いられる。
反応は、通常、約0~100℃、好ましくは室温~50℃で、0.5~3時間、好ましくは0.5~2時間行われる。
Examples of means for removing protective groups such as ester residues include hydrolysis reaction. The hydrolysis reaction can be carried out by bringing the reaction product into contact with water in an appropriate solvent in the presence of an acid or a base. Examples of acids that can be used include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, and phosphoric acid, and organic acids such as acetic acid, trifluoroacetic acid, formic acid, and p-toluenesulfonic acid. Examples of the base include metal hydroxides such as sodium hydroxide and barium hydroxide, carbonates such as sodium carbonate and potassium carbonate, and sodium acetate.
As the solvent, for example, water-miscible organic solvents such as ethanol, ethylene glycol dimethyl ether, tetrahydrofuran, and dioxane are used together with water.
The reaction is usually carried out at about 0 to 100°C, preferably room temperature to 50°C, for 0.5 to 3 hours, preferably 0.5 to 2 hours.

また、A環及びC環の水酸基保護基の脱離手段としては、水素化触媒存在下で加水素分解することが挙げられ、これによれば、ベンジル基とベンジルオキシカルボニル基を、同時に脱離させることができる。尚、硫酸供与体としてSDISを用いTCE硫酸化物とした場合は、水素化触媒存在下で加水素分解することにより、ベンジル基、ベンジルオキシカルボニル基及びTCE基を同時に脱離させることが可能である。 In addition, as a means for removing the hydroxyl protecting groups of the A ring and the C ring, hydrogenolysis in the presence of a hydrogenation catalyst can be mentioned. According to this method, the benzyl group and the benzyloxycarbonyl group are simultaneously removed. can be done. In addition, when SDIS is used as a sulfuric acid donor to form a TCE sulfate, it is possible to simultaneously eliminate the benzyl group, benzyloxycarbonyl group, and TCE group by hydrolysis in the presence of a hydrogenation catalyst. .

反応は、水素源(水素、ギ酸又はギ酸アンモニウム等のギ酸類等)の存在下において、適当な溶媒中、水素化触媒の存在下で、カテキン保護誘導体(V)と硫酸供与体、メチル供与体、グルクロン酸供与体又はグルコース供与体との反応生成物を撹拌することにより行われる。
溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、メタノール、エタノール等のアルコール系溶媒、ギ酸、酢酸等の酸性溶媒及びこれらの混合溶媒等が挙げられる。
In the presence of a hydrogen source (hydrogen, formic acid or formic acids such as ammonium formate), in an appropriate solvent, in the presence of a hydrogenation catalyst, the catechin protected derivative (V), a sulfuric acid donor, a methyl donor, etc. , by stirring the reaction product with a glucuronic acid donor or a glucose donor.
Examples of the solvent include ether solvents such as diethyl ether, tetrahydrofuran, and dioxane, alcohol solvents such as methanol and ethanol, acidic solvents such as formic acid and acetic acid, and mixed solvents thereof.

水素化触媒としては、水酸化パラジウム(II)/炭素(Pd(OH)/C)、パラジウム/炭素(Pd/C)等のパラジウム触媒、ラネーニッケル等の水素担持金属触媒等が挙げられる。 Examples of hydrogenation catalysts include palladium catalysts such as palladium (II) hydroxide/carbon (Pd(OH) 2 /C) and palladium/carbon (Pd/C), hydrogen-supported metal catalysts such as Raney nickel, and the like.

水素化触媒の使用量は、化合物(VI)の仕込質量に対して、通常1~300質量%、好ましくは5~200質量%、さらに好ましくは10~150質量%、さらに好ましくは15~100質量%、さらに好ましくは20~50質量%である。 The amount of hydrogenation catalyst used is usually 1 to 300% by mass, preferably 5 to 200% by mass, more preferably 10 to 150% by mass, and even more preferably 15 to 100% by mass, based on the charged mass of compound (VI). %, more preferably 20 to 50% by mass.

反応温度は、通常23~27℃程度であり、反応時間は、通常6~24時間程度である。 The reaction temperature is usually about 23 to 27°C, and the reaction time is usually about 6 to 24 hours.

尚、本発明の各反応における目的物の単離は、必要に応じて、有機合成化学で常用される精製法、例えば濾過、洗浄、乾燥、再結晶、各種クロマトグラフィー、蒸留等により行うことができる。 The target product in each reaction of the present invention can be isolated, if necessary, by purification methods commonly used in organic synthetic chemistry, such as filtration, washing, drying, recrystallization, various chromatography, distillation, etc. can.

1.実施例1 硫酸抱合体の製造
(1)化合物6及び化合物7の合成
1. Example 1 Production of sulfuric acid conjugate (1) Synthesis of compound 6 and compound 7

Figure 0007352596000009
Figure 0007352596000009

アルゴン雰囲気下、200mL丸底フラスコに化合物1((-)-エピカテキン、東京化成社)(500mg、1.7mmol)と炭酸カリウム(1g、7.3mmol)を加えた後、アセトン(33mL)を加え撹拌し、澄明な溶液を得た。続いて、臭化アリル(2.82mL、33mmol)で加えた後、室温で20時間撹拌した。反応後、混合液を濾過し、アセトンで洗浄後、濾液をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取HPLCにより精製し、白い個体として化合物6(155mg、0.47mmol、27%)及び化合物7(187mg、0.57mmol、33%)を得た。
[分取条件]
分取カラム:L-column ODS, size20mm x 259mm 5μm
溶離液:A(0.1%ギ酸水)、B (メタノール)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):3%(5分)、3→45%(10分)
Under an argon atmosphere, compound 1 ((-)-epicatechin, Tokyo Kasei Co., Ltd.) (500 mg, 1.7 mmol) and potassium carbonate (1 g, 7.3 mmol) were added to a 200 mL round-bottomed flask, and then acetone (33 mL) was added. The mixture was added and stirred to obtain a clear solution. Subsequently, allyl bromide (2.82 mL, 33 mmol) was added, and the mixture was stirred at room temperature for 20 hours. After the reaction, the mixed solution was filtered, washed with acetone, and the solvent was distilled off from the filtrate under reduced pressure using an evaporator. The obtained residue was purified by preparative HPLC to obtain Compound 6 (155 mg, 0.47 mmol, 27%) and Compound 7 (187 mg, 0.57 mmol, 33%) as white solids.
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (0.1% formic acid water), B (methanol)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 3% (5 minutes), 3 → 45% (10 minutes)

化合物6:
H NMR(600MHz,MeOD):δ7.11(d,J=1.8Hz,1H),6.91(dd,J=8.2,1.7Hz,1H),6.80(d,J=8.2Hz,1H),6.13-6.60(m,1H),5.94(d,J=1.9Hz,1H),5.91(d,J=2.0Hz,1H),5.40(dd,J=19,1.5Hz,1H),5.24(dd,J=11,1.4Hz,1H),4.85-4.85(m,1H),4.60(d,J=5.5Hz,2H),4.17-4.17(m,1H),2.87(dd,J=17,4.9Hz,1H),2.72(dd,J=17,2.9Hz,1H)
Compound 6:
1H NMR (600MHz, MeOD): δ7.11 (d, J = 1.8Hz, 1H), 6.91 (dd, J = 8.2, 1.7Hz, 1H), 6.80 (d, J = 8.2Hz, 1H), 6.13-6.60 (m, 1H), 5.94 (d, J = 1.9Hz, 1H), 5.91 (d, J = 2.0Hz, 1H) , 5.40 (dd, J=19, 1.5Hz, 1H), 5.24 (dd, J=11, 1.4Hz, 1H), 4.85-4.85 (m, 1H), 4. 60 (d, J = 5.5Hz, 2H), 4.17-4.17 (m, 1H), 2.87 (dd, J = 17, 4.9Hz, 1H), 2.72 (dd, J =17, 2.9Hz, 1H)

13C-NMR(150MHz,MeOD):δ158.03,157.69,157.32,147.45,147.31,135.08,132.18,120.98,117.97,115.94,113.70,100.03,96.36,95.84,79.90,70.94,67.53,29.30 13C -NMR (150MHz, MeOD): δ158.03, 157.69, 157.32, 147.45, 147.31, 135.08, 132.18, 120.98, 117.97, 115.94, 113.70, 100.03, 96.36, 95.84, 79.90, 70.94, 67.53, 29.30

HRMS calcd. for C1819 [M+H]:331.1176; found:331.1179 HRMS calcd. for C 18 H 19 O 6 + [M+H] + :331.1176; found:331.1179

化合物7:
H NMR(600MHz,MeOD):δ 7.01 (d,J=1.6Hz,1H),6.90(s,1H),6.89(d,J=1.8Hz,1H),6.06-6.12(m,1H),5.94(d,J=2.2Hz,1H),5.92(d,J=2.2Hz,1H),5.40(dd,J=17,1.5Hz,1H),5.24(dd,J=10,1.5Hz,1H),4.84-4.84(m,1H),4.60(dd,J=5.2,1.5Hz,2H),4.18-4.19(m,1H),2.86(dd,J=18,4.5Hz,1H),2.73(dd,J=16,2.8Hz,1H)
Compound 7:
1H NMR (600MHz, MeOD): δ 7.01 (d, J = 1.6Hz, 1H), 6.90 (s, 1H), 6.89 (d, J = 1.8Hz, 1H), 6 .06-6.12 (m, 1H), 5.94 (d, J = 2.2Hz, 1H), 5.92 (d, J = 2.2Hz, 1H), 5.40 (dd, J = 17, 1.5Hz, 1H), 5.24 (dd, J = 10, 1.5Hz, 1H), 4.84-4.84 (m, 1H), 4.60 (dd, J = 5.2 , 1.5Hz, 2H), 4.18-4.19 (m, 1H), 2.86 (dd, J=18, 4.5Hz, 1H), 2.73 (dd, J=16, 2. 8Hz, 1H)

13C-NMR(150MHz,MeOD):δ158.03,157.70,157.28,147.54,147.22,135.17,134.01,119.11,117.75,115.42,114.30,99.99,96.36,95.83,79.69,70.97,67.42,29.27 13C -NMR (150MHz, MeOD): δ158.03, 157.70, 157.28, 147.54, 147.22, 135.17, 134.01, 119.11, 117.75, 115.42, 114.30, 99.99, 96.36, 95.83, 79.69, 70.97, 67.42, 29.27

HRMS calcd. for C1819 [M+H]:331.1176; found:331.1179 HRMS calcd. for C 18 H 19 O 6 + [M+H] + :331.1176; found:331.1179

(2)化合物8、11の合成

Figure 0007352596000010
(2) Synthesis of compounds 8 and 11
Figure 0007352596000010

(2-1)化合物8の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物6(500mg、1.5mmol)をとり、脱水N,N-ジメチルホルムアミド(10mL)を加え撹拌し、澄明な溶液を得た。続いて、60%油性水素化ナトリウム(185mg、4.6mmol)を-50℃メタノール溶液での冷却下で加え、15分間撹拌後、臭化ベンジル(585μL、4.9mmol)を滴下し、さらに45分間撹拌した。その後、室温まで昇温し1時間撹拌した。反応後、氷浴での冷却下1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、ヘキサン-酢酸エチル(1:1、v/v)にて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物8(596mg、0.97mmol、64%)を得た。
(2-1) Synthesis of Compound 8 Under an argon atmosphere, compound 6 (500 mg, 1.5 mmol) was placed in a 100 mL round bottom flask, and dehydrated N,N-dimethylformamide (10 mL) was added and stirred to obtain a clear solution. Ta. Subsequently, 60% oily sodium hydride (185 mg, 4.6 mmol) was added under cooling with -50 °C methanol solution, and after stirring for 15 minutes, benzyl bromide (585 μL, 4.9 mmol) was added dropwise, and an additional 45 Stir for a minute. Thereafter, the temperature was raised to room temperature and stirred for 1 hour. After the reaction, 1 mol/L hydrochloric acid was added while cooling in an ice bath to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with hexane-ethyl acetate (1:1, v/v), and the resulting organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The resulting residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 8 (596 mg, 0.97 mmol, 64%) as a white amorphous.

H NMR(600MHz,acetone-d6):δ7.31-7.52(m,15H),7.24(d,J=1.7Hz,1H),7.05(dd,J=8.0,1.7Hz,1H),7.03(d,J=8.3,1H),6.34(d,J=2.2,1H),6.21(d,J=2.4,1H),6.06-6.12(m,1H),5.44(ddt,J=16,3.5,1.9Hz,1H),5.22(ddt,J=11,3.1,1.6Hz,1H),5.14(s,2H),5.11(d,J=4.52H),5.07(s,2H),4.99-4.99(m,1H),4.59(ddd,J=5.2,1.5,1.5Hz,2H),4.26-4.29(m,1H),2.94(dd,J=17,4.7Hz,1H),2.85(dd,J=16,2.9Hz,1H) 1H NMR (600MHz, acetone-d6): δ7.31-7.52 (m, 15H), 7.24 (d, J = 1.7Hz, 1H), 7.05 (dd, J = 8.0 , 1.7Hz, 1H), 7.03 (d, J = 8.3, 1H), 6.34 (d, J = 2.2, 1H), 6.21 (d, J = 2.4, 1H), 6.06-6.12 (m, 1H), 5.44 (ddt, J = 16, 3.5, 1.9Hz, 1H), 5.22 (ddt, J = 11, 3.1 , 1.6Hz, 1H), 5.14 (s, 2H), 5.11 (d, J = 4.52H), 5.07 (s, 2H), 4.99-4.99 (m, 1H ), 4.59 (ddd, J=5.2, 1.5, 1.5Hz, 2H), 4.26-4.29 (m, 1H), 2.94 (dd, J=17, 4. 7Hz, 1H), 2.85 (dd, J=16, 2.9Hz, 1H)

13C-NMR(150MHz,acetone-d6):159.343,159.06,156.81,149.29,149.13,138.74,138.52,138.51,134.95,133.68,129.47,129.28,129.25,129.20,128.67,128.55,128.53,128.50,128.40,128.30,128.09,120.62,117.24,114.95,114.53,102.56,95.60,94.09,79.50,71.45,70.40,66.52,29.35 13C -NMR (150MHz, acetone-d6): 159.343, 159.06, 156.81, 149.29, 149.13, 138.74, 138.52, 138.51, 134.95, 133. 68, 129.47, 129.28, 129.25, 129.20, 128.67, 128.55, 128.53, 128.50, 128.40, 128.30, 128.09, 120.62, 117.24, 114.95, 114.53, 102.56, 95.60, 94.09, 79.50, 71.45, 70.40, 66.52, 29.35

HRMS calcd. for C3937 [M+H]:601.2585; found:601.2585 HRMS calcd. for C 39 H 37 O 6 + [M+H] + :601.2585; found:601.2585

(2-2)化合物11の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物7(500mg、1.5mmol)をとり、N,N-ジメチルホルムアミド(10mL)を加え撹拌し、澄明な溶液を得た。続いて、60%油性水素化ナトリウム(185mg、4.6mmol)を-50℃メタノール溶液での冷却下で加え、15分間撹拌後、臭化ベンジル(585μL、4.9mmol)を滴下し、さらに45分間撹拌した。その後、室温まで昇温し1時間撹拌した。反応後、氷浴での冷却下1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物11(600mg、1.00mmol、66%)を得た。
(2-2) Synthesis of Compound 11 Under an argon atmosphere, compound 7 (500 mg, 1.5 mmol) was placed in a 100 mL round bottom flask, and N,N-dimethylformamide (10 mL) was added and stirred to obtain a clear solution. . Subsequently, 60% oily sodium hydride (185 mg, 4.6 mmol) was added under cooling with -50 °C methanol solution, and after stirring for 15 minutes, benzyl bromide (585 μL, 4.9 mmol) was added dropwise, and an additional 45 Stir for a minute. Thereafter, the temperature was raised to room temperature and stirred for 1 hour. After the reaction, 1 mol/L hydrochloric acid was added while cooling in an ice bath to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 11 (600 mg, 1.00 mmol, 66%) as a white amorphous.

H NMR(600MHz,acetone-d6):δ7.32-7.52(m,16H),7.07(dd,J=8.2,1.3Hz,1H),6.98(d,J=8.3Hz,1H),6.35(d,J=2.2Hz,1H),6.20(d,J=2.2Hz,1H),6.06-6.12(m,1H),5.44(dd,J=17,1.8Hz,1H),5.22(dd,J=11,1.6Hz,1H),5.12(s,4H),5.08(s,2H),4.99(s,2H),4.60(ddd,J=5.2,1.4,1.4Hz,2H),4.27-4.27(m,1H),2.92-2.95(m,1H),2.83-2.86(m,1H) 1H NMR (600MHz, acetone-d6): δ7.32-7.52 (m, 16H), 7.07 (dd, J = 8.2, 1.3Hz, 1H), 6.98 (d, J = 8.3Hz, 1H), 6.35 (d, J = 2.2Hz, 1H), 6.20 (d, J = 2.2Hz, 1H), 6.06-6.12 (m, 1H) ,5.44(dd,J=17,1.8Hz,1H),5.22(dd,J=11,1.6Hz,1H),5.12(s,4H),5.08(s, 2H), 4.99 (s, 2H), 4.60 (ddd, J=5.2, 1.4, 1.4Hz, 2H), 4.27-4.27 (m, 1H), 2. 92-2.95 (m, 1H), 2.83-2.86 (m, 1H)

13C-NMR(150MHz,acetone-d6):δ159.44,159.06,156.80,149.31,149.18,138.65,138.53,135.05,133.53,129.52,129.29,129.26,129.17,128.59,128.56,128.53,128.52,128.45,128.39,128.10,120.82,117.12,114.85,114.70,102.56,95.60,94.09,79.49,71.57,70.41,70.34,66.53,29.33 13C -NMR (150MHz, acetone-d6): δ159.44, 159.06, 156.80, 149.31, 149.18, 138.65, 138.53, 135.05, 133.53, 129. 52, 129.29, 129.26, 129.17, 128.59, 128.56, 128.53, 128.52, 128.45, 128.39, 128.10, 120.82, 117.12, 114.85, 114.70, 102.56, 95.60, 94.09, 79.49, 71.57, 70.41, 70.34, 66.53, 29.33

HRMS calcd. for C3937 [M+H]:601.2585;found:601.2585 HRMS calcd. for C 39 H 37 O 6 + [M+H] + :601.2585;found:601.2585

(3)(2R,3R)-2-(3′-(Allyloxy)-4′-(benzyloxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate(化合物9)及び(2R,3R)-2-(4′-(Allyloxy)-3′-(benzyloxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate(化合物12)の合成

Figure 0007352596000011
(3) (2R,3R)-2-(3'-(Allyloxy)-4'-(benzyloxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate (compound 9) and (2R ,3R)-2-(4'-(Allyloxy)-3'-(benzyloxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate (compound 12)
Figure 0007352596000011

(3-1)化合物9の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物8(550mg、0.92mmol)とN、N―ジメチルアミノピリジン(230mg、1.88mmol)をとり、脱水ジクロロメタン(20mL)を加え撹拌し、澄明な溶液を得た。続いて、クロロギ酸ベンジル(264μL、1.88mmol)とジアザビシクロウンデセン(291μL, 1.88 mmol)を氷浴で冷却下で順次加え、16時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、氷浴での冷却下1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物9(700mg、0.92mmol、100%)を得た。
(3-1) Synthesis of Compound 9 Under an argon atmosphere, compound 8 (550 mg, 0.92 mmol) and N,N-dimethylaminopyridine (230 mg, 1.88 mmol) were placed in a 100 mL round bottom flask, and dehydrated dichloromethane (20 mL) was added. was added and stirred to obtain a clear solution. Subsequently, benzyl chloroformate (264 μL, 1.88 mmol) and diazabicycloundecene (291 μL, 1.88 mmol) were sequentially added under cooling in an ice bath, and the mixture was stirred for 16 hours. After the reaction, the reaction solution was diluted with ethyl acetate (20 mL), and then 1 mol/L hydrochloric acid was added while cooling in an ice bath to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 9 (700 mg, 0.92 mmol, 100%) as a white amorphous.

H NMR(600MHz,DMSO-d6):δ7.30-7.46(m,20H),7.08(d,J=2.1Hz,1H),7.04(d,J=8.4,Hz,1H),6.96(dd,J=8.5,1.9Hz,1H),6.38.(d,J=2.3Hz,1H),6.23(d,J=2.4Hz,1H),5.96-6.03(m,1H),5.34(ddt,J=17,3.4,1.7Hz,1H),5.24-5.25(m,1H),5.19(ddt,J=11,3.1,1.3Hz,1H),5.15-5.15(m,1H),5.10(s,4H),5.05(s,2H),4.98-4.98(m,2H),4.51(ddd,J=13,5.3,1.3Hz,1H),4.46(ddd,J=13,5.2,1.4Hz,1H),3.04(dd,J=18,4.8Hz,1H),2.86-2.83(m,1H) 1H NMR (600MHz, DMSO-d6): δ7.30-7.46 (m, 20H), 7.08 (d, J = 2.1Hz, 1H), 7.04 (d, J = 8.4 , Hz, 1H), 6.96 (dd, J=8.5, 1.9Hz, 1H), 6.38. (d, J=2.3Hz, 1H), 6.23 (d, J=2.4Hz, 1H), 5.96-6.03 (m, 1H), 5.34 (ddt, J=17, 3.4, 1.7Hz, 1H), 5.24-5.25 (m, 1H), 5.19 (ddt, J=11, 3.1, 1.3Hz, 1H), 5.15-5 .15 (m, 1H), 5.10 (s, 4H), 5.05 (s, 2H), 4.98-4.98 (m, 2H), 4.51 (ddd, J=13,5 .3, 1.3Hz, 1H), 4.46 (ddd, J=13, 5.2, 1.4Hz, 1H), 3.04 (dd, J=18, 4.8Hz, 1H), 2. 86-2.83 (m, 1H)

13C-NMR(150MHz,DMSO-d6):δ158.25,157.42,155.05,153.94,147.83,147.66,137.23,137.14,137.11,135.31,133.70,130.46,128.53,128.49,128.47,128.33,127.92,127.86,127.70,127.64,127.36,119.34,117.45,113.56,112.46,99.97,94.70,93.92,76.05,71.53,69.90,69.35,69.34,69.10,68.93,25.50 13C -NMR (150MHz, DMSO-d6): δ158.25, 157.42, 155.05, 153.94, 147.83, 147.66, 137.23, 137.14, 137.11, 135. 31,133.70,130.46,128.53,128.49,128.47,128.33,127.92,127.86,127.70,127.64,127.36,119.34, 117.45, 113.56, 112.46, 99.97, 94.70, 93.92, 76.05, 71.53, 69.90, 69.35, 69.34, 69.10, 68. 93,25.50

HRMS calcd.for C4743 [M+H]:735.2952;found:735.2978 HRMS calcd. for C 47 H 43 O 8 + [M+H] + :735.2952;found:735.2978

(3-2)化合物12の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物11(570mg、0.95mmol)とN、N―ジメチルアミノピリジン(238mg、1.94mmol)をとり、脱水ジクロロメタン(20mL)を加え撹拌し、澄明な溶液を得た。続いて、クロロギ酸ベンジル(275μL、1.94mmol)とジアザビシクロウンデセン(300μL, 1.94mmol)を氷浴で冷却下で順次加え、16時間撹拌した。反応後、酢酸エチル(40mL)で希釈した後、氷浴での冷却下1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、ヘキサン-酢酸エチル(1:1、v/v)にて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:クロロホルムー酢酸エチル(9:1、v/v))により精製し、白いアモルファスとして化合物12(734mg、0.92mmol、92%)を得た。
(3-2) Synthesis of Compound 12 Under an argon atmosphere, compound 11 (570 mg, 0.95 mmol) and N,N-dimethylaminopyridine (238 mg, 1.94 mmol) were placed in a 100 mL round bottom flask, and dehydrated dichloromethane (20 mL) was added. was added and stirred to obtain a clear solution. Subsequently, benzyl chloroformate (275 μL, 1.94 mmol) and diazabicycloundecene (300 μL, 1.94 mmol) were sequentially added under cooling in an ice bath, and the mixture was stirred for 16 hours. After the reaction, the reaction solution was diluted with ethyl acetate (40 mL), and 1 mol/L hydrochloric acid was added while cooling in an ice bath to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with hexane-ethyl acetate (1:1, v/v), and the resulting organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: chloroform-ethyl acetate (9:1, v/v)) to obtain Compound 12 (734 mg, 0.92 mmol, 92%) as a white amorphous.

H NMR(600MHz,DMSO-d6):δ7.18-7.43(m,21H),6.08-6.98(m,2H),6.39(d,J=2.2Hz,1H),6.22(d,J=2.2Hz,1H),6.01-6.08(m,1H),5.40(ddt,J=17,3.4,1.6Hz,1H),5.23-5.25(m,2H),5.16-5.16(m,1H),5.10(s,2H),5.05(s,2H),5.03(d,J=12Hz,1H),4.99-5.00(m,2H),4.96(d,J=12Hz,1H),4.56-4.57(m,2H),3.05(dd,J=18,4.7Hz,1H),2.84-2.87(m,1H) 1H NMR (600MHz, DMSO-d6): δ7.18-7.43 (m, 21H), 6.08-6.98 (m, 2H), 6.39 (d, J = 2.2Hz, 1H ), 6.22 (d, J = 2.2Hz, 1H), 6.01-6.08 (m, 1H), 5.40 (ddt, J = 17, 3.4, 1.6Hz, 1H) , 5.23-5.25 (m, 2H), 5.16-5.16 (m, 1H), 5.10 (s, 2H), 5.05 (s, 2H), 5.03 (d , J=12Hz, 1H), 4.99-5.00 (m, 2H), 4.96 (d, J=12Hz, 1H), 4.56-4.57 (m, 2H), 3.05 (dd, J=18, 4.7Hz, 1H), 2.84-2.87 (m, 1H)

13C-NMR(150MHz,DMSO-d6):δ158.25,157.43,155.05,153.95,147.80,137.14,137.11,137.06,135.49,135.30,133.90,130.37,128.56,128.53,128.49,128.43,127.90,127.72,127.68,127.36,119.50,117.34,113.41,112.64,99.98,94.70,93.92,76.05,71.53,70.21,69.36,69.34,69.08,68.95,25.49 13C -NMR (150MHz, DMSO-d6): δ158.25, 157.43, 155.05, 153.95, 147.80, 137.14, 137.11, 137.06, 135.49, 135. 30,133.90,130.37,128.56,128.53,128.49,128.43,127.90,127.72,127.68,127.36,119.50,117.34, 113.41, 112.64, 99.98, 94.70, 93.92, 76.05, 71.53, 70.21, 69.36, 69.34, 69.08, 68.95, 25. 49

HRMS calcd. for C4743 [M+H]:735.2952;found:735.2978 HRMS calcd. for C 47 H 43 O 8 + [M+H] + :735.2952;found:735.2978

(4)(2R,3R)-2-(4′-(Benzyloxy)-3′-(hydroxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate化合物10)、及び(2R,3R)-2-(3′-(Benzyloxy)-4′-(hydroxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate
(化合物13)の合成

Figure 0007352596000012
(4) (2R,3R)-2-(4'-(Benzyloxy)-3'-(hydroxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate compound 10), and (2R ,3R)-2-(3'-(Benzyloxy)-4'-(hydroxy)phenyl)-5,7-bis(benzyloxy)chroman-3-yl benzyl carbonate
Synthesis of (compound 13)
Figure 0007352596000012

(4-1)化合物10の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物9(690mg、0.94mmol)とテトラキストリフェニルホスフィンパラジウム(271mg、0.23mmol)をとり、脱水テトラヒドロフラン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、モルホリン(168μL、1.88mmol)を室温で加え、30分間撹拌した。反応後、酢酸エチル(20mL)で希釈し、1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:クロロホルム-メタノール(99:1、v/v))と分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物10(465mg、0.86mmol、91%)を得た。
(4-1) Synthesis of Compound 10 Under an argon atmosphere, compound 9 (690 mg, 0.94 mmol) and tetrakistriphenylphosphine palladium (271 mg, 0.23 mmol) were placed in a 100 mL round bottom flask, and dehydrated tetrahydrofuran (10 mL) was added. Stirring gave a clear solution. Subsequently, morpholine (168 μL, 1.88 mmol) was added at room temperature and stirred for 30 minutes. After the reaction, the reaction solution was diluted with ethyl acetate (20 mL), and 1 mol/L hydrochloric acid was added to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was subjected to silica gel chromatography (elution solvent: chloroform-methanol (99:1, v/v)) and preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)). )) to obtain Compound 10 (465 mg, 0.86 mmol, 91%) as a white amorphous.

H NMR(600MHz,acetone-d6):δ7.26-7.52(m,20H),7.09(d,J=2.1Hz,1H),7.01(d,J=8.4Hz,1H),6.93(dd,J=8.3,2.0Hz,1H),6.37(d,J=2.3Hz,1H),6.24.(d,J=2.2Hz,1H),5.35-5.37(m,1H),5.15(s,3H),5.11-5.12(m,2H),5.08(s,2H),5.01-5.02(m,2H),3.11(dd,J=18,4.0Hz,1H),2.99(dd,J=18,1.3Hz,1H) 1H NMR (600MHz, acetone-d6): δ7.26-7.52 (m, 20H), 7.09 (d, J = 2.1Hz, 1H), 7.01 (d, J = 8.4Hz , 1H), 6.93 (dd, J=8.3, 2.0Hz, 1H), 6.37 (d, J=2.3Hz, 1H), 6.24. (d, J=2.2Hz, 1H), 5.35-5.37 (m, 1H), 5.15 (s, 3H), 5.11-5.12 (m, 2H), 5.08 (s, 2H), 5.01-5.02 (m, 2H), 3.11 (dd, J=18, 4.0Hz, 1H), 2.99 (dd, J=18, 1.3Hz, 1H)

13C-NMR(150MHz,acetone-d6):δ159.76,158.82,156.52,155.34,147.49,147.14,138.41,138.31,138.14,136.71,132.22,129.31,129.28,129.26,129.23,128.99,128.75,128.72,128.69,128.60,128.58,128.42,128.15,118.62,114.97,113.59,101.16,95.60,94.51,77.57,72.77,71.28,70.52,70.47,69.78,26.61 13C -NMR (150MHz, acetone-d6): δ159.76, 158.82, 156.52, 155.34, 147.49, 147.14, 138.41, 138.31, 138.14, 136. 71,132.22,129.31,129.28,129.26,129.23,128.99,128.75,128.72,128.69,128.60,128.58,128.42, 128.15, 118.62, 114.97, 113.59, 101.16, 95.60, 94.51, 77.57, 72.77, 71.28, 70.52, 70.47, 69. 78, 26.61

HRMS calcd. for C4439 [M+H]:695.2639; found:695.2669 HRMS calcd. for C 44 H 39 O 8 + [M+H] + :695.2639; found:695.2669

(4-2)化合物13の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物12(660mg、0.90mmol)とテトラキストリフェニルホスフィンパラジウム(260mg、0.22mmol)をとり、脱水テトラヒドロフラン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、モルホリン(161μL、1.80mmol)を室温で加え、30分間撹拌した。反応後、酢酸エチル(20mL)で希釈し、1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:クロロホルム-メタノール(99:1、v/v))と分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサンー酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物13(530mg、0.76mmol、85%)を得た。
(4-2) Synthesis of Compound 13 Under an argon atmosphere, compound 12 (660 mg, 0.90 mmol) and tetrakistriphenylphosphine palladium (260 mg, 0.22 mmol) were placed in a 100 mL round bottom flask, and dehydrated tetrahydrofuran (10 mL) was added. Stirring gave a clear solution. Subsequently, morpholine (161 μL, 1.80 mmol) was added at room temperature and stirred for 30 minutes. After the reaction, the reaction solution was diluted with ethyl acetate (20 mL), and 1 mol/L hydrochloric acid was added to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was subjected to silica gel chromatography (elution solvent: chloroform-methanol (99:1, v/v)) and preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)). ) to obtain Compound 13 (530 mg, 0.76 mmol, 85%) as a white amorphous.

H NMR(600MHz,acetone-d6):δ7.24-7.43(m,21H),6.99(dd,J=8.2,1.9Hz,1H),6.85(d,J=8.1Hz,1H),6.38(d,J=2.3Hz,1H),6.23(d,J=2.3Hz,1H),5.35-5.36(m,1H),5.16-5.16(m,1H),5.12-5.13(m,2H),5.08(s,2H),5.02-5.07(m,4H),3.11(dd,J=18,4.5Hz,1H),3.01(dd,J=18,1.6Hz,1H) 1H NMR (600MHz, acetone-d6): δ7.24-7.43 (m, 21H), 6.99 (dd, J = 8.2, 1.9Hz, 1H), 6.85 (d, J = 8.1Hz, 1H), 6.38 (d, J = 2.3Hz, 1H), 6.23 (d, J = 2.3Hz, 1H), 5.35-5.36 (m, 1H) , 5.16-5.16 (m, 1H), 5.12-5.13 (m, 2H), 5.08 (s, 2H), 5.02-5.07 (m, 4H), 3 .11 (dd, J=18, 4.5Hz, 1H), 3.01 (dd, J=18, 1.6Hz, 1H)

13C-NMR(150MHz,acetone-d6):δ 159.75, 158.83, 156.56, 155.35, 147.63, 147.27, 138.40, 138.31, 137.95, 136.63, 130.31, 129.32, 129.29, 129.27, 129.18, 129.04, 128.89, 128.76, 128.72, 128.61, 128.59, 128.41, 128.16, 120.91, 115.87, 112.92, 101.14, 95.64, 94.62, 77.80, 72.84, 71.51, 70.53, 70.47, 69.87, 26.63 13C -NMR (150MHz, acetone-d6): δ 159.75, 158.83, 156.56, 155.35, 147.63, 147.27, 138.40, 138.31, 137.95, 136 .63, 130.31, 129.32, 129.29, 129.27, 129.18, 129.04, 128.89, 128.76, 128.72, 128.61, 128.59, 128.41 , 128.16, 120.91, 115.87, 112.92, 101.14, 95.64, 94.62, 77.80, 72.84, 71.51, 70.53, 70.47, 69 .87, 26.63

HRMS calcd. for C4439 [M+H]:695.2639;found:695.2669 HRMS calcd. for C 44 H 39 O 8 + [M+H] + :695.2639;found:695.2669

(5)化合物14、15の合成

Figure 0007352596000013
(5) Synthesis of compounds 14 and 15
Figure 0007352596000013

(5-1)化合物14の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物10(90mg、0.13mmol)とSDIS(119mg、0.26mmol)をとり、脱水ジクロロメタン(2.5mL)を加え撹拌し、澄明な溶液を得た。続いて、1,2-ジメチルイミダゾール(25mg、0.26mmol)を室温で加え、19時間撹拌した。反応後、酢酸エチル(5mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物14(90mg、0.10mmol、77%)を得た。
(5-1) Synthesis of Compound 14 Under an argon atmosphere, compound 10 (90 mg, 0.13 mmol) and SDIS (119 mg, 0.26 mmol) were placed in a 100 mL round bottom flask, and dehydrated dichloromethane (2.5 mL) was added and stirred. , a clear solution was obtained. Subsequently, 1,2-dimethylimidazole (25 mg, 0.26 mmol) was added at room temperature and stirred for 19 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative thin layer chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain Compound 14 (90 mg, 0.10 mmol, 77%) as a white amorphous. Ta.

H NMR(600MHz,acetone-d6):δ7.71(d,J=2.2Hz,1H),7.58(d,J=7.1Hz,1H),7.53(dd,J=8.8,2.1Hz,1H),7.26-7.48(m,20H),6.39(d,J=2.2Hz,1H),6.26(d,J=2.3Hz,1H),5.43-5.44(m,1H),5.31-5.31(m,1H),5.28(s,2H),5.11-5.12(m,2H),5.08(s,2H),5.01(s,2H),4.98-4.98(m,2H),3.12(dd,J=18,4.4Hz,1H),3.03(dd,J=18,1.3Hz,1H) 1H NMR (600MHz, acetone-d6): δ7.71 (d, J = 2.2Hz, 1H), 7.58 (d, J = 7.1Hz, 1H), 7.53 (dd, J = 8 .8, 2.1Hz, 1H), 7.26-7.48 (m, 20H), 6.39 (d, J = 2.2Hz, 1H), 6.26 (d, J = 2.3Hz, 1H), 5.43-5.44 (m, 1H), 5.31-5.31 (m, 1H), 5.28 (s, 2H), 5.11-5.12 (m, 2H) , 5.08 (s, 2H), 5.01 (s, 2H), 4.98-4.98 (m, 2H), 3.12 (dd, J=18, 4.4Hz, 1H), 3 .03 (dd, J=18, 1.3Hz, 1H)

13C-NMR(150MHz,acetone-d6):δ159.80,158.81,156.11,155.22,151.02,139.32,138.32,138.24,137.06,136.58,132.31,129.59,129.31,129.28,129.19,129.07,128.88,128.85,128.62,128.60,128.40,128.17,128.08,122.43,115.25,101.05,95.55,94.76,93.59,81.09,79.18,76.78,72.40,71.67,70.56,70.50,69.97,26.45 13C -NMR (150MHz, acetone-d6): δ159.80, 158.81, 156.11, 155.22, 151.02, 139.32, 138.32, 138.24, 137.06, 136. 58, 132.31, 129.59, 129.31, 129.28, 129.19, 129.07, 128.88, 128.85, 128.62, 128.60, 128.40, 128.17, 128.08, 122.43, 115.25, 101.05, 95.55, 94.76, 93.59, 81.09, 79.18, 76.78, 72.40, 71.67, 70. 56, 70.50, 69.97, 26.45

HRMS calcd. for C4640l311 [M+H]:905.1351;found:905.1407 HRMS calcd. for C 46 H 40 C 13 O 11 S + [M+H] + :905.1351;found:905.1407

(5-2)化合物15の合成
アルゴン雰囲気下、100mL丸底フラスコに化合物10(100mg、0.14mmol)とSDIS(132mg、0.29mmol)をとり、脱水ジクロロメタン(2.5mL)を加え撹拌し、澄明な溶液を得た。続いて、1,2-ジメチルイミダゾール(28mg、0.29mmol)を室温で加え、19時間撹拌した。反応後、酢酸エチル(5mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(3:1、v/v))により精製し、白いアモルファスとして化合物15(104mg、0.11mmol、79%)を得た。
(5-2) Synthesis of Compound 15 Under an argon atmosphere, compound 10 (100 mg, 0.14 mmol) and SDIS (132 mg, 0.29 mmol) were placed in a 100 mL round bottom flask, and dehydrated dichloromethane (2.5 mL) was added and stirred. , a clear solution was obtained. Subsequently, 1,2-dimethylimidazole (28 mg, 0.29 mmol) was added at room temperature and stirred for 19 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (3:1, v/v)) to obtain compound 15 (104 mg, 0.11 mmol, 79%) as a white amorphous. I got it.

H NMR(600MHz,acetone-d6):δ7.24-7.56(m,23H),6.41(d,J=2.3Hz,1H),6.27(d,J=2.2Hz,1H),5.47-5.47(m,1H),5.33-5.33(m,1H),5.22(d,J=12Hz,1H),5.15(d,J=11Hz,1H),5.12-5.13(m,2H),5.09(s,2H),5.01-5.02(m,2H),5.00(s,2H),3.13(dd,J=18,4.6Hz,1H),3.05(dd,J=18,1.3Hz,1H) 1H NMR (600MHz, acetone-d6): δ7.24-7.56 (m, 23H), 6.41 (d, J = 2.3Hz, 1H), 6.27 (d, J = 2.2Hz , 1H), 5.47-5.47 (m, 1H), 5.33-5.33 (m, 1H), 5.22 (d, J = 12Hz, 1H), 5.15 (d, J = 11Hz, 1H), 5.12-5.13 (m, 2H), 5.09 (s, 2H), 5.01-5.02 (m, 2H), 5.00 (s, 2H), 3.13 (dd, J=18, 4.6Hz, 1H), 3.05 (dd, J=18, 1.3Hz, 1H)

13C-NMR(150MHz,acetone-d6):δ159.81,158.81,156.02,155.19,151.17,140.33,139.11,138.32,138.24,136.88,136.47,129.57,129.33,129.32,129.28,129.24,129.15,129.03,128.88,128.64,128.62,128.42,128.18,123.70,120.29,114.06,101.06,95.67,94.77,93.62,81.03,77.21,72.38,71.81,70.58,70.50,70.04,26.43 13C -NMR (150MHz, acetone-d6): δ159.81, 158.81, 156.02, 155.19, 151.17, 140.33, 139.11, 138.32, 138.24, 136. 88, 136.47, 129.57, 129.33, 129.32, 129.28, 129.24, 129.15, 129.03, 128.88, 128.64, 128.62, 128.42, 128.18, 123.70, 120.29, 114.06, 101.06, 95.67, 94.77, 93.62, 81.03, 77.21, 72.38, 71.81, 70. 58, 70.50, 70.04, 26.43

HRMS calcd. for C4640l311 [M+H]:905.1351;found:905.1407 HRMS calcd. for C 46 H 40 C 13 O 11 S + [M+H] + :905.1351;found:905.1407

(6)2-Hydroxy-5-((2′R,3′R)-3′,5′,7′-trihydroxychroman-2′-yl)phenyl ammonium sulfate(化合物2)及び2-Hydroxy-4-((2′R,3′R)-3′,5′,7′-trihydroxychroman-2′-yl)phenyl ammonium sulfate(化合物3)の合成

Figure 0007352596000014
(6) 2-Hydroxy-5-((2'R,3'R)-3',5',7'-trihydroxychroman-2'-yl)phenyl ammonium sulfate (compound 2) and 2-Hydroxy-4- Synthesis of ((2'R,3'R)-3',5',7'-trihydroxychroman-2'-yl)phenyl ammonium sulfate (compound 3)
Figure 0007352596000014

(6-1)化合物2の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物14(87mg、0.10mmol)とギ酸アンモニウム(64mg、1.02mmol)をとり、テトラヒドロフラン-メタノール混合液(8mL、3:1)を加えし、澄明な溶液を得た。続いて、パラジウム炭素(17mg)を室温で加え、フラスコ内を水素置換し、4時間激しく撹拌した。反応、. for C1515 [M+H]:371.0431;found:371.0426
(6-1) Synthesis of Compound 2 Under an argon atmosphere, compound 14 (87 mg, 0.10 mmol) and ammonium formate (64 mg, 1.02 mmol) were placed in a 50 mL round bottom flask, and a tetrahydrofuran-methanol mixture (8 mL, 3: 1) was added to obtain a clear solution. Subsequently, palladium on carbon (17 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 4 hours. reaction,. for C 15 H 15 O 9 S + [M+H] + :371.0431;found:371.0426

(6-1)化合物3の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物15(98mg、0.11mmol)とギ酸アンモニウム(72mg、1.15mmol)をとり、テトラヒドロフラン-メタノール混合液(8mL、3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(19mg)を室温で加え、フラスコ内を水素置換し、4時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール混合液(32mL、3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取逆相薄層クロマトグラフィー(溶出溶媒:水-メタノール(9:1、v/v))により精製し、白色個体を得た。得られた個体を分取HPLCにより精製し、白色個体として化合物3(28mg、73μmol、61%)を得た。
(6-1) Synthesis of Compound 3 Under an argon atmosphere, compound 15 (98 mg, 0.11 mmol) and ammonium formate (72 mg, 1.15 mmol) were placed in a 50 mL round bottom flask, and a tetrahydrofuran-methanol mixture (8 mL, 3: 1) was added and stirred to obtain a clear solution. Subsequently, palladium on carbon (19 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 4 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. The obtained residue was purified by preparative reverse phase thin layer chromatography (elution solvent: water-methanol (9:1, v/v)) to obtain a white solid. The obtained solid was purified by preparative HPLC to obtain Compound 3 (28 mg, 73 μmol, 61%) as a white solid.

[分取条件]
分取カラム:L-column ODS, size20mm x 259mm 5μm
溶離液:A(10mM酢酸アンモニウム水溶液)、B (アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):10%(5分)、10→30%(8分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (10mM ammonium acetate aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 10% (5 minutes), 10 → 30% (8 minutes)

H NMR(600MHz,MeOD):δ7.27(d,J=8.3Hz,1H),7.08(d,J=2.0Hz,1H),6.93(dd,J=8.5,2.2Hz,1H),5.93-5.93(m,2H),4.89-4.89(m,1H),4.20-4.21(m,1H),2.87(dd,J=16,4.7Hz,1H),2.74(dd,J=17,2.3Hz,1H) 1H NMR (600MHz, MeOD): δ7.27 (d, J = 8.3Hz, 1H), 7.08 (d, J = 2.0Hz, 1H), 6.93 (dd, J = 8.5 , 2.2Hz, 1H), 5.93-5.93 (m, 2H), 4.89-4.89 (m, 1H), 4.20-4.21 (m, 1H), 2.87 (dd, J=16, 4.7Hz, 1H), 2.74 (dd, J=17, 2.3Hz, 1H)

13C-NMR(150MHz,MeOD):δ158.03,157.69,157.14,150.20,140.63,138.93,123.61,119.05,116.89,100.00,96.42,95.85,79.53,67.42,29.18 13C -NMR (150MHz, MeOD): δ158.03, 157.69, 157.14, 150.20, 140.63, 138.93, 123.61, 119.05, 116.89, 100.00, 96.42, 95.85, 79.53, 67.42, 29.18

HRMS calcd. for C1515 [M+H]:371.0431;found:371.0434 HRMS calcd. for C 15 H 15 O 9 S + [M+H] + :371.0431;found:371.0434

実施例2 グルクロン酸抱合体の製造
(1)化合物16、17の合成

Figure 0007352596000015
Example 2 Production of glucuronide conjugate (1) Synthesis of compounds 16 and 17
Figure 0007352596000015

(1-1)化合物16の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物10(100mg、0.14mmol)、2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチル(207mg、0.43mmol)、そしてモレキュラーシーブス4Å(500mg)をとり、脱水ジクロロメタン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、トリフルオロボラン-エーテル錯体(365μL、8.64mmol)を0℃で加えた後、室温まで昇温し、18時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1、v/v))により粗精製し、白いアモルファスとして混合物(88mg)を得た。
(1-1) Synthesis of Compound 16 Under an argon atmosphere, compound 10 (100 mg, 0.14 mmol) and 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl) were placed in a 50 mL round bottom flask. Methyl -α-D-glucuronate (207 mg, 0.43 mmol) and molecular sieves 4 Å (500 mg) were taken, and dehydrated dichloromethane (10 mL) was added and stirred to obtain a clear solution. Subsequently, trifluoroborane-ether complex (365 μL, 8.64 mmol) was added at 0° C., then the mixture was heated to room temperature and stirred for 18 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was roughly purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain a mixture (88 mg) as a white amorphous.

(1-2)化合物17の合成
アルゴン雰囲気下、50mL丸底フラスコに化合物10(100mg、0.14mmol)、2,3,4-トリ-O-アセチル-1-O-(トリクロロアセトイミドイル)-α-D-グルクロン酸メチル(207mg、0.43mmol)、そしてモレキュラーシーブス4Å(500mg)をとり、脱水ジクロロメタン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、トリフルオロボラン-エーテル錯体(365μL、8.64mmol)を0℃で加えた後、室温まで昇温し、18時間撹拌した。反応後、酢酸エチル(20mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(2:1、v/v))により粗精製し、白いアモルファスとして混合物(74mg)を得た。
(1-2) Synthesis of Compound 17 Under an argon atmosphere, compound 10 (100 mg, 0.14 mmol) and 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl) were placed in a 50 mL round bottom flask. Methyl -α-D-glucuronate (207 mg, 0.43 mmol) and molecular sieves 4 Å (500 mg) were taken, and dehydrated dichloromethane (10 mL) was added and stirred to obtain a clear solution. Subsequently, trifluoroborane-ether complex (365 μL, 8.64 mmol) was added at 0° C., then the mixture was heated to room temperature and stirred for 18 hours. After the reaction, the reaction mixture was diluted with ethyl acetate (20 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was roughly purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (2:1, v/v)) to obtain a mixture (74 mg) as a white amorphous.

(2)(2R,3R,4R,5S,6R)-3,4,5-Trihydroxy-6-(2-hydroxy-5-((2″R,3″R)-3″,5″,7″-trihydroxychroman-2″-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid(化合物4)及び(2R,3R,4R,5S,6R)-3,4,5-Trihydroxy-6-(2′-hydroxy-4′-((2″R,3″R)-3″,5″,7″-trihydroxychroman-2″-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid(化合物5)の合成

Figure 0007352596000016
(2) (2R, 3R, 4R, 5S, 6R)-3,4,5-Trihydroxy-6-(2-hydroxy-5-((2″R, 3″R)-3″, 5″, 7 ″-trihydroxychroman-2″-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid (compound 4) and (2R,3R,4R,5S,6R)-3,4,5-Trihydroxy-6-(2 '-hydroxy-4'-((2″R, 3″R)-3″, 5″, 7″-trihydroxychroman-2″-yl)phenoxy)tetrahydro-2H-pyran-2-carboxylic acid (compound 5) synthesis of
Figure 0007352596000016

(2-1)化合物4の合成
100mL丸底フラスコに化合物16の合成で得られた混合物(88mg)をとり、テトラヒドロフラン-エタノール-精製水溶液(5mL、2:2:1)を加え撹拌し、な溶液を得た。続いて、1N水酸化ナトリウム水溶液(1mL)を室温で加え、30分間撹拌した。反応後、Amberlyst(登録商標)15(H)と酢酸(200μL)を加え、反応液を酸性にすることで反応を停止した。引き続き、濾過、得られた濾液をエバポレーターにて溶媒を減圧蒸留した。得られた残渣をアルゴン雰囲気下、テトラヒドロフラン-メタノール-酢酸溶液(4.2mL、30:10:2)を加え、撹拌し、澄明な液体を得た。続いて、パラジウム炭素(20mg)を室温で加え、フラスコ内を水素置換し、21時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール溶液(12mL、3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取HPLCにより精製し、白色個体として化合物4(6.3mg、13μmol、9.3%(3行程収率))を得た。
(2-1) Synthesis of Compound 4 The mixture (88 mg) obtained in the synthesis of Compound 16 was placed in a 100 mL round bottom flask, and a tetrahydrofuran-ethanol-purified aqueous solution (5 mL, 2:2:1) was added and stirred. A solution was obtained. Subsequently, 1N aqueous sodium hydroxide solution (1 mL) was added at room temperature, and the mixture was stirred for 30 minutes. After the reaction, Amberlyst (registered trademark) 15 (H) and acetic acid (200 μL) were added to make the reaction solution acidic to stop the reaction. Subsequently, the filtrate was filtered, and the solvent was distilled off under reduced pressure using an evaporator. A tetrahydrofuran-methanol-acetic acid solution (4.2 mL, 30:10:2) was added to the resulting residue under an argon atmosphere and stirred to obtain a clear liquid. Subsequently, palladium on carbon (20 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 21 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol solution (12 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. The obtained residue was purified by preparative HPLC to obtain Compound 4 (6.3 mg, 13 μmol, 9.3% (3-step yield)) as a white solid.

[分取条件]
分取カラム:L-column ODS, size20mm×259mm 5μm
溶離液:A(0.1%ギ酸水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):5→12%(5分)、12%(15分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (0.1% formic acid aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 5 → 12% (5 minutes), 12% (15 minutes)

H NMR (600MHz,DO-acetone-d6(9:1)):δ7.16(s,1H),6.97(d,J=8.2Hz,1H),6.83(d,J=8.1Hz,1H),5.94(s,1H),5.92(s,1H),4.95(d,J=7.4Hz,1H),4.86(s,1H),4.20(s,1H),3.70(d,J=8.5Hz,1H),3.45-3.54(m,3H),2.77(dd,J=17,3.8Hz,1H),2.69(d,J=16Hz,1H) 1 H NMR (600 MHz, D 2 O-acetone-d6 (9:1)): δ7.16 (s, 1H), 6.97 (d, J=8.2Hz, 1H), 6.83 (d, J = 8.1Hz, 1H), 5.94 (s, 1H), 5.92 (s, 1H), 4.95 (d, J = 7.4Hz, 1H), 4.86 (s, 1H) , 4.20 (s, 1H), 3.70 (d, J=8.5Hz, 1H), 3.45-3.54 (m, 3H), 2.77 (dd, J=17, 3. 8Hz, 1H), 2.69 (d, J=16Hz, 1H)

13C-NMR(150MHz,DO-acetone-d6(9:1)):δ175.63,155.69,155.54,155.49,146.10,144.98,131.11,122.60,116.77,115.54,101.52,100.02,96.32,95.63,78.39,76.75,75.59,73.05,72.13,65.82,27.80 13 C-NMR (150 MHz, D 2 O-acetone-d6 (9:1)): δ175.63, 155.69, 155.54, 155.49, 146.10, 144.98, 131.11, 122 .60, 116.77, 115.54, 101.52, 100.02, 96.32, 95.63, 78.39, 76.75, 75.59, 73.05, 72.13, 65.82 ,27.80

HRMS calcd. for C212212Na [M+Na]:489.1003;found:489.1006 HRMS calcd. for C21H22O12Na + [M+Na] + : 489.1003 ;found: 489.1006

(2-2)化合物5の合成
100mL丸底フラスコに化合物16の合成で得られた混合物(74mg)をとり、テトラヒドロフラン-エタノール-精製水溶液(5mL、2:2:1)を加え撹拌し、な溶液を得た。続いて、1N水酸化ナトリウム水溶液(1mL)を室温で加え、30分間撹拌した。反応後、Amberlyst(R)15(H)と酢酸(200μL)を加え、反応液を酸性にすることで反応を停止した。引き続き、濾過、得られた濾液をエバポレーターにて溶媒を減圧蒸留した。得られた残渣をアルゴン雰囲気下、テトラヒドロフラン-メタノールー酢酸溶液(4.2mL、30:10:2)を加え、撹拌し、澄明な液体を得た。続いて、パラジウム炭素(20mg)を室温で加え、フラスコ内を水素置換し、21時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール混合液(12mL、3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取HPLCにより精製し、白色個体として化合物5(4.1mg、8.8μmol、6%(3行程収率))を得た。
(2-2) Synthesis of Compound 5 The mixture (74 mg) obtained in the synthesis of Compound 16 was placed in a 100 mL round-bottomed flask, and a tetrahydrofuran-ethanol-purified aqueous solution (5 mL, 2:2:1) was added and stirred. A solution was obtained. Subsequently, 1N aqueous sodium hydroxide solution (1 mL) was added at room temperature, and the mixture was stirred for 30 minutes. After the reaction, Amberlyst (R) 15 (H) and acetic acid (200 μL) were added to make the reaction solution acidic to stop the reaction. Subsequently, the filtrate was filtered, and the solvent was distilled off under reduced pressure using an evaporator. A tetrahydrofuran-methanol-acetic acid solution (4.2 mL, 30:10:2) was added to the resulting residue under an argon atmosphere and stirred to obtain a clear liquid. Subsequently, palladium on carbon (20 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 21 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (12 mL, 3:1), and the resulting organic layer was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative HPLC to obtain Compound 5 (4.1 mg, 8.8 μmol, 6% (3-step yield)) as a white solid.

[分取条件]
分取カラム:L-column ODS, size20mm×259mm 5μm
溶離液:A(0.1%ギ酸水溶液)、B(アセトニトリル)
流速:20mL/min
注入量:500μL
温度:40℃
検出波長:280nm
グラジエント条件B(%):5→10%(5分)、10%(15分)
[Preparative conditions]
Preparative column: L-column ODS, size 20mm x 259mm 5μm
Eluent: A (0.1% formic acid aqueous solution), B (acetonitrile)
Flow rate: 20mL/min
Injection volume: 500μL
Temperature: 40℃
Detection wavelength: 280nm
Gradient condition B (%): 5 → 10% (5 minutes), 10% (15 minutes)

H NMR(600MHz,DO-acetone-d6(9:1)):δ7.07(d,J=8.3Hz,1H),6.93(s,1H),6.87(d,J=8.4Hz,1H),5.94(s,1H),5.94(s,1H),4.94(d,J=9.0Hz,1H),4.83(s,1H),4.20(s,1H),3.73(d,J=9.0Hz,1H),3.46-3.55(m,3H),2.77(dd,J=16,4.2Hz,1H),2.61(d,J=16Hz,1H) 1 H NMR (600 MHz, D 2 O-acetone-d6 (9:1)): δ7.07 (d, J = 8.3 Hz, 1H), 6.93 (s, 1H), 6.87 (d, J = 8.4Hz, 1H), 5.94 (s, 1H), 5.94 (s, 1H), 4.94 (d, J = 9.0Hz, 1H), 4.83 (s, 1H) , 4.20 (s, 1H), 3.73 (d, J=9.0Hz, 1H), 3.46-3.55 (m, 3H), 2.77 (dd, J=16, 4. 2Hz, 1H), 2.61 (d, J=16Hz, 1H)

13C-NMR(150MHz,DO-acetone-d6(9:1)):δ175.63,156.00,155.73,155.52,145.79,144.68,134.49,119.20,117.03,114.90,101.52,99.97,96.23,95.67,78.27,76.72,75.59,73.05,72.13,65.92,27.76 13 C-NMR (150 MHz, D 2 O-acetone-d6 (9:1)): δ175.63, 156.00, 155.73, 155.52, 145.79, 144.68, 134.49, 119 .20, 117.03, 114.90, 101.52, 99.97, 96.23, 95.67, 78.27, 76.72, 75.59, 73.05, 72.13, 65.92 ,27.76

HRMS calcd. for C212212Na [M+Na]:489.1003;found:489.1023 HRMS calcd. for C21H22O12Na + [M+Na] + : 489.1003 ;found: 489.1023

比較例
下記反応スキームに示す方法で、実施例1(1)で得られた化合物6からカテキン硫酸抱合体の合成を試みた。各工程の反応条件を併せて示す。
Comparative Example Synthesis of a catechin sulfate conjugate was attempted from Compound 6 obtained in Example 1 (1) by the method shown in the reaction scheme below. The reaction conditions for each step are also shown.

Figure 0007352596000017
Figure 0007352596000017

<反応条件>
(a)BnBr,NaH,DMF,2時間、室温,81%
アルゴン雰囲気下、50mL丸底フラスコに化合物6(216mg、0.65mmol)をとり、N,N-ジメチルホルムアミド(5mL)を加え撹拌し、澄明な溶液を得た。続いて、60%油性水素化ナトリウム(131mg、3.2mmol)を-50℃メタノール溶液での冷却下で加え、15分間撹拌後、臭化ベンジル(388μL、3.2mmol)を滴下し、室温まで昇温し2時間撹拌した。反応後、氷浴での冷却下1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(6:1、v/v))により精製し、白いアモルファスとして化合物18(366mg、0.53mmol、66%)を得た。
<Reaction conditions>
(a) BnBr, NaH, DMF, 2 hours, room temperature, 81%
Compound 6 (216 mg, 0.65 mmol) was placed in a 50 mL round bottom flask under an argon atmosphere, and N,N-dimethylformamide (5 mL) was added and stirred to obtain a clear solution. Subsequently, 60% oily sodium hydride (131 mg, 3.2 mmol) was added under cooling with -50 °C methanol solution, and after stirring for 15 minutes, benzyl bromide (388 μL, 3.2 mmol) was added dropwise, and the temperature was allowed to rise to room temperature. The temperature was raised and the mixture was stirred for 2 hours. After the reaction, 1 mol/L hydrochloric acid was added while cooling in an ice bath to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (6:1, v/v)) to obtain Compound 18 (366 mg, 0.53 mmol, 66%) as a white amorphous.

(b)Pd(Ph,Mor,THF,30分,室温,quant.
アルゴン雰囲気下、100mL丸底フラスコに化合物18(350mg、0.50mmol)とテトラキストリフェニルホスフィンパラジウム(292mg、0.25mmol)をとり、脱水テトラヒドロフラン(10mL)を加え撹拌し、澄明な溶液を得た。続いて、モルホリン(91μL、1.00mmol)を室温で加え、1時間撹拌した。反応後、酢酸エチル(20mL)で希釈し、1mol/L塩酸を加え、反応液を酸性にすることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(5:1、v/v))により精製し、白いアモルファスとして化合物19(330mg、0.50mmol、quant.)を得た。
(b) Pd(Ph 3 ) 4 , Mor, THF, 30 minutes, room temperature, quant.
Under an argon atmosphere, compound 18 (350 mg, 0.50 mmol) and tetrakistriphenylphosphine palladium (292 mg, 0.25 mmol) were placed in a 100 mL round bottom flask, and dehydrated tetrahydrofuran (10 mL) was added and stirred to obtain a clear solution. . Subsequently, morpholine (91 μL, 1.00 mmol) was added at room temperature and stirred for 1 hour. After the reaction, the reaction solution was diluted with ethyl acetate (20 mL), and 1 mol/L hydrochloric acid was added to make the reaction solution acidic, thereby stopping the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by silica gel chromatography (elution solvent: hexane-ethyl acetate (5:1, v/v)) to obtain Compound 19 (330 mg, 0.50 mmol, quant.) as a white amorphous.

(c)SDIS,1,2-diMeIm,DCM,19時間,室温,quant.
アルゴン雰囲気下、20mL丸底フラスコに化合物19(71mg、0.10mmol)とSDIS(1240mg、0.5mmol)をとり、脱水ジクロロメタン(3mL)を加え撹拌し、澄明な溶液を得た。続いて、1,2-ジメチルイミダゾール(26mg、0.25mmol)を室温で加え、1時間撹拌した。反応後、酢酸エチル(5mL)で希釈した後、水を加えることで反応を停止した。引き続き、酢酸エチルにて3回抽出、得られた有機層を飽和食塩水により洗浄、無水硫酸ナトリウムで乾燥後、エバポレーターにて溶媒を減圧蒸留した。得られた残渣を分取順相薄層クロマトグラフィー(溶出溶媒:ヘキサン-酢酸エチル(6:1、v/v))により精製し、白いアモルファスとして化合物20(86mg、0.10mmol、quant.)を得た。
(c) SDIS, 1,2-diMeIm, DCM, 19 hours, room temperature, quant.
Compound 19 (71 mg, 0.10 mmol) and SDIS (1240 mg, 0.5 mmol) were placed in a 20 mL round bottom flask under an argon atmosphere, and dehydrated dichloromethane (3 mL) was added and stirred to obtain a clear solution. Subsequently, 1,2-dimethylimidazole (26 mg, 0.25 mmol) was added at room temperature and stirred for 1 hour. After the reaction, the reaction mixture was diluted with ethyl acetate (5 mL) and water was added to stop the reaction. Subsequently, the organic layer was extracted three times with ethyl acetate, and the obtained organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and then the solvent was distilled under reduced pressure using an evaporator. The obtained residue was purified by preparative normal phase thin layer chromatography (elution solvent: hexane-ethyl acetate (6:1, v/v)) to obtain compound 20 (86 mg, 0.10 mmol, quant.) as a white amorphous. I got it.

(d)Pd/C,FANH,H,4時間,室温.61%
アルゴン雰囲気下、50mL丸底フラスコに化合物20(43mg、55μmol)とギ酸アンモニウム(56mg、0.55mmol)をとり、テトラヒドロフラン-メタノール混合液(8mL、3:1)を加え撹拌し、澄明な溶液を得た。続いて、パラジウム炭素(10mg)を室温で加え、フラスコ内を水素置換し、4時間激しく撹拌した。反応後、パラジウム炭素を濾過、テトラヒドロフラン-メタノール混合液(32mL、3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を逆相分取薄層クロマトグラフィー(溶出溶媒:水-メタノール(9:1、v/v))により精製し、白いアモルファスとして化合物14(16mg、33μmol、61%)を得た。
(d) Pd/C, FANH 4 , H 2 , 4 hours, room temperature. 61%
Under an argon atmosphere, compound 20 (43 mg, 55 μmol) and ammonium formate (56 mg, 0.55 mmol) were placed in a 50 mL round bottom flask, and a tetrahydrofuran-methanol mixture (8 mL, 3:1) was added and stirred to obtain a clear solution. Obtained. Subsequently, palladium on carbon (10 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 4 hours. After the reaction, the palladium on carbon was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. The obtained residue was purified by reverse phase preparative thin layer chromatography (elution solvent: water-methanol (9:1, v/v)) to obtain compound 14 (16 mg, 33 μmol, 61%) as a white amorphous. .

(e)Pd(OH),H,THF/MeOH,1時間,室温
アルゴン雰囲気下、50mL丸底フラスコに化合物21(16mg、33μmol)をとり、テトラヒドロフラン-メタノール混合液(8mL、3:1)を加え撹拌し、澄明な溶液を得た。続いて、水酸化パラジウム(30mg)を室温で加え、フラスコ内を水素置換し、1時間激しく撹拌した。反応後、水酸化パラジウムを濾過、テトラヒドロフラン-メタノール混合液(32mL、3:1)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を質量分析で解析を行ったところエピカテキンが得られていた。
(e) Pd(OH) 2 , H 2 , THF/MeOH, 1 hour, room temperature Under argon atmosphere, compound 21 (16 mg, 33 μmol) was placed in a 50 mL round bottom flask, and a tetrahydrofuran-methanol mixture (8 mL, 3:1 ) was added and stirred to obtain a clear solution. Subsequently, palladium hydroxide (30 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 1 hour. After the reaction, the palladium hydroxide was filtered, washed with a tetrahydrofuran-methanol mixture (32 mL, 3:1), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. When the obtained residue was analyzed by mass spectrometry, epicatechin was obtained.

(f)Pd(OH),H,AcOEt,30分,室温
アルゴン雰囲気下、50mL丸底フラスコに化合物20(219mg、0.28mmol)をとり、酢酸エチル(10mL)を加え撹拌し、澄明な溶液を得た。続いて、水酸化パラジウム(109mg)を室温で加え、フラスコ内を水素置換し、30分間激しく撹拌した。反応後、水酸化パラジウムを濾過、テトラメタノール(40mL)で洗浄、得られた有機層をエバポレーターにて溶媒を減圧蒸留した。得られた残渣を質量分析で解析を行ったところエピカテキンが得られていた。
(f) Pd(OH) 2 , H 2 , AcOEt, 30 minutes, room temperature Under argon atmosphere, compound 20 (219 mg, 0.28 mmol) was placed in a 50 mL round-bottomed flask, and ethyl acetate (10 mL) was added and stirred to give a clear solution. A solution was obtained. Subsequently, palladium hydroxide (109 mg) was added at room temperature, the inside of the flask was replaced with hydrogen, and the mixture was vigorously stirred for 30 minutes. After the reaction, the palladium hydroxide was filtered, washed with tetramethanol (40 mL), and the solvent was distilled off under reduced pressure from the resulting organic layer using an evaporator. When the obtained residue was analyzed by mass spectrometry, epicatechin was obtained.

すなわち、化合物6の3位水酸基を含むベンジル保護を行い、その後、アリル基の脱保護と硫酸ユニットを導入し、脱保護検討を行ったが、通常の脱保護条件では、3位ベンジル基が脱保護が困難であった。そこで、より高活性な水酸化パラジウムを用いたところ、硫酸基が脱離し、エピカテキンが得られた。また、化合物20に対して文献で報告(J. Nat. Prod. 2013, 76, 157-169)されている条件で実施した場合においても、同様な結果が得られた。
That is, the benzyl group containing the 3-position hydroxyl group of compound 6 was protected, and then the allyl group was deprotected and a sulfuric acid unit was introduced to investigate deprotection. However, under normal deprotection conditions, the 3-position benzyl group Protection was difficult. Therefore, when more active palladium hydroxide was used, the sulfate group was eliminated and epicatechin was obtained. Similar results were also obtained when compound 20 was carried out under the conditions reported in the literature (J. Nat. Prod. 2013, 76, 157-169).

Claims (3)

下記式(I):
Figure 0007352596000018
で表されるカテキン化合物の3′位又は4′位の水酸基をアリル化して下記式(II):
Figure 0007352596000019
〔式中、R1a及びR2aはいずれか一方が水素原子で他方がアリル基を示す。〕
で表されるアリル化カテキン化合物とし、次いでフェノール性水酸基をベンジル化して下記式(III):
Figure 0007352596000020
〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示す。〕
で表される化合物とし、次いで残余の水酸基をベンジルオキシカルボニル化する、下記式(IV):
Figure 0007352596000021
〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示す。〕
で表されるアリル化カテキン保護誘導体の製造方法。
The following formula (I):
Figure 0007352596000018
The hydroxyl group at the 3' or 4' position of the catechin compound represented by is allylated to form the following formula (II):
Figure 0007352596000019
[In the formula, one of R 1a and R 2a represents a hydrogen atom and the other represents an allyl group. ]
The phenolic hydroxyl group is then benzylated to form an allylated catechin compound represented by the following formula (III):
Figure 0007352596000020
[In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group. ]
A compound represented by the following formula (IV) is obtained, and then the remaining hydroxyl group is benzyloxycarbonylated:
Figure 0007352596000021
[In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group. ]
A method for producing an allylated catechin protected derivative represented by
請求項1記載の方法により得られた下記式(IV):
Figure 0007352596000022
〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示す。〕
で表されるアリル化カテキン保護誘導体のアリル基を脱離して下記式(V):
Figure 0007352596000023
〔式中、R1c及びR2cはいずれか一方がベンジル基で他方が水素原子を示す。〕
で表されるカテキン保護誘導体とし、次いで、硫酸化、メチル化、グルクロン酸化及びグルコシル化から選ばれる抱合反応に付し、続いて保護基を脱離する、下記式(VI):
Figure 0007352596000024
〔式中、R1d及びR2dはいずれか一方が水素原子で他方がメチル基、グルクロノシル基、グルコシル基又は-SOM(ここで、Mは水素原子、アルカリ金属原子、アルカリ土類金属原子又はアンモニウムを示す。〕
で表されるカテキン抱合体の製造方法。
The following formula (IV) obtained by the method according to claim 1:
Figure 0007352596000022
[In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group. ]
The allyl group of the allylated catechin protected derivative represented by is removed to form the following formula (V):
Figure 0007352596000023
[In the formula, one of R 1c and R 2c represents a benzyl group and the other represents a hydrogen atom. ]
A catechin protected derivative represented by the following formula (VI) is then subjected to a conjugation reaction selected from sulfation, methylation, glucuronidation and glucosylation, and then the protecting group is removed:
Figure 0007352596000024
[In the formula, one of R 1d and R 2d is a hydrogen atom and the other is a methyl group, glucuronosyl group, glucosyl group, or -SO 3 M (here, M is a hydrogen atom, an alkali metal atom, an alkaline earth metal atom) Or indicates ammonium.]
A method for producing a catechin conjugate represented by
下記一般式(IV)で表される化合物又は一般式(V)で表される化合物
Figure 0007352596000025
〔式中、R1b及びR2bはいずれか一方がベンジル基で他方がアリル基を示し、R1c及びR2cはいずれか一方がベンジル基で他方が水素原子を示す。〕
A compound represented by the following general formula (IV) or a compound represented by the general formula (V).
Figure 0007352596000025
[In the formula, one of R 1b and R 2b represents a benzyl group and the other represents an allyl group, and one of R 1c and R 2c represents a benzyl group and the other represents a hydrogen atom. ]
JP2021092255A 2021-06-01 2021-06-01 Method for producing catechin conjugate Active JP7352596B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021092255A JP7352596B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate
PCT/JP2022/022377 WO2022255417A1 (en) 2021-06-01 2022-06-01 Method for producing catechin conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021092255A JP7352596B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate

Publications (2)

Publication Number Publication Date
JP2022184416A JP2022184416A (en) 2022-12-13
JP7352596B2 true JP7352596B2 (en) 2023-09-28

Family

ID=84324179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021092255A Active JP7352596B2 (en) 2021-06-01 2021-06-01 Method for producing catechin conjugate

Country Status (2)

Country Link
JP (1) JP7352596B2 (en)
WO (1) WO2022255417A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467426A (en) 2013-09-27 2013-12-25 大连医科大学 Quercetin hydrocarbylation derivative and preparation method and application thereof
JP2014521702A (en) 2011-08-05 2014-08-28 カーデロ セラピューティクス インコーポレイテッド Flavonoid compounds
CN104327034A (en) 2014-09-30 2015-02-04 浙江大学 Selective preparation method for 5-site and 7-site ester catechin molecules

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521702A (en) 2011-08-05 2014-08-28 カーデロ セラピューティクス インコーポレイテッド Flavonoid compounds
CN103467426A (en) 2013-09-27 2013-12-25 大连医科大学 Quercetin hydrocarbylation derivative and preparation method and application thereof
CN104327034A (en) 2014-09-30 2015-02-04 浙江大学 Selective preparation method for 5-site and 7-site ester catechin molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, Mingbao et al.,Chemical Synthesis and Characterization of Epicatechin Glucuronides and Sulfates: Bioanalytical Stan,Journal of Natural Products,2013年01月28日,Volume 76, Issue2,pp. 157-169

Also Published As

Publication number Publication date
WO2022255417A1 (en) 2022-12-08
JP2022184416A (en) 2022-12-13

Similar Documents

Publication Publication Date Title
Akai et al. Total synthesis of (−)-Tetrodotoxin from D-glucose: a new route to multi-functionalized cyclitol employing the ferrier (II) reaction toward (−)-Tetrodotoxin
AU751874B2 (en) Novel intermediates, process for preparing macrolide antibiotic agent therefrom
CN115485269A (en) Ring-closure synthesis of macrocyclic MCL-1 inhibitor intermediates
CA3109107C (en) Preparation of intermediate useful for synthesis of a diphenylmethane derivative for use as a sglt inhibitor
CA2791660A1 (en) Process for producing pyripyropene derivatives
JP7352596B2 (en) Method for producing catechin conjugate
EP0581215B1 (en) A method of preparing (3R,4R)-3-Hydroxy-4-Hydroxymethyl-4-butanolide
AU630501B2 (en) Epiopodophyllotoxin altroside derivatives
JP7379415B2 (en) Method for producing catechin conjugate
WO2001064701A1 (en) Process for preparing flavonoids
Guazzelli et al. Lactose as an inexpensive starting material for the preparation of aldohexos-5-uloses: Synthesis of l-ribo and d-lyxo derivatives
Rathjens et al. Carbohydrate-based aza-macrocycles by Richman-Atkins cyclization of glucopyranose precursors
Matsumoto et al. Short Synthesis of (3S, 4R)-and (3R, 4R)-3-Hydroxy-4-hydroxymethyl-4-butanolides, Two Lactones from Levoglucosenone.
JP5078108B2 (en) Sugar donor
KR100556335B1 (en) 6r-3,6-dideoxy-l-arabino-hexopyranosyl heptanoic acid, preparation process for the same and dauer effect thereof
HU198505B (en) Process for producing antitumour anthracycline glycosides
Hara et al. Synthesis of methyl 4-deoxy-3-C-[(S)-1, 2-dihydroxyethyl]-α-d-xylo-hexopyranoside and methyl 2, 2′-anhydro-3-C-[(S)-1, 2-dihydroxyethyl]-α-d-glucopyranoside derivatives
JP3063943B2 (en) Novel 16-membered ring macrolide derivatives having sustained antibacterial activity in plasma, intermediates for synthesizing the same and methods for producing them
Hayman et al. A stereoselective synthesis of 6, 6, 6-trifluoro-l-daunosamine and 6, 6, 6-trifluoro-l-acosamine
Liu et al. A novel free C-12 higher carbon sugar: asymmetric synthesis and reactivity with nucleophiles
JP2881495B2 (en) Pradimicin derivatives
JP7041767B2 (en) Manufacturing method of epigallocatechin gallate conjugate
CN110831583A (en) Method for preparing (S, S) -secoisolariciresinol diglucoside and (R, R) -secoisolariciresinol diglucoside
Matsuda et al. Syntheses of a partially benzylated derivative of the anhydro-d-altro-heptulose found in Coriaria japonica A and of its analogs
AU1213999A (en) Quinolinone glycoside, production process, and anti-allergic agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230915

R151 Written notification of patent or utility model registration

Ref document number: 7352596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151