JP7378644B2 - Zero-phase current transformer equilibrium characteristics test equipment - Google Patents

Zero-phase current transformer equilibrium characteristics test equipment Download PDF

Info

Publication number
JP7378644B2
JP7378644B2 JP2022569352A JP2022569352A JP7378644B2 JP 7378644 B2 JP7378644 B2 JP 7378644B2 JP 2022569352 A JP2022569352 A JP 2022569352A JP 2022569352 A JP2022569352 A JP 2022569352A JP 7378644 B2 JP7378644 B2 JP 7378644B2
Authority
JP
Japan
Prior art keywords
zero
current transformer
phase current
wiring
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022569352A
Other languages
Japanese (ja)
Other versions
JPWO2022130481A1 (en
Inventor
仁 米田
俊彦 宮内
勇治 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022130481A1 publication Critical patent/JPWO2022130481A1/ja
Application granted granted Critical
Publication of JP7378644B2 publication Critical patent/JP7378644B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Transformers For Measuring Instruments (AREA)

Description

本願は、零相変流器の平衡特性試験装置に関するものである。 The present application relates to a zero-phase current transformer balance characteristic testing device.

地絡が発生したときの零相電流を検出する零相変流器は、地絡電流によって生じる貫通導体の電流の不平衡を検出して二次電流を出力させている。しかしながら、零相変流器自身が特性として持っている不平衡な成分が大きい場合は、零相変流器の一次側に平衡な電流を入力した場合にも二次電流が発生することになり、誤検出の原因となる。そこで、零相変流器の一次側に定格電流の数倍の平衡電流を通電し、二次電流の大きさが規定値以下であることを確認する平衡特性試験が行われる。零相変流器の平衡特性試験は、例えば、電流源に接続された電線を零相変流器の貫通穴に一往復分を貫通させ、電線にあらかじめ定められた平衡電流を通電し、二次電流の出力を測定することにより行われる(例えば、特許文献1の第4図を参照)。 A zero-sequence current transformer that detects a zero-sequence current when a ground fault occurs detects an unbalance of current in a through conductor caused by the ground fault current, and outputs a secondary current. However, if the zero-phase current transformer itself has a large unbalanced component, a secondary current will be generated even if a balanced current is input to the primary side of the zero-phase current transformer. , causing false positives. Therefore, a balance characteristic test is performed in which a balance current several times the rated current is passed through the primary side of a zero-phase current transformer to confirm that the magnitude of the secondary current is below a specified value. A balance characteristic test of a zero-phase current transformer can be performed, for example, by passing a wire connected to a current source through the through hole of a zero-phase current transformer for one round trip, passing a predetermined balance current through the wire, and then This is performed by measuring the output of the following current (see, for example, FIG. 4 of Patent Document 1).

実開平04-021980号公報Utility Model Publication No. 04-021980

大電流に対応する定格電流が大きな零相変流器の平衡特性試験には、大きな平衡電流を発生させる必要がある。大きな平衡電流を発生させるためには出力が大きな電流源が必要となり、電流源が大型になり高価になるという課題があった。 In order to test the balanced characteristics of a zero-phase current transformer with a large rated current that corresponds to a large current, it is necessary to generate a large balanced current. In order to generate a large balanced current, a current source with a large output is required, which poses the problem that the current source becomes large and expensive.

本願は、上述の課題を解決するためになされたものであり、出力が小さな電流源を用いて平衡特性試験を行うことができる零相変流器の平衡特性試験装置を提供することを目的とする。 The present application was made in order to solve the above-mentioned problems, and its purpose is to provide a zero-phase current transformer balance characteristic test device that can perform a balance characteristic test using a current source with a small output. do.

本願に開示される零相変流器の平衡特性試験装置は、零相変流器の貫通穴に複数往復分が貫通するように設置された電線と、電線に直流電流を流す電流源と、零相変流器の二次電流の大きさを測定する電流計とを備えている。 The zero-phase current transformer balance characteristic testing device disclosed in the present application includes: an electric wire installed so that a plurality of reciprocating portions pass through a through hole of a zero-phase current transformer; a current source that sends a DC current through the electric wire; and an ammeter that measures the magnitude of the secondary current of the zero-phase current transformer.

本願に開示される零相変流器の平衡特性試験装置は、零相変流器の貫通穴に複数往復分が貫通するように設置された電線と、電線に直流電流を流す電流源と、零相変流器の二次電流の大きさを測定する電流計とを備えているので、出力が小さな電流源を用いて試験を行うことができ、小型で安価な装置で試験を行うことができる。 The zero-phase current transformer balance characteristic testing device disclosed in the present application includes: an electric wire installed so that a plurality of reciprocating portions pass through a through hole of a zero-phase current transformer; a current source that sends a DC current through the electric wire; Since it is equipped with an ammeter that measures the magnitude of the secondary current of a zero-phase current transformer, tests can be performed using a current source with a small output, making it possible to perform tests with small and inexpensive equipment. can.

実施の形態1による零相変流器の平衡特性試験装置の構成を示す図である。1 is a diagram showing the configuration of a zero-phase current transformer balance characteristic testing device according to Embodiment 1. FIG. 比較例の平衡特性試験装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of an equilibrium characteristic testing device of a comparative example. 実施の形態2による零相変流器の平衡特性試験装置の構成を示す図である。FIG. 3 is a diagram showing the configuration of a zero-phase current transformer balance characteristic testing device according to a second embodiment. 実施の形態3による零相変流器の平衡特性試験装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of a zero-phase current transformer balance characteristic testing device according to Embodiment 3; 実施の形態3において電線に流れる電流の方向の一例を示す図である。7 is a diagram illustrating an example of the direction of current flowing through electric wires in Embodiment 3. FIG.

以下、本願を実施するための実施の形態に係る零相変流器の平衡特性試験装置について、図面を参照して詳細に説明する。なお、各図において同一符号は同一もしくは相当部分を示している。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A zero-phase current transformer balance characteristic testing device according to an embodiment of the present invention will be described in detail below with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.

実施の形態1.
図1は、実施の形態1による零相変流器の平衡特性試験装置の構成を示す図である。図1において、零相変流器100は試験対象であり、零相変流器の平衡特性試験装置は、電線1、電流源2および電流計3を備えている。電線1は、零相変流器100の一次側の導線として、2往復以上の複数往復分が一組となって貫通穴に1回だけ貫通するように設置されている。図1においては、電線1は、貫通穴に2往復分が貫通するように設置されている。電流源2は、電線1の両端に電気的に接続されており、電線1に直流電流を流す。電流計3は、零相変流器100の二次電流出力端子に電気的に接続されており、零相変流器100の二次電流の大きさを測定する。図1においては、電流計3によって零相変流器100の二次電流の大きさを測定するとしたが、零相変流器100の二次電流出力端子に抵抗などの負荷を接続し、その負荷の両端の電圧を電圧計などによって測定することにより、零相変流器100の二次電流の大きさを測定してもよい。平衡特性試験においては、零相変流器100の一次側に定格電流の例えば6倍の平衡電流が流れるように電流源2から電線1に対して電流を流す。このときの電流計3によって測定された二次電流が規定値以下であるかどうかを確認する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of a zero-phase current transformer equilibrium characteristic testing device according to the first embodiment. In FIG. 1, a zero-phase current transformer 100 is a test object, and a zero-phase current transformer balance characteristic testing device includes an electric wire 1, a current source 2, and an ammeter 3. The electric wire 1 is installed as a primary-side conducting wire of the zero-phase current transformer 100 so that a plurality of reciprocations of two or more reciprocations form a set and pass through the through hole only once. In FIG. 1, the electric wire 1 is installed so that it passes through the through hole twice in two round trips. The current source 2 is electrically connected to both ends of the electric wire 1 and causes a direct current to flow through the electric wire 1. The ammeter 3 is electrically connected to the secondary current output terminal of the zero-phase current transformer 100 and measures the magnitude of the secondary current of the zero-phase current transformer 100. In FIG. 1, the magnitude of the secondary current of the zero-phase current transformer 100 is measured using the ammeter 3, but it is also possible to connect a load such as a resistor to the secondary current output terminal of the zero-phase current transformer 100 The magnitude of the secondary current of the zero-phase current transformer 100 may be measured by measuring the voltage across the load using a voltmeter or the like. In the balanced characteristic test, a current is caused to flow from the current source 2 to the electric wire 1 so that a balanced current of, for example, six times the rated current flows through the primary side of the zero-phase current transformer 100. It is checked whether the secondary current measured by the ammeter 3 at this time is below a specified value.

図2は、零相変流器の平衡特性試験装置の動作を説明するための比較例の平衡特性試験装置の構成を示す図であり、先行技術文献に示した特許文献1の第4図に対応するものである。図2に示した比較例の平衡特性試験装置を図1に示した実施の形態1による平衡特性試験装置と比べると、電線1が電線1aに、電流源2が電流源2aになっている。比較例の平衡特性試験装置の他の構成は、実施の形態1による平衡特性試験装置の構成と同じである。図1に示した実施の形態1による平衡特性試験装置では電線1の2往復分が貫通穴に貫通するように設置されているのに対して、図2に示した比較例による平衡特性試験装置では電線1aの1往復分が貫通穴に貫通するように設置されている。 FIG. 2 is a diagram showing the configuration of a comparative example of an equilibrium characteristic testing device for explaining the operation of the zero-phase current transformer equilibrium characteristic testing device. It corresponds to this. When comparing the equilibrium characteristic testing apparatus of the comparative example shown in FIG. 2 with the equilibrium characteristic testing apparatus according to the first embodiment shown in FIG. 1, the electric wire 1 is replaced with an electric wire 1a, and the current source 2 is replaced with a current source 2a. The other configuration of the equilibrium characteristic testing device of the comparative example is the same as the configuration of the equilibrium characteristic testing device according to the first embodiment. In the equilibrium characteristic test device according to the first embodiment shown in FIG. 1, the electric wire 1 is installed so that two round trips pass through the through hole, whereas the equilibrium characteristic test device according to the comparative example shown in FIG. In this case, the electric wire 1a is installed so that one round trip passes through the through hole.

次に、実施の形態1による零相変流器の平衡特性試験装置の動作について、比較例の平衡特性試験装置の動作と比較しながら説明する。零相変流器の平衡特性試験においては、零相変流器の一次側に、例えば定格電流の6倍の平衡電流を通電する必要がある。平衡特性試験を行う零相変流器の定格電流が100Aであった場合、零相変流器の一次側に600Aの平衡電流を通電する必要がある。図2に示す比較例の平衡特性試験装置においては、例えば、電流源2aから電線1aに沿って示した矢印の方向にI[A]の電流を流した場合、電線1aの1往復分が貫通穴に貫通するように設置されているので、貫通穴には、図2の手前から奥の方向に1回分のI[A]の電流が流れ、図2の奥から手前の方向に1回分のI[A]の電流が流れる。これにより、零相変流器100の一次側にI[A]の平衡電流が通電されることになる。よって、例えば、零相変流器の一次側に600Aの平衡電流を通電したい場合は、電流源2aとして600Aを流せばよいことになる。 Next, the operation of the zero-phase current transformer equilibrium characteristic testing apparatus according to the first embodiment will be described while comparing it with the operation of the equilibrium characteristic testing apparatus of the comparative example. In a balanced characteristic test of a zero-phase current transformer, it is necessary to supply a balanced current of, for example, six times the rated current to the primary side of the zero-phase current transformer. If the rated current of a zero-phase current transformer that performs a balanced characteristic test is 100 A, it is necessary to supply a balanced current of 600 A to the primary side of the zero-phase current transformer. In the equilibrium characteristic test device of the comparative example shown in FIG. 2, for example, when a current of I [A] is passed from the current source 2a in the direction of the arrow shown along the electric wire 1a, one round trip of the electric wire 1a penetrates. Since it is installed to penetrate the hole, one current of I[A] flows through the through hole from the front to the back in Fig. 2, and one current of I [A] flows from the back to the front in Fig. 2. A current of I[A] flows. As a result, a balanced current of I[A] is applied to the primary side of the zero-phase current transformer 100. Therefore, for example, if it is desired to supply a balanced current of 600 A to the primary side of a zero-phase current transformer, it is sufficient to supply 600 A as the current source 2a.

一方、図1に示す実施の形態1による零相変流器の平衡特性試験装置においては、例えば、電流源2から電線1に沿って示した矢印の方向にI[A]の電流を流した場合、電線1の2往復分が貫通穴に貫通するように設置されているので、貫通穴には、図1の手前から奥の方向に2回分のI[A]の電流が流れ、図1の奥から手前の方向に2回分のI[A]の電流が流れる。これにより、零相変流器100の一次側にI*2[A]の平衡電流が通電されることになる。よって、例えば、零相変流器の一次側に600Aの平衡電流を通電したい場合は、電流源2として300Aを流せばよいことになる。零相変流器の一次側に600Aの平衡電流を通電する平衡特性試験を行う場合、比較例の平衡特性試験装置では600Aの電流を発生する電流源2aが必要であったが、実施の形態1による平衡特性試験装置では、比較例の半分の300Aの電流を発生する出力が小さな電流源2があればよいことになる。電流源の大きさは出力できる電流の大きさによるので、実施の形態1による電流源2は比較例による電流源2aに比べて小型のものを使用することができる。また、これにともない、実施の形態1による電流源2は、比較例による電流源2aに比べて安価なものを使用することできる。 On the other hand, in the zero-phase current transformer balance characteristic testing device according to the first embodiment shown in FIG. In this case, the electric wire 1 is installed so that two round trips pass through the through hole, so a current of I [A] for two times flows through the through hole from the front to the back in Fig. 1. A current of I[A] flows twice from the back to the front. As a result, a balanced current of I*2 [A] is applied to the primary side of the zero-phase current transformer 100. Therefore, for example, if it is desired to supply a balanced current of 600 A to the primary side of a zero-phase current transformer, 300 A may be supplied as the current source 2. When conducting a balanced characteristic test in which a balanced current of 600 A is applied to the primary side of a zero-phase current transformer, the balanced characteristic test device of the comparative example requires a current source 2a that generates a current of 600 A. In the balanced characteristic test device according to No. 1, it is sufficient to have a current source 2 with a small output that generates a current of 300 A, which is half that of the comparative example. Since the size of the current source depends on the amount of current that can be output, the current source 2 according to the first embodiment can be smaller than the current source 2a according to the comparative example. Further, in accordance with this, the current source 2 according to the first embodiment can be cheaper than the current source 2a according to the comparative example.

また、実施の形態1による平衡特性試験装置では、複数往復分の電線1が一組となって零相変流器100の貫通穴に1回だけ貫通するように設置されるので、平衡特性試験の試験前に電線1を貫通穴に貫通させる作業、および、試験後に電線1を貫通穴から抜き取る作業は、比較例の平衡特性試験装置と同様に非常に簡単なものである。 In addition, in the equilibrium characteristic test device according to the first embodiment, the electric wires 1 for multiple reciprocations are installed as a set so as to pass through the through hole of the zero-phase current transformer 100 only once. The work of passing the electric wire 1 through the through-hole before the test and the work of removing the electric wire 1 from the through-hole after the test are very simple as in the equilibrium characteristic test device of the comparative example.

なお、図1による説明においては、電線1は貫通穴に2往復分が貫通するように設置されているとしたが、電線1は零相変流器100の一次側の導線として貫通穴に2往復以上の複数往復分が貫通するように設置されていればよい。例えば、電線1の3往復分が貫通穴に貫通するように設置すると、電流源2からI[A]の電流を流した場合、零相変流器100の一次側にI*3[A]の平衡電流が通電されることになり、より出力が小さな電流源を用いてもよいことになる。 In the explanation with reference to FIG. 1, it was assumed that the electric wire 1 was installed so as to pass through the through hole twice in two round trips. It suffices if it is installed so that it can be penetrated by more than one round trip. For example, if the electric wire 1 is installed so that three round trips pass through the through hole, when a current of I [A] flows from the current source 2, a current of I*3 [A] is applied to the primary side of the zero-phase current transformer 100. This means that a balanced current of 1 is applied, and a current source with a smaller output may be used.

以上のように、実施の形態1による零相変流器の平衡特性試験装置は、零相変流器100の貫通穴に複数往復分が貫通するように設置された電線1と、電線1に直流電流を流す電流源2と、零相変流器100の二次電流の大きさを測定する電流計3とを備えているので、出力が小さな電流源を用いて平衡特性試験を行うことができ、電流源として小型で安価なものを用いることができる。 As described above, the zero-phase current transformer equilibrium characteristic testing device according to the first embodiment is capable of testing the electric wire 1 installed so that multiple reciprocations pass through the through hole of the zero-phase current transformer 100, and the electric wire 1 Since it is equipped with a current source 2 that flows a direct current and an ammeter 3 that measures the magnitude of the secondary current of the zero-phase current transformer 100, it is possible to perform a balanced characteristic test using a current source with a small output. Therefore, a small and inexpensive current source can be used.

実施の形態2.
図3は、実施の形態2による零相変流器の平衡特性試験装置の構成を示す図である。図3に示す実施の形態2による零相変流器の平衡特性試験装置を図1に示す実施の形態1による零相変流器の平衡特性試験装置と比較すると、複数往復分の電線1が一組となって被覆物4で覆われ一体となり、1つの一次側の導線となっている。例えば、複数往復分の電線1と樹脂などの絶縁物とを一体成形することによって、被覆物4で覆われた電線1を形成する。実施の形態2による零相変流器の平衡特性試験装置の他の構成は、実施の形態1による平衡特性試験装置の構成と同じである。
Embodiment 2.
FIG. 3 is a diagram showing the configuration of a zero-phase current transformer equilibrium characteristic testing device according to the second embodiment. Comparing the zero-phase current transformer balance characteristic test device according to the second embodiment shown in FIG. 3 with the zero-phase current transformer balance characteristic test device according to the first embodiment shown in FIG. A set of wires is covered with a covering 4 and integrated to form one primary conductor. For example, the electric wire 1 covered with the covering 4 is formed by integrally molding the electric wire 1 for multiple round trips and an insulating material such as resin. The other configuration of the zero-phase current transformer balance characteristic testing device according to the second embodiment is the same as the configuration of the balance characteristic testing device according to the first embodiment.

図3に示す実施の形態2による零相変流器の平衡特性試験装置では、電流源2から電線1に沿って示した矢印の方向にI[A]の電流を流したときに零相変流器100の一次側にI*2[A]の平衡電流が通電されることは、実施の形態1による零相変流器の平衡特性試験装置と同じである。よって、実施の形態2による零相変流器の平衡特性試験装置では、実施の形態1による零相変流器の平衡特性試験装置と同じ効果を得ることができる。さらに、図3に示す実施の形態2による零相変流器の平衡特性試験装置では、複数往復分の電線1が一組となって被覆物4で覆われ一体となっているので、電線1の取り扱いが容易となり、平衡特性試験の前に複数往復分の電線1を貫通穴に貫通させる作業、および、平衡特性試験の後に複数往復分の電線1を貫通穴から抜き取る作業が、容易となる。 In the zero-phase current transformer balance characteristic testing device according to the second embodiment shown in FIG. The fact that a balance current of I*2 [A] is applied to the primary side of the current transformer 100 is the same as in the zero-phase current transformer balance characteristic testing device according to the first embodiment. Therefore, the zero-phase current transformer equilibrium characteristic testing device according to the second embodiment can provide the same effects as the zero-phase current transformer equilibrium characteristic testing device according to the first embodiment. Furthermore, in the zero-phase current transformer balance characteristic testing device according to the second embodiment shown in FIG. It becomes easier to handle, and it becomes easier to pass the electric wire 1 for multiple round trips through the through hole before the equilibrium characteristic test, and to pull out the electric wire 1 for multiple round trips from the through hole after the equilibrium characteristic test. .

なお、図3に示す実施の形態2による零相変流器の平衡特性試験装置では、複数往復分の電線1が一組となって被覆物4で覆われ一体となっているとしたが、複数往復分の電線1が一体となっていればよく、例えば、複数往復分の電線1をクリップあるいは接着剤などで固定して一体としてもよい。 In addition, in the zero-phase current transformer balance characteristic test device according to the second embodiment shown in FIG. 3, it is assumed that the electric wires 1 for multiple reciprocations form a set and are covered with the covering 4 and are integrated. It is sufficient that the electric wires 1 for a plurality of reciprocations are integrated. For example, the electric wires 1 for a plurality of reciprocations may be fixed with a clip or adhesive to be integrated.

また、一体となった電線1を硬くて真っ直ぐな棒状に形成して貫通穴に貫通するように設置してもよい。この場合、平衡特性試験の前に複数往復分の電線1を貫通穴に貫通させる作業、および、平衡特性試験の後に複数往復分の電線1を貫通穴から抜き取る作業が、さらに容易となる。 Alternatively, the integrated electric wire 1 may be formed into a hard, straight rod shape and installed so as to pass through the through hole. In this case, it becomes easier to pass the electric wire 1 for a plurality of reciprocations through the through hole before the equilibrium characteristic test, and to extract the electric wire 1 for a plurality of reciprocations from the through hole after the equilibrium characteristic test.

以上のように、実施の形態2による零相変流器の平衡特性試験装置は、零相変流器100の貫通穴に複数往復分が貫通するように設置された電線1と、電線1に直流電流を流す電流源2と、零相変流器100の二次電流の大きさを測定する電流計3とを備え、複数往復分の電線1が一体となっているので、出力が小さな電流源を用いて平衡特性試験を行うことができ、電流源として小型のものを用いることができる。さらに、平衡特性試験の前に複数往復分の電線1を貫通穴に貫通させる作業、および、平衡特性試験の後に複数往復分の電線1を貫通穴から抜き取る作業が、容易となる。 As described above, the zero-phase current transformer equilibrium characteristic testing device according to the second embodiment is capable of testing the electric wire 1 installed so that a plurality of reciprocating portions pass through the through hole of the zero-phase current transformer 100, and the electric wire 1. It is equipped with a current source 2 that sends a direct current and an ammeter 3 that measures the magnitude of the secondary current of the zero-phase current transformer 100, and since the electric wire 1 for multiple round trips is integrated, the output is small current. Balance characteristic tests can be performed using a current source, and a small current source can be used. Furthermore, it becomes easier to pass the electric wire 1 for a plurality of reciprocations through the through hole before the equilibrium characteristic test, and to pull out the electric wire 1 for a plurality of reciprocations from the through hole after the equilibrium characteristic test.

実施の形態3.
図4は、実施の形態3による零相変流器の平衡特性試験装置の構成を示す図である。図4に示す実施の形態3による零相変流器の平衡特性試験装置を図1に示す実施の形態1による零相変流器の平衡特性試験装置と比較すると、電流源2に近い電線の折り返し部分に第一の配線切り替え器5を備え、電流源2から遠い電線の折り返し部分に第二の配線切り替え器6を備えている。また、第一の配線切り替え器5および第二の配線切り替え器6に対して切り替え信号線8を通して内部配線の切り替えを指示する切り替え指示器7を備えている。
Embodiment 3.
FIG. 4 is a diagram showing the configuration of a zero-phase current transformer equilibrium characteristic testing device according to the third embodiment. Comparing the zero-phase current transformer balance characteristic test device according to the third embodiment shown in FIG. 4 with the zero-phase current transformer balance characteristic test device according to the first embodiment shown in FIG. A first wiring switch 5 is provided at the folded part, and a second wiring switch 6 is provided at the folded part of the wire far from the current source 2. It also includes a switching indicator 7 that instructs the first wiring switching device 5 and the second wiring switching device 6 to switch internal wiring through a switching signal line 8.

電流源2に接続された電流源電線9aが第一の配線切り替え器5の内部配線を通して貫通電線10aに接続され、貫通電線10aが零相変流器の貫通穴を貫通した後に第二の配線切り替え器6の内部配線を通して貫通電線10bに接続され、貫通電線10bが零相変流器の貫通穴を貫通した後に第一の配線切り替え器5の内部配線を通して貫通電線10cに接続され、貫通電線10cが零相変流器の貫通穴を貫通した後に第二の配線切り替え器6の内部配線を通して貫通電線10dに接続され、貫通電線10dが零相変流器の貫通穴を貫通した後に第一の配線切り替え器5の内部配線を通して電流源電線9bに接続され、電流源電線9bが電流源2に接続されている。これにより、電流源電線9a、9b、第一の配線切り替え器5、貫通電線10a、10b、10c、10d、および、第二の配線切り替え器6が、零相変流器の貫通穴に2往復分が貫通するように設置された電線を構成している。実施の形態3による零相変流器の平衡特性試験装置の他の構成は、実施の形態1による平衡特性試験装置の構成と同じである。 The current source wire 9a connected to the current source 2 is connected to the through wire 10a through the internal wiring of the first wiring switch 5, and after the through wire 10a passes through the through hole of the zero-phase current transformer, the second wire is connected to the current source wire 9a connected to the current source 2. The through wire 10b is connected to the through wire 10b through the internal wiring of the switch 6, and after passing through the through hole of the zero-phase current transformer, the through wire 10b is connected to the through wire 10c through the internal wiring of the first wiring switch 5. 10c passes through the through hole of the zero-phase current transformer and then connects to the through wire 10d through the internal wiring of the second wiring switch 6, and after the through wire 10d passes through the through hole of the zero phase current transformer, it connects to the first through wire 10d. The current source wire 9b is connected to the current source 2 through the internal wiring of the wiring switch 5. The current source wire 9b is connected to the current source 2. As a result, the current source wires 9a, 9b, the first wiring switch 5, the through wires 10a, 10b, 10c, 10d, and the second wiring switch 6 are inserted into the through hole of the zero-phase current transformer two times back and forth. It consists of electric wires that are installed so that they pass through the area. The other configuration of the zero-phase current transformer balance characteristic testing device according to the third embodiment is the same as the configuration of the balance characteristic testing device according to the first embodiment.

図5は、実施の形態3による零相変流器の平衡特性試験装置における貫通電線10a、10b、10c、10dの配置の一例を示す図であり、電流が流れる方向が異なる4つの状態を示している。図5に示した図は、図4において貫通電線10a、10b、10c、10dが零相変流器100の貫通穴を貫通している部分を電流源2の側から見た断面図であり、貫通電線10a、10b、10c、10dが零相変流器100の貫通穴を貫通している部分において正方形になるように配置されている。図5の左上の図は、第一の配線切り替え器5および第二の配線切り替え器6のそれぞれの内部配線が図4の点線で示したような状態のときに貫通電線10a、10b、10c、10dに流れる電流の方向を示したものである。貫通電線10aおよび貫通電線10cは、図5における手前から奥の方向、すなわち図4において電流源2から離れる方向の電流が流れており、貫通電線10bおよび貫通電線10dは、図5における奥から手前の方向、すなわち図4において電流源2に近づく方向の電流が流れている。 FIG. 5 is a diagram showing an example of the arrangement of the through wires 10a, 10b, 10c, and 10d in the zero-phase current transformer balance characteristic testing device according to the third embodiment, and shows four states in which the current flows in different directions. ing. The diagram shown in FIG. 5 is a cross-sectional view of the portion where the through-holes 10a, 10b, 10c, and 10d pass through the through-holes of the zero-phase current transformer 100 in FIG. 4, as seen from the current source 2 side. The through wires 10a, 10b, 10c, and 10d are arranged so as to form a square in the portion where they pass through the through hole of the zero-phase current transformer 100. The upper left diagram in FIG. 5 shows the through wires 10a, 10b, 10c, 10d shows the direction of the current flowing through 10d. Current flows through the through wires 10a and 10c from the front to the back in FIG. 5, that is, in the direction away from the current source 2 in FIG. 4, and through the through wires 10b and 10d, from the back to the front in FIG. A current flows in the direction shown in FIG. 4, that is, in the direction approaching the current source 2 in FIG.

第一の配線切り替え器5および第二の配線切り替え器6は、切り替え指示器7からの指示により、図5に示された電流が流れる方向が異なる4つの状態のいずれかに切り替わるように、第一の配線切り替え器5および第二の配線切り替え器6の内部配線の接続が変更される。例えば、第一の配線切り替え器5および第二の配線切り替え器6は、切り替え指示器7から切り替え信号線8を通して配線の切り替え指示が伝えられると、図5に示された4つの状態を時計回りに切り替わるように、第一の配線切り替え器5および第二の配線切り替え器6の内部配線の接続が変更される。図5の左上の状態が図5の右上の状態に変わると、貫通電線10a、10b、10c、10dに流れる平衡電流は貫通穴の中で時計回りに90度回転したような状態になる。図5の「左上」「右上」「右下」「左下」の順番で貫通電線10a、10b、10c、10dに流れる電流の方向を切り替えると、貫通電線10a、10b、10c、10dに流れる平衡電流は貫通穴の中で時計回りに90度ずつ回転する。 The first wiring switch 5 and the second wiring switch 6 are configured to switch to one of four states in which the current flows as shown in FIG. 5 in accordance with instructions from the switching indicator 7. The internal wiring connections of the first wiring switch 5 and the second wiring switch 6 are changed. For example, when a wiring switching instruction is transmitted from the switching indicator 7 through the switching signal line 8, the first wiring switching device 5 and the second wiring switching device 6 switch between the four states shown in FIG. The connections of the internal wiring of the first wiring switch 5 and the second wiring switch 6 are changed so as to switch. When the upper left state of FIG. 5 changes to the upper right state of FIG. 5, the balanced currents flowing through the through wires 10a, 10b, 10c, and 10d will be in a state as if they were rotated 90 degrees clockwise within the through hole. When the direction of the current flowing through the through wires 10a, 10b, 10c, and 10d is switched in the order of "upper left," "upper right," "lower right," and "lower left" in FIG. rotates 90 degrees clockwise within the through hole.

平衡特性試験においては、零相変流器100の貫通穴を流れる平衡電流の大きさが同じであっても、零相変流器100の貫通穴を通る平衡電流の位置によって零相変流器100の二次電流の大きさが変わることがある。そのため、平衡特性試験においては、例えば、零相変流器100の貫通穴を通る電線を回転させながら二次電流を測定する、あるいは、零相変流器そのものを回転させながら二次電流を測定し、測定した二次電流の中で最も大きな値を二次電流の最終的な測定値としていた。 In the balance characteristic test, even if the magnitude of the balance current flowing through the through hole of the zero-phase current transformer 100 is the same, the position of the balance current passing through the through-hole of the zero-phase current transformer 100 determines whether the zero-phase current transformer The magnitude of the 100 secondary currents may vary. Therefore, in a balanced characteristic test, for example, the secondary current is measured while rotating the electric wire passing through the through hole of the zero-phase current transformer 100, or the secondary current is measured while rotating the zero-phase current transformer itself. However, the largest value among the measured secondary currents was taken as the final measured value of the secondary current.

実施の形態3による零相変流器の平衡特性試験装置では、切り替え指示器7からの指示によって図5の「左上」「右上」「右下」「左下」に示した4つの状態のそれぞれで二次電流を測定し、得られた4つの二次電流の中で最も大きな値を二次電流の最終的な測定値とする。なお、二次電流を測定するときは、切り替え信号線8に電流を流さないものとする。このように、切り替え指示器7からの指示によって零相変流器100の貫通穴を通る電流の方向を変えることができるため、平衡特性試験装置あるいは零相変流器100を物理的に動かすことなく平衡電流の位置を変更して二次電流を測定することができる。これにより、零相変流器100の貫通穴を通る電線を回転させる場合、あるいは、零相変流器そのものを回転させる場合に比べて、より短時間で平衡特性試験を行うことができる。 In the zero-phase current transformer balance characteristic testing device according to the third embodiment, each of the four states shown in "upper left", "upper right", "lower right", and "lower left" in FIG. The secondary current is measured, and the largest value among the four obtained secondary currents is taken as the final measured value of the secondary current. Note that when measuring the secondary current, no current is allowed to flow through the switching signal line 8. In this way, since the direction of the current passing through the through hole of the zero-phase current transformer 100 can be changed by the instruction from the switching indicator 7, it is not necessary to physically move the balance characteristic test device or the zero-phase current transformer 100. The secondary current can be measured without changing the position of the equilibrium current. Thereby, the balance characteristic test can be performed in a shorter time than when rotating the electric wire passing through the through hole of the zero-phase current transformer 100 or when rotating the zero-phase current transformer itself.

なお、図4による説明において、電線が貫通穴に2往復分が貫通するように設置されているとしたが、電線は零相変流器100の一次側の導線として貫通穴に2往復以上の複数往復分が貫通するように設置されていればよいことは、実施の形態1と同様である。よって、図5による説明において、貫通電線10a、10b、10c、10dが零相変流器100の貫通穴を貫通している部分において正方形になるように配置されているとしたが、2往復以上の複数往復分が貫通する貫通電線が配置されていればよい。さらに、図5の説明において、図5に示された4つの状態を時計回りに切り替わるように、第一の配線切り替え器5および第二の配線切り替え器6の内部配線の接続が変更されるとしたが、電流源電線9a、9b、第一の配線切り替え器5、4つ以上の偶数本の貫通電線、および、第二の配線切り替え器6が、零相変流器の貫通穴に2往復以上の複数往復分が貫通するように設置された電線を構成するように接続された状態で、零相変流器100の貫通穴を通る貫通電線の電流の方向が変わるように第一の配線切り替え器5および第二の配線切り替え器6の内部配線の接続が変更されるものであれば、どのようなものでもよい。 In addition, in the explanation with reference to FIG. 4, it was assumed that the electric wire is installed so that it passes through the through hole for two round trips. As in the first embodiment, it is only necessary that the hole be installed so as to pass through a plurality of reciprocations. Therefore, in the explanation with reference to FIG. 5, it is assumed that the through wires 10a, 10b, 10c, and 10d are arranged so as to form a square in the portion where they pass through the through hole of the zero-phase current transformer 100. It is only necessary to arrange a through-wire that penetrates through multiple round trips. Furthermore, in the description of FIG. 5, if the connections of the internal wiring of the first wiring switch 5 and the second wiring switch 6 are changed so that the four states shown in FIG. 5 are switched clockwise. However, the current source wires 9a, 9b, the first wiring switch 5, four or more even-numbered through wires, and the second wiring switch 6 are connected to the through hole of the zero-phase current transformer two times back and forth. The first wiring is connected so as to form an electric wire installed so that the above-mentioned multiple round trips pass through, and the direction of the current of the through-hole electric wire passing through the through-hole of the zero-phase current transformer 100 changes. Any type of device may be used as long as the internal wiring connections of the switch 5 and the second wiring switch 6 can be changed.

さらに、図4による説明において、切り替え指示器7は、第一の配線切り替え器5および第二の配線切り替え器6に対して切り替え信号線8を通して内部配線の切り替えを指示するとしたが、第一の配線切り替え器5および第二の配線切り替え器6のそれぞれに対して内部配線の切り替えを指示できればどのような方法でもよい。 Furthermore, in the explanation with reference to FIG. 4, it is assumed that the switching instruction device 7 instructs the first wiring switching device 5 and the second wiring switching device 6 to switch the internal wiring through the switching signal line 8. Any method may be used as long as it can instruct each of the wiring switching device 5 and the second wiring switching device 6 to switch the internal wiring.

以上のように、実施の形態3による零相変流器の平衡特性試験装置は、零相変流器100の貫通穴を貫通する複数の貫通電線10a、10b、10c、10dと、電流源2および貫通電線10a、10b、10c、10dの一方の端部に接続された第一の配線切り替え器5と、貫通電線10a、10b、10c、10dの他方の端部に接続された第二の配線切り替え器6と、第一の配線切り替え器5および第二の配線切り替え器6に内部配線の切り替えを指示する切り替え指示器7とを備え、少なくとも第一の配線切り替え器5の内部配線と、貫通電線10a、10b、10c、10dと、第二の配線切り替え器6の内部配線とが、零相変流器100の貫通穴に複数往復分が貫通するように設置された電線を構成しており、切り替え指示器7の指示により貫通穴を貫通する複数の貫通電線10a、10b、10c、10dのいずれかに流れる電流の方向が変わるので、平衡特性試験装置あるいは零相変流器100を物理的に動かすことなく平衡電流の位置を変更して二次電流を測定することができ、短時間で平衡特性試験を行うことができる。 As described above, the zero-phase current transformer balance characteristic testing device according to the third embodiment includes a plurality of through wires 10a, 10b, 10c, and 10d passing through the through hole of the zero-phase current transformer 100, and a current source 2. and a first wiring switch 5 connected to one end of the through wires 10a, 10b, 10c, and 10d, and a second wiring connected to the other end of the through wires 10a, 10b, 10c, and 10d. It includes a switch 6 and a switching indicator 7 that instructs the first wiring switch 5 and the second wiring switch 6 to switch the internal wiring, and at least the internal wiring of the first wiring switch 5 and the through-hole The electric wires 10a, 10b, 10c, and 10d and the internal wiring of the second wiring switch 6 constitute an electric wire installed so that a plurality of reciprocations pass through the through hole of the zero-phase current transformer 100. , the direction of the current flowing through one of the plurality of through wires 10a, 10b, 10c, and 10d passing through the through hole changes according to the instruction from the switching indicator 7. It is possible to measure the secondary current by changing the position of the equilibrium current without having to move it, and it is possible to perform an equilibrium characteristic test in a short time.

本願は、様々な例示的な実施の形態が記載されているが、1つまたは複数の実施の形態に記載された様々な特徴、態様、および機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments, various features, aspects, and functions described in one or more embodiments may be limited to the application of particular embodiments. Rather, they are applicable to the embodiments alone or in various combinations.
Therefore, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.

1、1a 電線、2、2a 電流源、3 電流計、4 被覆物、5 第一の配線切り替え器、6 第二の配線切り替え器、7 切り替え指示器、8 切り替え信号線、9a、9b 電流源電線、10a、10b、10c、10d 貫通電線、100 零相変流器。 1, 1a electric wire, 2, 2a current source, 3 ammeter, 4 covering, 5 first wiring switch, 6 second wiring switch, 7 switching indicator, 8 switching signal line, 9a, 9b current source Electric wires, 10a, 10b, 10c, 10d Penetrating wires, 100 Zero-phase current transformer.

Claims (4)

零相変流器の貫通穴に複数往復分が貫通するように設置された電線と、
前記電線に直流電流を流す電流源と、
前記零相変流器の二次電流の大きさを測定する電流計とを備えたことを特徴とする零相変流器の平衡特性試験装置。
An electric wire installed so that multiple round trips pass through the through hole of the zero-phase current transformer,
a current source that causes a direct current to flow through the electric wire;
A balance characteristic testing device for a zero-phase current transformer, comprising: an ammeter for measuring the magnitude of the secondary current of the zero-phase current transformer.
複数往復分の前記電線が一体となっていることを特徴とする請求項1に記載の零相変流器の平衡特性試験装置。 The zero-phase current transformer balance characteristic testing device according to claim 1, wherein the electric wire for a plurality of reciprocations is integrated. 一体となった前記電線は真っ直ぐな棒状であることを特徴とする請求項2に記載の零相変流器の平衡特性試験装置。 3. The zero-phase current transformer balance characteristic testing device according to claim 2, wherein the integrated electric wire has a straight rod shape. 前記零相変流器の前記貫通穴を貫通する複数の貫通電線と、
前記電流源および前記貫通電線の一方の端部に接続された第一の配線切り替え器と、
前記貫通電線の他方の端部に接続された第二の配線切り替え器と、
前記第一の配線切り替え器および前記第二の配線切り替え器に内部配線の切り替えを指示する切り替え指示器とを備え、
少なくとも、前記第一の配線切り替え器の内部配線と、前記貫通電線と、前記第二の配線切り替え器の内部配線とが、前記零相変流器の前記貫通穴に複数往復分が貫通するように設置された前記電線を構成しており、
前記切り替え指示器の指示により前記貫通穴を貫通する複数の前記貫通電線のいずれかに流れる電流の方向が変わることを特徴とする請求項1に記載の零相変流器の平衡特性試験装置。
a plurality of through wires passing through the through hole of the zero-phase current transformer;
a first wiring switch connected to the current source and one end of the through wire;
a second wiring switch connected to the other end of the through-wire;
a switching indicator that instructs the first wiring switching device and the second wiring switching device to switch internal wiring,
At least the internal wiring of the first wiring switch, the through wire, and the internal wiring of the second wiring switch pass through the through hole of the zero-phase current transformer for multiple round trips. constitutes the electric wire installed in
2. The zero-phase current transformer balance characteristic testing device according to claim 1, wherein the direction of the current flowing through any one of the plurality of through wires passing through the through hole is changed according to an instruction from the switching indicator.
JP2022569352A 2020-12-15 2020-12-15 Zero-phase current transformer equilibrium characteristics test equipment Active JP7378644B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046657 WO2022130481A1 (en) 2020-12-15 2020-12-15 Device for testing balance characteristics of zero-phase current transformer

Publications (2)

Publication Number Publication Date
JPWO2022130481A1 JPWO2022130481A1 (en) 2022-06-23
JP7378644B2 true JP7378644B2 (en) 2023-11-13

Family

ID=82057447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022569352A Active JP7378644B2 (en) 2020-12-15 2020-12-15 Zero-phase current transformer equilibrium characteristics test equipment

Country Status (4)

Country Link
JP (1) JP7378644B2 (en)
KR (1) KR20230021742A (en)
CN (1) CN116529842A (en)
WO (1) WO2022130481A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158810A (en) 2003-11-20 2005-06-16 Taiwa Denki Kogyo Kk Zero-phase current transformer
JP2014238313A (en) 2013-06-07 2014-12-18 三菱電機株式会社 Leakage current detection apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947120U (en) * 1972-07-31 1974-04-25
JPS5581934U (en) * 1978-11-30 1980-06-05
JPH0421980A (en) 1990-05-15 1992-01-24 Fujitsu Ltd Supporting mechanism for magnetic head
JPH0421980U (en) * 1990-06-14 1992-02-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158810A (en) 2003-11-20 2005-06-16 Taiwa Denki Kogyo Kk Zero-phase current transformer
JP2014238313A (en) 2013-06-07 2014-12-18 三菱電機株式会社 Leakage current detection apparatus

Also Published As

Publication number Publication date
JPWO2022130481A1 (en) 2022-06-23
WO2022130481A1 (en) 2022-06-23
KR20230021742A (en) 2023-02-14
CN116529842A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US7944654B2 (en) Multiple-pole circuit breaker with shared current sensor for arcing fault detection
JP4264817B2 (en) Earth leakage breaker
JP7378644B2 (en) Zero-phase current transformer equilibrium characteristics test equipment
Bakhri et al. Investigation of negative sequence components for stator shorted turn detection in induction motors
JP2001201519A (en) Testing device and test method of current measuring circuit
EP0633640A2 (en) An earth leakage unit
JPH04212232A (en) Circuit breaker
JP4688663B2 (en) Jig for connection
JP5888044B2 (en) Direction confirmation test method and apparatus for ground fault direction relay
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
Steurer et al. Calculating the transient recovery voltage associated with clearing transformer determined faults by means of frequency response analysis
JPH06289085A (en) Testing apparatus for electric power circuit
JP2008263761A (en) Power line artificial ground fault testing system and method
JP5322391B2 (en) Voltage phase detection terminal
US20170138994A1 (en) Checking a multi-pole electrical circuit breaker
Zhuang et al. A topology-based model for two-winding, shell-type, single-phase transformer inter-turn faults
Oliveira et al. A coupled electromagnetic transformer model for the analysis of winding inter-turn short-circuits
RU2000123958A (en) DEVICE FOR CHECKING THE MAXIMUM AC PROTECTIONS
US1806392A (en) Polyphase electrical instrument
JP2001305176A (en) Grounding point standardizing method for power distribution line
US3401307A (en) Electrical protective relay arrangement
JP2007232554A (en) Phase switch
JPH0229781Y2 (en)
JPH06140263A (en) Current transformer and testing method thereof
KR20220049774A (en) Transformer wiring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R151 Written notification of patent or utility model registration

Ref document number: 7378644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151