JP2021141026A - Solid electrolyte, power storage device, and method for producing solid electrolyte - Google Patents

Solid electrolyte, power storage device, and method for producing solid electrolyte Download PDF

Info

Publication number
JP2021141026A
JP2021141026A JP2020040083A JP2020040083A JP2021141026A JP 2021141026 A JP2021141026 A JP 2021141026A JP 2020040083 A JP2020040083 A JP 2020040083A JP 2020040083 A JP2020040083 A JP 2020040083A JP 2021141026 A JP2021141026 A JP 2021141026A
Authority
JP
Japan
Prior art keywords
solid electrolyte
anion
cation
sulfonic acid
anions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040083A
Other languages
Japanese (ja)
Inventor
舜 鯉川
Shun KOIKAWA
舜 鯉川
智志 久保田
Satoshi Kubota
智志 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2020040083A priority Critical patent/JP2021141026A/en
Publication of JP2021141026A publication Critical patent/JP2021141026A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a solid electrolyte of plastic crystal system that has a high ionic conductivity, and to provide a power storage device in which said solid electrolyte is used.SOLUTION: A solid electrolyte contains a plastic crystal into which an electrolyte is doped. The plastic crystal contains imidazolium having an alkyl group at least at the 1st and 3rd positions as a cation, and N, N-hexafluoro-1,3-disulfonylamide anion or perfluoroalkyl sulfonic acid anion in which the hydrocarbon group extending from the sulfonic acid skeleton is replaced with a perfluoroalkyl group, as an anion.SELECTED DRAWING: Figure 3

Description

本発明は、柔粘性結晶を含む固体電解質及びこの固体電解質を用いた蓄電デバイス、並びにこの固体電解質の製造方法に関する。 The present invention relates to a solid electrolyte containing plastic crystals, a power storage device using the solid electrolyte, and a method for producing the solid electrolyte.

二次電池、電気二重層キャパシタ、燃料電池、太陽電池その他の蓄電デバイスは、電解質を挟んで正負の電極を対向させて概略構成される。リチウムイオン二次電池は、ファラデー反応電極を有し、電解質層中のリチウムイオンを電極に可逆的に挿入及び脱離させることにより電気エネルギーを充電及び放電する。電気二重層キャパシタは、電極の一方又は両方が分極性電極であり、分極性電極と電解質層との界面に形成される電気二重層の蓄電作用を利用して充電及び放電する。 Secondary batteries, electric double layer capacitors, fuel cells, solar cells and other power storage devices are roughly configured with positive and negative electrodes facing each other with an electrolyte in between. The lithium ion secondary battery has a Faraday reaction electrode, and charges and discharges electrical energy by reversibly inserting and removing lithium ions in the electrolyte layer into the electrode. In the electric double layer capacitor, one or both of the electrodes are polarization electrodes, and the electric double layer capacitor is charged and discharged by utilizing the storage action of the electric double layer formed at the interface between the polarization electrode and the electrolyte layer.

近年、蓄電デバイスの電解質としてイオン液体が注目されている。イオン液体は、室温を含む温度範囲において液体状態で存在する塩であり、イオンのみからなる液体である。このイオン液体は、比較的高いイオン伝導性を有し、また不燃性若しくは難燃性であるため、蓄電デバイスの安全性向上の観点で注目されているものである。 In recent years, ionic liquids have been attracting attention as electrolytes for power storage devices. An ionic liquid is a salt that exists in a liquid state in a temperature range including room temperature, and is a liquid consisting of only ions. Since this ionic liquid has relatively high ionic conductivity and is nonflammable or flame-retardant, it is attracting attention from the viewpoint of improving the safety of the power storage device.

更に、近年は、例えばN−エチル−N−メチルピロリジニウム(P12)をカチオンとしてビス(フルオロスルホニル)アミド(FSA)をアニオンとする柔粘性結晶系の固体電解質が注目されている。柔粘性結晶は、プラスチッククリスタルとも称され、イオン液体に類する構造を有する塩であるが、室温を含む温度範囲においてはイオン液体とならず、固体状態となる。この柔粘性結晶は、秩序配列と無秩序配向を有する。即ち、柔粘性結晶とは、アニオン及びカチオンが規則的に配列した三次元結晶格子構造を有する一方、これらアニオン及びカチオンが回転不規則性を有するものである。 Further, in recent years, for example, a plastic crystal-based solid electrolyte having N-ethyl-N-methylpyrrolidinium (P12) as a cation and bis (fluorosulfonyl) amide (FSA) as an anion has attracted attention. The plastic crystal is also called a plastic crystal and is a salt having a structure similar to that of an ionic liquid, but it does not become an ionic liquid in a temperature range including room temperature and becomes a solid state. This plastic crystal has an ordered arrangement and a disordered orientation. That is, a plastic crystal has a three-dimensional crystal lattice structure in which anions and cations are regularly arranged, while these anions and cations have rotational irregularity.

二次電池では、柔粘性結晶に電解質としてリチウムイオンが必要に応じてドープされる。電気二重層キャパシタでは、柔粘性結晶に電解質として例えばTEMABFが必要に応じてドープされる。柔粘性結晶内では、電解質の解離により生じた陽イオン及び陰イオンがアニオン及びカチオンの回転によってホッピングされ、結晶格子中の空隙を移動する。 In the secondary battery, the plastic crystal is doped with lithium ions as an electrolyte as needed. In the electric double layer capacitor, the plastic crystal is doped with, for example, TEMABF 4 as an electrolyte, if necessary. In the plastic crystal, the cations and anions generated by the dissociation of the electrolyte are hopping by the rotation of the anions and cations and move through the voids in the crystal lattice.

柔粘性結晶を含む固体電解質は、液体系の電解質と比べると電極との化学反応領域が電極近傍のみに限定される。そのため、柔粘性結晶を含む固体電解質は、液体系の電解質と比べると漏れ電流が少なく、自己放電が抑制される。また柔粘性結晶を含む固体電解質は、液体系の電解質のような開弁や液漏れの虞も低減される。また電圧印加によってイオン液体を構成するアニオン及びカチオンが正負極へ向けて泳動してしまうが、柔粘性結晶はドープしたアニオン及びカチオンといった目的のイオンのみを正負極に泳動させることができ、このことは二次電池のおいては特にメリットの一つである。 Compared with liquid electrolytes, solid electrolytes containing plastic crystals have a chemical reaction region with the electrodes limited to the vicinity of the electrodes. Therefore, the solid electrolyte containing the plastic crystal has a smaller leakage current than the liquid electrolyte, and self-discharge is suppressed. Further, the solid electrolyte containing the plastic crystal reduces the risk of valve opening and liquid leakage unlike the liquid electrolyte. Further, when a voltage is applied, the anions and cations constituting the ionic liquid run toward the positive and negative electrodes, but the soft viscous crystal can run only the target ions such as the doped anions and cations on the positive and negative electrodes. Is one of the merits especially for secondary batteries.

更に、柔粘性結晶は有機溶媒に可溶である。一方、他の固体電解質としては、LiS・P等の硫化物系の固体電解質、LiLaZr12等の酸化物系の固体電解質が挙げられるが、これら硫化物系及び酸化物系は不溶性である。従って、柔粘性結晶を固体電解質又は固体電解質の母相に採用する場合、柔粘性結晶のアニオン成分とカチオン成分、またはこれらの塩を溶媒に溶かし、電極にキャストするという製造方法が採用可能となる。そのため、柔粘性結晶系の固体電解質には、硫化物系及び酸化物系と比べると、電極との密着性が向上し、また電極の活物質相が多孔質構造であれば、その構造内に入り込み易いという利点がある。 Furthermore, plastic crystals are soluble in organic solvents. On the other hand, examples of other solid electrolytes include sulfide-based solid electrolytes such as Li 2 S / P 2 S 5 and oxide-based solid electrolytes such as Li 7 La 3 Zr 2 O 12. The system and oxide system are insoluble. Therefore, when a plastic crystal is adopted as a solid electrolyte or a matrix phase of a solid electrolyte, a production method in which an anionic component and a cation component of the plastic crystal or a salt thereof is dissolved in a solvent and cast on an electrode can be adopted. .. Therefore, the plastic crystal-based solid electrolyte has improved adhesion to the electrode as compared with the sulfide-based and oxide-based solid electrolytes, and if the active material phase of the electrode has a porous structure, it is contained in the structure. It has the advantage of being easy to enter.

特表2014−504788号公報Japanese Patent Publication No. 2014-504788 国際公開2016/031961号公報International Publication 2016/031961

このように、柔粘性結晶は、イオン液体と同じく難燃性で、固体電解質と同じく液漏れの虞が低減するため、イオン液体と固体電解質の両方の特徴を併せ持つものとして特性上注目され、更に有機溶媒に可溶であることから電極にキャストする製法を取り得るものとして生産上も注目されている。 As described above, the soft viscous crystal is flame-retardant like the ionic liquid and reduces the risk of liquid leakage like the solid electrolyte. Since it is soluble in an organic solvent, it is attracting attention in production as it can be cast on an electrode.

しかしながら、柔粘性結晶系の固体電解質に対しては、イオン液体に対してはもちろん、硫化物系及び酸化物系の固体電解質と比べても、2〜3桁以上のイオン伝導度の低さが指摘されている。例えば、N,N―ジエチルピロリジニウムカチオンとビス(フルオロスルホニル)アミドアニオンによりなる柔粘性結晶を含む固体電解質は、25℃環境下において、1×10−5S/cmオーダーのイオン伝導度であるとの報告がある。また、N,N―ジメチルピロリジニウムカチオンとビス(トリフルオロメタンスルホニル)アミドアニオンによりなる柔粘性結晶を含む固体電解質は、1×10−8S/cmオーダーのイオン伝導度であるとの報告がある。 However, the ionic conductivity of the plastic crystal-based solid electrolyte is two to three orders of magnitude lower than that of the ionic liquid as well as the sulfide-based and oxide-based solid electrolytes. It has been pointed out. For example, a solid electrolyte containing plastic crystals consisting of N, N-diethylpyrrolidinium cations and bis (fluorosulfonyl) amide anions has an ionic conductivity on the order of 1 × 10-5 S / cm in a 25 ° C environment. There is a report that there is. It has also been reported that a solid electrolyte containing a plastic crystal composed of N, N-dimethylpyrrolidinium cation and bis (trifluoromethanesulfonyl) amide anion has an ionic conductivity on the order of 1 × 10-8 S / cm. be.

これに対し、例えばLiS・Pの固体電解質であると、イオン伝導度は1×10−2S/cmオーダーであると報告されている。また例えばLiLaZr12の固体電解質であると、イオン伝導度は1×10−3S/cmオーダーであると報告されている。 On the other hand, for example, in the case of a solid electrolyte of Li 2 S / P 2 S 5 , the ionic conductivity is reported to be on the order of 1 × 10 -2 S / cm. Further, for example, in the case of a solid electrolyte of Li 7 La 3 Zr 2 O 12 , it is reported that the ionic conductivity is on the order of 1 × 10 -3 S / cm.

本発明は、上記課題を解決するために提案されたものであり、その目的は、高いイオン伝導度を有する柔粘性結晶系の固体電解質と当該固体電解質を用いた蓄電デバイス及び固体電解質の製造方法を提供することにある。 The present invention has been proposed to solve the above problems, and an object of the present invention is a plastic crystal-based solid electrolyte having high ionic conductivity, a storage device using the solid electrolyte, and a method for producing a solid electrolyte. Is to provide.

イオン伝導度を向上させるためには、柔粘性結晶による電解質のホッピングが円滑であればよく、ホッピングを円滑にするためには、柔粘性結晶のアニオンとカチオンの回転自由度を上げればよい。柔粘性結晶を構成するアニオンとカチオンは相互作用しており、相互作用の1つにクーロン力による束縛がある。柔粘性結晶を構成するアニオンとカチオンのクーロン力を下げることができれば、アニオンとカチオンの回転自由度が上がるはずである。即ち、カチオン、アニオン又は両方の電荷量qを下げることで、アニオンとカチオンの回転自由度が上がるはずである。 In order to improve the ionic conductivity, it is sufficient that the hopping of the electrolyte by the plastic crystal is smooth, and in order to make the hopping smooth, the degree of rotational freedom of the anion and the cation of the plastic crystal may be increased. The anions and cations that make up the plastic crystal are interacting, and one of the interactions is binding by Coulomb force. If the Coulomb force of the anions and cations that make up the plastic crystal can be reduced, the degree of freedom of rotation of the anions and cations should increase. That is, by lowering the charge amount q of the cation, the anion, or both, the degree of freedom of rotation of the anion and the cation should be increased.

化学構造中に共役系を有するカチオンは、π電子が非局在化するために表面電荷密度が下がり、見かけ上電荷量qが低くなっている。化学構造中に共役系を有するカチオンとしてイミダゾリウム系があり、イミダゾリウム系は環状共役系を有する。但し、イミダゾリウム系は、イオン液体のカチオンとして知られている。 A cation having a conjugated system in its chemical structure has a lower surface charge density due to delocalization of π electrons, and an apparent charge amount q is lower. There is an imidazolium system as a cation having a conjugated system in the chemical structure, and the imidazolium system has a cyclic conjugated system. However, the imidazolium system is known as an ionic liquid cation.

発明者らの鋭意研究の結果、イミダゾリウム系のクーロン力とアニオンの融点とのバランスを採ることで、即ちイミダゾリウム系の中でも特定のカチオンと特定のアニオンと組み合わせることで、柔粘性結晶の状態を維持できるとの知見が得られた。そして、このイオン液体のカチオンとして知られる特定のイミダゾリウム系と特定のカチオンを含む新規の柔粘性結晶は、他の柔粘性結晶には見られないイオン伝導度を有するものであった。 As a result of diligent research by the inventors, by balancing the Coulomb force of the imidazolium system and the melting point of the anion, that is, by combining a specific cation and a specific anion in the imidazolium system, the state of the plastic crystal state. It was found that the above can be maintained. A novel plastic crystal containing a specific imidazolium system known as a cation of this ionic liquid and a specific cation had ionic conductivity not found in other plastic crystals.

本発明は、以上のような発明者らの鋭意研究の結果なされたものであり、上記課題を解決すべく、本発明に係る固体電解質は、電解質がドープされた柔粘性結晶を含み、前記柔粘性結晶は、カチオンとして、少なくとも1位及び3位にアルキル基を有するイミダゾリウムと、アニオンとして、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン又はスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンと、を含むこと、を特徴とする。 The present invention has been made as a result of the diligent studies of the inventors as described above, and in order to solve the above-mentioned problems, the solid electrolyte according to the present invention contains a soft-viscous crystal doped with an electrolyte, and the above-mentioned soft electrolyte is contained. The viscous crystal contains imidazolium having an alkyl group at least at the 1st and 3rd positions as a cation, and an N, N-hexafluoro-1,3-disulfonylamide anion or a hydrocarbon group extending from a sulfonic acid skeleton as an anion. It is characterized by comprising a perfluoroalkyl sulfonic acid anion substituted with a perfluoroalkyl group.

前記イミダゾリウムは、下記化学式(A)で表される1,3−ジアルキルイミダゾリウム又は1,2,3−トリアルキルイミダゾリウムであるようにしてもよい。

Figure 2021141026
The imidazolium may be 1,3-dialkylimidazolium or 1,2,3-trialkylimidazolium represented by the following chemical formula (A).
Figure 2021141026

発明者らは、アルキル基がアニオン及びカチオンの距離をとると仮定すると、アルキル基の鎖長が長くなれば、クーロン力が下がり、イオン伝導度が上がる一方、アニオンとカチオンの束縛が低下し柔粘性結晶にならずイオン液体になり易くなると考えた。発明者らは鋭意研究の結果、このアルキル基の鎖長の境界が炭素数が3であることを見出し、炭素数が3以下であれば、このアニオンとの組み合わせであれば柔粘性結晶を構成し易く、このアニオンとの組み合わせでもイオン液体になり易くなることを見出したものである。 Assuming that the alkyl group takes the distance between the anion and the cation, the inventors assume that the longer the chain length of the alkyl group, the lower the Coulomb force and the higher the ionic conductivity, while the lower the binding between the anion and the cation and the softer it is. It was thought that it would not become a viscous crystal but would easily become an ionic liquid. As a result of diligent research, the inventors have found that the boundary of the chain length of this alkyl group has 3 carbon atoms, and if the carbon number is 3 or less, a plastic crystal is formed if it is combined with this anion. It has been found that it is easy to make an ionic liquid even in combination with this anion.

前記柔粘性結晶は、カチオンとして、1,3−ジメチルイミダゾリウムカチオン、1−エチル−3−メチルイミダゾリウムカチオン、1−メチル−3−プロピルイミダゾリウムカチオン、又はこれらカチオンの2位にメチル基が置換したイミダゾリウムと、アニオンとして、前記N,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオンと、を含むようにしてもよい。 The soft viscous crystal has 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-methyl-3-propylimidazolium cation, or a methyl group at the 2-position of these cations as cations. The substituted imidazolium and the N, N-hexafluoro-1,3-disulfonylamide anion may be included as an anion.

前記柔粘性結晶は、カチオンとして、1,3−ジメチルイミダゾリウム又は1−エチル−3−メチルイミダゾリウムと、アニオンとして、前記スルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンと、を含むようにしてもよい。このアニオンとの組み合わせでは、アルキル基の炭素数が2以下であれば、容易に柔粘性結晶を構成する。 In the soft viscous crystal, 1,3-dimethylimidazolium or 1-ethyl-3-methylimidazolium is substituted as a cation, and a hydrocarbon group extending from the sulfonic acid skeleton is substituted with a perfluoroalkyl group as an anion. Fluoroalkyl sulfonic acid anions may be included. In combination with this anion, if the number of carbon atoms of the alkyl group is 2 or less, a plastic crystal can be easily formed.

前記パーフルオロアルキルスルホン酸アニオンは、下記化学式(C)で表されるペンタフルオロエタンスルホン酸アニオン、ヘプタフルオロプロパンスルホン酸アニオン、及びノナフルオロブタンスルホン酸アニオンであるようにしてもよい。

Figure 2021141026
[式中、rは2以上4以下の整数] The perfluoroalkyl sulfonic acid anion may be a pentafluoroethane sulfonic acid anion represented by the following chemical formula (C), a heptafluoropropane sulfonic acid anion, and a nonafluorobutane sulfonic acid anion.
Figure 2021141026
[In the formula, r is an integer between 2 and 4]

この固体電解質を用いた蓄電デバイスも本発明の一態様である。 A power storage device using this solid electrolyte is also an aspect of the present invention.

前記両電極の一方又は両方は、多孔質材料により成る活物質層と集電体を有する分極性電極であり、前記分極性電極と前記固体電解質との境界面に電気二重層が形成されるようにしてもよい。 One or both of the two electrodes is a polarizing electrode having an active material layer made of a porous material and a current collector, so that an electric double layer is formed at the interface between the polarizing electrode and the solid electrolyte. It may be.

また、本発明に係る固体電解質の製造方法は、この知見に基づきなされたものであり、上記課題を解決すべく、カチオンとして少なくとも1位及び3位にアルキル基を有するイミダゾリウムと、アニオンとしてN,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン又はスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンとを含む柔粘性結晶を作製する工程を含む。 Further, the method for producing a solid electrolyte according to the present invention was made based on this finding, and in order to solve the above problems, imidazolium having an alkyl group at least at the 1st and 3rd positions as a cation and N as an anion. , N-Hexafluoro-1,3-disulfonylamide anion or a step of preparing a soft viscous crystal containing a perfluoroalkyl sulfonic acid anion in which a hydrocarbon group extending from a sulfonic acid skeleton is replaced with a perfluoroalkyl group. ..

本発明によれば、柔粘性結晶を用いた固体電解質のイオン伝導度が向上する。 According to the present invention, the ionic conductivity of a solid electrolyte using a plastic crystal is improved.

実施例1の成果物のXRDの結果を示すグラフである。It is a graph which shows the result of XRD of the product of Example 1. 実施例2の成果物のXRDの結果を示すグラフである。It is a graph which shows the result of XRD of the product of Example 2. 実施例3の成果物のXRDの結果を示すグラフである。It is a graph which shows the result of XRD of the product of Example 3. 実施例4の成果物を示す写真である。It is a photograph which shows the product of Example 4.

以下、本発明を実施する形態について説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the embodiments described below.

(固体電解質)
固体電解質は、蓄電デバイスの正負電極間に介在し、主としてイオンを伝導する。蓄電デバイスは、電気エネルギーを充放電する受動素子であり、例えばリチウムイオン二次電池及び電気二重層キャパシタ等である。リチウムイオン二次電池は、ファラデー反応電極を有し、固体電解質中のリチウムイオンを電極に可逆的に挿入及び脱離させることにより電気エネルギーを充電及び放電する。電気二重層キャパシタは、電極の一方又は両方が分極性電極であり、電極と固体電解質との界面に形成される電気二重層の蓄電作用を利用して充電及び放電する。
(Solid electrolyte)
The solid electrolyte intervenes between the positive and negative electrodes of the power storage device and mainly conducts ions. The power storage device is a passive element that charges and discharges electric energy, such as a lithium ion secondary battery and an electric double layer capacitor. The lithium ion secondary battery has a Faraday reaction electrode, and charges and discharges electrical energy by reversibly inserting and removing lithium ions in a solid electrolyte into the electrode. In the electric double layer capacitor, one or both of the electrodes are polarized electrodes, and the electric double layer capacitor is charged and discharged by utilizing the storage action of the electric double layer formed at the interface between the electrode and the solid electrolyte.

この固体電解質は、イオン伝導媒体となる柔粘性結晶で母相が形成され、当該柔粘性結晶にドープされるイオン性塩を電解質として含む。柔粘性結晶は、プラスチッククリスタルとも称され、秩序配列と無秩序配向を有する。即ち、柔粘性結晶とは、アニオン及びカチオンが規則的に配列した三次元結晶格子構造を有する一方、これらアニオン及びカチオンが回転不規則性を有するものである。柔粘性結晶内では、電解質の解離により生じた陽イオン及び陰イオンがアニオン及びカチオンの回転によってホッピングされ、結晶格子中の空隙を移動する。 This solid electrolyte contains, as an electrolyte, an ionic salt in which a parent phase is formed of a plastic crystal that serves as an ionic conduction medium and is doped in the plastic crystal. Plastic crystals, also called plastic crystals, have an ordered arrangement and a disordered orientation. That is, a plastic crystal has a three-dimensional crystal lattice structure in which anions and cations are regularly arranged, while these anions and cations have rotational irregularity. In the plastic crystal, the cations and anions generated by the dissociation of the electrolyte are hopping by the rotation of the anions and cations and move through the voids in the crystal lattice.

(カチオン)
この柔粘性結晶は、少なくとも1位及び3位にアルキル基を有するイミダゾリウム、即ち下記化学式(A)で表される1,3−ジアルキルイミダゾリウム又は1,2,3−トリアルキルイミダゾリウムをカチオンとして用いて構成されている。尚、1−エチル−1−メチルイミダゾリウムは、TFSAアニオンとも呼ばれるビス(トリフルオロメタンスルホニル)アミドアニオンとの組み合わせで構成される融点−3℃のイオン液体を構成するカチオンとして知られている。
(Cation)
This plastic crystal crystal is a cation of imidazolium having an alkyl group at least at the 1st and 3rd positions, that is, 1,3-dialkylimidazolium represented by the following chemical formula (A) or 1,2,3-trialkylimidazolium. It is configured to be used as. 1-Ethyl-1-methylimidazolium is known as a cation constituting an ionic liquid having a melting point of -3 ° C., which is composed of a combination with a bis (trifluoromethanesulfonyl) amide anion, which is also called a TFSA anion.

Figure 2021141026
[式中、m及びnは1以上3以下であり、pは0又は1である。]
Figure 2021141026
[In the formula, m and n are 1 or more and 3 or less, and p is 0 or 1. ]

(アニオン)
柔粘性結晶のアニオンは、下記化学式(B)で表されるN,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン(CFSAアニオン)、並びに下記化学式(C)で表されるスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換された各種パーフルオロアルキルスルホン酸アニオン(NFSアニオン)が含まれる。
(Anion)
The anion of the soft viscous crystal is derived from the N, N-hexafluoro-1,3-disulfonylamide anion (CFSA anion) represented by the following chemical formula (B) and the sulfonic acid skeleton represented by the following chemical formula (C). Various perfluoroalkyl sulfonic acid anions (NFS anions) in which the extending hydrocarbon groups are replaced with perfluoroalkyl groups are included.

Figure 2021141026
Figure 2021141026

Figure 2021141026
[化学式(C)の式中、rは2以上4以下の整数である。]
Figure 2021141026
[In the formula of the chemical formula (C), r is an integer of 2 or more and 4 or less. ]

(新規柔粘性結晶)
以上のアニオン及びカチオンで構成される柔粘性結晶は、例えば次の化学式(D)に示す1,3−ジメチルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るDMICFSA、化学式(E)に示す1−エチル−3−メチルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るEMICFSA、化学式(F)に示す1−メチル−3−プロピルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るMPICFSA、化学式(G)に示す1,3−ジメチルイミダゾリウムとパーフルオロアルキルスルホン酸アニオンにより成るDMINFS、及び化学式(H)に示す1−エチル−3−メチルイミダゾリウムとパーフルオロアルキルスルホン酸アニオンにより成るEMINFSが挙げられる。
(New plastic crystal)
The soft viscous crystal composed of the above anions and cations is, for example, DMICFSA composed of 1,3-dimethylimidazolium represented by the following chemical formula (D) and N, N-hexafluoro-1,3-disulfonylamide, chemical formula. EMICFSA consisting of 1-ethyl-3-methylimidazolium shown in (E) and N, N-hexafluoro-1,3-disulfonylamide, 1-methyl-3-propylimidazolium and N shown in chemical formula (F). , MPICFSA consisting of N-hexafluoro-1,3-disulfonylamide, DMINFS consisting of 1,3-dimethylimidazolium and perfluoroalkyl sulfonic acid anion represented by chemical formula (G), and 1- represented by chemical formula (H). EMINFS consisting of ethyl-3-methylimidazolium and a perfluoroalkyl sulfonic acid anion can be mentioned.

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

Figure 2021141026
[式中、rは2以上4以下の整数]
Figure 2021141026
[In the formula, r is an integer between 2 and 4]

Figure 2021141026
[式中、rは2以上4以下の整数]
Figure 2021141026
[In the formula, r is an integer between 2 and 4]

ここで、これらイミダゾリウムは、1位と3位に窒素原子を含む五員環により成る。この五員環は環状共役系である。環状共役系の五員環によって、π電子が非局在化し、表面電荷密度が下がり、イミダゾリウムの見かけ上電荷量qは下がる。即ち、これらイミダゾリウムとアニオンとの間に生じるクーロン力は小さくなる。また、このイミダゾリウムは、1位と3位がアルキル基で置換されている。このアルキル基がアニオンとの距離を取り、このイミダゾリウムとアニオンとの間に生じるクーロン力は小さくなる。 Here, these imidazoliums are composed of five-membered rings containing nitrogen atoms at the 1st and 3rd positions. This five-membered ring is a cyclic conjugated system. The five-membered ring of the cyclic conjugated system delocalizes π electrons, lowers the surface charge density, and lowers the apparent charge amount q of imidazolium. That is, the Coulomb force generated between these imidazoliums and anions becomes smaller. Further, in this imidazolium, the 1-position and the 3-position are substituted with an alkyl group. This alkyl group keeps a distance from the anion, and the Coulomb force generated between this imidazolium and the anion becomes small.

そのため、これら柔粘性結晶のカチオンとアニオンとの相互作用関係は小さくは、これら柔粘性結晶のカチオンとアニオンの回転自由度が上がっている。そのため、柔粘性結晶にドープされた電解質中の陽イオン及び陰イオンのホッピングがより容易となり、固体電解質のイオン伝導度の向上を生じさせる。 Therefore, the interaction between the cations and anions of these plastic crystals is small, and the degree of freedom of rotation of the cations and anions of these plastic crystals is increased. Therefore, hopping of cations and anions in the electrolyte doped in the plastic crystal becomes easier, and the ionic conductivity of the solid electrolyte is improved.

但し、このカチオンは、例えばトリス(フルオロスルホニル)メタニドアニオンと組み合わせた場合は、固体又はイオン液体となることが知られている。見かけ上電荷量qやアルキル基の存在によるクーロン力の増加又は減少が鋭敏であり、柔粘性結晶を構成し難くしているものと推測される。 However, it is known that this cation becomes a solid or an ionic liquid when combined with, for example, a tris (fluorosulfonyl) methanide anion. It is presumed that the increase or decrease of the Coulomb force due to the apparent charge amount q and the presence of the alkyl group is sensitive, making it difficult to form a plastic crystal.

一方で、これらアニオンは、例えばP12カチオンとも呼ばれるN−エチル−N−メチルピロリジニウムとの組み合わせたP12CFSAの場合は、融点が302℃の柔粘性結晶を構成する。即ち、これらアニオンと組み合わせると融点は高くなると考えられる。従って、これらアニオンは、融点が低くイオン液体を構成し易いカチオンとの塩の融点を上げる方向に作用すると考えられる。更に、カチオンのアルキル基の鎖長をアニオンに応じて炭素数が3以下又は2以下に調整することで、柔粘性結晶の構成容易性とイオン伝導度の向上度合いとのバランスが図ることができると考えられる。 On the other hand, these anions form a plastic crystal having a melting point of 302 ° C. in the case of P12CFSA in combination with N-ethyl-N-methylpyrrolidinium, which is also called a P12 cation, for example. That is, it is considered that the melting point becomes higher when combined with these anions. Therefore, these anions are considered to act in the direction of raising the melting point of the salt with the cation having a low melting point and easily forming an ionic liquid. Further, by adjusting the chain length of the alkyl group of the cation to 3 or less or 2 or less carbon atoms depending on the anion, it is possible to balance the ease of forming a plastic crystal and the degree of improvement in ionic conductivity. it is conceivable that.

その結果、これらアニオンとカチオンの組み合わせは、イオン液体ではなく、新規の柔粘性結晶を構成するものであり、またその新規の柔粘性結晶は高いイオン伝導度を示すものである。 As a result, the combination of these anions and cations constitutes a new plastic crystal, not an ionic liquid, and the new plastic crystal exhibits high ionic conductivity.

(電解質)
柔粘性結晶にドープされて電解質となるイオン性塩は、蓄電デバイスの種類に応じればよい。リチウムイオン二次電池に対するイオン性塩としては、Li(CFSON(通称:LiTFSA)、Li(FSON(通称:LiFSA)、Li(CSON、LiPF、LiBF、LiAsF、LiTaF、LiClO、LiCFSO等が挙げられ、単独又は2種以上を組み合わせて用いられる。電気二重層キャパシタに対するイオン性塩としては、有機酸の塩、無機酸の塩、又は有機酸と無機酸との複合化合物の塩であり、単独又は2種以上を組み合わせて用いられる。
(Electrolytes)
The ionic salt doped in the plastic crystal to be an electrolyte may be selected depending on the type of power storage device. As ionic salts for lithium ion secondary batteries, Li (CF 3 SO 2 ) 2 N (commonly known as LiTFSA), Li (FSO 2 ) 2 N (commonly known as LiFSA), Li (C 2 F 5 SO 2 ) 2 Examples thereof include N, LiPF 6 , LiBF 4 , LiAsF 6 , LiTaF 6 , LiClO 4 , LiCF 3 SO 3, and the like, which are used alone or in combination of two or more. The ionic salt for the electric double layer capacitor is a salt of an organic acid, a salt of an inorganic acid, or a salt of a composite compound of an organic acid and an inorganic acid, and is used alone or in combination of two or more.

有機酸としては、シュウ酸、コハク酸、グルタン酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6−デカンジカルボン酸、1,7−オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等のカルボン酸、フェノール類、スルホン酸が挙げられる。また、無機酸としては、テトラフルオロボレート等を含むホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。 Organic acids include oxalic acid, succinic acid, glutanic acid, pimelli acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, Examples thereof include carboxylic acids such as 1,6-decandicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid and tridecanedioic acid, phenols and sulfonic acids. Examples of the inorganic acid include boric acid containing tetrafluoroborate and the like, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, silicic acid and the like. Examples of the composite compound of an organic acid and an inorganic acid include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.

これら有機酸の塩、無機酸の塩、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩のアミンとしては、一級アミン、二級アミン、三級アミンが挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 Examples of these organic acid salts, inorganic acid salts, and at least one salt of the composite compound of organic acid and inorganic acid include ammonium salt, quaternary ammonium salt, quaternized amidinium salt, amine salt, sodium salt, and potassium. Examples include salt. Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, tetraethylammonium and the like. Examples of the quaternized amidinium include ethyldimethylimidazolinium and tetramethylimidazolinium. Examples of amines in amine salts include primary amines, secondary amines, and tertiary amines. Primary amines include methylamine, ethylamine, propylamine and the like, secondary amines include dimethylamine, diethylamine, ethylmethylamine and dibutylamine, and tertiary amines include trimethylamine, triethylamine, tripropylamine and tributylamine. Examples thereof include ethyldimethylamine and ethyldiisopropylamine.

また、電気二重層キャパシタに対するイオン性塩としては、下記化学式(I)で表され、炭素数を問わない直鎖アルキル基で置換された、トリエチルメチルアンモニウムカチオン(TEMAカチオン)等のテトラアルキルアンモニウムカチオン、下記化学式(J)で表され、メチル基、エチル基又はイソプロピル基が結合する五員環のピロリジニウムカチオン、下記化学式(K)で表され、メチル基、エチル基又はイソプロピル基が結合する六員環のピペリジニウムカチオン、及び下記化学式(L)で表されるスピロ型ピロリジニウムカチオン(SBPカチオン)等の第4級アンモニウムカチオンを含む塩も挙げられる。 The ionic salt for the electric double layer capacitor is represented by the following chemical formula (I) and is a tetraalkylammonium cation such as a triethylmethylammonium cation (TEMA cation) substituted with a linear alkyl group regardless of the number of carbon atoms. , A 5-membered pyrrolidinium cation to which a methyl group, an ethyl group or an isopropyl group is bonded, represented by the following chemical formula (J), and a methyl group, an ethyl group or an isopropyl group to which the methyl group, an ethyl group or an isopropyl group is bonded. Examples thereof include salts containing a six-membered ring piperidinium cation and a quaternary ammonium cation such as a spiro-type pyrrolidinium cation (SBP cation) represented by the following chemical formula (L).

Figure 2021141026
[式中、a、b、c及びdは1以上の整数であり、炭素数は何れでもよい。]
Figure 2021141026
[In the formula, a, b, c and d are integers of 1 or more, and the number of carbon atoms may be any. ]

Figure 2021141026
[式中、R1及びR2は、メチル基、エチル基又はイソプロピル基。]
Figure 2021141026
[In the formula, R1 and R2 are methyl group, ethyl group or isopropyl group. ]

Figure 2021141026
[式中、R3及びR4は、メチル基、エチル基又はイソプロピル基。]
Figure 2021141026
[In the formula, R3 and R4 are methyl group, ethyl group or isopropyl group. ]

Figure 2021141026
Figure 2021141026

上記化学式(J)で一般化されるピロリジニウムカチオンの具体例としては、例えば、下記化学式(M)で表されるN−エチル−N−メチルピロリジニウムカチオン(P12カチオン)、下記化学式(N)で表されるN−イソプロピル−N−メチルピロリジニウムカチオン(P13isoカチオン)、下記化学式(P)で表されるN,N−ジエチルピロリジニウムカチオン(P22カチオン)が挙げられる。また、上記化学式(K)で一般化されるピペリジニウムの具体例としては、例えば、下記化学式(Q)で表されるN−エチル−N−メチルピペリジニウムカチオン(六員環P12カチオン)が挙げられる。 Specific examples of the pyrrolidinium cation generalized in the above chemical formula (J) include, for example, N-ethyl-N-methylpyrrolidinium cation (P12 cation) represented by the following chemical formula (M) and the following chemical formula (P12 cation). Examples thereof include an N-isopropyl-N-methylpyrrolidinium cation (P13iso cation) represented by N) and an N, N-diethylpyrrolidinium cation (P22 cation) represented by the following chemical formula (P). Further, as a specific example of piperidinium generalized by the above chemical formula (K), for example, an N-ethyl-N-methylpiperidinium cation (six-membered ring P12 cation) represented by the following chemical formula (Q) can be mentioned. Be done.

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

(製造方法)
このような柔粘性結晶を含む固体電解質の製造方法の例としては次の通りである。柔粘性結晶を構成するアニオンのアルカリ金属塩及びハロゲン化したカチオンを各々溶媒に溶解させる。アルカリ金属としては、Na、K、Li、Csが挙げられる。ハロゲンとしてはF、Cl、Br、Iが挙げられる。溶媒としては水が好ましい。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を少しずつ滴下してイオン交換反応を行っていく。ハロゲン化したカチオンの溶液に対してアニオンの金属塩の溶液を1.2倍の物質量となるように添加し、攪拌する。
(Production method)
An example of a method for producing a solid electrolyte containing such a plastic crystal is as follows. The alkali metal salt of the anion and the halogenated cation constituting the plastic crystal are dissolved in the solvent, respectively. Examples of the alkali metal include Na, K, Li and Cs. Examples of the halogen include F, Cl, Br and I. Water is preferable as the solvent. An ion exchange reaction is carried out by gradually dropping a solution of an anionic metal salt into a halogenated cation solution. Add a solution of the anion metal salt to the halogenated cation solution so that the amount of substance is 1.2 times, and stir.

イオン交換により、柔粘性結晶が生成されると共に、ハロゲン化アルカリ金属が生成される。柔粘性結晶は疎水性であり、ハロゲン化アルカリ金属は親水性であるため、柔粘性結晶は水溶液中で固体の状態で存在し、ハロゲン化アルカリ金属は水溶液に溶解している。この柔粘性結晶が固体の状態で存在する水溶液にジクロロメタン等の有機溶媒を混合する。ジクロロメタン等の有機溶媒を混合し、静置すると、混合液は水層と有機溶媒の層に分かれる。 By ion exchange, plastic crystals are produced and alkali metal halides are produced. Since the plastic crystal is hydrophobic and the alkali metal halide is hydrophilic, the plastic crystal exists in a solid state in the aqueous solution, and the alkali metal halide is dissolved in the aqueous solution. An organic solvent such as dichloromethane is mixed with an aqueous solution in which the plastic crystals exist in a solid state. When an organic solvent such as dichloromethane is mixed and allowed to stand, the mixed solution is separated into an aqueous layer and an organic solvent layer.

分液から水層を取り除くことで、ハロゲン化アルカリ金属は除去される。この操作は5回等の複数回繰り返せばよい。ハロゲン化アルカリ金属を除去した後、活性炭を加えて一晩攪拌し、不純物を活性炭に吸着させて除去する。更にろ過により柔粘性結晶の沈殿物を回収し、乾燥によりジクロロメタン等の有機溶媒を完全に取り除く。 Alkali metal halides are removed by removing the aqueous layer from the liquid separation. This operation may be repeated a plurality of times such as 5 times. After removing the alkali metal halide, activated carbon is added and stirred overnight to adsorb impurities on the activated carbon and remove them. Further, the precipitate of plastic crystal is collected by filtration, and the organic solvent such as dichloromethane is completely removed by drying.

固体電解質を作製する場合、柔粘性結晶をバイアル瓶に加え、このバイアル瓶に電解質となるイオン性塩を添加する。イオン性塩は柔粘性結晶の合計に対して0.1以上50mol%以下であることが好ましい。そして、アセニトン又はアセトニトリル等の柔粘性結晶と電解質が可溶な有機溶媒を更にバイアル瓶に加えて、両柔粘性結晶及び電解質を溶解させた有機溶媒溶液を調製する。 When preparing a solid electrolyte, plastic crystals are added to a vial, and an ionic salt to be an electrolyte is added to the vial. The ionic salt is preferably 0.1 or more and 50 mol% or less based on the total amount of plastic crystals. Then, an organic solvent in which the plastic crystal and the electrolyte are soluble, such as aceniton or acetonitrile, is further added to the vial to prepare an organic solvent solution in which both the plastic crystal and the electrolyte are dissolved.

固体電解質を付着させる電極の活物質層、セパレータ又は両方といった対象物にこの有機溶媒溶液をキャストする。キャストした後、80℃等の有機溶媒が揮発する温度環境下で放置して乾燥により溶媒を揮散させ、更に150℃等の温度環境下で残った水分等を揮散させる。これにより、対象物上に固体電解質は形成される。 The organic solvent solution is cast onto an object such as the active material layer of the electrode, the separator, or both to which the solid electrolyte is attached. After casting, the solvent is left to volatilize in a temperature environment such as 80 ° C. where an organic solvent volatilizes, and the solvent is volatilized by drying, and further, water and the like remaining in a temperature environment such as 150 ° C. are volatilized. As a result, a solid electrolyte is formed on the object.

尚、柔粘性結晶を含む固体電解質の製造方法としては、これに限らず、各種の手法を用いることができる。例えば、粉末になった柔粘性結晶と電解質をそれぞれ個別に有機溶媒に溶かした各溶液を作製し、これら溶液を混合するようにしてもよい。また、粉末になった柔粘性結晶を有機溶媒に溶かした後に、当該有機溶媒に電解質を加えるようにしてもよい。また、電解質を有機溶媒に溶かした後、粉末になった柔粘性結晶を当該有機溶媒に加えるようにしてもよい。そして、この有機溶媒を対象物にキャストするようにすればよい。 The method for producing the solid electrolyte containing the plastic crystal is not limited to this, and various methods can be used. For example, each solution in which the powdered plastic crystal and the electrolyte are individually dissolved in an organic solvent may be prepared and these solutions may be mixed. Alternatively, the powdered plastic crystal may be dissolved in an organic solvent, and then an electrolyte may be added to the organic solvent. Alternatively, after dissolving the electrolyte in an organic solvent, powdered plastic crystals may be added to the organic solvent. Then, this organic solvent may be cast on the object.

(蓄電デバイス)
蓄電デバイスは、固体電解質を挟んで正負の電極を対向させて成る。正負の電極の接触を防止し、また固体電解質の形態保持のために正負の電極の間にはセパレータが配される。但し、固体電解質が正負の電極の接触を防止可能な程度の厚みを有し、また単独で形態保持可能な硬度を備えるようにすれば、所謂セパレータレスであってもよい。
(Power storage device)
The power storage device consists of positive and negative electrodes facing each other with a solid electrolyte sandwiched between them. A separator is arranged between the positive and negative electrodes to prevent contact between the positive and negative electrodes and to maintain the shape of the solid electrolyte. However, if the solid electrolyte has a thickness sufficient to prevent contact between the positive and negative electrodes and has a hardness capable of maintaining its shape independently, it may be so-called separatorless.

電気二重層キャパシタの正負の電極は、集電体に活物質層を形成させて成る。集電体としては、アルミニウム箔、白金、金、ニッケル、チタン、鋼、およびカーボンなどの弁作用を有する金属を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。また集電体の表面はエッチング処理などによる凹凸面を形成してもよく、またプレーン面であってもよい。さらには、表面処理を行い、リンを集電体の表面に付着させてもよい。 The positive and negative electrodes of an electric double layer capacitor are formed by forming an active material layer on a current collector. As the current collector, a metal having a valve action such as aluminum foil, platinum, gold, nickel, titanium, steel, and carbon can be used. As the shape of the current collector, any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted. Further, the surface of the current collector may be an uneven surface formed by etching or the like, or may be a plain surface. Further, surface treatment may be performed to attach phosphorus to the surface of the current collector.

正極又は負極の少なくとも一方は分極性電極である。分極性電極の活物質層は、電気二重層容量を有する多孔質構造の炭素材料を含む。多孔質構造の活物質層を有する電気二重層キャパシタには、この柔粘性結晶を用いた固体電解質は特に好適である。柔粘性結晶は可溶であるために、多孔質構造に容易に入り込み、活物質層への充填率が高まる。一方、硫化物系及び酸化物系の固体電解質は多孔質構造への充填性が低い。そのため、この柔粘性結晶を適用した電気二重層キャパシタは、多孔質構造への良好な充填性と高いイオン伝導度を兼ね合わせることができ、高容量及び高出力となる。尚、正極又は負極の何れか他方は、ファラデー反応を生じる金属化合物粒子や炭素材料を含む活物質層が形成されるようにしてもよい。 At least one of the positive electrode and the negative electrode is a polar electrode. The active material layer of the depolarizing electrode contains a carbon material having a porous structure having an electric double layer capacity. A solid electrolyte using this plastic crystal is particularly suitable for an electric double layer capacitor having an active material layer having a porous structure. Since the plastic crystal is soluble, it easily penetrates into the porous structure and the filling rate into the active material layer is increased. On the other hand, sulfide-based and oxide-based solid electrolytes have low filling properties in the porous structure. Therefore, the electric double layer capacitor to which this plastic crystal is applied can have both good filling property into a porous structure and high ionic conductivity, and has a high capacity and a high output. It should be noted that either the positive electrode or the negative electrode may be formed with an active material layer containing metal compound particles or a carbon material that causes a Faraday reaction.

分極性電極における炭素材料は、導電助剤とバインダーと混合されて集電体にドクターブレード法等によって塗工される。炭素材料と導電助剤とバインダーの混合物をシート状に成型し、集電体に圧着するようにしてもよい。ここで、多孔質構造は、炭素材料が粒子形状を有する場合には一次粒子間及び二次粒子間に生じる隙間によって成り立ち、炭素材料が繊維質の場合には繊維間に生じる隙間によって成り立つ。 The carbon material in the polar electrode is mixed with a conductive auxiliary agent and a binder and coated on the current collector by a doctor blade method or the like. A mixture of a carbon material, a conductive auxiliary agent, and a binder may be molded into a sheet and pressure-bonded to a current collector. Here, the porous structure is formed by the gaps formed between the primary particles and the secondary particles when the carbon material has a particle shape, and is formed by the gaps formed between the fibers when the carbon material is fibrous.

分極性電極における活物質層の炭素材料は、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする活性炭、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、カーボンナノチューブ、カーボンナノファイバなどを挙げられる。この炭素材料は、水蒸気賦活、アルカリ賦活、塩化亜鉛賦活又は電界賦活等の賦活処理並びに開口処理によって比表面積を向上させてもよい。 The carbon material of the active material layer in the polarization electrode is natural plant structure such as palm, synthetic resin such as phenol, activated carbon made from fossil fuel such as coal, coke, pitch, etc., Ketjen black, acetylene. Examples thereof include carbon black such as black and channel black, carbon nanohorns, amorphous carbon, natural graphite, artificial graphite, graphitized Ketjen black, mesoporous carbon, carbon nanotubes, and carbon nanofibers. The specific surface area of this carbon material may be improved by activation treatments such as steam activation, alkali activation, zinc chloride activation, electric field activation, and opening treatment.

バインダーとしては、例えばフッ素系ゴム、ジエン系ゴム、スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等の含フッ素ポリマー、カルボキシメチルセルロース、ニトロセルロース等のセルロース、その他、ポリオレフィン樹脂、ポリイミド樹脂、アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。これらのバインダーは、単独で使用しても良く、2種以上を混合して使用しても良い。 Examples of the binder include rubbers such as fluorine-based rubber, diene-based rubber, and styrene-based rubber, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, cellulose such as carboxymethyl cellulose and nitrocellulose, and polyolefin resins and polyimides. Examples thereof include resins, acrylic resins, nitrile resins, polyester resins, phenol resins, polyvinyl acetate resins, polyvinyl alcohol resins, and epoxy resins. These binders may be used alone or in combination of two or more.

導電助剤としては、ケッチェンブラック、アセチレンブラック、天然/人造黒鉛、繊維状炭素等を用いることができ、繊維状炭素としては、カーボンナノチューブ、カーボンナノファイバ(以下、CNF)などの繊維状炭素を挙げることができる。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブ(SWCNT)でも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよく、それらが混合されていてもよい。 As the conductive auxiliary agent, Ketjen black, acetylene black, natural / artificial graphite, fibrous carbon and the like can be used, and as the fibrous carbon, fibrous carbon such as carbon nanotubes and carbon nanofibers (hereinafter, CNF) can be used. Can be mentioned. The carbon nanotube may be a single-walled carbon nanotube (SWCNT) in which the graphene sheet is one layer, or a multi-walled carbon nanotube (MWCNT) in which two or more layers of graphene sheets are coaxially rolled and the tube wall is multi-walled. It may have been.

集電体と活物質層の間には、黒鉛等の導電剤を含むカーボンコート層を設けてもよい。集電体の表面に黒鉛等の導電剤、バインダー等を含むスラリーを塗布、乾燥することで、カーボンコート層を形成することができる。 A carbon coat layer containing a conductive agent such as graphite may be provided between the current collector and the active material layer. A carbon coat layer can be formed by applying a slurry containing a conductive agent such as graphite, a binder, or the like to the surface of the current collector and drying it.

リチウムイオン二次電池の正負の電極は、集電体に活物質層を形成させて成る。集電体としては、アルミニウム箔、白金、金、ニッケル、チタン、及び鋼などの金属、カーボン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、及びポリオキサジアゾールなどの導電性高分子材料、また非導電性高分子材料に導電性フィラーを充填した樹脂を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。 The positive and negative electrodes of the lithium ion secondary battery are formed by forming an active material layer on the current collector. Current collectors include metals such as aluminum foil, platinum, gold, nickel, titanium, and steel, carbon, polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. A conductive polymer material or a resin obtained by filling a non-conductive polymer material with a conductive filler can be used. As the shape of the current collector, any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.

活物質は、バインダーと混合されて集電体にドクターブレード法等によって塗工される。炭素材料とバインダーの混合物をシート状に成型し、集電体に圧着するようにしてもよい。活物質層には、導電助剤となるカーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイトなどの導電性カーボンが添加されてもよく、活物質とバインダーに加えて混練されて集電体に塗布又は圧着されればよい。 The active material is mixed with a binder and coated on the current collector by the doctor blade method or the like. A mixture of the carbon material and the binder may be molded into a sheet and pressure-bonded to the current collector. Conductive carbon such as carbon black, acetylene black, ketjen black, and graphite, which are conductive aids, may be added to the active material layer, and the active material and the binder are kneaded and applied to the current collector. It may be crimped.

正極の活物質としては、リチウムイオンを吸蔵及び放出することが可能な金属化合物粒子が挙げられ、層状岩塩型LiMO、層状LiMnO−LiMO固溶体、及びスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)が挙げられる。これらの具体例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO−LiCoO、LiMnO−LiNiO、LiMnO−LiNi1/3Co1/3Mn1/3、LiMnO−LiNi1/2Mn1/2、LiMnO−LiNi1/2Mn1/2−LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。また、金属化合物粒子は、イオウ及びLiS、TiS、MoS、FeS、VS、Cr1/21/2などの硫化物、NbSe、VSe、NbSeなどのセレン化物、Cr、Cr、VO、V、V、V13などの酸化物の他、LiNi0.8Co0.15l0.05、LiVOPO、LiV、LiV、MoV、LiFeSiO、LiMnSiO、LiFePO、LiFe1/2Mn1/2PO、LiMnPO、Li(POなどの複合酸化物が挙げられる。 Examples of the active material of the positive electrode include metal compound particles capable of occluding and releasing lithium ions, which include layered rock salt type LiMO 2 , layered Li 2 MnO 3- LiMO 2 solid solution, and spinel type LiM 2 O 4 (formula). M in this means Mn, Fe, Co, Ni or a combination thereof). Specific examples of these include LiCoO 2 , LiNiO 2 , LiNi 4/5 Co1 / 5 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 1/2 Mn 1/2 O 2 , LiFeO. 2 , LiMnO 2 , Li 2 MnO 3- LiCoO 2 , Li 2 MnO 3- LiNiO 2 , Li 2 MnO 3- LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3- LiNi 1/2 Mn 1/2 O 2 , Li 2 MnO 3- LiNi 1/2 Mn 1/2 O 2- LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMn 3/2 Ni 1 / 2 O 4 can be mentioned. The metal compound particles include sulfur and sulfides such as Li 2 S, TiS 2 , MoS 2 , FeS 2 , VS 2 , Cr 1/2 V 1/2 S 2 , NbSe 3 , VSe 2 , NbSe 3, and the like. In addition to oxides such as serene compounds, Cr 2 O 5 , Cr 3 O 8 , VO 2 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiNi 0.8 Co 0.15 A l0.05 O 2 , LiVOPO 4 , LiV 3 O 5 , LiV 3 O 8 , MoV 2 O 8 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , LiFePO 4 , LiFe 1/2 Mn 1/2 PO 4 , LiMnPO 4 , Li 3 V 2 (PO 4 ) 3 and other composite oxides can be mentioned.

負極の活物質としては、リチウムイオンを吸蔵及び放出することが可能な金属化合物粒子が挙げられ、例えばFeO、Fe、Fe、MnO、MnO、Mn、Mn、CoO、Co、NiO、Ni、TiO、TiO、TiO(B)、CuO、NiO、SnO、SnO、SiO、RuO、WO、WO、WO3、MoO、ZnO等の酸化物、Sn、Si、Al、Zn等の金属、LiVO、LiVO、LiTi12、ScTiO、FeTiOなどの複合酸化物、Li2.6Co0.4N、Ge、Zn、CuNなどの窒化物、YTi、MoSである。 Examples of the active material of the negative electrode include metal compound particles capable of storing and releasing lithium ions, for example, FeO, Fe 2 O 3 , Fe 3 O 4 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 , TiO, TiO 2 , TiO 2 (B), CuO, NiO, SnO, SnO 2 , SiO 2 , RuO 2 , WO, WO 2 , WO 3 , Oxides such as MoO 3 , ZnO, metals such as Sn, Si, Al, Zn, composite oxides such as LiVO 2 , Li 3 VO 4 , Li 4 Ti 5 O 12 , Sc 2 thio 5 , Fe 2 thio 5 , nitrides such as Li 2.6 Co 0.4 N, Ge 3 N 4, Zn 3 N 2, Cu 3 N, a Y 2 Ti 2 O 5 S 2 , MoS 2.

蓄電デバイスにセパレータを用いる場合、セパレータとしては、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。 When a separator is used for the power storage device, the separator includes cellulose such as kraft, Manila hemp, esparto, hemp, and rayon, mixed papers thereof, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyester resins such as derivatives thereof. Polytetrafluoroethylene resin, polyvinylidene fluoride resin, vinylon resin, aliphatic polyamide, semi-aromatic polyamide, total aromatic polyamide and other polyamide resins, polyimide resin, polyethylene resin, polypropylene resin, trimethylpentene resin, Examples thereof include polyphenylene sulfide resin and acrylic resin, and these resins can be used alone or in combination.

このような蓄電デバイスにおいては、柔粘性結晶とイオン性塩を例えばアセトニトリル等の溶媒に溶解させ、活物質層及びセパレータにキャストする。キャストした後、80℃等の温度環境下で放置して乾燥により溶媒を揮散させ、セパレータを介して正負極の活物質層を対向させた後、更に150℃等の温度環境下で残った水分等を揮散させる。そして、正負電極の集電体にリード電極端子を接続し、外装ケースで封止することで、蓄電デバイスは作製される。 In such a power storage device, the plastic crystal and the ionic salt are dissolved in a solvent such as acetonitrile and cast into an active material layer and a separator. After casting, the solvent is volatilized by leaving it in a temperature environment such as 80 ° C., and the active material layers of the positive and negative electrodes are opposed to each other via a separator, and then the remaining moisture in a temperature environment such as 150 ° C. Etc. are volatilized. Then, the power storage device is manufactured by connecting the lead electrode terminal to the current collector of the positive and negative electrodes and sealing the lead electrode terminal with an outer case.

(実施例1)
1−エチル−3−メチルイミダゾリウムを臭素Brでハロゲン化したハロゲン化物の水溶液を用意した。また、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドとリチウムLiとのアルカリ金属塩の水溶液を用意した。アルカリ金属塩は、ハロゲン化物に対して1.2倍の物質量となるように用意された。ハロゲン化物の水溶液に対して、アルカリ金属塩の水溶液を少しずつ滴下してイオン交換反応を行った。
(Example 1)
An aqueous solution of a halide obtained by halogenating 1-ethyl-3-methylimidazolium with Bromine Br was prepared. Further, an aqueous solution of an alkali metal salt of N, N-hexafluoro-1,3-disulfonylamide and lithium Li was prepared. The alkali metal salt was prepared so that the amount of substance was 1.2 times that of the halide. An aqueous solution of an alkali metal salt was added dropwise to the aqueous solution of the halide to carry out an ion exchange reaction.

イオン交換反応をさせた後、ジクロロメタンを混合し、水層と有機溶媒の層に分かれた分液から、有機溶媒の層を抽出し活性炭を加えて一晩攪拌した。そして、更にろ過により沈殿物を回収し、この沈殿物を乾燥させた。 After the ion exchange reaction, dichloromethane was mixed, the organic solvent layer was extracted from the separated liquid divided into the aqueous layer and the organic solvent layer, activated carbon was added, and the mixture was stirred overnight. Then, the precipitate was further collected by filtration, and the precipitate was dried.

(実施例2)
1,3−ジメチルイミダゾリウムを要素Iでハロゲン化したハロゲン化物の水溶液を用意した。また、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドとリチウムLiとのアルカリ金属塩の水溶液を用意した。アルカリ金属塩は、ハロゲン化物に対して1.2倍の物質量となるように用意された。ハロゲン化物の水溶液に対して、アルカリ金属塩の水溶液を少しずつ滴下してイオン交換反応を行った。
(Example 2)
An aqueous solution of a halide obtained by halogenating 1,3-dimethylimidazolium with element I was prepared. Further, an aqueous solution of an alkali metal salt of N, N-hexafluoro-1,3-disulfonylamide and lithium Li was prepared. The alkali metal salt was prepared so that the amount of substance was 1.2 times that of the halide. An aqueous solution of an alkali metal salt was added dropwise to the aqueous solution of the halide to carry out an ion exchange reaction.

イオン交換反応をさせた後、ジクロロメタンを混合し、水層と有機溶媒の層に分かれた分液から、有機溶媒の層を抽出し活性炭を加えて一晩攪拌した。そして、更にろ過により沈殿物を回収し、この沈殿物を乾燥させた。 After the ion exchange reaction, dichloromethane was mixed, the organic solvent layer was extracted from the separated liquid divided into the aqueous layer and the organic solvent layer, activated carbon was added, and the mixture was stirred overnight. Then, the precipitate was further collected by filtration, and the precipitate was dried.

(実施例3)
1−メチル−3−プロピルイミダゾリウムを塩素Clでハロゲン化したハロゲン化物の水溶液を用意した。また、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドとリチウムLiとのアルカリ金属塩の水溶液を用意した。アルカリ金属塩は、ハロゲン化物に対して1.2倍の物質量となるように用意された。ハロゲン化物の水溶液に対して、アルカリ金属塩の水溶液を少しずつ滴下してイオン交換反応を行った。
(Example 3)
An aqueous solution of a halide obtained by halogenating 1-methyl-3-propylimidazolium with chlorine Cl was prepared. Further, an aqueous solution of an alkali metal salt of N, N-hexafluoro-1,3-disulfonylamide and lithium Li was prepared. The alkali metal salt was prepared so that the amount of substance was 1.2 times that of the halide. An aqueous solution of an alkali metal salt was added dropwise to the aqueous solution of the halide to carry out an ion exchange reaction.

イオン交換反応をさせた後、ジクロロメタンを混合し、水層と有機溶媒の層に分かれた分液から、有機溶媒の層を抽出し活性炭を加えて一晩攪拌した。そして、更にろ過により沈殿物を回収し、この沈殿物を乾燥させた。 After the ion exchange reaction, dichloromethane was mixed, the organic solvent layer was extracted from the separated liquid divided into the aqueous layer and the organic solvent layer, activated carbon was added, and the mixture was stirred overnight. Then, the precipitate was further collected by filtration, and the precipitate was dried.

(実施例4)
1−エチル−3−メチルイミダゾリウムを臭素Brでハロゲン化したハロゲン化物の水溶液を用意した。また、ノナフルオロブタンスルホン酸とリチウムLiとのアルカリ金属塩の水溶液を用意した。アルカリ金属塩は、ハロゲン化物に対して1.2倍の物質量となるように用意された。ハロゲン化物の水溶液に対して、アルカリ金属塩の水溶液を少しずつ滴下してイオン交換反応を行った。
(Example 4)
An aqueous solution of a halide obtained by halogenating 1-ethyl-3-methylimidazolium with Bromine Br was prepared. In addition, an aqueous solution of an alkali metal salt of nonafluorobutane sulfonic acid and lithium Li was prepared. The alkali metal salt was prepared so that the amount of substance was 1.2 times that of the halide. An aqueous solution of an alkali metal salt was added dropwise to the aqueous solution of the halide to carry out an ion exchange reaction.

イオン交換反応をさせた後、ジクロロメタンを混合し、水層と有機溶媒の層に分かれた分液から、有機溶媒の層を抽出し活性炭を加えて一晩攪拌した。そして、更にろ過により沈殿物を回収し、この沈殿物を乾燥させた。 After the ion exchange reaction, dichloromethane was mixed, the organic solvent layer was extracted from the separated liquid divided into the aqueous layer and the organic solvent layer, activated carbon was added, and the mixture was stirred overnight. Then, the precipitate was further collected by filtration, and the precipitate was dried.

(合成物の特定試験)
実施例1乃至3の回収物をX線回折装置により分析した。その結果を図1乃至図3に示す。図1は、実施例1のXRDの結果を示すグラフであり、図2は、実施例2のXRDの結果を示すグラフであり、図3は、実施例3のXRDの結果を示すグラフである。実施例4については目視により回収物を推測した。図4は、実施例4の回収物の写真である。
(Specific test of synthetic product)
The recovered products of Examples 1 to 3 were analyzed by an X-ray diffractometer. The results are shown in FIGS. 1 to 3. FIG. 1 is a graph showing the result of XRD of Example 1, FIG. 2 is a graph showing the result of XRD of Example 2, and FIG. 3 is a graph showing the result of XRD of Example 3. .. For Example 4, the recovered material was visually estimated. FIG. 4 is a photograph of the recovered product of Example 4.

図1乃至図3に示すように、各グラフにはピークが存在しており、結晶構造の存在を示している。従って、実施例1の沈殿物は、上記化学式(E)で示され、1−エチル−3−メチルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るEMICFSAの柔粘性結晶であることが確認された。また、実施例2の沈殿物は、上記化学式(D)に示され、1,3−ジメチルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るDMICFSAの柔粘性結晶であることが確認された。また、実施例3の沈殿物は、上記化学式(F)に示され、1−メチル−3−プロピルイミダゾリウムとN,N−ヘキサフルオロ−1,3−ジスルホニルアミドにより成るMPICFSAの柔粘性結晶であることが確認された。 As shown in FIGS. 1 to 3, peaks are present in each graph, indicating the existence of a crystal structure. Therefore, the precipitate of Example 1 is a plastic crystal of EMICFSA represented by the above chemical formula (E) and composed of 1-ethyl-3-methylimidazolium and N, N-hexafluoro-1,3-disulfonylamide. It was confirmed that. The precipitate of Example 2 is a plastic crystal of DMICFSA represented by the above chemical formula (D) and composed of 1,3-dimethylimidazolium and N, N-hexafluoro-1,3-disulfonylamide. It was confirmed that. The precipitate of Example 3 is a plastic crystal of MPICFSA represented by the above chemical formula (F) and composed of 1-methyl-3-propylimidazolium and N, N-hexafluoro-1,3-disulfonylamide. It was confirmed that.

図4に示すように、実施例4については、ビーカ内に固形物が見られ、この固形物はビーカを傾けても崩れることはなかった。従って、実施例4の沈殿物は、rが4の場合の化学式(H)に示され、1−エチル−3−メチルイミダゾリウムとノナフルオロブタンスルホン酸アニオンにより成るEMINFSの柔粘性結晶であることが確認できた。 As shown in FIG. 4, in Example 4, solid matter was found in the beaker, and this solid matter did not collapse even when the beaker was tilted. Therefore, the precipitate of Example 4 is a plastic crystal of EMINFS composed of 1-ethyl-3-methylimidazolium and nonafluorobutane sulfonate anion, which is represented by the chemical formula (H) when r is 4. Was confirmed.

(イオン伝導度測定試験)
実施例1乃至4の柔粘性結晶を用いて電気二重層キャパシタ用の固体電解質を作製し、イオン伝導度を測定した。柔粘性結晶をバイアル瓶に収容し、柔粘性結晶に対して30mol%となるようにSBPBF(スピロビピロリジニウムテトラフルオロボレート、東京化成製)を加えた。また柔粘性結晶と電解質の総計の固形分濃度が10wt%となるようにアセトニトリル(和光純薬)を加えた。
(Ion conductivity measurement test)
A solid electrolyte for an electric double layer capacitor was prepared using the plastic crystals of Examples 1 to 4, and the ionic conductivity was measured. The plastic crystal was placed in a vial, and SBPBF 4 (spirobipyrrolidinium tetrafluoroborate, manufactured by Tokyo Kasei) was added so as to be 30 mol% with respect to the plastic crystal. In addition, acetonitrile (Wako Pure Chemical Industries, Ltd.) was added so that the total solid content concentration of the plastic crystal and the electrolyte was 10 wt%.

このアセトニトリル溶液をガラスセパレータに滴下し、80℃で乾燥させることでアセトニトリルを蒸発させた。この蒸発操作は3回繰り返した。この蒸発操作により固体電解質が含浸したガラスセパレータを80℃の真空環境下で12時間乾燥させ、更に120℃の真空環境下で3時間乾燥させ、更に150℃の真空環境下で2時間乾燥させ、これにより水分を取り除き、各実施例の固体電解質を作製した。 The acetonitrile solution was added dropwise to a glass separator and dried at 80 ° C. to evaporate the acetonitrile. This evaporation operation was repeated 3 times. By this evaporation operation, the glass separator impregnated with the solid electrolyte was dried in a vacuum environment of 80 ° C. for 12 hours, further dried in a vacuum environment of 120 ° C. for 3 hours, and further dried in a vacuum environment of 150 ° C. for 2 hours. As a result, water was removed to prepare a solid electrolyte of each example.

比較対象として、比較例1乃至6の柔粘性結晶を作製し、固体電解質に用いた。比較例1乃至6の柔粘性結晶はCFSAアニオンで構成される。比較例1の柔粘性結晶のカチオンは、N−エチル−N−メチルピロリジニウム(P12)である。比較例2のカチオンは、スピロ型ピロリジニウム(SBP)である。比較例3のカチオンは、N−イソプロピル−N−メチルピロリジニウム(P13iso)である。比較例4のカチオンは、N,N−ジエチルピロリジニウム(P22)である。比較例5のカチオンは、N−エチル−N−メチルピペリジニウムカチオン(Pi12)である。比較例6のカチオンは、トリエチルメチルアンモニウム(TEMA)である。 As a comparison target, the plastic crystals of Comparative Examples 1 to 6 were prepared and used as a solid electrolyte. The plastic crystals of Comparative Examples 1 to 6 are composed of CFSA anions. The cation of the plastic crystal of Comparative Example 1 is N-ethyl-N-methylpyrrolidinium (P12). The cation of Comparative Example 2 is spiro-type pyrrolidinium (SBP). The cation of Comparative Example 3 is N-isopropyl-N-methylpyrrolidinium (P13iso). The cation of Comparative Example 4 is N, N-diethylpyrrolidinium (P22). The cation of Comparative Example 5 is an N-ethyl-N-methylpiperidinium cation (Pi12). The cation of Comparative Example 6 is triethylmethylammonium (TEMA).

これら比較例1乃至6の柔粘性結晶についてもバイアル瓶に収容し、柔粘性結晶に対して30mol%となるようにSBPBFを加えた。また柔粘性結晶と電解質の総計の固形分濃度が10wt%となるようにアセトニトリルを加えた。そして、アセトニトリル溶液をガラスセパレータに滴下し、80℃で乾燥させることでアセトニトリルを蒸発させた。この蒸発操作は3回繰り返した。この蒸発操作により固体電解質が含浸したガラスセパレータを80℃の真空環境下で12時間乾燥させ、更に120℃の真空環境下で3時間乾燥させ、更に150℃の真空環境下で2時間乾燥させた。 The plastic crystals of Comparative Examples 1 to 6 were also contained in a vial, and SBPBF 4 was added so as to be 30 mol% with respect to the plastic crystals. In addition, acetonitrile was added so that the total solid content concentration of the plastic crystal and the electrolyte was 10 wt%. Then, the acetonitrile solution was added dropwise to the glass separator and dried at 80 ° C. to evaporate the acetonitrile. This evaporation operation was repeated 3 times. By this evaporation operation, the glass separator impregnated with the solid electrolyte was dried in a vacuum environment of 80 ° C. for 12 hours, further dried in a vacuum environment of 120 ° C. for 3 hours, and further dried in a vacuum environment of 150 ° C. for 2 hours. ..

また、比較対象として、比較例7の柔粘性結晶を作製し、固体電解質に用いた。比較例7の柔粘性結晶は実施例4と同じノナフルオロブタンスルホン酸(NFS)アニオンで構成される。比較例7の柔粘性結晶のカチオンは、N−エチル−N−メチルピロリジニウム(P12)である。 Further, as a comparison target, a plastic crystal of Comparative Example 7 was prepared and used as a solid electrolyte. The plastic crystal of Comparative Example 7 is composed of the same nonafluorobutane sulfonic acid (NFS) anion as in Example 4. The cation of the plastic crystal of Comparative Example 7 is N-ethyl-N-methylpyrrolidinium (P12).

比較例7の柔粘性結晶についてもバイアル瓶に収容し、柔粘性結晶に対して30mol%となるようにSBPBFを加え、また柔粘性結晶と電解質の総計の固形分濃度が10wt%となるようにアセトニトリルを加えた。そして、アセトニトリル溶液をガラスセパレータに滴下し、80℃で乾燥させることでアセトニトリルを蒸発させた。この蒸発操作は3回繰り返した。この蒸発操作により固体電解質が含浸したガラスセパレータを80℃の真空環境下で12時間乾燥させ、更に120℃の真空環境下で3時間乾燥させ、更に150℃の真空環境下で2時間乾燥させた。 The plastic crystal of Comparative Example 7 was also contained in a vial, and SBPBF 4 was added so as to be 30 mol% with respect to the plastic crystal, and the total solid content concentration of the plastic crystal and the electrolyte was 10 wt%. Acetonitrile was added to the mixture. Then, the acetonitrile solution was added dropwise to the glass separator and dried at 80 ° C. to evaporate the acetonitrile. This evaporation operation was repeated 3 times. By this evaporation operation, the glass separator impregnated with the solid electrolyte was dried in a vacuum environment of 80 ° C. for 12 hours, further dried in a vacuum environment of 120 ° C. for 3 hours, and further dried in a vacuum environment of 150 ° C. for 2 hours. ..

これら実施例1乃至4と比較例1乃至7の固体電解質のイオン伝導度を測定した。固体電解質を含浸したガラスセパレータを2枚の白金電極で挟み込み、電極押さえで対向させることで、2極式密閉セル(東洋システム製)を組み立て、インピーダンス測定を行い、インピーダンスの測定結果および固体電解質を含浸したガラスセパレータの厚さから、イオン伝導度を算出した。 The ionic conductivity of the solid electrolytes of Examples 1 to 4 and Comparative Examples 1 to 7 was measured. By sandwiching a glass separator impregnated with a solid electrolyte between two platinum electrodes and facing each other with an electrode retainer, a two-pole sealed cell (manufactured by Toyo System) is assembled, impedance measurement is performed, and the impedance measurement result and solid electrolyte are obtained. The ionic conductivity was calculated from the thickness of the impregnated glass separator.

このイオン伝導度の測定結果を下表1及び表2に示す。表1は、実施例1乃至3と比較例1乃至6のイオン伝導度を示す。表2は、実施例3と比較例7のイオン伝導度を示す。 The measurement results of this ionic conductivity are shown in Tables 1 and 2 below. Table 1 shows the ionic conductivity of Examples 1 to 3 and Comparative Examples 1 to 6. Table 2 shows the ionic conductivity of Example 3 and Comparative Example 7.

Figure 2021141026
Figure 2021141026

Figure 2021141026
Figure 2021141026

表1に示すように、実施例1乃至3の固体電解質のイオン伝導度は、比較例1乃至6の固体電解質のイオン伝導度と比べて3桁の違いを有して高くなっている。実施例1乃至3と比較例1乃至6のアニオンは同一であり、実施例1乃至3のカチオンは、イオン液体を構成するものとして知られ、実施例1乃至3は、このイオン液体を構成するものとして知られるカチオンを用いた新規の柔粘性結晶である。 As shown in Table 1, the ionic conductivity of the solid electrolytes of Examples 1 to 3 is higher than that of the solid electrolytes of Comparative Examples 1 to 6 with a difference of three orders of magnitude. The anions of Examples 1 to 3 and Comparative Examples 1 to 6 are the same, the cations of Examples 1 to 3 are known to constitute an ionic liquid, and Examples 1 to 3 constitute this ionic liquid. It is a novel plastic crystal using a cation known as one.

また、表2に示すように、実施例4の固体電解質のイオン伝導度は、比較例7の固体電解質のイオン伝導度と比べて4桁の違いを有して高くなっている。実施例4と比較例7のアニオンは同一であり、実施例4のカチオンは、実施例1乃至3と同じく、イオン液体を構成するものとして知られ、実施例4は、このイオン液体を構成するものとして知られるカチオンを用いた新規の柔粘性結晶である。 Further, as shown in Table 2, the ionic conductivity of the solid electrolyte of Example 4 is higher than that of the solid electrolyte of Comparative Example 7 with a difference of 4 orders of magnitude. The anions of Example 4 and Comparative Example 7 are the same, and the cations of Example 4 are known to constitute an ionic liquid as in Examples 1 to 3, and Example 4 constitutes this ionic liquid. It is a novel plastic crystal using a cation known as one.

これにより、カチオンとして、少なくとも1位及び3位にアルキル基を有するイミダゾリウムと、アニオンとして、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン又はスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンとを含むことで、このカチオンによっても柔粘性結晶が成立し、その柔粘性結晶は、高いイオン伝導度を有することが確認された。 As a result, imidazolium having an alkyl group at least at the 1st and 3rd positions as a cation and a hydrocarbon group extending from an N, N-hexafluoro-1,3-disulfonylamide anion or a sulfonic acid skeleton as an anion are perforated. By including a perfluoroalkyl sulfonic acid anion substituted with a fluoroalkyl group, a soft viscous crystal was also formed by this cation, and it was confirmed that the soft viscous crystal had high ionic conductivity.

Claims (8)

電解質がドープされた柔粘性結晶を含み、
前記柔粘性結晶は、
カチオンとして、少なくとも1位及び3位にアルキル基を有するイミダゾリウムと、
アニオンとして、N,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン又はスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンと、
を含むこと、
を特徴とする固体電解質。
Contains electrolyte-doped plastic crystals
The plastic crystal is
As cations, imidazolium having an alkyl group at least at the 1st and 3rd positions, and
As anions, N, N-hexafluoro-1,3-disulfonylamide anions or perfluoroalkyl sulfonic acid anions in which the hydrocarbon group extending from the sulfonic acid skeleton is replaced with a perfluoroalkyl group, and
Including,
A solid electrolyte characterized by.
前記イミダゾリウムは、下記化学式(A)で表される1,3−ジアルキルイミダゾリウム又は1,2,3−トリアルキルイミダゾリウムであること、
を特徴とする請求項1記載の固体電解質。
Figure 2021141026
The imidazolium is 1,3-dialkylimidazolium or 1,2,3-trialkylimidazolium represented by the following chemical formula (A).
The solid electrolyte according to claim 1.
Figure 2021141026
前記柔粘性結晶は、
カチオンとして、1,3−ジメチルイミダゾリウムカチオン、1−エチル−3−メチルイミダゾリウムカチオン、1−メチル−3−プロピルイミダゾリウムカチオン、又はこれらカチオンの2位にメチル基が置換したイミダゾリウムと、
アニオンとして、前記N,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオンと、
を含むこと、
を特徴とする請求項2記載の固体電解質。
The plastic crystal is
Examples of the cation include 1,3-dimethylimidazolium cation, 1-ethyl-3-methylimidazolium cation, 1-methyl-3-propylimidazolium cation, or imidazolium in which a methyl group is substituted at the 2-position of these cations.
As anions, the N, N-hexafluoro-1,3-disulfonylamide anion and
Including,
2. The solid electrolyte according to claim 2.
前記柔粘性結晶は、
カチオンとして、1,3−ジメチルイミダゾリウム又は1−エチル−3−メチルイミダゾリウムと、
アニオンとして、前記スルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンと、
を含むこと、
を特徴とする請求項2記載の固体電解質。
The plastic crystal is
As cations, 1,3-dimethylimidazolium or 1-ethyl-3-methylimidazolium,
As anions, a perfluoroalkyl sulfonic acid anion in which the hydrocarbon group extending from the sulfonic acid skeleton is replaced with a perfluoroalkyl group,
Including,
2. The solid electrolyte according to claim 2.
前記パーフルオロアルキルスルホン酸アニオンは、下記化学式(C)で表されるペンタフルオロエタンスルホン酸アニオン、ヘプタフルオロプロパンスルホン酸アニオン、及びノナフルオロブタンスルホン酸アニオンであること、
を特徴とする請求項4記載の固体電解質。
Figure 2021141026
[式中、rは2以上4以下の整数]
The perfluoroalkyl sulfonic acid anion is a pentafluoroethane sulfonic acid anion represented by the following chemical formula (C), a heptafluoropropane sulfonic acid anion, and a nonafluorobutane sulfonic acid anion.
4. The solid electrolyte according to claim 4.
Figure 2021141026
[In the formula, r is an integer between 2 and 4]
請求項1乃至5の何れかに記載の固体電解質と、
前記固体電解質を挟んで対向する両電極と、
を備えること、
を特徴とする蓄電デバイス。
The solid electrolyte according to any one of claims 1 to 5 and
With both electrodes facing each other across the solid electrolyte,
To prepare
A power storage device characterized by.
前記両電極の一方又は両方は、多孔質材料により成る活物質層と集電体を有する分極性電極であり、
前記分極性電極と前記固体電解質との境界面に電気二重層が形成されること、
を特徴とする請求項6記載の蓄電デバイス。
One or both of the two electrodes is a polarizable electrode having an active material layer made of a porous material and a current collector.
An electric double layer is formed on the interface between the polar electrode and the solid electrolyte.
6. The power storage device according to claim 6.
カチオンとして少なくとも1位及び3位にアルキル基を有するイミダゾリウムと、アニオンとしてN,N−ヘキサフルオロ−1,3−ジスルホニルアミドアニオン又はスルホン酸骨格から延びる炭化水素基がパーフルオロアルキル基に置換されたパーフルオロアルキルスルホン酸アニオンとを含む柔粘性結晶を作製する工程を含むこと、
を特徴とする固体電解質の製造方法。
Imidazolium having an alkyl group at least at the 1st and 3rd positions as a cation and a hydrocarbon group extending from an N, N-hexafluoro-1,3-disulfonylamide anion or a sulfonic acid skeleton as an anion are replaced with a perfluoroalkyl group. Including the step of producing a soft viscous crystal containing the perfluoroalkyl sulfonic acid anion.
A method for producing a solid electrolyte.
JP2020040083A 2020-03-09 2020-03-09 Solid electrolyte, power storage device, and method for producing solid electrolyte Pending JP2021141026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040083A JP2021141026A (en) 2020-03-09 2020-03-09 Solid electrolyte, power storage device, and method for producing solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040083A JP2021141026A (en) 2020-03-09 2020-03-09 Solid electrolyte, power storage device, and method for producing solid electrolyte

Publications (1)

Publication Number Publication Date
JP2021141026A true JP2021141026A (en) 2021-09-16

Family

ID=77668918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040083A Pending JP2021141026A (en) 2020-03-09 2020-03-09 Solid electrolyte, power storage device, and method for producing solid electrolyte

Country Status (1)

Country Link
JP (1) JP2021141026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024191177A1 (en) * 2023-03-13 2024-09-19 삼성에스디아이 주식회사 Positive electrode for all-solid-state rechargeable battery and all-solid-state rechargeable battery including same
JP7563373B2 (en) 2021-12-28 2024-10-08 トヨタ自動車株式会社 Solid electrolyte, method for producing solid electrolyte, and all-solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015258A1 (en) * 1999-08-23 2001-03-01 Monash University Ion conductive material having a dopant ion in an organic matrix phase
JP2006077107A (en) * 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The Gel state electrolyte and method for producing the same
JP2006114400A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Ion conductor
JP2013542561A (en) * 2010-09-30 2013-11-21 ビーエーエスエフ ソシエタス・ヨーロピア Lithium negative electrode with ionic liquid polymer gel
JP2018142491A (en) * 2017-02-28 2018-09-13 国立大学法人静岡大学 Proton conductive electrolyte and fuel battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001015258A1 (en) * 1999-08-23 2001-03-01 Monash University Ion conductive material having a dopant ion in an organic matrix phase
JP2006077107A (en) * 2004-09-09 2006-03-23 Japan Carlit Co Ltd:The Gel state electrolyte and method for producing the same
JP2006114400A (en) * 2004-10-15 2006-04-27 Daikin Ind Ltd Ion conductor
JP2013542561A (en) * 2010-09-30 2013-11-21 ビーエーエスエフ ソシエタス・ヨーロピア Lithium negative electrode with ionic liquid polymer gel
JP2018142491A (en) * 2017-02-28 2018-09-13 国立大学法人静岡大学 Proton conductive electrolyte and fuel battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7563373B2 (en) 2021-12-28 2024-10-08 トヨタ自動車株式会社 Solid electrolyte, method for producing solid electrolyte, and all-solid-state battery
WO2024191177A1 (en) * 2023-03-13 2024-09-19 삼성에스디아이 주식회사 Positive electrode for all-solid-state rechargeable battery and all-solid-state rechargeable battery including same

Similar Documents

Publication Publication Date Title
US10873088B2 (en) Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life
KR101778541B1 (en) Graphene lithium ion capacitor
KR101310430B1 (en) Negative active material and lithium secondary battery with the same, and method for manufacturing the lithium secondary battery
US20040009393A1 (en) Electrolyte of lithium-sulfur batteries and lithium-sulfur batteries comprising the same
JP7378216B2 (en) Solid electrolytes and energy storage devices
JP2005050669A (en) Electrode and electrochemical element using it
BR112012012049B1 (en) CURRENT COLLECTOR FOR BIPOLAR SECONDARY BATTERY, ELECTRODE FOR BIPOLAR SECONDARY BATTERY AND BIPOLAR SECONDARY BATTERY
CN107394260B (en) Metal ion battery
WO2006026773A2 (en) Battery with molten salt electrolyte and high voltage positive active material
JP5892490B2 (en) Sulfur-based secondary battery
WO2018193683A1 (en) Member for electrochemical devices, and electrochemical device
Aristote et al. General overview of sodium, potassium, and zinc-ion capacitors
JPWO2018194159A1 (en) Electrode for electrochemical device and method for producing the same, electrochemical device, and polymer electrolyte composition
JP2020523733A (en) Shape-compatible alkali metal-sulfur battery
WO2019024313A1 (en) Lithium sulfur battery and assembly thereof, and application of functional material layer in lithium sulfur battery
US10770748B2 (en) Lithium-selenium battery containing an electrode-protecting layer and method for improving cycle-life
JP2021141026A (en) Solid electrolyte, power storage device, and method for producing solid electrolyte
CN106876146A (en) A kind of high-voltage solid-state lithium-ion capacitor
WO2020203075A1 (en) Solid electrolyte, energy storage device, and method for producing solid electrolyte
JP6507642B2 (en) Electrode for sodium molten salt battery and sodium molten salt battery
KR20160121524A (en) Sodium molten salt battery
US10153097B2 (en) Electrolyte additive for hybrid supercapacitors to reduce charge transfer resistance, and hybrid supercapacitor including the same
US20130114183A1 (en) Electrode active material composition, method for preparing the same, and electrochemical capacitor using the same
WO2022050013A1 (en) Electrical double layer capacitor
WO2022191087A1 (en) Electrolyte solution, production method for same, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240416