JP7377287B2 - ノイズ耐性のある心臓位置特定、ナビゲーションおよびマッピングのためのシステムおよび方法 - Google Patents

ノイズ耐性のある心臓位置特定、ナビゲーションおよびマッピングのためのシステムおよび方法 Download PDF

Info

Publication number
JP7377287B2
JP7377287B2 JP2021571773A JP2021571773A JP7377287B2 JP 7377287 B2 JP7377287 B2 JP 7377287B2 JP 2021571773 A JP2021571773 A JP 2021571773A JP 2021571773 A JP2021571773 A JP 2021571773A JP 7377287 B2 JP7377287 B2 JP 7377287B2
Authority
JP
Japan
Prior art keywords
data stream
period
impedance
demodulated data
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021571773A
Other languages
English (en)
Other versions
JP2022540979A (ja
Inventor
ジー. カラン ティモシー
Original Assignee
セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド filed Critical セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド
Publication of JP2022540979A publication Critical patent/JP2022540979A/ja
Application granted granted Critical
Publication of JP7377287B2 publication Critical patent/JP7377287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/063Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • A61B5/068Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe using impedance sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)
  • Surgical Instruments (AREA)

Description

本開示は、医療装置の磁気センサの磁気に基づいた測定と併せた医療装置の電極の電気インピーダンスに基づいた測定に関し、とりわけ、装置の位置特定、心臓内マッピング、および/または組織と医療装置の電極との間の接触の表示を提供する。より具体的には、本開示は、インピーダンス測定におけるノイズを低減する方法で、インピーダンス測定を伴うインターリーブ磁気測定に関する。
カテーテルは、医薬品および流体の配送と、体液の除去と、外科用工具および外科用器具の輸送を含む、人体およびその他の体内における種々の作業を実行するために使用される。心房細動の診断および治療では、例えば、カテーテルは、他の作業の中でもとりわけ、心臓の表面の電気生理学的マッピングのために電極を心臓に配送するために、および/または切除エネルギーを心臓組織に配送するために使用され得る。治療を適切に施すために、体内のカテーテルの位置および向きは、連続的に監視されなければならない。体内のカテーテルの位置および向きを決定するための1つの公知の技術は、位置感知およびナビゲーションシステム(時には、位置特定システムと呼ばれる)を使用して、カテーテル上のセンサを追跡することによるものである。ENSITE(登録商標) VELOCITY(登録商標)という商標でAbbot Laboratoriesにより販売されている1つの例示的なシステムでは、センサは電極を備える。このような位置特定システムは、電場に基づいた、またはインピーダンスに基づいた位置特定システムと呼ばれることがある。このようなシステムでは、体の外表面上での電極の対の励起が、体内に電場を生成する。次に、カテーテル電極の電圧測定は、位置特定システムの座標系内でのカテーテル電極の位置および向きを決定するために使用され得る。
体内のカテーテルの位置および向きを決定するための別の技術は、磁気センサおよび磁場に基づいた位置特定システムを利用する。このようなシステムでは、磁場生成器は、体内に磁場を生成し、磁場の強度、向き、および周波数を制御し得る。磁場は、磁場生成器のコイルによって生成され、カテーテルに関連する1または複数の磁気位置センサ(例えば、磁場センサ)の電流または電圧測定値が得られる。測定された電流または電圧は、コイルからセンサまでの距離に比例し、それによって、磁場に基づいた位置特定システムの座標系内でのセンサの位置を決定することが可能になる。
組み合わされた位置特定システムは、インピーダンスに基づいたシステムを、磁場に基づいたシステムと組み合わせる。このような装置は、Ensite Precision(登録商標)という商標でAbbot Laboratoriesによって販売されている。このようなシステムでは、電極の位置は、磁気に基づいた座標系での1または複数の磁気センサの位置を識別することと併せて、インピーダンスに基づいた座標系で識別されてもよい。一実施形態では、電極および磁気センサの少なくとも一部分が、基準点対を規定するように同一位置に配置されてもよい。この同一配置は、座標系間の変換(例えば、変換行列)を決定することを可能にする。変換は、任意の電極の位置に適用され、一旦変換が決定されると、これらの位置を、一般的により正確な磁気に基づいた座標系に登録してもよい。従って、インピーダンスに基づいた電極は、磁場に基づいた位置特定システムの座標系で識別され、それによって、電極に対する位置決めの正確性を高めることができる。
組み合わされた医療位置決めシステムは、改善された正確性を提供する一方で、多くの欠点を有する。例えば、インピーダンスに基づいた医療位置特定システムは、位置測定の正確性に影響を与え得る様々な種類の干渉を受ける。例えば、患者の体内の電気インピーダンスのレベルは、必ずしも一定ではない。さらに、インピーダンスに基づいたシステムおよび磁場システムは、電気的観点から、完全に独立していない。具体的には、磁場に基づいたシステムの動作は、インピーダンスに基づいたシステムの測定にノイズを誘発し得る。このような誘発されたノイズを打ち消すために、従来のシステムは、2つのシステムの動作およびデータ収集を時間的に交互に行ってきた。しかしながら、このような交互動作は、連続的に動作するインピーダンスに基づいた位置特定システムでは実行可能ではない。
一態様では、位置感知およびナビゲーションシステムは、医療装置(例えば、カテーテル)の電極および、さらなる構成では、磁気センサの応答を測定するために提供される。
システムは、インピーダンスに基づいた位置特定システムを含む。このようなインピーダンスに基づいた位置特定システムは、複数の固有駆動信号を生成するように構成された信号生成器を含んでもよい。固有駆動信号のそれぞれは、共通ベース周波数の高調波成分である固有変調周波数を有してもよい。信号生成器は、さらに、複数の駆動信号のそれぞれを個々の電極の対(例えば、表面パッチ電極)中に連続的に同時に付与するように構成され、電場を生成してもよい。インピーダンスに基づいた位置特定システムはまた、電場内に配置された医療装置の1または複数の電極の応答(例えば、連続的に付与された駆動信号に対する複合応答)を測定するための測定回路を含んでもよい。復調器は、固有変調周波数のそれぞれに対して応答信号(例えば複合応答信号)を同時に復調するように構成される。復調器は、フィルタ(例えば、ダウンサンプリングフィルタ、デシメーティングフィルタ等)によって受信される復調データストリームを出力する。フィルタは、固有周波数のそれぞれに対する1または複数の電極の位置に比例するインピーダンスに基づいた値を出力する。インピーダンスに基づいた値は、医療装置および/またはその周囲(例えば、心腔)の画像を描写するために使用されてもよい。インピーダンスに基づいた値におけるノイズを低減するために、コントローラは、電気ノイズによって破損された復調データストリームの一部が破棄されるように、電気ノイズ生成装置(例えば、磁気位置特定システム)の動作中に、フィルタへの入力(例えば、スキップデータ入力)を一時停止させてもよい。一実施形態では、フィルタへの入力は、共通ベース周波数の(すなわち、固有変調周波数/駆動信号の)整数倍である期間に一時停止される。このような期間の使用は、周波数の中断なく、復調データストリームの処理を再開することを可能にする。
さらなる構成では、システムは、医療装置の1または複数の磁気センサの位置の識別で使用される磁気位置特定システムを含んでもよい。磁気位置特定システムは、磁場を生成するための磁場生成器を含んでもよい。測定回路は、磁場に対する1または複数の磁気センサの磁気応答を測定し、例えば、医療装置および/またはその周囲(例えば、心腔)の画像を描写するために使用され得る位置情報を生成してもよい。磁気位置特定システムは、インピーダンスに基づいた位置特定システムのデシメーティングフィルタへの入力が一時停止されている間に、(例えば、コントローラの制御下で)動作するように構成されてもよい。
一構成では、システムは、駆動信号がデジタル駆動信号であるデジタル信号処理を使用する。このような構成では、デジタル駆動信号は、個々の電極の対に付与する前に、1または複数のデジタルーアナログ(DAC)変換器によってアナログ信号に変換される。同様に、1または複数のアナログーデジタル(ADC)変換器は、電極のアナログ応答をデジタル応答信号に変換してもよい。このような構成では、デシメーティングフィルタへの一次停止に関連する期間は、離散ADCサンプルで測定される。
別の構成では、システムは、測定された応答信号を破損させる異常事象を検出し、異常事象中に取得されたデータを破棄して、インピーダンスに基づいた値の破損を防止するように構成される。このような構成では、システムは、復調器にデジタルサンプルを入力する前に、応答信号のデジタルサンプルを分析するように構成された検出器を含む。検出器は、サンプルごとにデジタルサンプルを分析してもよい。例えば、検出器は、信号のスルーレートを所定の閾値と比較して、応答信号内の異常事象の存在を決定してもよい。異常事象が検出された場合、フィルタへのデータ入力は、ある期間(例えば、共通ベース周波数の整数倍)一時停止され、破損したデータを効果的に破棄してもよい。フィルタへの破損したデータの入力を防止するために、システムは、それらが復調器に入る前に、デジタルサンプルの所定のセットを記憶するバッファをさらに含んでもよい。このようなバッファは、異常事象を識別することを可能にし、復調されたデータストリームのフィルタへの入力を一時停止/スキップするのに十分な時間を提供することができる。
別の態様では、患者の体内での細長い医療装置の位置を感知するのに使用される方法が提供される。一般的に、方法は、インピーダンスに基づいた位置特定システムとともに使用され、電気ノイズ生成装置および/または異常事象によって引き起こされる、インピーダンス測定におけるノイズを低減する。方法は、共通ベース周波数の高調波成分である固有変調周波数をそれぞれが有する複数の固有駆動信号を生成することを含む。駆動信号は、それぞれ、電極の対応する対(例えば、表面パッチ電極)に亘って同時かつ連続的に付与され、電場を生成する。複合応答信号は、電場内に配置された医療装置の1または複数の電極に対して測定される。複合応答信号は、同調的に復調され、復調データストリームを生成する。復調データストリームは、データストリームのデータが破棄される間の電気ノイズ生成事象中に一時停止される。残りの復調データストリームは、固有の駆動信号のそれぞれについて1または複数の電極の位置に比例するインピーダンスに基づいた値を出力するようにフィルタにかけられる(例えば、ダウンサンプル、デシメート等される)。インピーダンスに基づいた値は、医療装置および/またはその周囲(例えば、心腔)の画像を描写するために使用されてもよい。
復調データストリームは、いつでも一時停止されてもよい。しかしながら、一時停止のそれぞれは、(すなわち、固有変調周波数/駆動信号の)共通ベース周波数の整数倍である期間内である。このような期間の使用は、周波数の中断なく復調データストリームの処理(例えば、フィルタ)を再開することを可能にする。復調データストリームは、所定のスケジュール(例えば、デューティサイクル)で一時停止され、別のノイズ生成装置の動作を可能にしてもよい。例えば、1:1のデューティサイクルでは、インピーダンスに基づいた位置特定システムは、時間の半分で動作してもよく、一方、別のノイズ生成装置(例えば、磁気位置特定システム)は、時間の他の半分で動作する。他のデューティサイクル(例えば、1:2、2:1、3:1等)が可能である。しかしながら、全てのサイクルは、駆動信号の共通ベース周波数の整数倍である期間を有する。さらなる構成では、復調データストリームは、異常事象を識別すると、ある期間一時停止されてもよい。
本開示の前述および他の態様、特徴、詳細、有用性、および利点は、以下の説明および特許請求の範囲を読むこと、ならびに添付の図面を考察することから明らかになるであろう。
インピーダンスに基づいたシステムを磁場に基づいたシステムと組み合わせた、組み合わせ位置特定システムの一実施形態の概略図である。 図1に示すシステムに使用されるカテーテルの概略図である。 インピーダンスに基づいたシステムを磁場に基づいたシステムと組み合わせた、組み合わせ位置特定システムの別の実施形態の概略図である。 信号生成器の一実施形態の概略描写である。 測定回路および復調回路の一実施形態の概略描写である。 ノイズを伴わないインピーダンス応答トレース、ノイズを伴うインピーダンス応答トレース、およびインターリーブを伴って得られるインピーダンス応答トレースを示す。 多周波数駆動信号および/または応答信号の例示的な描写である。 多周波数駆動信号および/または応答信号の例示的な描写である。 ノイズ生成装置の動作を可能にするための応答信号の一時停止処理を示す。 スキップコントローラの一実施形態の1つのブロック図を示す。 ブランキングコントローラの一実施形態の1つのブロック図を示す。 スキップコントローラとブランキングコントローラを組み合わせた一実施形態の1つのブロック図である。 インピーダンス測定を伴うノイズ生成装置をインターリーブするための1つのプロセス図を示す。
ここで、様々な図で同一の構成要素を識別するために同様の参照符号が使用されている図面を参照すると、図1は、患者の体内で細長い医療装置をナビゲートし、患者の体内で装置の画像を生成するのに使用される位置感知およびナビゲーションシステム10(例えば、位置特定システム)の1つの例示的な実施形態を示す。図示されるように、位置特定システムは、磁気測定に加えインピーダンス測定を取得する組み合わせ位置特定システムである。この実施形態では、システム10は、他の構成要素の中でも、細長い医療装置12に取り付けられたモデル構築システム14と、プロセッサ装置と、を含む。この実施形態では、細長い医療装置は、カテーテル12である。処理装置16は、電子制御ユニット(ECU)の形態、例えば、カテーテル12の画像を生成して描写し、カテーテルの画像をディスプレイ44に出力するように構成されたECUの形態をとってもよい。システム10は、ユーザ入力装置(図示省略)をさらに含んでもよい。システムは、カテーテルを描写することに関して説明されるが、様々な細長い医療装置(例えば、イントロデューサシース、ペーシングリード等)が、システムを使用して描写され得ることが理解されるべきである。
図1および図2に示すように、カテーテル12は、患者の体18、より詳細には、患者の心臓20に挿入されるように構成されている。カテーテル12は、ケーブルコネクタまたはインターフェース22、ハンドル24、近位端28および遠位端30を有するシャフト26(本明細書で使用される場合、「近位」は、臨床医の近くのカテーテル12の部分に向かう方向を示し、「遠位」は、臨床医から離れる方向であって、(一般的に)患者の体内の方向を示す)を含んでもよい。コネクタ22は、ケーブル、例えば、ECUおよび/またはシステム10の他の構成要素(例えば、可視化、ナビゲーション、および/またはマッピングシステム、アブレーション生成器、灌注源など)まで延在するケーブル34、36等のための機械的、流体的、および電気的接続を提供する。ハンドル24は、シャフト26の近位端28に配置され、臨床医がカテーテル12を保持するための位置を提供し、さらに、患者の体18内でシャフト26を操縦または案内するための手段を提供してもよい。カテーテル12は、心臓20に関連する電気生理学的(EP)データを収集するのに使用されるEPカテーテルを備え、心臓表面の幾何学的形状の画像および関連するEPデータの生成を可能にしてもよい。カテーテル12はまた、体液の除去または体内への流体および医薬の注入を可能にしてもよく、ペーシングまたは組織アブレーションに使用されるものを含む、体内で外科用工具または器具を輸送するための手段をさらに提供してもよい。カテーテル12は、一実施形態ではEPカテーテルとして記載されているが、システムは、例えば、心臓内心エコー(ICE)カテーテル、および様々なアブレーションエネルギー(例えば、高周波、極低温、超音波、レーザ、または他の光など)を使用するアブレーションカテーテルを含む、様々な異なるタイプのカテーテルで使用され得ることを理解されたい。
図2に最も良く示されるように、カテーテル12は、遠位チップ電極321、近位リング電極322、および中間リング電極323(以下、特に言及しない限り「32」)のような複数の電極32を含んでもよい。電極32は、カテーテル12の位置に関する情報を生成するために設けられ、したがって、位置センサとして機能してもよい。電極32はまた、心臓20の幾何学的形状に関する情報を提供してもよい。カテーテル12はまた、1または複数の磁気位置センサ46を含んでもよい。磁気位置センサ46はまた、体内でのカテーテル12の位置を決定するのに使用するために提供される。図示される実施形態では、磁気センサ46は、カテーテルのシャフト内に配置され、コイルで形成される。しかしながら、磁気センサは、他の形態をとってもよいことを理解されたい。すなわち、磁気センサは、例えば、ホール効果センサ、磁気抵抗センサ、および磁気抵抗材料、圧電材料などからなるセンサを含む、磁場の変化を検出するための任意の従来の位置センサを備えてもよい。カテーテル12は、他の従来の構成要素、例えば、およびこれには限定されないが、温度センサ、追加のセンサまたは電極、アブレーション要素(例えば、RFアブレーションエネルギーを送達するためのアブレーションチップ電極、高密度焦点式超音波アブレーション要素など)、および対応するコンダクタまたはリードをさらに含んでもよい。
再び図1を参照すると、システムは、複数のパッチ電極38と、多重スイッチ40と、プロセッサ16とともに、インピーダンスに基づいた位置特定システムを共同で規定する信号生成器42(例えば、周波数源)と、をさらに含む。他の構成要素も考えられる。処理装置16は、プログラマブルマイクロプロセッサまたはマイクロコントローラを含んでもよく、または特定用途向け集積回路(ASIC)を含んでもよい。さらに、処理装置16は、中央処理装置(CPU)および入力/出力(I/O)インターフェースを含んでもよく、それを介して、処理装置16は、例えば、パッチ電極38および位置センサ32(例えば、カテーテル電極)によって生成される信号を含む複数の入力信号を受信してもよい。さらに、処理装置は、例えば、データを制御し、および/またはディスプレイ装置44およびスイッチ40にデータを提供するために使用されるものを含む複数の出力信号を生成してもよい。処理装置16は、適切なプログラミング指示またはコード(すなわち、ソフトウェア)を用いて、以下でより詳細に説明するような様々な機能を実行するように構成されてもよい。したがって、処理装置16は、本明細書で説明する機能を実行するためにコンピュータ記憶媒体上にエンコードされた1または複数のコンピュータプログラムでプログラムされる。
「腹部パッチ電極」と呼ばれる基準パッチ電極38Bを除いて、パッチ電極38は、例えば、3次元座標系内でのカテーテル12の位置および向きを決定し、および心臓20に関するEPデータを生成するのに使用される電気信号を生成するために提供される。一実施形態では、パッチ電極38は、体18の表面上に直交して配置され、体18内に軸特有電場を生成するために使用される。例えば、一実施形態では、パッチ電極38X1、38X2は、第1(x)軸に沿って配置されてもよい。パッチ電極38Y1、38Y2は、第2(y)軸に沿って配置されてもよく、パッチ電極38Z1、38Z2は、第3(z)軸に沿って配置されてもよい。さらに、基準電極(例えば、38B)は、体18に取り付けられる。パッチ電極38のそれぞれは、多重スイッチ40に連結されてもよい。この実施形態では、処理装置16は、適切なソフトウェアを介して、スイッチ40に制御信号を提供し、それによって電極38の対を信号生成器42に連続的に連結するように構成される。電極38の各対の励起は、体18内および心臓20のような関心のある領域内に電場を生成する。非励起電極38での電圧レベルは、基準値として使用するために、腹部パッチ電極38Bに参照され、フィルタにかけられ、変換され、処理装置16に提供される。
カテーテル12上の電極32は、パッチ電極38を励起することによって体18内(例えば、心臓20内)に生成される電場内に配置される。これらの電極32は、パッチ電極38間の位置と、心臓20の表面に対する電極32の位置に依存する電圧を発生させる。電圧測定比較(例えば、インピーダンス応答)は、心臓20内の電極32の位置を決定するために使用され得る。心臓20内(例えば、心腔内)の電極32の移動は、心臓20の幾何学的形状に関する情報、EPデータ、ならびにカテーテルの位置情報を生成する。パッチ電極38の直交配置に関して説明したが、本開示は、そのように限定されることを意味するものではない。むしろ、他の実施形態では、非直交配置(例えば、非直交双極子の配置)が、電極32の位置座標(例えば、位置)を決定するために使用されてもよい。
システム10は、カテーテル12のような細長い医療装置上の、電極32のような位置センサの位置および向きを決定する。モデル構築システム14は、この位置および向きのデータを使用して、心臓20内のカテーテル12の画像を生成する。より具体的には、モデル構築システム14の処理装置16は、位置センサ(すなわち、電極32)を使用して収集された測定データ点(例えば、インピーダンス応答)を取得するように構成され、測定データ点は、電極32のそれぞれの位置に対応する。この実施形態では、モデル構築システム14は、上述したように電極32を活性化することによって測定データ点を取得する。一般的に、モデル構築システム14は、測定されたデータ点を、パラメータ形状(例えば、一次元カテーテル12の場合には曲線、二次元カテーテル12の場合には平面)からの偏差として記載し、このような偏差を使用してカテーテルの画像を生成するように構成される。換言すれば、モデル構築システムは、測定されたデータ点を、電極を支持する特定のカテーテルを記述する数学的モデルと共に使用して、データ点の位置に基づいてそのカテーテルの画像を生成する。1つの例示的なモデル構築システムが、米国特許に記載されている。「細長い医療装置の平滑化された画像を生成するための方法およびシステム」と題する公報第2018/0014751号の開示全体が参照により本明細書に組み込まれる。
図1にさらに示されるように、システム10は、磁場に基づいた位置特定システムをさらに組み込み、体内のカテーテルおよび/または同様の医療装置の位置および向きを決定してもよい。このようなシステムでは、磁場生成器48は、3つの直交して配置されたコイルを有し、体内に磁場を生成し、磁場の強度、向き、および周波数を制御するように配置されたものを採用してもよい。代替的に、磁場生成器48は、3つを超えるコイルを有してもよく、このようなコイルは、擬似ランダム配向で配列されてもよい。磁場生成器48は、患者の上または下(例えば、患者のテーブルの下)に、または別の適切な位置に配置されてもよい。磁場は、磁場生成器のコイルによって生成され、カテーテル12に関連する1または複数の磁気位置センサ46(例えば、磁場センサ)の電流または電圧測定値が得られる。センサ46の測定電流または電圧は、コイルからセンサの距離に比例し、それによって、システムの座標系内のセンサの位置決めを可能にする。センサの位置は、例えば、単に心臓モデルまたは幾何学的形状に対して、医療装置の画像をディスプレイ上に生成するためにモデル構築システムによって使用されてもよい。磁場に基づいた医療位置決めシステムの例示的な実施形態は、共有される米国特許第7,386,339号および米国特許出願第2013/0066193号に記載されており、その全体が参照により本明細書に組み込まれている。
電場に基づいたシステム(例えば、インピーダンスに基づいたシステム)および磁場に基づいたシステムの2つを使用するとき、システム10は、例えば、Abbot Laboratoriesから市販されており、一般的に、「心臓内でのカテーテルナビゲーションおよび位置決めおよびマッピングのための方法および装置」と題する米国特許第7,263,397号を参照して示されるEnsite Precision(登録商標)のシステムを使用してもよく、その開示の全体が参照により本明細書に組み込まれている。他の実施形態では、システム10は、他の種類のシステムを備えてもよく、例えば、およびこれらに限定するものではないが、Biosense Websterから入手可能なCarto(登録商標)システムのような磁場に基づいたシステム、および全体が参照により本明細書に組み込まれる「体内測定」と題する米国特許第6,498,944号、「医学的診断、治療および画像システム」と題する米国特許第6,788,967号、および「侵襲性医学装置の位置および向きを決定するためのシステムおよび方法」と題する米国特許第6,690,963号の1または複数を参照して一般的に示される磁場に基づいたシステム、または、MediGuide LtdのgMPSシステム、および全体が参照により明細書に組み込まれる「医学用位置決めシステム」と題する米国特許第6,233,476号、「カテーテルの位置および方向を決定するためのシステム」と題する米国特許第7,197,354号、「医学用画像およびナビゲーションシステム」と題する米国特許第7,386,339号の1または複数を参照して一般的に示さるgMPSシステム、例えば、Biosense Websterからも入手可能なCarto 3(登録商標)システムのような、電場に基づいたシステムおよび磁場に基づいたシステムの組み合わせ、および、インピーダンスに基づいた他の位置特定システム、音響または超音波に基づいたシステム、一般に利用可能な透視、コンピュータ断層撮影(CT)、および核磁気共鳴画像法(MRI)に基づいたシステムである。
要約すると、カテーテル12の電極32および/または磁気センサ46は、処理装置16に電気的に連結され、位置感知機能を果たすように構成される。電極32および/または磁気センサ46は、パッチ電極38を連続的に励起し、および/または磁場生成器48を作動させることによって、体18内(例えば、心臓内)に生成される電場および/または磁場内に配置される。様々な既知のアルゴリズムを使用して、次に、処理装置16は、各電極32および/または磁気センサ46の位置(位置および向き)を決定し、それを、処理装置16に関連するか、またはアクセス可能なメモリあるいは記憶装置、例えば、メモリ8内に、各センサのそれぞれの位置に対応する測定データ点として記録してもよい。次に、これらのデータ点は、モデル構築システムによって使用されて、カテーテルの画像を生成し、および/または内部にある患者キャビティ(例えば、心腔)のマップを生成してもよい。
インピーダンスに基づいた位置特定システムは、比較的多数の電極を同時に位置決めする能力を提供し、産業界で広く受け入れられて使用されている。しかしながら、インピーダンスに基づいたシステムは、人体に電流を流すことを採用しているため、これらのシステムは、測定が不正確になる可能性があり、全体的な精度を改善するためにインピーダンスに基づいた位置特定システムを磁気に基づいた位置特定システムと組み合わせるように、努力がなされてきた。しかしながら、磁気に基づいた位置特定システム(例えば、磁場生成器)の動作は、インピーダンス測定に影響を及ぼす電気的干渉を誘発し得る。従って、従来のシステムは、典型的には、インピーダンスに基づいたシステムおよび磁気に基づいたシステムの動作をインターリーブし、このような干渉を低減してきた。一例として、従来のシステムは、インピーダンス測定のために、パッチ電極38を信号生成器42に順次連結する。このような構成では、磁気に基づいたシステムは、電気的干渉を最小化するパッチ電極の順次の動作の間に動作してもよい。このような動作は、インピーダンス測定における電気的干渉の低減に効果的である一方、このような動作は、パッチ電極の動作が不連続である場合にのみ可能である。
本開示の態様はさらに、パッチ電極へ別個の固有周波数駆動信号(例えば、位置特定周波数または変調周波数)を同時かつ連続的に付与することが、より低いノイズレベルを有する位置インピーダンス値(例えば、外部パッチ電極によって駆動されることに応答するカテーテル電極の測定されたインピーダンス値)をもたらすという認識に基づく。このような構成では、パッチ電極は、インピーダンス位置測定のために信号生成器に逐次的に連結されるのではなく、連続的に駆動される。このような連続した固有変調周波数の使用は、低ノイズのインピーダンス値を達成することを可能にするだけでなく、チャネル間のクロストークを最小にする。
このような低ノイズのインピーダンス位置値を達成するために、連続した固有周波数駆動信号(例えば、変調周波数)が使用されてもよい。例えば、3つの連続した固有駆動周波数が使用されてもよく、ここで、1つの固有周波数がそれぞれの患者の軸(例えば、38X1-38X2、38Y1-38Y2、38Z1-38Z2)に適用される。信号処理システムは、直交する変調周波数を使用する。つまり、変調周波数は、共通ベース周波数の倍数である。これは、(1秒あたりのサイクル数またはヘルツで表される)値が近似し、互いに干渉しない変調周波数を提供する。ベース周波数の周期は、すべての変調周波数が周期的である時間間隔を決定する。例えば、ベース周波数が100Hzであるとき、ベース周期は、1/100秒または10ミリ秒(ms)である。ある時点で、変調周波数のいずれもが、10msごとに同じポイントサイクルに戻る。例えば、7900、8000、および8100Hzの周波数はすべて、100の共通ベース周波数を有し、任意の10msの間隔は、それぞれ、正確な79、80、または81サイクルを含む。このような間隔は、ここで論じるように、任意の点で開始し得、変調周波数のそれぞれで同一の点を繰り返す。
別個の固有周波数駆動信号システムを同時かつ連続的に付与するシステムは、直交変調周波数に適合するフィルタ方法と共に、同期励起および同期復調を使用する。このようなシステムでは、復調器は、サンプルごとに、アナログ-デジタル変換器(ADC)から受信されたセンサ信号(例えば、複数の変調信号/周波数に応じた各カテーテル電極の複合測定信号)に各変調周波数を乗算する。フィルタは、基本的に、各変調周波数に対して1つずつ、ベース周期にわたって復調器の出力値を平均化し、元のA/Dサンプルレートから実質的に低減された(ダウンサンプルまたはデシメートされた)レートで結果を提供する。一実施形態によると、フィルタは、カスケード積分コム(CIC)フィルタである。出力レートはベース周波数と同じであり、この例では、毎秒100回である。結果は、各軸(例えば、X、Y、Z座標)における電極の位置に比例する値のセットである。
同期復調は、クロストークを最小にしながら、固有変調周波数に対する応答を互いに独立して検出することを可能にする。前述したように、同期復調は、測定され、およびデジタル化された応答信号(複数の変調周波数の複合物)に、全く同じ周波数の各駆動信号と既知の位相オフセットのレプリカを乗算することを含む。次に、結果として得られる信号は、(この例では)毎秒100サンプルで、ローパスフィルタされ、デシメートされる。アナログーデジタル変換器(ADC)のサンプリングレートは重要ではなく、実際には、従来のナイキストサンプリングレートを満たす必要はない。しかしながら、増幅回路は、信号をADCに渡すために適切な帯域幅を有さなければならない。システムを較正し、駆動信号と受信信号との間の予想される位相遅延を補償することによって、直交復調が発生してもよい。したがって、抵抗インピーダンスの実数成分および反応インピーダンスの虚数成分が見つけられてもよい。これは、一般に、複素インピーダンスとして知られている。同期復調はまた、非常に低い電流レベルでの信号抽出を可能にするが、高い電流レベルが高いほど良い信号-ノイズ比はより良くなる。
図3は、固有変調周波数で電極(例えば、パッチ電極38および/またはカテーテル電極32)を同期的に励起し、このような電極の応答を同期的に復調するように構成された、組み合わされた位置特定システム70の実施形態の概略図である。システムは、図1に記載されたシステムと同様であり、同様の構成要素は、共通の参照番号を使用する。図1に関連して説明された構成要素に加えて、システム70は、アナログーデジタル変換器(A-D)74と、フィルタ76(例えば、バンドパスフィルタ)と、デジタル-アナログ変換器84と、フィルタ86(例えば、バンドパスフィルタ)と、多周波数信号回路または信号生成器80と、復調器回路または復調器130と、を含む。図4および図5において以下に説明されるように、追加の回路および/または構成要素が含まれてもよい。再び、システム70は、カテーテル12のような細長い医療装置と、電気的および/または機械的に連結されてもよい。変換器74、84、信号生成器80および復調器130は、システムが固有駆動/励起信号をパッチ電極に同時に付与し、カテーテル電極の応答を測定することを可能にする。より具体的には、信号生成器80は、1または複数の電極の位置および/またはインピーダンスを評価するのに使用するために、複数の直交励起信号(例えば、変調または位置特定周波数)を出力する。より具体的には、信号生成器80は、各々が固有変調周波数を有する複数の励起または駆動信号を生成してもよい。
システム70は、再び、メモリ8と、プロセッサ16と、を含む。メモリ8は、細長い医療装置またはカテーテル12、患者のそれぞれのデータ、および/または他のデータ(例えば、較正データ)を記憶するように構成されてもよい。このようなデータ(医療装置詳細データ、カテーテル電極の数等)は、医療処置の前に知られていてもよく、または処置の間に決定され、記憶されてもよい。メモリはまた、プロセッサ16によって実行されたときに、ECUに本明細書に記載する1または複数の方法、工程、機能、またはアルゴリズムを実行させる指示を記憶するように構成されてもよい。例えば、限定されるものではないが、メモリは、細長い医療装置12上の1または複数の電極32のそれぞれの位置および/またはインピーダンスを決定するためのデータおよび指示を含んでもよい。
図4は、パッチ電極の1つの対に対して励起信号を提供する信号源80(例えば、電流源)の1つの実施形態を示す。本実施形態では、信号源80は、フィールドプログラマブルゲートアレイ(FPGA)88を含む。しかしながら、これに限定されないが、特定用途向け集積チップ、Altera CycloneシリーズまたはXilinx Spartanシリーズを含む他の回路が、使用されてもよいことは理解されるであろう。本実施形態では、FPGA88は、数値制御発振器(NCO)102を含む。NCO102は、同期された(すなわち、クロックされた)、離散時間、離散値の波形表示を生成するデジタル信号生成器であり、通常は正弦波である。NCO102は、所望の周波数、振幅および/または位相を有する波形を提供するようにプログラム可能である。
本実施形態では、NCO102は、マイクロプロセッサおよび/または制御ロジック104から提供される入力(例えば、単一の固定周波数基準)に基づいて、所望の周波数(例えば、変調周波数)の正弦波形を生成する。本実施例では、マイクロプロセッサ/制御ロジック104は、FPGAに組み込まれ、NCO102に入力を提供する。しかしながら、NCOの入力は、例えば、ECUのプロセッサ16によって提供されてもよいことが理解されるであろう。任意の構成において、NCO102は、所望の周波数を有するデジタル波形出力を生成する。NCOの出力は、デジタルーアナログ変換器(DAC)84によって受信され、受信したデジタル信号を、対応するアナログ信号に変換する。バンドパスフィルタ86は、変換されたアナログ信号を平滑化するために使用される。差動ドライバ(例えば、オペアンプ)110は、平滑化されたアナログ信号をバンドパスフィルタ86から受信し、同じ信号を差動ペアの信号として、自身の導線内のそれぞれで絶縁変圧器112に送信する。差動信号伝達回路(例えば、差動ドライバおよび絶縁変圧器)内のインピーダンスが等しい場合、外部電磁干渉は、両方の導体に同様に影響を与える傾向がある。受信回路(絶縁変圧器)は、導体間の差を検出するだけであるため、その技術は、導体が1つの配置に比べて電磁ノイズに抵抗する。絶縁変圧器112は、電源80から発生する信号の交流電流を、パッチ電極(例えば、38X1-38X2)に伝達する。絶縁変圧器112は、信号中のDCコンポーネントの伝達がパッチ電極に向かって通過することから妨げる一方、信号中のACコンポーネントは通過させる。絶縁変圧器112からのデュアル出力は、低周波電流がパッチ電極に向かって通過することをさらに制限するACカプラ114(例えばコンデンサ)によって受信される。ACカプラは、パッチ電極に信号を出力する。
図5は、信号測定回路(例えば、信号サンプラ)および同期復調回路の一実施形態を示す。最初に、カテーテル電極(例えば、心臓内電極)のうちの1つからの応答信号(例えば、複数の固有変調周波数に対する複合応答)は、電流を、低い出力インピーダンスレベルを有する電極から、典型的には高い入力インピーダンスレベルを有するアナログ-デジタル変換器(ADC)74に伝達するフィルタ76(例えば、バッファ増幅器)で受信される。バッファ増幅器は、ADCが電極回路の電流をロードし、その所望の動作を妨げることを防止する。ADC74は、受信アナログ信号を既知のサンプリングレート(例えば、64k/s)でサンプルし、アナログ応答信号をデジタル応答信号に変換する。本実施形態では、ADCの出力は、制御システムを医療装置から隔離する一方で、デジタル応答信号を制御システム(例えば、ECU)に伝達するデジタルアイソレータ124を通過する。
デジタル応答信号は、本実施形態では、信号源80に使用される同じFPGAで規定される同期復調回路130に伝わる。上述したように、同期復調は、デジタル化された応答信号に、全く同じ周波数の駆動信号と既知の位相オフセットのレプリカを乗算することから成る。すなわち、駆動信号と同じ周波数(例えば、変調周波数)および駆動信号からの既知の位相オフセットを有する復調信号が生成され、デジタル化された応答信号と乗算される。駆動信号を生成する同じFPGA88を使用して復調信号を生成することは、復調処理を簡素化する。しかしながら、これは必須ではなく、同期復調回路および信号源は、別個のものであってもよく、および/または異なるソフトウェアおよび/またはハードウェア構成要素から形成されてもよいことが理解されるであろう。どのような構成においても、同期復調回路は、与えられた固有周波数に対して駆動信号を複製することができなければならない。
図示された実施形態では、デジタル応答信号は、同期復調回路130によって受信されるときに分割される。数値制御発振器(NCO)132は、マイクロプロセッサおよび/または制御ロジック104から提供される入力に基づいて、駆動信号(例えば、同じ周波数の異なる位相)の正弦および余弦の表示を生成する。分割されたデジタル応答信号は、正弦および余弦乗算器134A、134B(具体的に言及されない限り、以下では134)において正弦および余弦信号によってポイントごとに乗算される。すなわち、デジタル応答信号は、同期乗算器または復調器によって処理される。これは、実数(余弦)および虚数(正弦)チャネルをもたらす。余弦および正弦チャネルは、本実施形態では、カスケード積分コム(CIC)フィルタから形成される低通過デシメーティングフィルタ138A、138B(特に言及しない限り、以下では138)によってフィルタされ、デシメートされる。駆動信号が100Hzのベース周波数の高調波成分である上記の例に続いて、チャネル/信号は、それぞれデシメートされた信号が整数のサイクルを有するように、毎秒100サンプルにデシメートされる。次に、デシメートされた信号は、ゲインおよびオフセット較正142A、142Bを通過して、ソース信号と応答信号との間の予想される位相遅延を補償する。次に、信号が組み合わせれてもよい。したがって、抵抗インピーダンスの実数成分および反応インピーダンスの虚数成分が、見つけられてもよい。次に、この情報は、例えば、出力ポート146を介して、例えば、ECUのプロセッサに送信されてもよい。この処理は、3つの駆動周波数のそれぞれに(例えば、同時に)実行される。次に、ECUは、この情報(インピーダンス位置測定)を使用して、各軸(例えば、X、Y、Z座標)内の電極の位置に比例する値を生成してもよい。インピーダンス位置測定の決定に関連して説明したが、システム70は、カテーテル12の心臓内電極(例えば、双極電極)の対を同期的に励起し、同期的に復調するために使用されてもよいことを理解されたい。
図3から5に記載されたシステム70は、パッチ電極38および/またはカテーテルの心臓内電極32を連続的に励起して、低ノイズのインピーダンス応答を得ることを可能にする。しかしながら、磁場に基づいた位置特定システム40の動作は、取得されたインピーダンス応答にノイズを導入する。すなわち、磁場に基づいた位置特定システムの動作は、パッチ電極および/または心臓内電極を連続的に励起(例えば、駆動信号を印加)するインピーダンスに基づいた位置特定システムによって取得されるインピーダンス応答に影響を及ぼす。これは、図6Aおよび図6Bに図式的に示されている。図6Aは、時間(水平軸)にわたって監視される食塩水タンク内の4つのカテーテル電極のインピーダンス位置値(例えば、オーム垂直軸)を示し、インピーダンス値は、パッチ電極を連続的に駆動するインピーダンスに基づいた位置特定システムによって取得される。図示されるように、時間または位置トレース150a-dにわたるインピーダンス位置値は、垂直軸における4つのカテーテル電極の位置を識別する。この例では、カテーテル電極は、静止位置から約4インチ上方に移動し、次に静止位置に戻る。図示されているように、トレース150a-dのそれぞれは、低いノイズを伴う実質的に滑らかな直線である。図6Bは、磁場に基づいた位置特定システムの動作中に同じインピーダンスに基づいた位置特定によって得られるカテーテル電極の同じ移動および対応する位置トレース152a-dを示す。示されるように、トレース152のそれぞれは、磁場に基づいた位置特定システムの動作からのノイズが、インピーダンスに基づいた位置特定システムによって得られたインピーダンス位置値を破損するため、歪められる。例えば、このようなデータを使用してカテーテルの画像を描写することは、ディスプレイを大幅にフィルタリングする必要がある、ぶれた画像をもたらすであろう。さらに、パッチ電極への駆動信号の連続的な付与のために、電極を順次駆動する従来のシステムとは異なり、電極駆動信号の付与の間で磁場に基づいた位置特定システムを動作する機会はない。
連続的に動作するインピーダンスに基づいた位置特定システムによって取得されるインピーダンス応答に対する磁場に基づいた位置特定システムの動作の影響に対抗するために、組み合わされたシステムは、スキッピングモードで動作する。スキッピングモードの間、デシメーティングフィルタ(例えば、CICフィルタ)は、所定の期間、入力データストリーム(すなわち、復調データストリーム)内のノイズがあるデータが欠乏している。この期間に、磁場に基づいた位置特定システムは、その磁気エミッタ(例えば、コイル)に電圧を印加し、位置決定のためのデータを収集する。コイルは、デシメーティングフィルタが復調データストリームの処理を再開する期間の終わりの直前に、電圧の印加を停止される。理論的には、両方の位置特定システムの動作を一時的に交互に行うことに類似しているが、インピーダンスに基づいた位置特定システムは、動作を止めることなく、例えば、パッチ電極を継続的に駆動する。さらに、デシメーティングフィルタが動作を適切に再開できるようにするために、入力復調データストリームは、入力復調データストリームが一時停止される前に、そのサイクル内の正確な位置になければならない。そうでない場合、デシメーティングフィルタは、周波数が不連続になり、周波数を破損する。駆動信号に対する直交周波数の使用は、復調データストリームをそのサイクル内に正確に同じ位置で停止および開始する手段を提供する。
図7Aは、電極位置特定のために表面パッチ電極(例えば、38X1-38X2、38Y1-38Y2、38Z1-38Z2)の3つの対に適用される3つの直交駆動シグナルを示す。図示される実施形態では、第1信号202は、7900Hzの周波数を有し、第2信号204は、8000Hzの周波数を有し、第3信号206は、8100Hzの周波数を有する。前述のように、周波数は、100Hzの共通ベース周波数の倍数であり、ベース周波数の周期は、全ての変調周波数が周期的である時間間隔を決定する。ベース周波数が100Hzであるとき、ベース周期は1/100秒または10ミリ秒(ms)である。ある時点で、変調周波数のいずれもが10msごとに同じポイントサイクルに戻る。例えば、7900、8000、および8100Hzの周波数はすべて、100の共通ベース周波数を有し、任意の10ms間隔は、それぞれ、正確に79、80、または81サイクルを含む。したがって、デシメーティングフィルタへの復調データストリームが、ベース周期の整数倍である期間に一時停止される場合、デシメーティングフィルタへの復調データストリームの再開は、すべての変調周波数で全く同じ位置で行われる。
図7Aおよび図7Bはまた、パッチ電極に付与されるような3つの駆動信号162、164および166の情報を含む応答信号の例示的な復調データストリームを集合的に示している。すなわち、これらの図は、駆動信号に応答して測定され、アナログーデジタル変換器(ADC)によってアナログ信号からデジタル信号に変換されるカテーテル電極からの応答信号を視覚化するために使用され得る。デジタル信号は復調され、復調データストリームをデシメーティングフィルタ(例えば、138A、138B)に形成する。例えば、図5を参照されたい。図示された実施形態では、ADCのサンプルレートは、640のADCサンプルが10msのベース周期に対応するように、64k/sである。図7Aに示されるように、フィルタへの復調データストリームは、時間0.00223において、ADCサンプル144で一時停止/中断される。図7Bは、一時停止が始まってからちょうど10ms(すなわち、1ベース期間)後の時間0.01223における、ADCサンプル784(一時停止後の640のADCサンプル)での復調データストリームの再開を示す。図示されるように、図7Aの一時停止信号202-206の右端は、図7Bの再開信号202-206の左端と正確に一致する。従って、フィルタへの復調データストリームが再開される際、フィルタは、不連続な周波数を発見しない。しかしながら、例えば、電極またはカテーテルの位置の変化のため、再開された信号の振幅にいくらかの変化があり得るが、このような変化は、一時停止の間隔が短いため、小さいと予想される。
複数の周波数のすべてに対して同じ周波数点での多重周波数応答信号(例えば、復調データストリーム)の処理を再開する能力は、応答信号の処理が一時停止される間に、ノイズ生成装置(例えば、磁場に基づいた位置特定システム)を動作することを可能にする。図8は、応答信号の一時停止処理を図示し、磁場に基づいた位置特定システムのようなノイズ生成装置の動作を可能にする。簡略にするために、この例は、2つの電極の駆動信号(例えば、パッチ励起信号)のみを図示するが、駆動信号が直交している限り、任意の数の駆動信号が可能であることが理解されるであろう。示されるように、2つの駆動信号162、164は、共通ベース周波数(すなわち、直交信号)を有する一方で、異なる周波数を有する。示されるように、駆動信号162、164のそれぞれは、連続的に付与される。図8はまた、それぞれ駆動信号162、164の付与に応答して生成される応答信号(例えば、感知信号)または復調データストリーム172、174を示す。これらのデータストリーム172、174は、デシメーションフィルタによって受信される復調器の出力を表してもよい。示されるように、時間180での第1点(例えば、ベース期間の開始)において、例えば、磁気センサの磁場に基づいた測定値を得る、または別のノイズ生成装置を動作することが望ましい場合がある。したがって、感知信号のそれぞれのためのデータストリーム172、174または復調データストリームは、ベース周期180の始めに一時停止され、ベース周期182のまたはベース周期の整数倍(例えば、100Hzのベース周波数の10ms)の終わりに再開されてもよい。この一時停止またはスキップの間、磁場生成器のような電気ノイズ生成装置は、ベース期間の開始180の後に信号186(例えば、磁場)を付与し、ベース期間の終わりの少し前に信号186を終了してもよい。ベース期間184の間、復調データストリームは一時停止され、これらの信号に関連するデータは破棄される。ベース期間182の終わりに、復調データストリームは、それぞれの感知信号で正確な周波数位置でフィルタへの入力を再開する。したがって、フィルタは、周波数の観点から、すなわち連続的で中断のない効果的なデータストリーム172A、174Aを発見する。実際、フィルタへの復調データストリームの一時停止は、ノイズをインピーダンスに基づいた測定に導入することなく、連続的に動作するインピーダンスに基づいた位置特定システムと磁場に基づいた位置特定システムのようなノイズ生成装置の動作とをインターリーブすることを可能にする。
感知信号の一時停止は、デシメーティングフィルタが破損したデータまたはノイズがあるデータをスキップすることを可能にする。すなわち、破損したデータは効果的に破棄される。これは、ノイズがあるデータを含まない信号の継続的な処理を可能にする。図6Cは、4つの電極に対するインピーダンス位置値が、磁場に基づいた位置特定システムの動作中に取得される、図式的に図示された図6Bの例の続きを示す。より具体的には、図6Cは、図6Bの位置トレース152a~bに対応する位置トレース154a-dを示す。しかしながら、これらの位置トレース154a-dは、磁場に基づいた位置特定システムの動作中に一時停止されるデータストリームから生成される。すなわち、デシメーティングフィルタは、磁場に基づいた位置特定システムの動作に対応する入力データストリームの部分をスキップする。その結果、図6Cの位置トレース154a-dは、図6Bの位置トレース152a-dよりも大幅に滑らか(すなわち、低ノイズ)であり、磁場に基づいた位置特定システムのいかなる動作なく生成される位置トレース150a-dの低ノイズレベルに近づく。図6Aを参照されたい。
注目すべきことであるが、破損した(例えば、ノイズがある)インピーダンスデータをデシメーティングフィルタから除外し、適切に再開することを可能にするために、ノイズまたは干渉事象(例えば、磁場生成器の動作)中での復調データストリームの一時停止は、正確な時間間隔を必要とする。本明細書に開示されるように、正確な時間間隔は、離散ADCサンプルに関して測定される。例えば、640のADCサンプルは、サンプリングレートが64k/sであるとき、10msに対応する。しかしながら、ADCサンプルレートのタイミングが最も効率的であると現在考えられているが、時間間隔を正確に測定するための他の手段が実行されてもよい。さらに注目すべきは、ノイズまたは干渉事象の間に、デシメーションフィルタに入るデータストリームが中断されている間、復調器が現在のサンプルを超えるメモリを有していないため、データ(例えば、ADC出力)を復調器(例えば、同期乗算器134)に入力することを中断する必要がないことである。すなわち、復調器は、基準信号(例えば、駆動信号)からの対応する値を乗算したデジタル応答信号に対する最新の積のみを提供する。
図9は、図5の信号測定回路(例えば、信号サンプラ)および同期復調回路、または同様の回路に実装され得るスキップコントローラまたはスキップ制御システム210の一実施形態の1つのブロック図を示す。スキップ制御システム210は、連続的に動作するインピーダンスに基づいた位置特定システムと、磁場に基づいた位置特定システム(例えば、外部装置)のような別のノイズ生成システムまたは装置との応答測定をインターリーブすることを可能にする。この実施形態では、スキップ制御システムは、10msのベース周期を有する連続的な直交駆動信号を使用するシステムに対する応答測定をインターリーブするために使用される。図示された実施形態では、共通クロック78は、ADC74、正弦および余弦生成器132(例えば、数値制御発振器)、およびインターリーブカウンタ140に接続される。クロックは、タイミングのベースとしてADC74からのサンプルを使用してもよい。図示するように、ADC74は、電極からアナログ応答信号を受信し、所定のサンプリングレート(例えば、64k/s)で、アナログ信号を復調乗算器134に提供されるデジタル信号に変換する。復調乗算器は、正弦及び余弦生成器132からの基準信号に従って信号を復調する。任意に、バッファフィルタ148は、ADCの出力部と復調器の入力部との間に設けられてもよい。このフィルタ148の機能については、図10および図11に関連してさらに説明される。
インターリーブカウンタ140は、共通クロックおよび/またはADCから時間を監視する。本実施形態では、20ms周期毎(例えば、64k/sのサンプリングレートに対して1280のADCサンプル)に、インターリーブカウンタは、磁場に基づいた位置特定システムなどの外部機器システムの動作を引き起こすまたは開始するために提供されるスキップ要求を生成する。スキップ要求はまた、復調器/乗算器134とデシメートフィルタ138との間に配置されるスキップカウンタ144に提供される。本実施形態では、スキップカウンタ144は、スキップ要求を受信すると、10ms周期(例えば、64k/sのサンプリングレートに対して640のADCサンプル)でカウントを開始する。この10msの期間、スキップカウンタ(またはコントローラ)は、復調乗算器134からの入力復調データストリームを破棄し、この潜在的なノイズがあるデータがフィルタ138に入力されることを防止する。この10msの期間、外部機器は、動作してもよい。例えば、磁場に基づいた位置特定システムは、磁気コイルに電圧を印加し、1または複数の磁気センサの磁気測定値を得る。このような構成では、外部機器は、復調データストリームが破棄される間に、10msのスキップ期間にその動作を開始し、完了するように構成される。10msスキップ期間の終わりに、復調データストリームは、次のスキップ要求が受信されるとき、次の10msの間、データストリームを(例えば、周波数の不連続性なく)処理するフィルタ138に提供される。この実施形態では、50/50のデューティサイクルまたは1:1のインターリーブが、外部機器とインピーダンスに基づいたシステムとの間に存在する。しかしながら、他のデューティサイクルが可能であり、例えば、インターリーブカウンタの周期は、外部機器が動作するための10ms(1ベース周期)と、インピーダンスに基づいたシステムが動作するための20ms(2ベース周期)を提供する30msとしてもよいことが理解されるであろう。同様に、スキップカウンタ144は、インピーダンスに基づいたシステムが残りの10msで動作する間に、外部機器が動作するために20msを提供する20msの周期を有してもよい。インターリーブカウンタおよびスキップカウンタが入力応答信号に関連するインピーダンス駆動信号のベース周期の整数倍を使用する限り、任意の組み合わせが可能である。
主に、インピーダンスに基づいた測定と磁場に基づいた測定とのインターリーブを可能にするように上述されたが、インターリーブプロセスが他のノイズ生成システムに適用されてもよいことが理解されるであろう。例えば、少し変更することによって、心臓ペーシングパルスも、インピーダンス処理システムから除かれてもよく、除かれなければペーシングパルスによって引き起こされる大きな妨害を最小化する。心臓処置の間、診断の一部として心臓を刺激するために外部ペーシングシステムを使用することが一般的である。ペーシングパルスは、一般に、所望の1分当たりの鼓動、例えば、60-120bpmの速度である。パルスの持続時間は短く、通常は10ミリ秒未満であるが、電気的振幅は非常に大きい。この短いパルスは、非常に短い時間、測定されたインピーダンス応答を妨害する。本開示は、ペーシングパルスを効果的に除去する「ブランキング」機能を提供するように修正されてもよい。すなわち、上述したように、ペーシングパルスを検出し、デシメーティングフィルタの信号処理からペーシングパルスを遠ざけるようにすることは、インピーダンスデータからペーシングパルスを効果的に抑制する。さらに、受信応答信号にスパイクをもたらす任意の異常事象を検出して抑制するために、このようなブランキング機能が使用されてもよい。
図10は、ブランキングコントローラまたはブランキング制御システム220の一実施形態の1つのブロック図を示す。図示されるように、ブランキング制御システム220は、図9のスキップ制御システム210と多数の共通構成要素を共有する。したがって、同様の構成要素は、同様の参照番号を使用する。図示されるように、ブランキング制御システムは、ADC74の出力部に接続された異常検出器156を組み込む。ペーシングパルスのような異常の検出は、ADC74の出力のサンプル間の差異(スルーレート)を測定することによって行われる。すなわち、ADCの隣接するサンプルが比較され、サンプル間の差異が所定のしきい値より大きい場合に、異常検出器はスキップカウンタ144にスキップ要求を出力する。スキップカウンタ144は、スキップ要求を受信すると、10ms周期(例えば、本例では、1ベース周期)のカウントを開始する。この10msの期間、スキップカウンタは、復調器/乗算器134からの入力復調データストリームを破棄し、この潜在的なノイズがあるデータがフィルタ138に入力されることを防止し、それによって、異常事象をブランキングする(例えば、異常事象が持続時間10msより短いと仮定する)。
未知の異常事象が測定回路に達するときに未知の異常事象をブランクするために、バッファまたは遅延フィルタ148は、ADC74と復調乗算器134との間に配置される。遅延フィルタ148は、ADCサンプルの小さなセットを、(例えば、メモリに)短期間記憶し、検出器156がサンプルを分析し、必要に応じてスキップ要求を出力する時間を可能にするために、データを一時的に記憶する。約10-20の少数のADCサンプルのみが必要とされる。この多くのサンプルの小さな記憶バッファは、サンプルが対応する数のサンプル期間だけ遅延されるように使用される。サンプリングレート64k/sでは、これは、わずか156-312マイクロ秒の遅延であり、ユーザにとって知覚できない遅延である。この短い遅延は、スキップ(処理の中断)が開始する前に、異常事象(例えば、ペーシングパルス)によって破損したサンプルがデシメーションフィルタ138に達することを防止する。異常事象が10ms(例えば、本例では1つのベース周期)を超えて継続する場合、異常検出器156は、別の1つのベース周期スキップ要求を発してもよい。しかしながら、これは必要条件ではない。任意の実施形態において、ブランキング制御システム220は、処理前に、信号から予期しないノイズを除去することを可能にする。
図11は、スキップ制御システム210とブランキング制御システム220の機能を組み合わせた、組み合わせ制御システム230を示す。図示されるように、組み合わせ制御システム230は、インターリーブカウンタ140を使用して動作され、スキップ要求を発し、外部機器を作動させる。さらに、異常検出器156は、ペーシングパルスのような入力異常事象を識別すると、スキップ要求を発してもよい。
図12は、インピーダンス測定値を、磁場に基づいた位置特定システムのようなノイズ生成装置の動作とインターリーブするための1つの処理300を示す処理フローシートを示す。最初に、直交駆動信号は、電場を生成するために、インピーダンスに基づいた位置特定システムのパッチ電極に連続的かつ同時に付与302される。電場が生成されると、駆動信号の全てに対する電極(例えば、電場内のカテーテル電極)の応答が測定304される。このような測定は、典型的には、上述のように、測定された応答をデジタル信号に変換することを含む。復調器は、復調データストリームを生成するために、測定された応答を同期的に復調306する。復調されると、復調データストリームがフィルタ(デシメーティングフィルタ)に入力されるべきであるか否かに関して、決定がなされてもよい。すなわち、データストリームを一時停止308する決定がなされる。このような一時停止の決定は、インピーダンスに基づいた位置特定システムおよび外部ノイズ生成装置(例えば、磁場に基づいた位置特定システム)を動作するためのデューティサイクル(例えば、タイマ、ADCサイクル等)に基づいてもよく、データストリームが一時停止される場合、ノイズ生成装置は、直交駆動信号のベース期間の整数倍である期間、動作310してもよい。データストリームが一時停止されない場合、データストリームはフィルタに入力され、インピーダンスに基づいた位置値を生成するために、データストリームをダウンサンプル/フィルタ312する。処理300が継続314する場合、フィルタは、次の一時停止の決定まで、フィルタによって処理され続けるデータストリームをフィルタ312することを続ける。
全ての方向に関する言及(例えば、プラス、マイナス、上方、下方、上方向、下方向、左、右、左方向、右方向、上、下、より上、より下、垂直、水平、時計回り、および反時計回り)は読み手の本開示の理解を助けるための識別目的のためにのみ使用され、特に本開示の任意の態様の位置、向き、または使用に関して限定をするものではない。本明細書で使用されるように、「ように構成される」、「のために構成される」という語句および同様の語句は、対象の装置(device)、機器(apparatus)、またはシステムが対象の目的を単に実行することができるだけでなく、1または複数の特定の対象の目的を果たすように(例えば、適切なハードウェア、ソフトウェア、および/または構成要素を介して)設計および/または構築さえることを示す。結合に関する言及(例えば、取り付けられた、結合された、接続された等)は、広義に解釈されるべきであり、要素の接続の間に中間部材を含み得、要素間に相対運動を含み得る。したがって、結合に関する言及は、2つの要素が直接接続され、互いに固定された関係にあることを必ずしも明示しない。上記の説明に含まれるか、または添付の図面に示されるすべての事項は、例示的なものにすぎず、限定するものではないと解釈されるべきであることが意図される。詳細または構造の変更は、添付の特許請求の範囲に定義される本発明の精神から逸脱することなく行うことができる。本明細書に参照により組み込まれると説明されているいずれの特許、出版物、または他の開示材料も、全体的または部分的に、組み込まれた資料が本開示に記載されている既存の定義、記述、または他の開示資料と矛盾しない範囲でのみ、本明細書に組み込まれる。したがって、必要な範囲で、本明細書に明示的に説明される開示は、参照により本明細書に組み込まれるいずれかの矛盾する資料に取って代わる。本明細書に参照により組み込まれると説明されているが、本明細書に説明される既存の定義、記述、または他の開示資料と矛盾する、いずれの資料またはその一部は、組み込まれる資料と既存の開示資料との間に矛盾が生じない範囲でのみ組み込まれる。
以下の項目は、国際出願時の特許請求の範囲に記載の要素である。
(項目1)
患者の体内で医療装置をナビゲートする際に使用するための位置感知およびナビゲーションシステムであって
インピーダンスに基づいた位置特定システムと、
磁場に基づいた位置特定システムと、を備得ており、
前記インピーダンスに基づいた位置特定システムは、
1または複数の駆動信号のそれぞれを、複数の電極の対のうちの対応する1つに亘って、連続的かつ同時に付与して電場を生成するように構成されている信号生成器であって、前記駆動信号のそれぞれは、共通ベース周波数の高調波成分である固有周波数を有する、前記信号生成器と、
前記電場に配置されている医療装置の少なくとも1つの電極の複合応答信号を、前記複数の駆動信号に同期的に復調し、復調データストリームを出力するように構成されている復調器と、
前記復調データストリームを受信し、各固有周波数に対する前記電極の位置に比例する複数のインピーダンスに基づいた値を出力するように構成されているフィルタと、を備えており、
前記磁場に基づいた位置特定システムは、
磁場を生成するための磁場生成器であって、前記磁場に配置されている前記医療装置の少なくとも1つの磁気センサから磁気応答を取得するために使用される前記磁場生成器と、
前記磁場生成器の動作の間に、前記フィルタへの前記復調データストリームの入力を一時停止するように構成されているコントローラと、を備えている、位置感知およびナビゲーションシステム。
(項目2)
前記複数のインピーダンスに基づいた値を使用して、前記医療装置のモデルを生成するように構成されているモデル構築システムと、
前記医療装置の前記モデルの画像を表示するように構成されているディスプレイと、をさらに備えている、項目1のシステム。
(項目3)
前記コントローラは、前記共通ベース周波数のベース周期の整数倍である期間、前記フィルタへの前記復調データストリームの前記入力を一時停止するように構成されている、項目1のシステム。
(項目4)
前記複合応答信号を前記復調器に入力する前に、前記復調応答信号をデジタル応答信号に変換するように構成されているアナログ-デジタル変換器(ADC)をさらに備えており、
前記期間は、離散ADCサンプルに関して測定される、項目3のシステム。
(項目5)
前記コントローラは、前記期間に、前記復調データストリームを破棄する、項目3のシステム。
(項目6)
前記コントローラは、前記期間に、前記磁場に基づいた位置特定システムの動作を開始するように構成されている、項目3のシステム。
(項目7)
前記コントローラは、
前記フィルタへの前記復調データストリームが一時停止される第1期間に、前記磁場に基づいた位置特定システムの動作を開始し、
別の第2期間に、前記フィルタへの前記復調データストリームを許可する、ように構成されており、
前記第1期間と前記第2期間のそれぞれは、前記共通ベース周波数の前記ベース周期の整数倍である、項目3のシステム。
(項目8)
前記第1期間と前記第2期間は異なる、項目7のシステム。
(項目9)
前記復号応答信号のデジタルサンプルを、前記デジタルサンプルを前記復調器に入力する前に分析するように構成されている検出器と、
前記デジタルサンプルを前記復調器に入力する前に、前記デジタルサンプルの所定のセットを記憶するように構成されているバッファと、をさらに備えている、項目1のシステム。
(項目10)
前記検出器は、
前記デジタルサンプルのスルーレートを所定の閾値と比較し、
前記スルーレートが前記所定の閾値を超える場合、前記フィルタへの前記復調データストリームの入力を一時停止する、ように構成されている、項目9のシステム。
(項目11)
前記複数のインピーダンスに基づいた値は、それぞれ、抵抗インピーダンスおよび反応インピーダンスを有する複素インピーダンス値を備えている、項目1に記載のシステム。
(項目12)
前記復調器は、前記共通ベース周波数に対して整数個のサイクルを有するサンプリング周期に亘ってサンプル採取する、項目1のシステム。
(項目14)
患者の体内で医療装置をナビゲートする際に使用する電子制御ユニットであって、
共通ベース周波数の高調波成分である固有周波数をそれぞれ有する複数の駆動信号を生成するように構成されている信号生成器であって、前記複数の駆動信号は、対応する複数のパッチ電極の個々の対に亘って、連続的かつ同時に付与されて電場を生成する、前記信号生成器と、
前記電場に配置される医療装置の少なくとも1つの電極の複合応答信号を、前記駆動信号に対して同期的に復調し、復調データストリームを出力するように構成されている復調器と、
前記復調データストリームを受信し、各固有周波数に対する前記電極の前記位置に比例する複数のインピーダンスに基づいた値を出力するように構成されているフィルタと、
前記フィルタへの前記復調データストリームの入力を一時停止し、前記フィルタへの前記復調データストリームが一時停止されている間に、電気ノイズを生成する装置の動作を開始するように構成されているコントローラと、を備えている、電子制御ユニット。
(項目15)
前記複数のインピーダンスに基づいた値を使用して、前記医療装置のモデルを生成するように構成されているモデル構築システムと、
前記医療装置の前記モデルの画像を表示するように構成されているディスプレイと、をさらに備えている、項目14のシステム。
(項目16)
前記コントローラは、前記共通ベース周波数のベース周期の整数倍である期間に、前記フィルタへの前記復調データストリームの前記入力を一時停止するように構成されている、項目14のシステム。
(項目17)
前記コントローラは、前記期間に、前記復調データストリームを破棄する、項目14のシステム。
(項目18)
電気ノイズを生成する前記装置は、磁場に基づいた位置特定システムを備えている、項目14のシステム。
(項目19)
前記複合応答信号のデジタルサンプルを、前記デジタルサンプルを前記復調器に入力する前に分析するように構成されている検出器と、
前記デジタルサンプルを前記復調器に入力する前に、前記デジタルサンプルの所定のセットを記憶するように構成されているバッファと、をさらに備えている、項目14のシステム。
(項目20)
前記検出器は、
前記デジタルサンプルのスルーレートを所定の閾値と比較し、
前記スルーレートが前記所定の閾値を超える場合、前記フィルタへの前記復調データストリームの入力を一時停止する、ように構成されている、項目19のシステム。
(項目21)
患者の体内の細長い医療装置の位置を感知するのに使用する方法であって、
共通ベース周波数の高調波成分である固有周波数をそれぞれ有する複数の駆動信号を生成して、前記複数の駆動信号のそれぞれを、複数の電極の対のうちの対応する1つに亘って、同時に付与して、電場を生成することと、
前記複数の駆動信号に対する、前記電場内に配置されている医療装置の少なくとも1つの電極の複合応答信号を測定することと、
前記少なくとも1つの電極の前記複合応答信号を同期的に復調し、復調データストリームを出力することと、
前記復調データストリームが、前記共通ベース周波数のベース周期の整数倍である期間に破棄される電子ノイズ生成事象の間に、前記復調データストリームを一時停止することと、
前記復調データストリームをフィルタにかけて、各固有周波数に対する前記電極の前記位置に比例する複数のインピーダンスに基づいた値を出力することと、
前記複数のインピーダンスに基づいた値を使用して、前記医療装置のモデルを生成することと、
前記医療装置の前記モデルの画像を表示することと、を備えている、方法。
(項目22)
前記復調データストリームを一時停止することは、所定のデューティサイクルで実行される、項目21の方法。
(項目23)
電子ノイズ生成事象の間に、前記復調データストリームを一時停止することは、
前記復調データストリームを一時停止することと、
電子ノイズ生成装置の動作を開始することと、を備えている、項目21の方法。
(項目24)
前記期間の終わりの前に、前記ノイズ生成装置の動作を停止することと、
前記復調データをフィルタにかけることを再開することと、をさらに備えている、項目23の方法。
(項目25)
電子ノイズ生成装置の動作を開始することは、前記期間に、磁気位置特定システムを動作させることを備えている、項目23の方法。
(項目26)
前記復調データストリームを一時停止することは、異常事象の識別に応答して実行される、項目21の方法。
(項目27)
前記復調することの前に、前記複合応答信号の複数のサンプルを比較することと、
閾値よりも大きい複数のサンプル間の差異を識別することと、
前記期間に、前記復調データストリームを前記一時停止することを開始する、項目26の方法。
(項目28)
患者の体内で医療装置をナビゲートする際に使用する電子制御ユニットであって、
共通ベース周波数の高調波成分である固有周波数をそれぞれ有する複数の駆動信号を生成するように構成されている信号生成器であって、前記複数の駆動信号は、対応する複数のパッチ電極の個々の対に亘って、連続的かつ同時に付与可能であり、電場を生成する、前記信号生成器と、
前記電場に配置されている医療装置の少なくとも1つの複合応答信号を、デジタル応答信号に変換するように構成されているアナログーデジタル変換器(ADC)と、
前記複数の駆動信号に対して前記デジタル応答信号を同期的に復調して、復調データストリームを出力するように構成されている復調器と、
前記デジタルサンプルを前記復調器に入力する前に、前記デジタル応答信号のスルーレートを所定の閾値と比較するように構成されている検出器と、
前記復調データストリームを受信して、各固有周波数に対する前記電極の前記位置に比例するインピーダンスに基づいた値を出力するように構成されているフィルタと、
前記スルーレートが前記所定の閾値を超えると、期間において、前記フィルタへの前記復調データストリームの入力を一時停止するように構成されているコントローラと、を備えている、電子制御ユニット。
(項目29)
前記インピーダンスに基づいた値を使用して、前記医療装置のモデルを生成するように構成されているモデル構築システムと、
前記医療装置の前記モデルの画像を表示するように構成されているディスプレイと、をさらに備えている、項目28のシステム。
(項目30)
前記コントローラは、前記共通ベース周波数のベース周期の整数倍である期間に、前記フィルタへの前記復調データストリームの前記入力を一時停止するように構成されている、項目28のシステム。
(項目31)
前記コントローラは、前記期間に、前記復調データストリームを破棄する、項目28のシステム。
(項目32)
前記ADCの出力部と前記復調器の入力部との間に配置されているバッファであって、前記デジタルサンプルを前記復調器に入力する前に、前記デジタルサンプルの所定のセットを記憶するように構成されている、項目28のシステム。

Claims (19)

  1. 患者の体内で医療装置をナビゲートする際に使用するための位置感知およびナビゲーションシステムであって
    インピーダンスに基づいた位置特定システムと、
    磁場に基づいた位置特定システムと、を備ており、
    前記インピーダンスに基づいた位置特定システムは、
    1または複数の駆動信号のそれぞれを、複数の電極の対のうちの対応する1つに亘って、連続的かつ同時に付与して電場を生成するように構成されている信号生成器であって、前記駆動信号のそれぞれは、共通ベース周波数の高調波成分である固有周波数を有する、前記信号生成器と、
    前記電場に配置されている医療装置の少なくとも1つの電極の複合応答信号を、前記複数の駆動信号に同期的に復調し、復調データストリームを出力するように構成されている復調器と、
    前記復調データストリームを受信し、各固有周波数に対する前記電極の位置に比例する複数のインピーダンスに基づいた値を出力するように構成されているフィルタと、を備えており、
    前記磁場に基づいた位置特定システムは、
    磁場を生成するための磁場生成器であって、前記磁場に配置されている前記医療装置の少なくとも1つの磁気センサから磁気応答を取得するために使用される前記磁場生成器と、
    前記磁場生成器の動作の間に、前記フィルタへの前記復調データストリームの入力をスキップするように構成されているスキップコントローラと、を備えている、位置感知およびナビゲーションシステム。
  2. 前記複数のインピーダンスに基づいた値を使用して、前記医療装置のモデルを生成するように構成されているモデル構築システムと、
    前記医療装置の前記モデルの画像を表示するように構成されているディスプレイと、をさらに備えている、請求項1のシステム。
  3. 前記スキップコントローラは、前記共通ベース周波数のベース周期の整数倍である期間、前記フィルタへの前記復調データストリームの前記入力をスキップするように構成されている、請求項1または2のシステム。
  4. 前記複合応答信号を前記復調器に入力する前に、前記複合応答信号をデジタル応答信号に変換するように構成されているアナログ-デジタル変換器(ADC)をさらに備えており、
    前記期間は、離散ADCサンプルに関して測定される、請求項3のシステム。
  5. 前記スキップコントローラは、前記期間に、前記復調データストリームを破棄する、請求項3または4のシステム。
  6. 前記スキップコントローラは、前記期間に、前記磁場に基づいた位置特定システムの動作を開始するように構成されている、請求項3から5のいずれか一項のシステム。
  7. 前記スキップコントローラは、
    前記フィルタへの前記復調データストリームがスキップされる第1期間に、前記磁場に基づいた位置特定システムの動作を開始し、
    別の第2期間に、前記フィルタへの前記復調データストリームを許可する、ように構成されており、
    前記第1期間と前記第2期間のそれぞれは、前記共通ベース周波数の前記ベース周期の整数倍である、請求項3から6のいずれか一項のシステム。
  8. 前記スキップコントローラは、スキップカウンタにスキップ要求を出力し、
    前記スキップカウンタは、前記スキップ要求に従って、ある期間、前記復調データストリームを破棄する、請求項のシステム。
  9. 前記複合応答信号のデジタルサンプルを、前記デジタルサンプルを前記復調器に入力する前に分析するように構成されている検出器と、
    前記デジタルサンプルを前記復調器に入力する前に、前記デジタルサンプルの所定のセットを記憶するように構成されているバッファと、をさらに備えている、請求項1から8のいずれか一項のシステム。
  10. 前記検出器は、
    前記デジタルサンプルのスルーレートを所定の閾値と比較し、
    前記スルーレートが前記所定の閾値を超える場合、前記フィルタへの前記復調データストリームの入力を一時停止する、ように構成されている、請求項9のシステム。
  11. 前記複数のインピーダンスに基づいた値は、それぞれ、抵抗インピーダンスおよび反応インピーダンスを有する複素インピーダンス値を備えている、請求項1から10のいずれか一項のシステム。
  12. 前記復調器は、前記共通ベース周波数に対して整数個のサイクルを有するサンプリング周期に亘ってサンプル採取する、請求項1から11のいずれか一項のシステム。
  13. 患者の体内で医療装置をナビゲートする際に使用する電子制御ユニットであって、
    共通ベース周波数の高調波成分である固有周波数をそれぞれ有する複数の駆動信号を生成するように構成されている信号生成器であって、前記複数の駆動信号は、対応する複数のパッチ電極の個々の対に亘って、連続的かつ同時に付与されて電場を生成する、前記信号生成器と、
    前記電場に配置される医療装置の少なくとも1つの電極の複合応答信号を、前記複数の駆動信号に対して同期的に復調し、復調データストリームを出力するように構成されている復調器と、
    前記復調データストリームを受信し、各固有周波数に対する前記電極の置に比例する複数のインピーダンスに基づいた値を出力するように構成されているフィルタと、
    ある期間、前記復調データストリームを破棄し、記復調データストリームが破棄されている間に、電気ノイズを生成する装置の動作を開始するように構成されているスキップコントローラと、を備えている、電子制御ユニット。
  14. 前記複数のインピーダンスに基づいた値を使用して、前記医療装置のモデルを生成するように構成されているモデル構築システムと、
    前記医療装置の前記モデルの画像を表示するように構成されているディスプレイと、をさらに備えている、請求項13の電子制御ユニット。
  15. 前記スキップコントローラは、前記共通ベース周波数のベース周期の整数倍である期間に、記復調データストリームを破棄するように構成されている、請求項13または14の電子制御ユニット。
  16. 前記スキップコントローラは、前記期間に、前記復調データストリームを破棄する、請求項15電子制御ユニット。
  17. 電気ノイズを生成する前記装置は、磁場に基づいた位置特定システムを備えている、請求項13から16のいずれか一項の電子制御ユニット。
  18. 前記複合応答信号のデジタルサンプルを、前記デジタルサンプルを前記復調器に入力する前に分析するように構成されている検出器と、
    前記デジタルサンプルを前記復調器に入力する前に、前記デジタルサンプルの所定のセットを記憶するように構成されているバッファと、をさらに備えている、請求項13から17のいずれか一項の電子制御ユニット。
  19. 前記検出器は、
    前記デジタルサンプルのスルーレートを所定の閾値と比較し、
    前記スルーレートが前記所定の閾値を超える場合、前記フィルタへの前記復調データストリームの入力を一時停止する、ように構成されている、請求項18の電子制御ユニット。
JP2021571773A 2019-07-18 2020-07-15 ノイズ耐性のある心臓位置特定、ナビゲーションおよびマッピングのためのシステムおよび方法 Active JP7377287B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962875557P 2019-07-18 2019-07-18
US62/875,557 2019-07-18
PCT/US2020/042177 WO2021011685A1 (en) 2019-07-18 2020-07-15 System and method for noise tolerant cardiac localization, navigation and mapping

Publications (2)

Publication Number Publication Date
JP2022540979A JP2022540979A (ja) 2022-09-21
JP7377287B2 true JP7377287B2 (ja) 2023-11-09

Family

ID=71995082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021571773A Active JP7377287B2 (ja) 2019-07-18 2020-07-15 ノイズ耐性のある心臓位置特定、ナビゲーションおよびマッピングのためのシステムおよび方法

Country Status (5)

Country Link
US (1) US20220296309A1 (ja)
EP (1) EP3952736A1 (ja)
JP (1) JP7377287B2 (ja)
CN (1) CN113993476A (ja)
WO (1) WO2021011685A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113598934A (zh) * 2021-08-28 2021-11-05 河南省人民医院 一种心房颤动的定位标测系统
EP4201350A1 (en) * 2021-12-24 2023-06-28 Koninklijke Philips N.V. Controlling and monitoring signals provided to electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536011A (ja) 2010-08-04 2013-09-19 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド 磁気誘導カテーテル
JP2014530030A (ja) 2011-09-13 2014-11-17 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド インピーダンスおよび磁界の測定を使用するカテーテルのナビゲーション
US20180132753A1 (en) 2011-06-06 2018-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Noise tolerant localization systems and methods
US20190117113A1 (en) 2017-10-24 2019-04-25 St. Jude Medical, Cardiology Division, Inc. System for measuring impedance between a plurality of electrodes of a medical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
CA2284533C (en) 1998-01-22 2008-03-18 Biosense, Inc. Intrabody measurement
US7263397B2 (en) 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7386339B2 (en) 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US7536218B2 (en) * 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
US9320447B2 (en) * 2014-02-07 2016-04-26 Biosense Webster (Israel) Ltd. Dynamic cancellation of MRI sequencing noise appearing in an ECG signal
JP7030521B2 (ja) * 2015-05-13 2022-03-07 アクタス メディカル インク 心臓情報の取得および解析に役立つ位置特定システム
CN109414287B (zh) 2016-07-15 2021-04-20 圣犹达医疗用品心脏病学部门有限公司 用于生成细长医疗装置的平滑图像的方法和系统
CN109965875B (zh) * 2017-12-28 2023-06-27 四川锦江电子医疗器械科技股份有限公司 一种基于多分辨率映射的体内三维定位系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536011A (ja) 2010-08-04 2013-09-19 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド 磁気誘導カテーテル
US20180132753A1 (en) 2011-06-06 2018-05-17 St. Jude Medical, Atrial Fibrillation Division, Inc. Noise tolerant localization systems and methods
JP2014530030A (ja) 2011-09-13 2014-11-17 セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド インピーダンスおよび磁界の測定を使用するカテーテルのナビゲーション
US20190117113A1 (en) 2017-10-24 2019-04-25 St. Jude Medical, Cardiology Division, Inc. System for measuring impedance between a plurality of electrodes of a medical device

Also Published As

Publication number Publication date
WO2021011685A1 (en) 2021-01-21
EP3952736A1 (en) 2022-02-16
US20220296309A1 (en) 2022-09-22
CN113993476A (zh) 2022-01-28
JP2022540979A (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
CN111246816B (zh) 用于测量医疗设备的多个电极之间的阻抗的系统
JP7106644B2 (ja) 複素インピーダンス測定を用いて、電極と組織との間の接触を評価する方法
JP6194374B2 (ja) 場所決定要素のシース内引込み及びシース外突出を検出するシステム及び方法
JP7377287B2 (ja) ノイズ耐性のある心臓位置特定、ナビゲーションおよびマッピングのためのシステムおよび方法
US3874368A (en) Impedance plethysmograph having blocking system
US9833168B2 (en) Noise tolerant localization systems and methods
JP6605134B2 (ja) 多層体表面電極
US9113824B2 (en) Compensation for respiratory motion
US20120172713A1 (en) System and method for rendering an image of an elongate medical device
JP6738349B2 (ja) 位置特定システムおよびその作動方法
JP6085251B2 (ja) 超音波信号をフィルタリングするフィルタリング装置
US11771339B2 (en) Heterodyne catheter calibration system
JP2020081889A (ja) 体内プローブを追跡している間のアーチファクトの補正
US20200093397A1 (en) Determining catheter-tip 3d location and orientation using fluoroscopy and impedance measurements

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7377287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150