JP7378216B2 - Solid electrolytes and energy storage devices - Google Patents

Solid electrolytes and energy storage devices Download PDF

Info

Publication number
JP7378216B2
JP7378216B2 JP2019066159A JP2019066159A JP7378216B2 JP 7378216 B2 JP7378216 B2 JP 7378216B2 JP 2019066159 A JP2019066159 A JP 2019066159A JP 2019066159 A JP2019066159 A JP 2019066159A JP 7378216 B2 JP7378216 B2 JP 7378216B2
Authority
JP
Japan
Prior art keywords
anions
solid electrolyte
anion
flexible
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019066159A
Other languages
Japanese (ja)
Other versions
JP2020167025A (en
Inventor
智志 久保田
晏義 白石
修一 石本
正博 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Sophia School Corp
Original Assignee
Nippon Chemi Con Corp
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp, Sophia School Corp filed Critical Nippon Chemi Con Corp
Priority to JP2019066159A priority Critical patent/JP7378216B2/en
Publication of JP2020167025A publication Critical patent/JP2020167025A/en
Application granted granted Critical
Publication of JP7378216B2 publication Critical patent/JP7378216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)

Description

本発明は、柔粘性結晶を含む固体電解質及びこの固体電解質を用いた蓄電デバイスに関する。 The present invention relates to a solid electrolyte containing flexible crystals and an electricity storage device using this solid electrolyte.

二次電池、電気二重層キャパシタ、燃料電池、太陽電池その他の蓄電デバイスは、電解質層を挟んで正負の電極を対向させて概略構成される。リチウムイオン二次電池は、ファラデー反応電極を有し、電解質層中のリチウムイオンを電極に可逆的に挿入及び脱離させることにより電気エネルギーを充電及び放電する。電気二重層キャパシタは、電極の一方又は両方が分極性電極であり、分極性電極と電解質層との界面に形成される電気二重層の蓄電作用を利用して充電及び放電する。 Secondary batteries, electric double layer capacitors, fuel cells, solar cells, and other power storage devices are generally configured with positive and negative electrodes facing each other with an electrolyte layer in between. A lithium ion secondary battery has a Faraday reaction electrode, and charges and discharges electrical energy by reversibly intercalating and deintercalating lithium ions in an electrolyte layer from the electrode. In an electric double layer capacitor, one or both of the electrodes are polarizable electrodes, and the electric double layer capacitor is charged and discharged using the power storage effect of the electric double layer formed at the interface between the polarizable electrode and the electrolyte layer.

蓄電デバイスの電解質層として固体電解質層が選択可能である。固体電解質層は水和劣化等の電極を化学反応させる領域が電極近傍のみに限定される。そのため、電解液と比べると漏れ電流が少なく、自己放電が抑制される。また電解液と比べると電極との化学反応に起因するガス発生量も少なくなり、開弁や液漏れの虞も低減される。 A solid electrolyte layer can be selected as the electrolyte layer of the electricity storage device. In the solid electrolyte layer, the area where the electrode undergoes chemical reactions such as hydration deterioration is limited to only the vicinity of the electrode. Therefore, compared to an electrolytic solution, there is less leakage current and self-discharge is suppressed. Furthermore, compared to electrolytic solutions, the amount of gas generated due to chemical reactions with electrodes is reduced, and the risk of valve opening and liquid leakage is reduced.

固体電解質としては、LiS・P等の硫化物系の固体電解質、LiLaZr12等の酸化物系の固体電解質、例えばN-エチル-N-メチルピロリジニウム(P12)をカチオンとしてビス(フルオロスルホニル)アミド(FSA)をアニオンとする柔粘性結晶系の固体電解質、ポリエチレングリコール等のポリマー系の固体電解質が知られている。尚、二次電池は、選択した母相に電解質としてリチウムイオンが必要に応じてドープされ、電気二重層キャパシタは、選択した母相に電解質として例えばTEMABFが必要に応じてドープされる。 Examples of the solid electrolyte include sulfide-based solid electrolytes such as Li 2 S and P 2 S 5 , oxide-based solid electrolytes such as Li 7 La 3 Zr 2 O 12 , and N-ethyl-N-methylpyrrolidinium. Flexible crystal solid electrolytes having (P12) as a cation and bis(fluorosulfonyl)amide (FSA) as an anion, and polymer-based solid electrolytes such as polyethylene glycol are known. In addition, in a secondary battery, a selected matrix phase is doped with lithium ions as an electrolyte, as necessary, and in an electric double layer capacitor, a selected matrix phase is doped with, for example, TEMABF 4 as an electrolyte, as necessary.

柔粘性結晶は有機溶媒に可溶である。一方、硫化物系及び酸化物系は不溶性である。従って、柔粘性結晶を固体電解質又は固体電解質の母相に採用する場合、柔粘性結晶のアニオン成分とカチオン成分、またはこれらの塩を溶媒に溶かし、電極にキャストするという製造方法が採用可能となる。そのため、柔粘性結晶系の固体電解質には、硫化物系及び酸化物系と比べると、電極との密着性が向上し、また電極の活物質相が多孔質構造であれば、その構造内に入り込み易いという利点がある。 Soft crystals are soluble in organic solvents. On the other hand, sulfides and oxides are insoluble. Therefore, when a flexible crystal is used as a solid electrolyte or a matrix of a solid electrolyte, it is possible to adopt a manufacturing method in which the anion component and cation component of the flexible crystal, or their salts, are dissolved in a solvent and cast into an electrode. . Therefore, flexible crystalline solid electrolytes have improved adhesion with electrodes compared to sulfide- and oxide-based solid electrolytes, and if the active material phase of the electrode has a porous structure, It has the advantage of being easy to get into.

特表2014-504788号公報Special Publication No. 2014-504788 特開2017-91813号公報JP2017-91813A

しかしながら、柔粘性結晶系の固体電解質に対しては、硫化物系及び酸化物系と比べると、2~3桁以上のイオン伝導度の低さが指摘されている。例えば、N,N―ジエチルピロリジニウムカチオンとビス(フルオロスルホニル)アミドアニオンによりなる柔粘性結晶を含む固体電解質は、25℃環境下において、1×10-5S/cmオーダーのイオン伝導度であるとの報告がある。また、N,N―ジメチルピロリジニウムカチオンとビス(トリフルオロメタンスルホニル)アミドアニオンによりなる柔粘性結晶を含む固体電解質は、1×10-8S/cmオーダーのイオン伝導度であるとの報告がある。 However, it has been pointed out that the ionic conductivity of flexible crystalline solid electrolytes is two to three orders of magnitude lower than that of sulfide-based and oxide-based electrolytes. For example, a solid electrolyte containing flexible crystals composed of N,N-diethylpyrrolidinium cation and bis(fluorosulfonyl)amide anion has an ionic conductivity of the order of 1×10 -5 S/cm at 25°C. There are reports that there are. Furthermore, it has been reported that a solid electrolyte containing flexible crystals composed of N,N-dimethylpyrrolidinium cation and bis(trifluoromethanesulfonyl)amide anion has an ionic conductivity on the order of 1×10 -8 S/cm. be.

これに対し、例えばLiS・Pの固体電解質であると、イオン伝導度は1×10-2S/cmオーダーであると報告されている。また例えばLiLaZr12の固体電解質であると、イオン伝導度は1×10-3S/cmオーダーであると報告されている。 On the other hand, it has been reported that the ionic conductivity of a solid electrolyte of, for example, Li 2 S·P 2 S 5 is on the order of 1×10 −2 S/cm. For example, it is reported that the ionic conductivity of a solid electrolyte of Li 7 La 3 Zr 2 O 12 is on the order of 1×10 −3 S/cm.

本発明は、上記課題を解決するために提案されたものであり、その目的は、高いイオン伝導度を有する柔粘性結晶系の固体電解質と当該固体電解質を用いた蓄電デバイスを提供することにある。 The present invention was proposed to solve the above problems, and its purpose is to provide a flexible crystalline solid electrolyte having high ionic conductivity and an electricity storage device using the solid electrolyte. .

発明者らの鋭意研究の結果、柔粘性結晶に未架橋のポリマーを添加して固体電解質とすると、その固体電解質のイオン伝導度は向上するとの知見が得られた。柔粘性結晶を構成するカチオン及びアニオンは、柔粘性結晶を構成可能であれば、即ち使用所望温度範囲でイオン液体とならずに固体状態であれば、公知の何れであってもイオン伝導度が向上する。 As a result of intensive research by the inventors, it was found that when a solid electrolyte is prepared by adding an uncrosslinked polymer to a flexible crystal, the ionic conductivity of the solid electrolyte is improved. The cations and anions constituting the flexible crystal can be any known ionic conductivity as long as they can form a flexible crystal, that is, they do not become an ionic liquid in the desired temperature range but are in a solid state. improves.

本発明は、この知見に基づきなされたものであり、上記課題を解決すべく、本発明に係る固体電解質は、柔粘性結晶と未架橋のポリマーと電解質とを含むこと、を特徴とする。 The present invention has been made based on this knowledge, and in order to solve the above problems, the solid electrolyte according to the present invention is characterized in that it contains a flexible crystal, an uncrosslinked polymer, and an electrolyte.

前記ポリマーは、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエステル、ポリエチレンカーボネート、ポリエチレンカーボネートの誘導体、ポリプロピレンカーボネート、ポリトリメチレンカーボネート又はポリトリメチレンカーボネートとポリカーボネートの共重合体のうちの1種類又は2種類以上であってもよい。 The polymer is one or more of polyethylene oxide, polypropylene oxide, polyester, polyethylene carbonate, a derivative of polyethylene carbonate, polypropylene carbonate, polytrimethylene carbonate, or a copolymer of polytrimethylene carbonate and polycarbonate. Good too.

前記柔粘性結晶は、NHアニオンの2つの水素原子がパーフルオロアルキルスルホニル基、フルオロスルホニル基又はこれらの両方で置換された各種アミドアニオン、及び(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオン、及びトリス(トリフルオロメタンスルホニル)メタニドアニオン、ヘキサフルオロホスフェートアニオン、ヘキサフルオロホスフェートアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルホスフェートアニオン、及びテトラフルオロボレートアニオン、テトラフルオロボレートアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルボレートアニオンの群から選ばれるアニオンを含むようにしてもよい。 The flexible crystals include various amide anions in which two hydrogen atoms of the NH 2 anion are substituted with perfluoroalkylsulfonyl groups, fluorosulfonyl groups, or both of these, (perfluoroalkylsulfonyl)fluoroacetamide anions, and tris( trifluoromethanesulfonyl) methanide anion, hexafluorophosphate anion, various perfluoroalkyl phosphate anions in which some of the fluorine atoms of the hexafluorophosphate anion are substituted with fluoroalkyl groups, tetrafluoroborate anions, and tetrafluoroborate anions. The fluorine atom may contain an anion selected from the group of various perfluoroalkylborate anions in which the fluorine atom is substituted with a fluoroalkyl group.

前記各種アミドアニオンは、下記化学式(A)で表される各種ビス(パーフルオロアルキルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオン、及び各種N-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオン、下記化学式(B)で表されるN,N-ヘキサフルオロ-1,3-ジスルホニルアミドアニオン、並びに下記化学式(C)で表されるN,N-ペンタフルオロ-1,3-ジスルホニルアミドの群から選ばれるアニオンであり、前記各種パーフルオロアルキルホスフェートアニオンは、下記化学式(D)で表されるトリス(フルオロアルキル)トリフルオロホスフェートアニオンであり、前記各種パーフルオロアルキルボレートアニオンは、下記化学式(E)で表されるモノ(フルオロアルキル)トリフルオロボレートアニオン、及びビス(フルオロアルキル)フルオロボレートアニオンの群から選ばれるアニオンであるようにしてもよい。 The various amide anions include various bis(perfluoroalkylsulfonyl)amide anions, bis(fluorosulfonyl)amide anions, and various N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl) represented by the following chemical formula (A). ) amide anion, N,N-hexafluoro-1,3-disulfonylamide anion represented by the following chemical formula (B), and N,N-pentafluoro-1,3- represented by the following chemical formula (C) An anion selected from the group of disulfonylamides, the various perfluoroalkyl phosphate anions are tris(fluoroalkyl)trifluorophosphate anions represented by the following chemical formula (D), and the various perfluoroalkyl borate anions are , a mono(fluoroalkyl)trifluoroborate anion, and a bis(fluoroalkyl)fluoroborate anion represented by the following chemical formula (E).

Figure 0007378216000001
[式中、n及びmは0以上の整数であり、炭素数は何れでもよい。]
Figure 0007378216000001
[In the formula, n and m are integers of 0 or more, and the number of carbon atoms may be any. ]

Figure 0007378216000002
Figure 0007378216000002

Figure 0007378216000003
Figure 0007378216000003

Figure 0007378216000004
[式中、qは1以上の整数であり、炭素数は何れでもよい。]
Figure 0007378216000004
[In the formula, q is an integer of 1 or more, and the number of carbon atoms may be any. ]

Figure 0007378216000005
[式中、sは0以上の整数であり、炭素数は何れでもよい。]
Figure 0007378216000005
[In the formula, s is an integer greater than or equal to 0, and the number of carbon atoms may be any. ]

尚、トリス(トリフルオロメタンスルホニル)メタニドアニオンは、下記化学式(F)によって表される。

Figure 0007378216000006
Note that tris(trifluoromethanesulfonyl) methanide anion is represented by the following chemical formula (F).
Figure 0007378216000006

この固体電解質を用いた蓄電デバイスも本発明の一態様である。 A power storage device using this solid electrolyte is also one embodiment of the present invention.

本発明によれば、柔粘性結晶を用いた固体電解質のイオン伝導度が向上する。 According to the present invention, the ionic conductivity of a solid electrolyte using flexible crystals is improved.

以下、本発明を実施する形態について説明する。なお、本発明は、如何に説明する実施形態に限定されるものではない。 EMBODIMENT OF THE INVENTION Hereinafter, the form which implements this invention is demonstrated. Note that the present invention is not limited to the embodiments described herein.

(固体電解質)
固体電解質は、蓄電デバイスの正負電極間に介在し、主として正負電極にイオンを伝導する。蓄電デバイスは、電気エネルギーを充放電する受動素子であり、例えばリチウムイオン二次電池及び電気二重層キャパシタ等である。リチウムイオン二次電池は、ファラデー反応電極を有し、固体電解質中のリチウムイオンを電極に可逆的に挿入及び脱離させることにより電気エネルギーを充電及び放電する。電気二重層キャパシタは、電極の一方又は両方が分極性電極であり、電極と固体電解質との界面に形成される電気二重層の蓄電作用を利用して充電及び放電する。
(solid electrolyte)
The solid electrolyte is interposed between the positive and negative electrodes of the electricity storage device, and mainly conducts ions to the positive and negative electrodes. The power storage device is a passive element that charges and discharges electrical energy, and includes, for example, a lithium ion secondary battery and an electric double layer capacitor. A lithium ion secondary battery has a Faraday reaction electrode, and charges and discharges electrical energy by reversibly inserting and extracting lithium ions in a solid electrolyte into and from the electrode. In an electric double layer capacitor, one or both of the electrodes are polarizable electrodes, and the electric double layer capacitor is charged and discharged using the power storage effect of the electric double layer formed at the interface between the electrode and the solid electrolyte.

この固体電解質は、イオン伝導媒体となる柔粘性結晶で母相が形成され、当該柔粘性結晶にドープされるイオン性塩を電解質として含む。また、固体電解質には、未架橋のポリマーも含まれる。柔粘性結晶は、プラスチッククリスタルとも称され、秩序配列と無秩序配向を有する。即ち、柔粘性結晶とは、アニオン及びカチオンが規則的に配列した三次元結晶格子構造を有する一方、これらアニオン及びカチオンが回転不規則性を有するものである。柔粘性結晶内では、電解質の解離により生じた陽イオン及び陰イオンがアニオン及びカチオンの回転によってホッピングされ、結晶格子中の空隙を移動する。 This solid electrolyte has a parent phase formed of a flexible crystal serving as an ion-conducting medium, and contains an ionic salt doped into the flexible crystal as an electrolyte. The solid electrolyte also includes uncrosslinked polymers. Plastic crystals are also called plastic crystals and have ordered arrangement and disordered orientation. That is, a flexible crystal has a three-dimensional crystal lattice structure in which anions and cations are regularly arranged, but these anions and cations have rotational irregularity. Within the flexible crystal, cations and anions generated by dissociation of the electrolyte are hopped by rotation of the anions and cations and move through the voids in the crystal lattice.

柔粘性結晶を構成するアニオンは、蓄電デバイスを使用する目的温度範囲内でイオン液体でなく固体の状態となっていれば公知の何れでもよい。例えば、柔粘性結晶を構成するアニオンとしては、各種アミドアニオン、(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオン、トリス(トリフルオロメタンスルホニル)メタニドアニオン、ヘキサフルオロホスフェートアニオン(PFアニオン)、PFの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルホスフェートアニオン、テトラフルオロボレートアニオン(BFアニオン)、及びBFアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルボレートアニオンが挙げられる。 The anion constituting the flexible crystal may be any known anion as long as it is in a solid state rather than an ionic liquid within the target temperature range in which the electricity storage device is used. For example, anions constituting the flexible crystal include various amide anions, (perfluoroalkylsulfonyl)fluoroacetamide anions, tris(trifluoromethanesulfonyl)methanide anions, hexafluorophosphate anions (PF 6 anions), and PF 6 anions. Various perfluoroalkyl phosphate anions, tetrafluoroborate anions (BF 4 anions) in which part of the fluorine atoms are substituted with fluoroalkyl groups, and various perfluoroalkyl phosphate anions in which part of the fluorine atoms of the BF 4 anions are substituted with fluoroalkyl groups. Examples include alkylborate anions.

各種アミドアニオンは、NHアニオンの2つの水素原子がパーフルオロアルキルスルホニル基、フルオロスルホニル基又はこれらの両方で置換されている。この各種アミドアニオンは、例えば直鎖状が含まれ、下記化学式(A)で表される各種ビス(パーフルオロアルキルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオン、及び各種N-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオンが含まれる。 In various amide anions, two hydrogen atoms of the NH 2 anion are substituted with a perfluoroalkylsulfonyl group, a fluorosulfonyl group, or both. These various amide anions include, for example, linear ones, such as various bis(perfluoroalkylsulfonyl) amide anions, bis(fluorosulfonyl)amide anions, and various N-(fluorosulfonyl) amide anions represented by the following chemical formula (A). -N-(perfluoroalkylsulfonyl)amide anion is included.

Figure 0007378216000007
化学式(A)の式中、n及びmは0以上の整数であり、炭素数は何れでもよい。
Figure 0007378216000007
In the chemical formula (A), n and m are integers of 0 or more, and the number of carbon atoms may be any number.

化学式(A)の式中、n及びmが1以上であれば、ビス(パーフルオロアルキルスルホニル)アミドアニオンである。ビス(パーフルオロアルキルスルホニル)アミドアニオンとしては、具体的には下記化学式(G)で表されるビス(トリフルオロメタンスルホニル)アミドアニオン(TFSAアニオン)、下記化学式(H)で表されるビス(ペンタフルオロエチルスルホニル)アミドアニオン(BETAアニオン)が挙げられる。 In the chemical formula (A), when n and m are 1 or more, it is a bis(perfluoroalkylsulfonyl)amide anion. Specifically, the bis(perfluoroalkylsulfonyl)amide anion includes bis(trifluoromethanesulfonyl)amide anion (TFSA anion) represented by the following chemical formula (G), and bis(pentafluorocarbonyl)amide anion represented by the following chemical formula (H). fluoroethylsulfonyl)amide anion (BETA anion).

Figure 0007378216000008
Figure 0007378216000008

Figure 0007378216000009
Figure 0007378216000009

化学式(A)の式中、炭素数が0の基は即ちフルオロスルホニル基であり、n及びmが0であれば、下記化学式(I)で表されるビス(フルオロスルホニル)アミドアニオン(FSAアニオン)である。 In the chemical formula (A), a group having 0 carbon atoms is a fluorosulfonyl group, and if n and m are 0, a bis(fluorosulfonyl)amide anion (FSA anion) represented by the following chemical formula (I) is used. ).

Figure 0007378216000010
Figure 0007378216000010

化学式(A)の式中、nが0であり、mが1以上であれば、下記化学式(J)で表されるN-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオンである。 In the chemical formula (A), if n is 0 and m is 1 or more, it is an N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl)amide anion represented by the following chemical formula (J). .

Figure 0007378216000011
Figure 0007378216000011

また、各種アミドアニオンには、例えば五員環及び六員環のヘテロ環式が含まれ、下記化学式(B)で表されるN,N-ヘキサフルオロ-1,3-ジスルホニルアミドアニオン(CFSAアニオン)、並びに下記化学式(C)で表されるN,N-ペンタフルオロ-1,3-ジスルホニルアミドが含まれる。 In addition, various amide anions include, for example, five-membered and six-membered heterocyclic rings, and are represented by the following chemical formula (B): N,N-hexafluoro-1,3-disulfonylamide anion (CFSA). anion), and N,N-pentafluoro-1,3-disulfonylamide represented by the following chemical formula (C).

Figure 0007378216000012
Figure 0007378216000012

Figure 0007378216000013
Figure 0007378216000013

トリス(トリフルオロメタンスルホニル)メタニドアニオン(TFSMアニオン)は、下記化学式(F)によって表される。

Figure 0007378216000014
Tris(trifluoromethanesulfonyl) methanide anion (TFSM anion) is represented by the following chemical formula (F).
Figure 0007378216000014

各種パーフルオロアルキルホスフェートアニオンは、下記化学式(D)で表されるトリス(フルオロアルキル)トリフルオロホスフェートアニオンが挙げられる。

Figure 0007378216000015
化学式(D)の式中、qは1以上の整数であり、炭素数は何れでもよい。 Various perfluoroalkyl phosphate anions include tris(fluoroalkyl)trifluorophosphate anions represented by the following chemical formula (D).
Figure 0007378216000015
In the chemical formula (D), q is an integer of 1 or more, and the number of carbon atoms may be any number.

具体的には下記化学式(K)で表されるトリス(ペンタフルオロエチル)トリフルオロホスフェートアニオン(FAPアニオン)が挙げられる。

Figure 0007378216000016
Specifically, tris(pentafluoroethyl)trifluorophosphate anion (FAP anion) represented by the following chemical formula (K) can be mentioned.
Figure 0007378216000016

各種パーフルオロアルキルボレートアニオンは、下記化学式(E)で表されるモノ(フルオロアルキル)トリフルオロボレートアニオン、及びビス(フルオロアルキル)フルオロボレートアニオンが挙げられる。

Figure 0007378216000017
式中、sは0以上の整数、炭素数は何れでもよい。化学式(E)の式中、sが0であれば、テトラフルオロボレートアニオンである。 Various perfluoroalkylborate anions include mono(fluoroalkyl)trifluoroborate anions and bis(fluoroalkyl)fluoroborate anions represented by the following chemical formula (E).
Figure 0007378216000017
In the formula, s may be an integer greater than or equal to 0, and the number of carbon atoms may be any number. In the chemical formula (E), if s is 0, it is a tetrafluoroborate anion.

(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオンには、下記化学式(Y)によって表される。

Figure 0007378216000018
化学式(Y)中、nとmは1以上の整数であり、炭素数は何れでもよい。 The (perfluoroalkylsulfonyl)fluoroacetamide anion is represented by the following chemical formula (Y).
Figure 0007378216000018
In the chemical formula (Y), n and m are integers of 1 or more, and the number of carbon atoms may be any.

例えば、(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオンとしては、化学式(Y)中、nが1、mが1であり、下記化学式(Z)で表される2,2,2-トリフルオロ-N-(トリフルオロメチルスルホニル)アセトアミドアニオンが挙げられる。

Figure 0007378216000019
For example, as a (perfluoroalkylsulfonyl)fluoroacetamide anion, n is 1 and m is 1 in the chemical formula (Y), and 2,2,2-trifluoro-N- (Trifluoromethylsulfonyl)acetamide anion is mentioned.
Figure 0007378216000019

柔粘性結晶を構成するカチオンは、イオン液体とならずに蓄電デバイスの使用温度範囲で固体状態を維持して柔粘性結晶を構成できれば公知の何れでもよい。このカチオンは、柔粘性結晶を構成するアニオンの総計と等モルであることが望ましい。このカチオンとしては、典型的には第四級アンモニウムカチオン及び第四級ホスホニウムカチオンを挙げることができる。 The cation constituting the flexible crystal may be any known cation as long as it does not become an ionic liquid and can maintain a solid state within the operating temperature range of the electricity storage device to form a flexible crystal. This cation is desirably in an equimolar amount to the total amount of anions constituting the flexible crystal. The cations typically include quaternary ammonium cations and quaternary phosphonium cations.

第四級アンモニウムカチオンとしては、下記化学式(N)で表され、炭素数を問わない直鎖アルキル基で置換された、トリエチルメチルアンモニウムカチオン(TEMAカチオン)等のテトラアルキルアンモニウムカチオン、下記化学式(P)で表され、メチル基、エチル基又はイソプロピル基が結合する五員環のピロリジニウムカチオン、下記化学式(Q)で表され、メチル基、エチル基又はイソプロピル基が結合する六員環のピペリジニウムカチオン、及び下記化学式(R)で表されるスピロ型ピロリジニウムカチオン(SBPカチオン)が挙げられる。 Examples of quaternary ammonium cations include tetraalkylammonium cations such as triethylmethylammonium cation (TEMA cation) represented by the following chemical formula (N) and substituted with a linear alkyl group of any number of carbon atoms, and the following chemical formula (P ), which is a five-membered ring pyrrolidinium cation to which a methyl group, ethyl group, or isopropyl group is bonded; Examples include peridinium cations and spiro-type pyrrolidinium cations (SBP cations) represented by the following chemical formula (R).

Figure 0007378216000020
式中、a、b、c及びdは1以上の整数であり、炭素数は何れでもよい。
Figure 0007378216000020
In the formula, a, b, c and d are integers of 1 or more, and the number of carbon atoms may be any.

Figure 0007378216000021
式中、R1及びR2は、メチル基、エチル基又はイソプロピル基。
Figure 0007378216000021
In the formula, R1 and R2 are a methyl group, an ethyl group or an isopropyl group.

Figure 0007378216000022
式中、R3及びR4は、メチル基、エチル基又はイソプロピル基。
Figure 0007378216000022
In the formula, R3 and R4 are a methyl group, an ethyl group, or an isopropyl group.

Figure 0007378216000023
Figure 0007378216000023

上記化学式(P)で一般化されるピロリジニウムカチオンの具体例としては、例えば、下記化学式(S)で表されるN-エチル-N-メチルピロリジニウムカチオン(P12カチオン)、下記化学式(T)で表されるN-イソプロピル-N-メチルピロリジニウムカチオン(P13isoカチオン)、下記化学式(U)で表されるN,N-ジエチルピロリジニウムカチオン(P22カチオン)が挙げられる。また、上記化学式(Q)で一般化されるピペリジニウムの具体例としては、例えば、下記化学式(V)で表されるN-エチル-N-メチルピペリジニウムカチオン(六員環P12カチオン)が挙げられる。 Specific examples of the pyrrolidinium cation generalized by the above chemical formula (P) include N-ethyl-N-methylpyrrolidinium cation (P12 cation) represented by the following chemical formula (S), and the following chemical formula ( N-isopropyl-N-methylpyrrolidinium cation (P13iso cation) represented by T) and N,N-diethylpyrrolidinium cation (P22 cation) represented by the following chemical formula (U). Further, specific examples of piperidinium generalized by the above chemical formula (Q) include N-ethyl-N-methylpiperidinium cation (six-membered ring P12 cation) represented by the following chemical formula (V). It will be done.

Figure 0007378216000024
Figure 0007378216000024

Figure 0007378216000025
Figure 0007378216000025

Figure 0007378216000026
Figure 0007378216000026

Figure 0007378216000027
Figure 0007378216000027

また、第四級ホスホニウムカチオンとしては、下記化学式(W)で表され、炭素数を問わない直鎖アルキル基で置換された、テトラアルキルホスホニウムカチオンが挙げられる。テトラアルキルホスホニウムカチオンとしては、例えばテトラエチルホスホニウムカチオン(TEPカチオン)が挙げられる。

Figure 0007378216000028
式中、e、f、g及びhは1以上の整数であり、炭素数は何れでもよい。 Further, examples of the quaternary phosphonium cation include a tetraalkylphosphonium cation represented by the following chemical formula (W) and substituted with a linear alkyl group having any number of carbon atoms. Examples of the tetraalkylphosphonium cation include tetraethylphosphonium cation (TEP cation).
Figure 0007378216000028
In the formula, e, f, g and h are integers of 1 or more, and the number of carbon atoms may be any.

ポリマーは、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド、ポリエステル、ポリエチレンカーボネート(PEC)、PECの誘導体、ポリプロピレンカーボネート、ポリトリメチレンカーボネート、又はポリトリメチレンカーボネートとポリカーボネートの共重合体である。これらポリマーの1種を単独で用いてもよく、2種類以上が組み合わせられても良い。これらポリマーのうち、カーボネート系ポリマーは、例示であり、脂肪族ポリカーボネートであれば何れも使用可能である。また、2種以上を組み合わせて用いる場合、各種ポリマーが単重合の形態を採っていてもよく、2種以上のモノマーの共重合体として存在していてもよい。これらポリマーは固体電解質中では未架橋のまま存在する。即ち、架橋剤は添加されず、固体電解質は作製され、各ポリマーの直鎖状分子は他のポリマーと架橋剤を介して結合することなく固体電解質中に存在する。 The polymer is polyethylene oxide (PEO), polypropylene oxide, polyester, polyethylene carbonate (PEC), a derivative of PEC, polypropylene carbonate, polytrimethylene carbonate, or a copolymer of polytrimethylene carbonate and polycarbonate. One type of these polymers may be used alone, or two or more types may be used in combination. Among these polymers, carbonate-based polymers are just an example, and any aliphatic polycarbonate can be used. Moreover, when using two or more types in combination, the various polymers may be in the form of a monopolymer, or may exist as a copolymer of two or more types of monomers. These polymers exist uncrosslinked in the solid electrolyte. That is, a solid electrolyte is produced without adding a crosslinking agent, and the linear molecules of each polymer exist in the solid electrolyte without being bonded to other polymers via a crosslinking agent.

PECの誘導体として、例えば副鎖にポリエーテルを有するポリエチレンカーボネートが挙げられ、具体的には下記化学式(α1)~(α7)で表されるものが挙げられる。 Examples of derivatives of PEC include polyethylene carbonate having a polyether in the side chain, specifically those represented by the following chemical formulas (α1) to (α7).

Figure 0007378216000029
Figure 0007378216000029

Figure 0007378216000030
Figure 0007378216000030

Figure 0007378216000031
Figure 0007378216000031

Figure 0007378216000032
Figure 0007378216000032

Figure 0007378216000033
Figure 0007378216000033

Figure 0007378216000034
Figure 0007378216000034

Figure 0007378216000035
Figure 0007378216000035

ポリトリメチレンカーボネートとポリカーボネートの共重合体としては、具体的には下記化学式(β1)~(β3)で表されるものが挙げられる。 Specific examples of copolymers of polytrimethylene carbonate and polycarbonate include those represented by the following chemical formulas (β1) to (β3).

Figure 0007378216000036
Figure 0007378216000036

Figure 0007378216000037
Figure 0007378216000037

Figure 0007378216000038
Figure 0007378216000038

推測であり、このメカニズムに限られないが、これらポリマーの存在は、柔粘性結晶に欠陥が導入されたこととなり、即ち、ポリマーが入ることで柔粘性結晶のカチオンとアニオンのイオン対の配列規則性が崩れることとなり、その欠陥が柔粘性結晶中の結晶性を低下させ、イオン伝導度が向上すると推測される。これらポリマーは、柔粘性結晶に対して3wt%以上50wt%以下の範囲で、固体電解質中に存在させることが好ましい。3wt%未満であると、柔粘性結晶の欠陥が少なく、イオン伝導度の向上がみられない。50wt%超であると、低イオン伝導度のポリマーが柔粘性結晶のイオン導電パスに介在してしまい、イオン伝導度が減少してしまう。一方、この範囲内であれば、十分な欠陥が現われ、但しポリマーがイオン導電パスに入り込み難く、イオン伝導度が向上する。また、これらポリマーの分子量は、10万以上250万以下の範囲が好ましい。ポリマーの分子量が低いと、柔粘性結晶とポリマーの界面が途切れてしまい、イオン伝導度が向上し難く、ポリマーの分子量が高すぎると、ポリマーが柔粘性結晶のイオン導電パスに入り込む確率が高くなり、イオン伝導度が減少しまう。 Although this is a speculation and the mechanism is not limited to this, the existence of these polymers means that defects are introduced into the flexible crystal.In other words, the introduction of the polymer disrupts the arrangement rules of cation and anion ion pairs in the flexible crystal. It is assumed that the defects deteriorate the crystallinity in the flexible crystal and improve the ionic conductivity. These polymers are preferably present in the solid electrolyte in an amount of 3 wt% or more and 50 wt% or less based on the flexible crystal. If it is less than 3 wt%, there will be few defects in the flexible crystal and no improvement in ionic conductivity will be observed. If it exceeds 50 wt%, a polymer with low ionic conductivity will be interposed in the ionic conductive path of the flexible crystal, resulting in a decrease in ionic conductivity. On the other hand, within this range, sufficient defects will appear, but the polymer will be difficult to enter into the ion conductive path, and the ion conductivity will improve. Moreover, the molecular weight of these polymers is preferably in the range of 100,000 to 2,500,000. If the molecular weight of the polymer is low, the interface between the flexible crystal and the polymer will be interrupted, making it difficult to improve ionic conductivity, and if the molecular weight of the polymer is too high, the probability that the polymer will enter the ion conductive path of the flexible crystal increases. , ionic conductivity decreases.

イオン性塩は、蓄電デバイスの種類に応じればよく、柔粘性結晶の合計に対して0.1以上50mol%以下の割合で固体電解質に含有していることが好ましい。この範囲であると塩濃度が適切となって、イオン伝導度が向上する。リチウムイオン二次電池に対するイオン性塩としては、Li(CFSON(通称:LiTFSA)、Li(FSON(通称:LiFSA)、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等が挙げられ、単独又は2種以上を組み合わせて用いられる。電気二重層キャパシタに対するイオン性塩としては、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、単独又は2種以上を組み合わせて用いられる。 The ionic salt may be contained in the solid electrolyte in a proportion of 0.1 or more and 50 mol% or less based on the total amount of flexible crystals. Within this range, the salt concentration becomes appropriate and ionic conductivity improves. Ionic salts for lithium ion secondary batteries include Li(CF 3 SO 2 ) 2 N (common name: LiTFSA), Li(FSO 2 ) 2 N (common name: LiFSA), Li(C 2 F 5 SO 2 ) 2 Examples include N, LiPF 6 , LiBF 4 , LiAsF 6 , LiTaF 6 , LiClO 4 , LiCF 3 SO 3 and the like, which may be used alone or in combination of two or more. The ionic salt for the electric double layer capacitor is a salt of an organic acid, a salt of an inorganic acid, or a salt of a composite compound of an organic acid and an inorganic acid, and these salts are used alone or in combination of two or more kinds.

有機酸としては、シュウ酸、コハク酸、グルタン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等のカルボン酸、フェノール類、スルホン酸が挙げられる。また、無機酸としては、テトラフルオロボレート等を含むホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。 Examples of organic acids include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, Examples include carboxylic acids such as 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, and tridecanedioic acid, phenols, and sulfonic acids. Examples of inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid, etc., including tetrafluoroborate. Examples of the composite compound of an organic acid and an inorganic acid include borodisalicylic acid, borodioxalic acid, borodiglycolic acid, and the like.

これら有機酸の塩、無機酸の塩、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩のアミンとしては、一級アミン、二級アミン、三級アミンが挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 These salts of organic acids, salts of inorganic acids, and at least one salt of a composite compound of organic acids and inorganic acids include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, and potassium salts. Examples include salt. Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, and tetraethylammonium. Examples of the quaternized amidinium include ethyldimethylimidazolinium and tetramethylimidazolinium. Examples of the amine in the amine salt include primary amines, secondary amines, and tertiary amines. Primary amines include methylamine, ethylamine, propylamine, etc. Secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc. Tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, Examples include ethyldimethylamine and ethyldiisopropylamine.

このような柔粘性結晶を含む固体電解質の製造方法の例としては次の通りである。柔粘性結晶を構成するアニオンのアルカリ金属塩及びハロゲン化したカチオンを各々溶媒に溶解させる。アルカリ金属としては、Na、K、Li、Csが挙げられる。ハロゲンとしてはF、Cl、Br、Iが挙げられる。溶媒としては水が好ましい。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を少しずつ滴下してイオン交換反応を行っていく。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を等モル量添加し、攪拌する。 An example of a method for manufacturing a solid electrolyte containing such flexible crystals is as follows. An alkali metal salt of an anion and a halogenated cation constituting the flexible crystal are each dissolved in a solvent. Examples of alkali metals include Na, K, Li, and Cs. Examples of halogen include F, Cl, Br, and I. Water is preferred as the solvent. An ion exchange reaction is carried out by dropping a solution of an anion metal salt little by little into a solution of halogenated cations. An equimolar amount of the anion metal salt solution is added to the halogenated cation solution and stirred.

このとき、イオン交換により、アニオンを含む柔粘性結晶が生成されると共に、ハロゲン化アルカリ金属が生成される。柔粘性結晶は疎水性であり、ハロゲン化アルカリ金属は親水性であるため、柔粘性結晶は水溶液中で固体の状態で存在し、ハロゲン化アルカリ金属は水溶液に溶解している。この柔粘性結晶が固体の状態で存在する水溶液にジクロロメタン等の有機溶媒を混合する。ジクロロメタン等の有機溶媒を混合し、静置すると、混合液は水層と有機溶媒の層に分かれる。 At this time, due to ion exchange, a flexible crystal containing anions is generated, and an alkali metal halide is also generated. Since the flexible crystal is hydrophobic and the alkali metal halide is hydrophilic, the flexible crystal exists in a solid state in an aqueous solution, and the alkali metal halide is dissolved in the aqueous solution. An organic solvent such as dichloromethane is mixed into an aqueous solution containing the flexible crystals in a solid state. When an organic solvent such as dichloromethane is mixed and left to stand, the mixture separates into an aqueous layer and an organic solvent layer.

分液から水層を取り除くことで、ハロゲン化アルカリ金属は除去される。この操作は5回等の複数回繰り返せばよい。これにより、ハロゲン化アルカリ金属を除去した後、ジクロロメタン等の有機溶媒を蒸発させ、アニオンを含む柔粘性結晶を得る。尚、ジクロロメタン等の有機溶媒を混合せずに静置すると、第1種類目のアニオンを含む柔粘性結晶の沈殿物が得られるので、この沈殿物をろ過回収し、水で洗浄後に真空乾燥を行うようにしてもよい。 By removing the aqueous layer from the liquid separation, the alkali metal halide is removed. This operation may be repeated multiple times, such as five times. Thereby, after removing the alkali metal halide, the organic solvent such as dichloromethane is evaporated to obtain a flexible crystal containing an anion. Note that if the organic solvent such as dichloromethane is allowed to stand without being mixed, a flexible crystal precipitate containing the first type of anion will be obtained, so this precipitate is collected by filtration, washed with water, and then vacuum dried. You may also do so.

作製された柔粘性結晶をバイアル瓶に加え、更にこのバイアル瓶に電解質となるイオン性塩を添加する。イオン性塩は柔粘性結晶に対して0.1以上50mol%以下加えることが好ましい。更に、バイアル瓶には、未架橋のポリマーを加える。未架橋のポリマーは、柔粘性結晶に対して3wt%以上50wt%以下加えることが好ましい。 The produced flexible crystals are added to a vial, and an ionic salt serving as an electrolyte is further added to the vial. The ionic salt is preferably added in an amount of 0.1 to 50 mol % to the flexible crystal. Furthermore, uncrosslinked polymer is added to the vial. The uncrosslinked polymer is preferably added in an amount of 3 wt% or more and 50 wt% or less based on the flexible crystal.

バイアル瓶に加える未架橋のポリマーは、当該ポリマーを構成するモノマー又はオリゴマーと重合開始剤とを溶媒に添加し、加熱により重合反応を促進させて作製すればよい。重合開始剤としては、過硫酸アンモニウム、過酸化ベンゾイル、アゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル、2,2'-アゾビス(N-ブチルー2-メチルプロピオンアミド)、2、2´-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロパンアミド]、2,2‘-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ベンゾイルぎ酸メチル、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドが挙げられる。溶媒としてはペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等の揮発性溶媒が挙げられる。 The uncrosslinked polymer to be added to the vial can be prepared by adding monomers or oligomers constituting the polymer and a polymerization initiator to a solvent, and accelerating the polymerization reaction by heating. As a polymerization initiator, ammonium persulfate, benzoyl peroxide, azobisisobutyronitrile, 4,4'-azobis(4-cyanovaleric acid), dimethyl 2,2'-azobis(2-methylpropionate), 2 ,2'-azobis(N-butyl-2-methylpropionamide), 2,2'-azobis[N-(2-hydroxyethyl)-2-methylpropanamide], 2,2'-azobis[N-(2 -carboxyethyl)-2-methylpropionamidine], 2,2'-azobis[2-(2-imidazolin-2-yl)propane], 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-Hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl -1-propan-1-one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]phenyl}-2-methyl-propan-1-one, 2- Methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl) phenyl]-1-butanone, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, methyl benzoylformate, 1,2-octanedione, 1-[4-(phenylthio)-,2-(O-benzoyl) oxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), diphenyl (2,4,6-trimethyl benzoyl) phosphine oxide. Examples of the solvent include volatile solvents such as hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, and nitrogen compounds such as acetonitrile.

更に、アセニトン又はアセトニトリル等の有機溶媒を更にバイアル瓶に加えて、柔粘性結晶と電解質と未架橋のポリマーを溶解させた有機溶媒溶液を調製する。そして、固体電解質を付着させる電極の活物質層、セパレータ又は両方といった対象物にこの有機溶媒溶液をキャストする。キャストした後、80℃等の有機溶媒が揮発する温度環境下で放置して乾燥により溶媒を揮散させ、更に150℃等の温度環境下で残った水分等を揮散させる。これにより、対象物上に固体電解質は形成される。 Furthermore, an organic solvent such as acenitone or acetonitrile is further added to the vial to prepare an organic solvent solution in which the flexible crystal, electrolyte, and uncrosslinked polymer are dissolved. The organic solvent solution is then cast onto an object such as the active material layer of the electrode, the separator, or both, to which the solid electrolyte is to be attached. After casting, it is left in a temperature environment such as 80° C. where the organic solvent volatilizes, and the solvent is evaporated by drying, and the remaining moisture etc. are further volatilized under a temperature environment such as 150° C. As a result, a solid electrolyte is formed on the object.

(蓄電デバイス)
蓄電デバイスは、固体電解質を挟んで正負の電極を対向させて成る。正負の電極の接触を防止し、また固体電解質の形態保持のために正負の電極の間にはセパレータが配される。但し、固体電解質が正負の電極の接触を防止可能な程度の厚みを有し、また単独で形態保持可能な硬度を備えるようにすれば、所謂セパレータレスであってもよい。
(Electricity storage device)
A power storage device is made up of positive and negative electrodes facing each other with a solid electrolyte interposed therebetween. A separator is placed between the positive and negative electrodes to prevent contact between the positive and negative electrodes and to maintain the shape of the solid electrolyte. However, as long as the solid electrolyte has a thickness that can prevent contact between the positive and negative electrodes and has enough hardness to maintain its shape by itself, it may be so-called separatorless.

電気二重層キャパシタの正負の電極は、集電体に活物質層を形成させて成る。集電体は、アルミニウム箔、白金、金、ニッケル、チタン、鋼、およびカーボンなどの弁作用を有する金属を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。また集電体の表面はエッチング処理などによる凹凸面を形成してもよく、またプレーン面であってもよい。さらには、表面処理を行い、リンを集電体の表面に付着させてもよい。 The positive and negative electrodes of an electric double layer capacitor are formed by forming an active material layer on a current collector. The current collector can be made of a valve metal such as aluminum foil, platinum, gold, nickel, titanium, steel, and carbon. The shape of the current collector may be any shape such as a film, a foil, a plate, a net, an expanded metal, or a cylinder. Further, the surface of the current collector may be formed with an uneven surface by etching or the like, or may be a plain surface. Furthermore, surface treatment may be performed to cause phosphorus to adhere to the surface of the current collector.

正極又は負極の少なくとも一方は分極性電極である。分極性電極の活物質層は、電気二重層容量を有する多孔質構造の炭素材料を含む。多孔質構造の活物質層を有する電気二重層キャパシタには、この柔粘性結晶を用いた固体電解質は特に好適である。柔粘性結晶は可溶であるために、多孔質構造に容易に入り込み、活物質層への充填率が高まる。一方、硫化物系及び酸化物系の固体電解質は多孔質構造への充填性が低い。そのため、この柔粘性結晶を適用した電気二重層キャパシタは、多孔質構造への良好な充填性と高いイオン伝導度を兼ね合わせることができ、高容量及び高出力となる。尚、正極又は負極の何れか他方は、ファラデー反応を生じる金属化合物粒子や炭素材料を含む活物質層が形成されるようにしてもよい。 At least one of the positive electrode and the negative electrode is a polarizable electrode. The active material layer of the polarizable electrode includes a porous carbon material having an electric double layer capacity. A solid electrolyte using this flexible crystal is particularly suitable for an electric double layer capacitor having an active material layer with a porous structure. Since the flexible crystals are soluble, they easily enter the porous structure, increasing the filling rate of the active material layer. On the other hand, sulfide-based and oxide-based solid electrolytes have low filling properties into porous structures. Therefore, an electric double layer capacitor to which this flexible crystal is applied can have both good filling properties in a porous structure and high ionic conductivity, resulting in high capacity and high output. Note that an active material layer containing metal compound particles or a carbon material that causes a Faraday reaction may be formed on the other of the positive electrode and the negative electrode.

分極性電極における炭素材料は、導電助剤とバインダーと混合されて集電体にドクターブレード法等によって塗工される。炭素材料と導電助剤とバインダーの混合物をシート状に成型し、集電体に圧着するようにしてもよい。ここで、多孔質構造は、炭素材料が粒子形状を有する場合には一次粒子間及び二次粒子間に生じる隙間によって成り立ち、炭素材料が繊維質の場合には繊維間に生じる隙間によって成り立つ。 The carbon material in the polarizable electrode is mixed with a conductive additive and a binder and applied to the current collector by a doctor blade method or the like. A mixture of a carbon material, a conductive aid, and a binder may be formed into a sheet, and the sheet may be pressure-bonded to a current collector. Here, when the carbon material has a particle shape, the porous structure is formed by gaps that occur between primary particles and between secondary particles, and when the carbon material is fibrous, it is formed by gaps that occur between fibers.

分極性電極における活物質層の炭素材料は、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする活性炭、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、カーボンナノチューブ、カーボンナノファイバなどを挙げられる。この炭素材料は、水蒸気賦活、アルカリ賦活、塩化亜鉛賦活又は電界賦活等の賦活処理並びに開口処理によって比表面積を向上させてもよい。 The carbon materials of the active material layer in polarizable electrodes include natural plant tissues such as coconut shells, synthetic resins such as phenol, activated carbon derived from fossil fuels such as coal, coke, and pitch, Ketjenblack, and acetylene. Examples include carbon black such as black and channel black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized Ketjenblack, mesoporous carbon, carbon nanotubes, and carbon nanofibers. The specific surface area of this carbon material may be improved by activation treatment such as steam activation, alkali activation, zinc chloride activation, or electric field activation, and opening treatment.

バインダーとしては、例えばフッ素系ゴム、ジエン系ゴム、スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素ポリマー、カルボキシメチルセルロース、ニトロセルロース等のセルロース、その他、ポリオレフィン樹脂、ポリイミド樹脂、アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。これらのバインダーは、単独で使用しても良く、2種以上を混合して使用しても良い。 Examples of the binder include rubbers such as fluorine rubber, diene rubber, and styrene rubber, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, celluloses such as carboxymethyl cellulose and nitrocellulose, and other materials such as polyolefin resins and polyimides. Examples include resins, acrylic resins, nitrile resins, polyester resins, phenol resins, polyvinyl acetate resins, polyvinyl alcohol resins, and epoxy resins. These binders may be used alone or in combination of two or more.

導電助剤としては、ケッチェンブラック、アセチレンブラック、天然/人造黒鉛、繊維状炭素等を用いることができ、繊維状炭素としては、カーボンナノチューブ、カーボンナノファイバ(以下、CNF)などの繊維状炭素を挙げることができる。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブ(SWCNT)でも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよく、それらが混合されていてもよい。 As the conductive additive, Ketjen black, acetylene black, natural/artificial graphite, fibrous carbon, etc. can be used. As the fibrous carbon, fibrous carbon such as carbon nanotubes and carbon nanofibers (hereinafter referred to as CNF) can be used. can be mentioned. Carbon nanotubes can be single-walled carbon nanotubes (SWCNTs), which have one layer of graphene sheets, or multi-walled carbon nanotubes (MWCNTs), which have two or more layers of graphene sheets rolled coaxially and have multiple tube walls, or they can be mixed. may have been done.

集電体と活物質層の間には、黒鉛等の導電剤を含むカーボンコート層を設けてもよい。集電体の表面に黒鉛等の導電剤、バインダー等を含むスラリーを塗布、乾燥することで、カーボンコート層を形成することができる。 A carbon coat layer containing a conductive agent such as graphite may be provided between the current collector and the active material layer. A carbon coat layer can be formed by applying a slurry containing a conductive agent such as graphite, a binder, etc. to the surface of a current collector and drying the slurry.

リチウムイオン二次電池の正負の電極は、集電体に活物質層を形成させて成る。集電体としては、アルミニウム箔、白金、金、ニッケル、チタン、及び鋼などの金属、カーボン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、及びポリオキサジアゾールなどの導電性高分子材料、また非導電性高分子材料に導電性フィラーを充填した樹脂を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。 The positive and negative electrodes of a lithium ion secondary battery are formed by forming an active material layer on a current collector. Current collectors include metals such as aluminum foil, platinum, gold, nickel, titanium, and steel, carbon, polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. A conductive polymer material or a resin obtained by filling a non-conductive polymer material with a conductive filler can be used. The shape of the current collector may be any shape such as a film, a foil, a plate, a net, an expanded metal, or a cylinder.

活物質は、バインダーと混合されて集電体にドクターブレード法等によって塗工される。炭素材料とバインダーの混合物をシート状に成型し、集電体に圧着するようにしてもよい。活物質層には、導電助剤となるカーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイトなどの導電性カーボンが添加されてもよく、活物質とバインダーに加えて混練されて集電体に塗布又は圧着されればよい。 The active material is mixed with a binder and applied to the current collector by a doctor blade method or the like. A mixture of the carbon material and the binder may be formed into a sheet shape, and the sheet may be pressure-bonded to the current collector. Conductive carbon such as carbon black, acetylene black, Ketjen black, graphite, etc., which serves as a conductive aid, may be added to the active material layer, and is kneaded in addition to the active material and a binder and applied or applied to a current collector. It only needs to be crimped.

正極の活物質としては、リチウムイオンを吸蔵及び放出することが可能な金属化合物粒子が挙げられ、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、及びスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)が挙げられる。これらの具体例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO-LiCoO、LiMnO-LiNiO、LiMnO-LiNi1/3Co1/3Mn1/3、LiMnO-LiNi1/2Mn1/2、LiMnO-LiNi1/2Mn1/2-LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。また、金属化合物粒子は、イオウ及びLiS、TiS、MoS、FeS、VS、Cr1/21/2などの硫化物、NbSe、VSe、NbSeなどのセレン化物、Cr、Cr、VO、V、V、V13などの酸化物の他、LiNi0.8Co0.15l0.05、LiVOPO、LiV、LiV、MoV、LiFeSiO、LiMnSiO、LiFePO、LiFe1/2Mn1/2PO、LiMnPO、Li(POなどの複合酸化物が挙げられる。 Examples of the active material of the positive electrode include metal compound particles capable of inserting and releasing lithium ions, such as layered rock salt type LiMO 2 , layered Li 2 MnO 3 -LiMO 2 solid solution, and spinel type LiM 2 O 4 (formula (M therein means Mn, Fe, Co, Ni, or a combination thereof). Specific examples of these include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co1 /5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O 2 , LiFeO 2 , LiMnO 2 , Li 2 MnO 3 -LiCoO 2 , Li 2 MnO 3 -LiNiO 2 , Li 2 MnO 3 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 -LiNi 1/2 Mn 1/2 O 2 , Li 2 MnO 3 -LiNi 1/2 Mn 1/2 O 2 -LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMn 3/2 Ni 1/ 2 O 4 is mentioned. In addition, the metal compound particles include sulfur and sulfides such as Li2S , TiS2 , MoS2 , FeS2 , VS2 , Cr1 /2V1 / 2S2, NbSe3 , VSe2 , NbSe3 , etc. In addition to oxides such as selenide, Cr 2 O 5 , Cr 3 O 8 , VO 2 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiNi 0.8 Co 0.15 A 10.05 O 2 , LiVOPO 4 , LiV 3 O 5 , LiV 3 O 8 , MoV 2 O 8 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , LiFePO 4 , LiFe 1/2 Mn 1/2 PO 4 , LiMnPO 4 , Li 3 V Examples include complex oxides such as 2 ( PO4 ) 3 .

負極の活物質としては、リチウムイオンを吸蔵及び放出することが可能な金属化合物粒子が挙げられ、例えばFeO、Fe、Fe、MnO、MnO、Mn、Mn、CoO、Co、NiO、Ni、TiO、TiO、TiO(B)、CuO、NiO、SnO、SnO、SiO、RuO、WO、WO、WO3、MoO、ZnO等の酸化物、Sn、Si、Al、Zn等の金属、LiVO、LiVO、LiTi12、ScTiO、FeTiOなどの複合酸化物、Li2.6Co0.4N、Ge、Zn、CuNなどの窒化物、YTi、MoSである。 Examples of the active material of the negative electrode include metal compound particles capable of intercalating and deintercalating lithium ions, such as FeO, Fe 2 O 3 , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 , TiO, TiO 2 , TiO 2 (B), CuO, NiO, SnO, SnO 2 , SiO 2 , RuO 2 , WO, WO 2 , WO 3 , MoO 3 , ZnO and other oxides, Sn, Si, Al, Zn and other metals, LiVO 2 , Li 3 VO 4 , Li 4 Ti 5 O 12 , Sc 2 TiO 5 , Fe 2 TiO 5 and other complex oxides , Li 2.6 Co 0.4 N, Ge 3 N 4 , Zn 3 N 2 , Cu 3 N and other nitrides, Y 2 Ti 2 O 5 S 2 and MoS 2 .

蓄電デバイスにセパレータを用いる場合、セパレータとしては、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。 When using a separator in an electricity storage device, the separator may include cellulose such as kraft, manila hemp, esparto, hemp, rayon, and mixed papers thereof; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof; Polyamide resins such as polytetrafluoroethylene resins, polyvinylidene fluoride resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, Examples include polyphenylene sulfide resin and acrylic resin, and these resins can be used alone or in combination.

このような蓄電デバイスにおいては、柔粘性結晶とイオン性塩と未架橋のポリマーを例えばアセニトン等の溶媒に溶解させ、活物質層及びセパレータにキャストする。キャストした後、80℃等の温度環境下で放置して乾燥により溶媒を揮散させ、セパレータを介して正負極の活物質層を対向させた後、更に150℃等の温度環境下で残った水分等を揮散させる。そして、正負電極の集電体にリード電極端子を接続し、外装ケースで封止することで、蓄電デバイスは作製される。 In such a power storage device, a flexible crystal, an ionic salt, and an uncrosslinked polymer are dissolved in a solvent such as acenitone, and cast into an active material layer and a separator. After casting, leave it in a temperature environment such as 80℃ to volatilize the solvent by drying, and after facing the active material layers of the positive and negative electrodes through a separator, leave the remaining moisture in a temperature environment such as 150℃. volatilize etc. Then, the lead electrode terminals are connected to the current collectors of the positive and negative electrodes, and the electrical storage device is manufactured by sealing with an exterior case.

(実施例1)
柔粘性結晶と未架橋のポリマーと電解質となるイオン性塩を用いて、実施例1の電気二重層キャパシタ用の固体電解質を作製し、イオン伝導度を測定した。実施例1の固体電解質には、柔粘性結晶を構成するアニオンとしてN,N-ヘキサフルオロ-1,3-ジスルホニルアミドアニオン(CFSAアニオン)が用いられた。柔粘性結晶を構成するカチオンはN-エチル-N-メチルピロリジニウムカチオン(P12カチオン)とした。未架橋のポリマーは、分子量150万のポリエチレンオキサイド(PEO)とした。イオン性塩はトリエチルメチルアンモニウム-テトラフルオロボレート(TEMABF)とした。
(Example 1)
A solid electrolyte for the electric double layer capacitor of Example 1 was prepared using a flexible crystal, an uncrosslinked polymer, and an ionic salt serving as an electrolyte, and its ionic conductivity was measured. In the solid electrolyte of Example 1, N,N-hexafluoro-1,3-disulfonylamide anion (CFSA anion) was used as an anion constituting the flexible crystal. The cation constituting the flexible crystal was N-ethyl-N-methylpyrrolidinium cation (P12 cation). The uncrosslinked polymer was polyethylene oxide (PEO) with a molecular weight of 1.5 million. The ionic salt was triethylmethylammonium-tetrafluoroborate (TEMABF 4 ).

具体的には、CFSAアニオンとP12カチオンにより構成される柔粘性結晶であるP12CFSAをバイアル瓶に加えた。尚、本実施例においては、P12CFSA柔粘性結晶はイオン交換により合成したものを用いた。 Specifically, P12CFSA, which is a flexible crystal composed of a CFSA anion and a P12 cation, was added to a vial. In this example, P12CFSA flexible crystals synthesized by ion exchange were used.

バイアル瓶には、柔粘性結晶の合計に対して15mol%となるようにTEMABF(富山薬品工業製)を加え、また柔粘性結晶の合計に対して20wt%となるように未架橋のPEOを加えた。このバイアル瓶に、柔粘性結晶と未架橋のポリマーと電解質の総計の固形分濃度が10wt%となるようにアセトニトリル(和光純薬製)を加えた。 TEMABF 4 (manufactured by Toyama Pharmaceutical Co., Ltd.) was added to the vial in an amount of 15 mol% based on the total amount of flexible crystals, and uncrosslinked PEO was added in an amount of 20 wt% based on the total amount of flexible crystals. added. Acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) was added to this vial so that the total solid content of the flexible crystals, uncrosslinked polymer, and electrolyte was 10 wt%.

このアセトニトリル溶液をガラスセパレータに滴下し、80℃で乾燥させることでアセトニトリルを蒸発させた。この蒸発操作は3回繰り返した。この蒸発操作により固体電解質が含浸したガラスセパレータを80℃の真空環境下で12時間乾燥させ、更に120℃の真空環境下で3時間乾燥させ、更に150℃の真空環境下で2時間乾燥させ、これにより水分を取り除き、実施例1の固体電解質を得た。 This acetonitrile solution was dropped onto a glass separator and dried at 80°C to evaporate the acetonitrile. This evaporation operation was repeated three times. The glass separator impregnated with the solid electrolyte by this evaporation operation is dried in a vacuum environment of 80 ° C. for 12 hours, further dried in a vacuum environment of 120 ° C. for 3 hours, and further dried in a vacuum environment of 150 ° C. for 2 hours, This removed water, and the solid electrolyte of Example 1 was obtained.

また、この実施例1の固体電解質と比較対照となる比較例1及び比較例2の固体電解質を作製した。比較例1の固体電解質は、柔粘性結晶と電解質となるイオン性塩を含む固体電解質である点につき実施例1と共通するが、ポリマーが未添加である点が異なる。比較例1の固体電解質は、このポリマーが未添加である点を除いて実施例1の固体電解質と同一条件で作製された。比較例2の固体電解質は、柔粘性結晶とイオン性塩とポリマーを含む固体電解質である点につき実施例1と共通するが、ポリマーが架橋されている点で異なる。比較例2において、未架橋の側鎖を有する分子量250万のPEOポリマーに過酸化ベンゾイル系の重合開始剤のナイパーBMT-K4(日本油脂株式会社)を0.2wt%添加し、100℃で3時間加熱することで架橋反応させることで、架橋されたPEOを作製した。 Further, solid electrolytes of Comparative Example 1 and Comparative Example 2 were prepared for comparison with the solid electrolyte of Example 1. The solid electrolyte of Comparative Example 1 is similar to Example 1 in that it is a solid electrolyte containing flexible crystals and an ionic salt serving as an electrolyte, but differs in that no polymer is added. The solid electrolyte of Comparative Example 1 was produced under the same conditions as the solid electrolyte of Example 1, except that this polymer was not added. The solid electrolyte of Comparative Example 2 is similar to Example 1 in that it is a solid electrolyte containing flexible crystals, ionic salts, and polymers, but differs in that the polymers are crosslinked. In Comparative Example 2, 0.2 wt% of Niper BMT-K4 (Nippon Oil & Fats Co., Ltd.), a benzoyl peroxide polymerization initiator, was added to a PEO polymer with a molecular weight of 2.5 million having uncrosslinked side chains, and the mixture was heated at 100°C for 3. Crosslinked PEO was produced by causing a crosslinking reaction by heating for a period of time.

そして、実施例1、比較例1及び比較例2のイオン伝導度を測定した。即ち、固体電解質を含浸したガラスセパレータを2枚の白金電極で挟み込み、電極押さえで対向させることで、2極式密閉セル(東洋システム製)を組み立て、インピーダンス測定を行った。インピーダンスの測定結果および固体電解質を含浸したガラスセパレータの厚さから、イオン伝導度を算出した。このイオン伝導度の測定結果を下表1に示す。 Then, the ionic conductivities of Example 1, Comparative Example 1, and Comparative Example 2 were measured. That is, a glass separator impregnated with a solid electrolyte was sandwiched between two platinum electrodes and faced with an electrode holder to assemble a two-electrode sealed cell (manufactured by Toyo System Co., Ltd.), and impedance measurements were performed. Ionic conductivity was calculated from the impedance measurement results and the thickness of the glass separator impregnated with the solid electrolyte. The results of this ionic conductivity measurement are shown in Table 1 below.

Figure 0007378216000039
Figure 0007378216000039

表1に示すように、固体電解質に柔粘性結晶の他、更に未架橋のポリマーを含む実施例1の固体電解質は、未架橋のポリマーが未添加である比較例1の固体電解質に比べて、イオン伝導度が1000倍程度向上していることが確認できる。一方、原因は不明であるが、比較例2のように、固体電解質に柔粘性結晶の他にポリマーを含むようにしたが、そのポリマーが架橋された場合には、ポリマーが未添加である比較例1の固体電解質よりもイオン伝導度が若干低下していることが確認できる。これにより、柔粘性結晶と未架橋のポリマーと電解質とを含む固体電解質はイオン伝導度が向上することが確認された。 As shown in Table 1, the solid electrolyte of Example 1, which further contains an uncrosslinked polymer in addition to flexible crystals, has a lower temperature than the solid electrolyte of Comparative Example 1, in which no uncrosslinked polymer is added. It can be confirmed that the ionic conductivity is improved by about 1000 times. On the other hand, although the cause is unknown, when the solid electrolyte contains a polymer in addition to flexible crystals as in Comparative Example 2, if the polymer is cross-linked, compared to the case where no polymer is added, It can be confirmed that the ionic conductivity is slightly lower than that of the solid electrolyte of Example 1. This confirmed that a solid electrolyte containing a flexible crystal, an uncrosslinked polymer, and an electrolyte has improved ionic conductivity.

(実施例2)
実施例1の固体電解質を基準に、未架橋ではあるがポリマーの種類を変更した実施例2の電気二重層キャパシタ用の固体電解質を作製し、イオン伝導度を測定した。実施例2では、分子量が5万から20万の範囲に分布する未架橋のポリエチレンカーボネートを用いた。未架橋のポリマーが異なる点を除き、実施例2の固体電解質は実施例1と同一条件で作製された。
(Example 2)
Based on the solid electrolyte of Example 1, a solid electrolyte for an electric double layer capacitor of Example 2 was prepared in which the type of polymer was changed although it was not crosslinked, and its ionic conductivity was measured. In Example 2, uncrosslinked polyethylene carbonate having a molecular weight ranging from 50,000 to 200,000 was used. The solid electrolyte of Example 2 was produced under the same conditions as Example 1, except that the uncrosslinked polymer was different.

また、実施例1及び実施例2の固体電解質と比較対照となる比較例3乃至6の固体電解質を作製した。比較例3乃至6の固体電解質は、未架橋のポリマーを含む点につき実施例1及び2と共通するが、ポリマーの種類が異なる。比較例2は、未架橋のポリマーとして分子量36万のポリビニルピロリドン(PVP)(和光純薬製)を固体電解質に含有させた。比較例3は、未架橋のポリマーとしてアセチルセルロース(ダイセル製)を固体電解質に含有させた。比較例4は、未架橋のポリマーとして分子量12万のポリメチルメタクリレート(PMMA)(シグマアルドリッチ製)を固体電解質に含有させた。比較例5は、未架橋のポリマーとして分子量5千のポリアクリロニトリル(PAN)(シグマアルドリッチ製)を固体電解質に含有させた。 In addition, solid electrolytes of Comparative Examples 3 to 6 were prepared for comparison with the solid electrolytes of Examples 1 and 2. The solid electrolytes of Comparative Examples 3 to 6 are common to Examples 1 and 2 in that they contain uncrosslinked polymers, but the types of polymers are different. In Comparative Example 2, the solid electrolyte contained polyvinylpyrrolidone (PVP) (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 360,000 as an uncrosslinked polymer. In Comparative Example 3, the solid electrolyte contained acetyl cellulose (manufactured by Daicel) as an uncrosslinked polymer. In Comparative Example 4, the solid electrolyte contained polymethyl methacrylate (PMMA) (manufactured by Sigma-Aldrich) having a molecular weight of 120,000 as an uncrosslinked polymer. In Comparative Example 5, the solid electrolyte contained polyacrylonitrile (PAN) (manufactured by Sigma-Aldrich) having a molecular weight of 5,000 as an uncrosslinked polymer.

そして、実施例1、実施例2、並びに比較例3乃至6のイオン伝導度を測定した。イオン伝導度の測定条件は実施例1と同じである。このイオン伝導度の測定結果を下表2に示す。 Then, the ionic conductivities of Example 1, Example 2, and Comparative Examples 3 to 6 were measured. The conditions for measuring ionic conductivity were the same as in Example 1. The measurement results of this ionic conductivity are shown in Table 2 below.

Figure 0007378216000040
Figure 0007378216000040

表2に示すように、ポリエチレンオキサイドとポリエチレンカーボネートを未架橋のポリマーとして選択した実施例1及び2の固体電解質は、未架橋のポリマーが未添加である比較例1の固体電解質に比べて、イオン伝導度が向上していることが確認できる。一方、原因は不明であるが、未架橋であっても、PVP、アセチルセルロース、PMMA、PANを未架橋のポリマーとして選択した比較例2乃至5の固体電解質は、ポリマーを添加していない比較例1の固体電解質よりもイオン伝導度が低下してしまった。これにより、ポリエチレンオキサイドとポリエチレンカーボネートを含む特定のポリマーに限って、且つそれらポリマーが未架橋であれば、イオン伝導度が向上することが確認された。 As shown in Table 2, the solid electrolytes of Examples 1 and 2 in which polyethylene oxide and polyethylene carbonate were selected as uncrosslinked polymers had higher ion It can be confirmed that the conductivity has improved. On the other hand, although the cause is unknown, the solid electrolytes of Comparative Examples 2 to 5 in which PVP, acetylcellulose, PMMA, and PAN were selected as uncrosslinked polymers are the comparative examples without added polymers. The ionic conductivity was lower than that of solid electrolyte No. 1. As a result, it was confirmed that ionic conductivity is improved only for specific polymers containing polyethylene oxide and polyethylene carbonate, and when these polymers are uncrosslinked.

(実施例3)
実施例1の固体電解質を基準に、柔粘性結晶の種類を変更した実施例3の電気二重層キャパシタ用の固体電解質を作製し、イオン伝導度を測定した。即ち、バイアル瓶には、FSAアニオンとP12カチオンにより構成されるP12FSAを柔粘性結晶として加えた。TEMABFは、この柔粘性結晶に対して15mol%となるように加えられ、分子量150万の未架橋のPEOは、この柔粘性結晶に対して20wt%となるように加えられた。
(Example 3)
Based on the solid electrolyte of Example 1, a solid electrolyte for an electric double layer capacitor of Example 3 was prepared in which the type of flexible crystal was changed, and its ionic conductivity was measured. That is, P12FSA composed of an FSA anion and a P12 cation was added as a flexible crystal to a vial. TEMABF 4 was added to the flexible crystal in an amount of 15 mol %, and uncrosslinked PEO having a molecular weight of 1.5 million was added in an amount of 20 wt % to the flexible crystal.

また、この実施例3の固体電解質と比較対照となる比較例7の固体電解質を作製した。比較例7の固体電解質は、実施例3と比べてポリマーが未添加である点が異なるが、その他は作製条件を含めて実施例3と同じである。そして、実施例3及び比較例7のイオン伝導度を測定した。イオン伝導度の測定条件は実施例1と同じである。このイオン伝導度の測定結果を下表4に示す。 In addition, a solid electrolyte of Comparative Example 7 was prepared for comparison with the solid electrolyte of Example 3. The solid electrolyte of Comparative Example 7 differs from Example 3 in that no polymer is added, but otherwise is the same as Example 3, including the production conditions. Then, the ionic conductivities of Example 3 and Comparative Example 7 were measured. The conditions for measuring ionic conductivity were the same as in Example 1. The results of this ionic conductivity measurement are shown in Table 4 below.

Figure 0007378216000041
Figure 0007378216000041

表3に示すように、柔粘性結晶の種類を問わず、柔粘性結晶と未架橋のポリマーと電解質とを含む固体電解質はイオン伝導度が向上することが確認された。 As shown in Table 3, it was confirmed that the solid electrolyte containing a flexible crystal, an uncrosslinked polymer, and an electrolyte had improved ionic conductivity regardless of the type of flexible crystal.

(実施例4乃至6)
実施例3の固体電解質を基準に、未架橋ではあるがポリマーの種類を変更した実施例4乃至6の電気二重層キャパシタ用の固体電解質を作製し、イオン伝導度を測定した。実施例4では、未架橋のポリエチレンカーボネートを用いた。実施例5では、未架橋のポリトリメチレンカーボネートを用いた。実施例6では、未架橋のポリエチレンカーボネートとポリトリメチレンカーボネートの混合を用いた。ポリエチレンカーボネートとポリトリメチレンカーボネートの混合比は、重量比で1:1である。このように、未架橋のポリマーが異なる点を除き、実施例4乃至6の固体電解質は実施例3と同一条件で作製された。
(Examples 4 to 6)
Based on the solid electrolyte of Example 3, solid electrolytes for electric double layer capacitors of Examples 4 to 6, which were not crosslinked but had different types of polymers, were prepared, and their ionic conductivities were measured. In Example 4, uncrosslinked polyethylene carbonate was used. In Example 5, uncrosslinked polytrimethylene carbonate was used. In Example 6, a mixture of uncrosslinked polyethylene carbonate and polytrimethylene carbonate was used. The mixing ratio of polyethylene carbonate and polytrimethylene carbonate is 1:1 by weight. Thus, the solid electrolytes of Examples 4 to 6 were produced under the same conditions as Example 3, except that the uncrosslinked polymers were different.

そして、実施例4乃至6及び比較例7のイオン伝導度を測定した。イオン伝導度の測定条件は実施例1と同じである。このイオン伝導度の測定結果を下表4に示す。 Then, the ionic conductivities of Examples 4 to 6 and Comparative Example 7 were measured. The conditions for measuring ionic conductivity were the same as in Example 1. The results of this ionic conductivity measurement are shown in Table 4 below.

Figure 0007378216000042
Figure 0007378216000042

表4に示すように、ポリエチレンオキサイドの他、ポリエチレンカーボネート、ポリトリメチレンカーボネート、又はこれらの混合を未架橋のポリマーとして選択しても、イオン伝導度が向上していることが確認された。 As shown in Table 4, it was confirmed that the ionic conductivity was improved even when polyethylene carbonate, polytrimethylene carbonate, or a mixture thereof was selected as the uncrosslinked polymer in addition to polyethylene oxide.

(実施例7乃至10)
実施例7乃至10の固体電解質を作製し、イオン伝導度を測定した。実施例7乃至10の固体電解質は、CFSAアニオンとP12カチオンにより構成される柔粘性結晶を含み、電解質となるイオン性塩としてTEMABFを含む点で共通する。但し、実施例7乃至10の固体電解質は、添加された未架橋のポリマーの種類は分子量150万のPEOであり共通であるが、その未架橋のポリマーの添加量が異なる。
(Examples 7 to 10)
Solid electrolytes of Examples 7 to 10 were produced and their ionic conductivities were measured. The solid electrolytes of Examples 7 to 10 are common in that they contain flexible crystals composed of CFSA anions and P12 cations, and contain TEMABF 4 as an ionic salt serving as the electrolyte. However, in the solid electrolytes of Examples 7 to 10, the type of uncrosslinked polymer added is PEO having a molecular weight of 1.5 million, which is common, but the amount of the uncrosslinked polymer added is different.

実施例7乃至10において、バイアル瓶には、柔粘性結晶の合計に対して15mol%となるようにTEMABFを加えた。未架橋のPEOについては、実施例7では柔粘性結晶に対して20wt%添加し、実施例8では柔粘性結晶に対して30wt%添加し、実施例9では柔粘性結晶に対して40wt%添加し、実施例10では柔粘性結晶に対して50wt%添加した。その他の作製条件は実施例1と同一である。 In Examples 7 to 10, TEMABF 4 was added to the vial in an amount of 15 mol% based on the total amount of flexible crystals. Regarding uncrosslinked PEO, in Example 7, 20 wt% was added to the flexible crystal, in Example 8, 30 wt% was added to the flexible crystal, and in Example 9, 40 wt% was added to the flexible crystal. However, in Example 10, 50 wt % was added to the flexible crystal. Other manufacturing conditions are the same as in Example 1.

また、これら実施例7乃至10の固体電解質と比較対照となる比較例8の固体電解質を作製した。比較例8の固体電解質は、実施例7乃至10と比べてポリマーが未添加である点が異なるが、その他は作製条件を含めて実施例7乃至10と同じである。そして、実施例7乃至10及び比較例8のイオン伝導度を測定した。イオン伝導度の測定条件は実施例1と同じである。このイオン伝導度の測定結果を下表5に示す。 In addition, a solid electrolyte of Comparative Example 8 was prepared for comparison with the solid electrolytes of Examples 7 to 10. The solid electrolyte of Comparative Example 8 differs from Examples 7 to 10 in that no polymer is added, but otherwise is the same as Examples 7 to 10, including the manufacturing conditions. Then, the ionic conductivities of Examples 7 to 10 and Comparative Example 8 were measured. The conditions for measuring ionic conductivity were the same as in Example 1. The results of this ionic conductivity measurement are shown in Table 5 below.

Figure 0007378216000043
Figure 0007378216000043

表5に示すように、未架橋のポリマーの添加量に関わらず、柔粘性結晶と未架橋のポリマーと電解質を含む固体電解質はイオン伝導度が向上することが確認された。 As shown in Table 5, it was confirmed that the solid electrolyte containing flexible crystals, uncrosslinked polymer, and electrolyte had improved ionic conductivity regardless of the amount of uncrosslinked polymer added.

(実施例11乃至13)
実施例11乃至13の固体電解質を作製し、イオン伝導度を測定した。実施例11乃至13の固体電解質の各々は、未架橋のPEOの分子量が異なる。実施例11の固体電解質は、分子量80万の未架橋のPEOを柔粘性結晶に対して20wt%の割合で含まれる。実施例12の固体電解質は、分子量150万の未架橋のPEOを柔粘性結晶に対して20wt%の割合で含まれる。実施例13の固体電解質は、分子量250万の未架橋のPEOを柔粘性結晶に対して20wt%の割合で含まれる。その他、実施例11乃至13の固体電解質は実施例7の固体電解質と同一の作製条件で作製された。
(Examples 11 to 13)
Solid electrolytes of Examples 11 to 13 were produced and their ionic conductivities were measured. The solid electrolytes of Examples 11 to 13 each have different molecular weights of uncrosslinked PEO. The solid electrolyte of Example 11 contained uncrosslinked PEO with a molecular weight of 800,000 at a ratio of 20 wt % to the flexible crystal. The solid electrolyte of Example 12 contains uncrosslinked PEO with a molecular weight of 1.5 million at a ratio of 20 wt% to the flexible crystal. The solid electrolyte of Example 13 contains uncrosslinked PEO with a molecular weight of 2.5 million in a proportion of 20 wt % based on the flexible crystal. In addition, the solid electrolytes of Examples 11 to 13 were manufactured under the same manufacturing conditions as the solid electrolyte of Example 7.

そして、これら実施例11乃至13の固体電解質のイオン伝導度を測定した。イオン伝導度の測定条件は実施例1と同じである。このイオン伝導度の測定結果を下表6に示す。尚、表6には、未架橋のポリマーが含有されていない固体電解質である比較例8の固体電解質のイオン電導度も掲載した。 Then, the ionic conductivity of the solid electrolytes of Examples 11 to 13 was measured. The conditions for measuring ionic conductivity were the same as in Example 1. The measurement results of this ionic conductivity are shown in Table 6 below. Note that Table 6 also lists the ionic conductivity of the solid electrolyte of Comparative Example 8, which is a solid electrolyte containing no uncrosslinked polymer.

Figure 0007378216000044
Figure 0007378216000044

表6に示すように、未架橋のポリマーの分子量に関わらず、柔粘性結晶と未架橋のポリマーと電解質を含む固体電解質はイオン伝導度が向上することが確認された。 As shown in Table 6, it was confirmed that the solid electrolyte containing a flexible crystal, an uncrosslinked polymer, and an electrolyte had improved ionic conductivity regardless of the molecular weight of the uncrosslinked polymer.

Claims (5)

柔粘性結晶と未架橋のポリマーと電解質とを含み、
前記ポリマーは、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエステル、ポリエチレンカーボネート、ポリエチレンカーボネートの誘導体、ポリプロピレンカーボネート、ポリトリメチレンカーボネート、及びポリトリメチレンカーボネートとポリカーボネートの共重合体のうちの1種類又は2種類以上であり、前記柔粘性結晶に対して3wt%以上50wt%以下の割合で含まれ、
前記柔粘性結晶は、NHアニオンの2つの水素原子がパーフルオロアルキルスルホニル基、フルオロスルホニル基又はこれらの両方で置換された各種アミドアニオン、及び(パーフルオロアルキルスルホニル)フルオロアセトアミドアニオン、及びトリス(トリフルオロメタンスルホニル)メタニドアニオン、及びヘキサフルオロホスフェートアニオン、及びヘキサフルオロホスフェートアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルホスフェートアニオン、及びテトラフルオロボレートアニオン、及びテトラフルオロボレートアニオンの一部のフッ素原子がフルオロアルキル基で置換された各種パーフルオロアルキルボレートアニオンの群から選ばれるアニオンを含むこと、
を特徴とする固体電解質。
including flexible crystals, uncrosslinked polymer, and electrolyte,
The polymer is one or more of polyethylene oxide, polypropylene oxide, polyester, polyethylene carbonate, a derivative of polyethylene carbonate, polypropylene carbonate, polytrimethylene carbonate , and a copolymer of polytrimethylene carbonate and polycarbonate. , contained in a proportion of 3 wt% or more and 50 wt% or less with respect to the flexible crystal,
The flexible crystals include various amide anions in which two hydrogen atoms of the NH 2 anion are substituted with perfluoroalkylsulfonyl groups, fluorosulfonyl groups, or both of these, (perfluoroalkylsulfonyl)fluoroacetamide anions, and tris( trifluoromethanesulfonyl) methanide anion, hexafluorophosphate anion , and various perfluoroalkyl phosphate anions in which some of the fluorine atoms of the hexafluorophosphate anion are substituted with fluoroalkyl groups, tetrafluoroborate anions, and tetrafluoroborate Containing an anion selected from the group of various perfluoroalkylborate anions in which some fluorine atoms of the anion are substituted with fluoroalkyl groups;
A solid electrolyte characterized by:
前記各種アミドアニオンは、下記化学式(A)で表される各種ビス(パーフルオロアルキルスルホニル)アミドアニオン、ビス(フルオロスルホニル)アミドアニオン、及び各種N-(フルオロスルホニル)-N-(パーフルオロアルキルスルホニル)アミドアニオン、下記化学式(B)で表されるN,N-ヘキサフルオロ-1,3-ジスルホニルアミドアニオン、並びに下記化学式(C)で表されるN,N-ペンタフルオロ-1,3-ジスルホニルアミドの群から選ばれるアニオンであり、
前記各種パーフルオロアルキルホスフェートアニオンは、下記化学式(D)で表されるトリス(フルオロアルキル)トリフルオロホスフェートアニオンであり、
前記各種パーフルオロアルキルボレートアニオンは、下記化学式(E)で表されるモノ(フルオロアルキル)トリフルオロボレートアニオン、及びビス(フルオロアルキル)フルオロボレートアニオンの群から選ばれるアニオンであること、
を特徴とする請求項1記載の固体電解質。
Figure 0007378216000045
[式中、n及びmは0以上の整数]
Figure 0007378216000046
Figure 0007378216000047
Figure 0007378216000048
[式中、qは1以上の整数]
Figure 0007378216000049
[式中、2つのC 2s+1 基のうち、一方の基のsが0であり、他方の基のsが1以上の整数であるか、または両方の基のsが同一又は異なる1以上の整数
The various amide anions include various bis(perfluoroalkylsulfonyl)amide anions, bis(fluorosulfonyl)amide anions, and various N-(fluorosulfonyl)-N-(perfluoroalkylsulfonyl) represented by the following chemical formula (A). ) amide anion, N,N-hexafluoro-1,3-disulfonylamide anion represented by the following chemical formula (B), and N,N-pentafluoro-1,3- represented by the following chemical formula (C) An anion selected from the group of disulfonylamides,
The various perfluoroalkyl phosphate anions are tris(fluoroalkyl)trifluorophosphate anions represented by the following chemical formula (D),
The various perfluoroalkylborate anions are anions selected from the group of mono(fluoroalkyl)trifluoroborate anions and bis(fluoroalkyl)fluoroborate anions represented by the following chemical formula (E);
The solid electrolyte according to claim 1, characterized in that:
Figure 0007378216000045
[In the formula, n and m are integers of 0 or more]
Figure 0007378216000046
Figure 0007378216000047
Figure 0007378216000048
[In the formula, q is an integer of 1 or more]
Figure 0007378216000049
[In the formula, among the two C s F 2s+1 groups, s of one group is 0 and s of the other group is an integer of 1 or more, or s of both groups is the same or different 1 or more integer ]
電気二重層キャパシタに用いられる固体電解質であって、
前記電解質は、リチウムイオンを有するイオン性塩を除く、前記柔粘性結晶にドープされたイオン性塩であること、
を特徴とする請求項1又は2記載の固体電解質。
A solid electrolyte used in an electric double layer capacitor,
The electrolyte is an ionic salt doped into the flexible crystal, excluding an ionic salt having lithium ions;
The solid electrolyte according to claim 1 or 2, characterized in that:
請求項1乃至3の何れかに記載の固体電解質と、
前記固体電解質を挟んで対向する両電極と、
を備えること、
を特徴とする蓄電デバイス。
A solid electrolyte according to any one of claims 1 to 3,
both electrodes facing each other with the solid electrolyte in between;
to have
A power storage device featuring:
前記両電極の一方又は両方は、多孔質材料により成る活物質層と集電体を有する分極性電極であり、
前記分極性電極と前記固体電解質との境界面に電気二重層が形成されること、
を特徴とする請求項4記載の蓄電デバイス。
One or both of the electrodes is a polarizable electrode having an active material layer and a current collector made of a porous material ,
an electric double layer is formed at the interface between the polarizable electrode and the solid electrolyte;
The electricity storage device according to claim 4, characterized by:
JP2019066159A 2019-03-29 2019-03-29 Solid electrolytes and energy storage devices Active JP7378216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019066159A JP7378216B2 (en) 2019-03-29 2019-03-29 Solid electrolytes and energy storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019066159A JP7378216B2 (en) 2019-03-29 2019-03-29 Solid electrolytes and energy storage devices

Publications (2)

Publication Number Publication Date
JP2020167025A JP2020167025A (en) 2020-10-08
JP7378216B2 true JP7378216B2 (en) 2023-11-13

Family

ID=72717555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019066159A Active JP7378216B2 (en) 2019-03-29 2019-03-29 Solid electrolytes and energy storage devices

Country Status (1)

Country Link
JP (1) JP7378216B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508446B (en) 2019-03-29 2022-09-27 日本贵弥功株式会社 Solid electrolyte, electricity storage device, and method for producing solid electrolyte
JP2021077592A (en) * 2019-11-13 2021-05-20 株式会社リコー Active material, electrode, and power storage element
US20240283019A1 (en) * 2021-08-03 2024-08-22 Nippon Chemi-Con Corporation Solid electrolyte, electricity storage device and method for producing solid electrolyte
JP2024067494A (en) * 2022-11-04 2024-05-17 住友化学株式会社 Composite electrolyte, battery electrolyte, and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504788A (en) 2011-01-20 2014-02-24 エルジー・ケム・リミテッド ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE HAVING THE SAME
JP2014056822A (en) 2012-09-13 2014-03-27 Samsung Electronics Co Ltd Lithium battery
JP2017091813A (en) 2015-11-10 2017-05-25 日産自動車株式会社 Solid electrolyte having ion conductivity and electrochemical device using the same
JP2017218589A (en) 2016-06-06 2017-12-14 国立大学法人東京工業大学 Gelator, gel composition, electrolyte, and electrochemical device, and method for producing gelator
WO2018193630A1 (en) 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and electrochemical device
JP2022518443A (en) 2019-01-16 2022-03-15 ブルー・ソリューションズ・カナダ・インコーポレイテッド Hybrid solid electrolyte for all-solid-state batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504788A (en) 2011-01-20 2014-02-24 エルジー・ケム・リミテッド ELECTROLYTE FOR ELECTROCHEMICAL DEVICE, PROCESS FOR PRODUCING THE SAME, AND ELECTROCHEMICAL DEVICE HAVING THE SAME
JP2014056822A (en) 2012-09-13 2014-03-27 Samsung Electronics Co Ltd Lithium battery
JP2017091813A (en) 2015-11-10 2017-05-25 日産自動車株式会社 Solid electrolyte having ion conductivity and electrochemical device using the same
JP2017218589A (en) 2016-06-06 2017-12-14 国立大学法人東京工業大学 Gelator, gel composition, electrolyte, and electrochemical device, and method for producing gelator
WO2018193630A1 (en) 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and electrochemical device
JP2022518443A (en) 2019-01-16 2022-03-15 ブルー・ソリューションズ・カナダ・インコーポレイテッド Hybrid solid electrolyte for all-solid-state batteries

Also Published As

Publication number Publication date
JP2020167025A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7378216B2 (en) Solid electrolytes and energy storage devices
US10340550B2 (en) Lithium ion secondary cell
JP6279233B2 (en) Lithium secondary battery
US10270104B2 (en) Positive electrode for sodium ion secondary battery and sodium ion secondary battery
JP2009259755A (en) Separator for electrochemical device and lithium ion cell using the same
JP5892490B2 (en) Sulfur-based secondary battery
US10770748B2 (en) Lithium-selenium battery containing an electrode-protecting layer and method for improving cycle-life
WO2020203075A1 (en) Solid electrolyte, energy storage device, and method for producing solid electrolyte
JP2013097908A (en) Electrolytic solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2021141026A (en) Solid electrolyte, power storage device, and method for producing solid electrolyte
KR20150115751A (en) Electrode for sodium molten-salt battery and sodium molten-salt battery
EP4210078A1 (en) Electrical double layer capacitor
WO2023282246A1 (en) Composition for forming electrode
JP2019129119A (en) Ion conductive separator and electrochemical device
JP5193921B2 (en) Lithium secondary battery
JP5171854B2 (en) Lithium secondary battery
JP7288442B2 (en) Use of lithium nitrate as the sole lithium salt in lithium gel batteries
US20230111774A1 (en) Solid electrolyte, electricity storage device and method for producing solid electrolyte
WO2023013598A1 (en) Solid electrolyte, power storage device and method for producing solid electrolyte
WO2023282248A1 (en) Composition for electrode formation
JP2017178791A (en) Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith
JP2017178790A (en) Sulfonium salt, electrolytic solution, and lithium ion secondary battery
JP2004087262A (en) Normal temperature molten salt electrolyte and normal temperature molten salt electrolyte secondary battery using the same
CN117501471A (en) Composition for forming electrode
CN117480633A (en) Composition for forming electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R150 Certificate of patent or registration of utility model

Ref document number: 7378216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150