JP7371903B2 - New starch decomposition product and its production method - Google Patents

New starch decomposition product and its production method Download PDF

Info

Publication number
JP7371903B2
JP7371903B2 JP2019218143A JP2019218143A JP7371903B2 JP 7371903 B2 JP7371903 B2 JP 7371903B2 JP 2019218143 A JP2019218143 A JP 2019218143A JP 2019218143 A JP2019218143 A JP 2019218143A JP 7371903 B2 JP7371903 B2 JP 7371903B2
Authority
JP
Japan
Prior art keywords
starch
decomposition product
starch decomposition
value
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019218143A
Other languages
Japanese (ja)
Other versions
JP2021088623A (en
Inventor
悠子 上原
友紀 木村
貴子 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsutani Chemical Industries Co Ltd
Original Assignee
Matsutani Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsutani Chemical Industries Co Ltd filed Critical Matsutani Chemical Industries Co Ltd
Priority to JP2019218143A priority Critical patent/JP7371903B2/en
Publication of JP2021088623A publication Critical patent/JP2021088623A/en
Application granted granted Critical
Publication of JP7371903B2 publication Critical patent/JP7371903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な澱粉分解物及びその製造方法に関する。 The present invention relates to a novel starch decomposition product and a method for producing the same.

澱粉分解物を飲食品に用いることは従来から行われている。そして、その澱粉分解物は、原料となる澱粉懸濁液にα-アミラーゼ(液化酵素)やグルコアミラーゼ(糖化酵素)、酸を作用させることにより、所望するDE値の澱粉分解物として得ることができる。 Starch decomposition products have been used in food and drink products for a long time. The starch decomposition product can be obtained as a starch decomposition product with a desired DE value by allowing α-amylase (liquefaction enzyme), glucoamylase (saccharification enzyme), and acid to act on the starch suspension serving as the raw material. can.

例えば、特許文献1には、澱粉懸濁液をα-アミラーゼで二段加水分解して得られる、DE値5~18の老化しにくい澱粉分解物が開示されている。また、特許文献2には、α-アミラーゼ又は酸を用いて澱粉を分解する第1分解工程と、少なくとも枝切り酵素を用いて分解する第2分解工程とからなるグルコースポリマーの製造方法により製造される、DE値27以下であって、かつ分子量5,000以上の糖組成物含有量が固形分当たり18重量%以下であり、さらに含まれる単糖類が固形分当たり6重量%以下であることを特徴とするグルコースポリマーが開示されている。 For example, Patent Document 1 discloses a starch decomposition product that is difficult to retrograde and has a DE value of 5 to 18, which is obtained by two-step hydrolysis of a starch suspension using α-amylase. Further, Patent Document 2 discloses that a glucose polymer is produced by a method for producing a glucose polymer, which comprises a first decomposition step in which starch is decomposed using α-amylase or an acid, and a second decomposition step in which starch is decomposed using at least a debranching enzyme. The content of the sugar composition having a DE value of 27 or less and a molecular weight of 5,000 or more is 18% by weight or less based on solid content, and the monosaccharide contained is 6% by weight or less based on solid content. Characterized glucose polymers are disclosed.

特許文献3には、でんぷんをオリゴ糖へと加水分解する第一のでんぷん加水分解酵素、及び、でんぷん又はオリゴ糖をグルコースへと加水分解する第二のでんぷん加水分解酵素により、澱粉懸濁液を処理して単糖リッチなシロップを製造したことが開示されている。また、特許文献4には、高いデキストロース含有量を有する澱粉加水分解物の生産法として、澱粉懸濁液を酵素による液化及び糖化後にナノ濾過透過物として得る方法が開示されている。 Patent Document 3 discloses that a starch suspension is prepared by a first starch hydrolase that hydrolyzes starch into oligosaccharides, and a second starch hydrolase that hydrolyzes starch or oligosaccharides into glucose. It is disclosed that a syrup rich in monosaccharides was produced by processing. Additionally, Patent Document 4 discloses a method for producing a starch hydrolyzate having a high dextrose content, in which a starch suspension is liquefied and saccharified by enzymes and then obtained as a nanofiltration permeate.

さらに、特許文献5には、透明性に優れた澱粉分解物を得ることを目的として、澱粉懸濁液を澱粉分解酵素で処理し、約2~5万ダルトンの分子量を有するDE値が約8より小さいマルトデキストリンを分離して得る方法が開示されている。特許文献6には、濃厚感を有するデキストリンを作成することを目的として、澱粉加水分解物に分岐酵素を反応させてDE値が2~9で所定の粘度の分岐デキストリンを作成したことが記載されている。 Further, in Patent Document 5, in order to obtain a starch decomposition product with excellent transparency, a starch suspension is treated with an amylolytic enzyme, and a DE value having a molecular weight of about 20,000 to 50,000 Daltons is about 8. A method for separating and obtaining smaller maltodextrins is disclosed. Patent Document 6 describes that a branched dextrin having a DE value of 2 to 9 and a predetermined viscosity was created by reacting a starch hydrolyzate with a branching enzyme for the purpose of creating a dextrin with a rich texture. ing.

特開昭49-19049号公報Japanese Unexamined Patent Publication No. 49-19049 特開2007-182563号公報Japanese Patent Application Publication No. 2007-182563 特開2004-248673号公報Japanese Patent Application Publication No. 2004-248673 特開2000-308499号公報Japanese Patent Application Publication No. 2000-308499 特開平6-209784号公報Japanese Patent Application Publication No. 6-209784 特開2014-80518号公報Japanese Patent Application Publication No. 2014-80518

一般に、分解度の低い澱粉分解物、すなわち、DE値の低い澱粉分解物は甘味がほとんどないものの、飲食物の味質に厚み(濃厚感)を付与したい場合に用いられることがある。ところが、低DE値の澱粉分解物は、水に一旦溶解させることができても経時的に老化して白濁するため、飲食品の外観及び食感に悪影響を及ぼすという問題があった。 In general, starch decomposition products with a low degree of decomposition, that is, starch decomposition products with a low DE value, have almost no sweetness, but are sometimes used when it is desired to add thickness (richness) to the taste quality of food and drink. However, even if a starch decomposition product with a low DE value can be dissolved in water, it ages and becomes cloudy over time, which poses a problem in that it has an adverse effect on the appearance and texture of foods and drinks.

従って、本発明の目的は、これまでの澱粉分解物よりDE値が非常に低いにもかかわらず、老化しにくい新規な澱粉分解物を提供することにある。 Therefore, an object of the present invention is to provide a new starch decomposition product that is resistant to aging even though it has a much lower DE value than conventional starch decomposition products.

本発明者らは、かかる課題を解決すべく種々検討したところ、特定の原料澱粉を特定の条件下でα-アミラーゼにより加水分解してそのDE値を所定範囲内としたのち、さらにα-アミラーゼによりDE値を所定範囲内となるまで加水分解することにより、老化しにくい澱粉分解物が得られることを見いだした。 The present inventors conducted various studies to solve this problem, and found that after hydrolyzing a specific raw material starch with α-amylase under specific conditions to bring the DE value within a predetermined range, It has been found that by hydrolyzing starch until the DE value falls within a predetermined range, a starch decomposition product that is resistant to retrogradation can be obtained.

すなわち、本発明は、上記知見に基づいて完成されたものであり、以下〔1〕~〔6〕から構成される。
〔1〕下記(A)から(C)の数値を満たす澱粉分解物:
(A)DE値が1.2~1.7、
(B)30℃における30質量%水溶液の粘度が250~700mPa・s、及び
(C)30質量%水溶液の冷解凍1回実施後の濁度が1.0以下。
〔2〕さらに下記(D)の数値を満たす、上記[1]記載の澱粉分解物:
(D)分子量5,000以上の糖組成物含有量が固形分当たり90質量%以上。
〔3〕糯種タピオカ澱粉を原料澱粉とする、上記[1]又は[2]に記載の澱粉分解物。
〔4〕エネルギー補給用又はエネルギー持続用である、上記[1〕~〔3〕のいずれかに記載の澱粉分解物。
〔5〕上記〔1〕~〔4〕のいずれかに記載の澱粉分解物を含む飲食品。
〔6〕原料澱粉を液化酵素で加水分解してその分解処理物のDE値が0.8~1.7にあるときに加水分解反応を停止させ、さらに液化酵素で加水分解してその分解処理物のDE値が1.5~1.8にあるときに加水分解反応を停止させる、上記[1〕~〔4〕のいずれかに記載の澱粉分解物の製造方法。
That is, the present invention was completed based on the above findings, and is comprised of the following [1] to [6].
[1] Starch decomposition product that satisfies the following values (A) to (C):
(A) DE value is 1.2 to 1.7,
(B) The viscosity of the 30% by mass aqueous solution at 30° C. is 250 to 700 mPa·s, and (C) the turbidity of the 30% by mass aqueous solution after freezing and thawing once is 1.0 or less.
[2] The starch decomposition product described in [1] above, which further satisfies the following values (D):
(D) The content of the sugar composition having a molecular weight of 5,000 or more is 90% by mass or more based on solid content.
[3] The starch decomposition product according to [1] or [2] above, wherein the raw material starch is glutinous tapioca starch.
[4] The starch decomposition product according to any one of [1] to [3] above, which is for energy supply or energy sustainment.
[5] A food or drink containing the starch decomposition product according to any one of [1] to [4] above.
[6] Hydrolyze the raw starch with a liquefaction enzyme, stop the hydrolysis reaction when the DE value of the decomposed product is between 0.8 and 1.7, and further hydrolyze it with a liquefaction enzyme for decomposition treatment. The method for producing a starch decomposition product according to any one of [1] to [4] above, wherein the hydrolysis reaction is stopped when the DE value of the product is between 1.5 and 1.8.

一般に、低DE値の澱粉分解物の水溶液は老化しやすいが、本発明の澱粉分解物は、これまでの澱粉分解物よりも低DE値でありながら老化しにくく、その溶液の透明性は良好であるため、飲食品の外観及び飲食品本来の風味を損なうことなく濃厚感を付与することができる。また、当該方法により得られる澱粉分解物は、分画等の工程を要しないため、歩留が良好で経済的にも有利である。 In general, aqueous solutions of starch decomposition products with low DE values are susceptible to aging, but the starch decomposition products of the present invention are less likely to age despite having a lower DE value than conventional starch decomposition products, and the solution has good transparency. Therefore, a rich feeling can be imparted to the food or drink without impairing its appearance or the original flavor of the food or drink. In addition, the starch decomposition product obtained by this method does not require steps such as fractionation, so it has a good yield and is economically advantageous.

澱粉分解物30質量%水溶液の冷解凍1回後の状態の写真を示す。(左から順に、比較例1、実施例3、実施例5、パインデックス#100及びフードテックス)A photograph of the state of a 30% by mass aqueous solution of starch decomposition product after being frozen and thawed once is shown. (From left to right: Comparative Example 1, Example 3, Example 5, Paindex #100, and Foodtex) 試料摂取後120分後までの血糖値の変化を示す。It shows the change in blood sugar level up to 120 minutes after ingesting the sample. 試料摂取後120分後までのインスリンの変化を示す。The figure shows changes in insulin up to 120 minutes after sample ingestion.

本発明における「澱粉分解物」は、「水飴」、「デキストリン」、「マルトデキストリン」などとも呼ばれ、澱粉を酵素により加水分解して得られるものを指す。 The "starch decomposition product" in the present invention is also called "starch syrup", "dextrin", "maltodextrin", etc., and refers to a product obtained by hydrolyzing starch with an enzyme.

本発明の澱粉分解物の「DE値」は、1以上2未満が好ましく、より好ましくは1.2~1.7であり、最も好ましくは1.3~1.6である。上記範囲であれば、甘味がなく、飲食品に添加した場合にも飲食品の風味及び外観を損なうことなく濃厚感を付与できる。なお、本発明における「DE」値とは、「[(直接還元糖(ブドウ糖として表示)の質量)/(固形分の質量)]×100」の式により求められる値で、後述するウイルシュテッターシューデル法による分析値である。 The "DE value" of the starch decomposition product of the present invention is preferably 1 or more and less than 2, more preferably 1.2 to 1.7, and most preferably 1.3 to 1.6. Within the above range, there is no sweetness, and even when added to foods and drinks, a rich feeling can be imparted without impairing the flavor and appearance of the foods and drinks. In addition, the "DE" value in the present invention is a value determined by the formula "[(mass of direct reducing sugar (expressed as glucose))/(mass of solid content)] x 100", and is a value calculated from the formula of "[(mass of direct reducing sugar (expressed as glucose))/(mass of solid content)] x 100", and is a value determined by the Willstätte This is an analysis value using the Terschudel method.

本発明の澱粉分解物の製造工程における一段目の加水分解工程で得られる分解処理物のDE値は、一段目分解工程終了後の水溶液を用いて測定したDE値である。当該DEは、好ましくは0.5~1.9、より好ましくは0.7~1.8、さらに好ましくは0.8~1.7である。 The DE value of the decomposed product obtained in the first hydrolysis step in the production process of the starch decomposition product of the present invention is the DE value measured using the aqueous solution after the first step hydrolysis step. The DE is preferably 0.5 to 1.9, more preferably 0.7 to 1.8, even more preferably 0.8 to 1.7.

本発明の澱粉分解物の製造工程における二段目の加水分解工程で得られる分解処理物のDE値は、二段目分解工程終了後の水溶液を用いて測定したDE値である。当該DEは、好ましくは1.3~2.1、より好ましくは1.4~1.9、さらに好ましくは1.5~1.8である。なお、最終的に得られる本発明の澱粉分解物のDE値が、二段目分解工程時の分解処理物のDE値より若干小さくなる理由は、二段目分解工程後の精製工程に起因する。 The DE value of the decomposed product obtained in the second hydrolysis step in the production process of the starch decomposition product of the present invention is the DE value measured using the aqueous solution after the second-stage decomposition step. The DE is preferably 1.3 to 2.1, more preferably 1.4 to 1.9, even more preferably 1.5 to 1.8. The reason why the DE value of the starch decomposition product of the present invention that is finally obtained is slightly smaller than the DE value of the decomposed product in the second stage decomposition process is due to the purification process after the second stage decomposition process. .

本発明における「澱粉分解物」の粘度は、澱粉分解物の30質量%水溶液の30℃におけるBM型粘度計による測定値である。当該粘度は、240mPa・sを越えて800mPa・s未満が好ましく、より好ましくは250~700mPa・s、さらに好ましくは250~600mPa・s、より好ましくは300~550mPa・sである。上記範囲であると、飲食品の食感を変化させることなく適度な濃厚感を付与できる澱粉分解物を提供することができる。 The viscosity of the "starch decomposition product" in the present invention is a value measured by a BM type viscometer at 30° C. of a 30% by mass aqueous solution of the starch decomposition product. The viscosity is preferably more than 240 mPa·s and less than 800 mPa·s, more preferably 250 to 700 mPa·s, even more preferably 250 to 600 mPa·s, and even more preferably 300 to 550 mPa·s. Within the above range, it is possible to provide a starch decomposition product that can impart an appropriate richness to the food or drink without changing its texture.

本発明における「濁度」とは、澱粉分解物の30質量%水溶液の720nm(10cmセル)における吸光度であり、本発明の澱粉分解物の30質量%水溶液を-18℃で一晩冷凍した後に自然解凍(以下、「冷凍解凍1回実施後」ともいう。)した際の濁度は、1.0以下である。なお、当該濁度は、より好ましくは0.9以下、さらに好ましくは0.7以下、最も好ましくは0.5以下である。 In the present invention, "turbidity" refers to the absorbance at 720 nm (10 cm cell) of a 30% by mass aqueous solution of the starch decomposition product, and after freezing the 30% by mass aqueous solution of the starch decomposition product of the present invention at -18°C overnight. The turbidity after natural thawing (hereinafter also referred to as "after one freeze-thaw") is 1.0 or less. Note that the turbidity is more preferably 0.9 or less, still more preferably 0.7 or less, and most preferably 0.5 or less.

本発明の澱粉分解物は、澱粉の分解により生じる糖からなる組成物であり、分子量5,000以上の糖組成物(画分)の含有量が、固形分当たり90質量%以上であることが好ましく、93質量%以上であればより好ましい。かかる範囲であれば、飲食品の味質をぼやけたものとすることなく、好ましい濃厚感を付与することができる。 The starch decomposition product of the present invention is a composition consisting of sugar produced by starch decomposition, and the content of the sugar composition (fraction) having a molecular weight of 5,000 or more is 90% by mass or more based on solid content. It is preferable, and more preferably 93% by mass or more. Within this range, a desirable richness can be imparted to the food or drink without making the taste of the food or drink dull.

本発明における分子量5,000以上の糖組成物含有量は、ゲルろ過によるHPLC(株式会社島津製作所製)で得られる分子量分布から求めることができる。HPLCの分析条件は以下であり、プルラン標準品、マルトトリオース及びグルコースを用いて検出時間に対する分子量の検量線を作成し、この検量線に基づいて分子量5,000の検出時間を算出し、この算出された検出時間より前に検出されるピークの面積%を分子量5,000以上の糖組成物含有量とした。
[カラム]:TSKgel G2500PWXL,G3000PWXL、
G6000PWXL(東ソー(株)製)
[カラム温度]:80℃、
[移動相]:蒸留水、
[流速]:0.5ml/min、
[検出器]:示差屈折率計、
[サンプル注入量]:1質量%水溶液100μL、
[検量線]:プルラン標準品(昭和電工(株)製)、マルトトリオース及びグルコース
The content of the sugar composition having a molecular weight of 5,000 or more in the present invention can be determined from the molecular weight distribution obtained by HPLC (manufactured by Shimadzu Corporation) using gel filtration. The analytical conditions for HPLC are as follows. A calibration curve of molecular weight versus detection time is created using pullulan standard, maltotriose, and glucose. Based on this calibration curve, the detection time for a molecular weight of 5,000 is calculated. The area % of the peak detected before the calculated detection time was defined as the content of the sugar composition having a molecular weight of 5,000 or more.
[Column]: TSKgel G2500PWXL, G3000PWXL,
G6000PWXL (manufactured by Tosoh Corporation)
[Column temperature]: 80°C,
[Mobile phase]: Distilled water,
[Flow rate]: 0.5ml/min,
[Detector]: Differential refractometer,
[Sample injection amount]: 100 μL of 1% by mass aqueous solution,
[Calibration curve]: Pullulan standard product (manufactured by Showa Denko K.K.), maltotriose and glucose

本発明における「浸透圧」とは、澱粉分解物の10質量%水溶液における氷点降下法によって得られる測定値である。 The "osmotic pressure" in the present invention is a measured value obtained by the freezing point depression method in a 10% by mass aqueous solution of a starch decomposition product.

本発明の澱粉分解物を得るための原料となる澱粉(原料澱粉)は、自然界に見出される天然澱粉その他遺伝子工学技術を含む標準的育種技術により得られた藻類を含む植物由来のものであればいずれでもよく、その代表的な供給源は、穀類、塊茎、根、藻、豆果及び果物である。より具体的には、トウモロコシ、エンドウ、ジャガイモ、サツマイモ、バナナ、オオムギ、コムギ、米、サゴ、アマランス、タピオカ、カンナ、モロコシ、及びこれらの糯種が挙げられる。 The starch (raw material starch) used as the raw material for obtaining the starch decomposition product of the present invention may be a natural starch found in nature or a plant-derived starch including algae obtained by standard breeding techniques including genetic engineering techniques. Typical sources include grains, tubers, roots, algae, legumes, and fruits. More specifically, examples include corn, pea, potato, sweet potato, banana, barley, wheat, rice, sago, amaranth, tapioca, canna, sorghum, and glutinous varieties thereof.

本発明の澱粉分解物を得るための好ましい原料澱粉は、ワキシータピオカ澱粉、ワキシーコーン澱粉、ワキシーポテト澱粉といった糯種澱粉であり、そのなかでもワキシータピオカ澱粉が好ましい。ワキシータピオカ澱粉を原料澱粉とすれば、低DE値でありながら水溶液として高い透明性を有する澱粉分解物を得ることができる。本発明でいう澱粉分解物の原料澱粉には、ヒドロキシプロピル澱粉などの加工澱粉は含まない。 Preferred raw material starches for obtaining the starch decomposition product of the present invention are glutinous starches such as waxy tapioca starch, waxy corn starch, and waxy potato starch, among which waxy tapioca starch is preferred. If waxy tapioca starch is used as a raw starch, a starch decomposition product having a low DE value and high transparency as an aqueous solution can be obtained. The raw starch of the starch decomposition product referred to in the present invention does not include processed starch such as hydroxypropyl starch.

本発明の澱粉分解物を得るために用いられる液化酵素は、α-アミラーゼである。「α-アミラーゼ」とは、澱粉のα-1,4グルコシド結合を加水分解するエンド型の酵素をいい、例えば、クライスターゼSD-KM(天野エンザイム社製)や、ターマミル120L(ノボザイムズジャパン社製)などが挙げられる。このα-アミラーゼの使用量は、一段目の分解工程においては、原料澱粉の固形分質量に対して0.01~0.1質量%であることが好ましく、より好ましくは0.02~0.09質量%であり、二段目の分解工程においては、原料の固形分質量に対して0.004~0.05質量%であることが好ましく、より好ましくは0.007~0.02質量%である。 The liquefaction enzyme used to obtain the starch decomposition product of the present invention is α-amylase. "α-Amylase" refers to an endo-type enzyme that hydrolyzes α-1,4 glucoside bonds in starch, such as Klystase SD-KM (manufactured by Amano Enzymes) and Termamil 120L (manufactured by Novozymes Japan). (manufactured by a company). In the first decomposition step, the amount of α-amylase used is preferably 0.01 to 0.1% by mass, more preferably 0.02 to 0.1% by mass, based on the solid mass of the raw starch. 09% by mass, and in the second decomposition step, it is preferably 0.004 to 0.05% by mass, more preferably 0.007 to 0.02% by mass based on the solid mass of the raw material. It is.

上記の各分解工程のいずれにおいても、温度は、好ましくは70~100℃、より好ましくは80~95℃であり、pHは、好ましくは5.0~7.0、より好ましくは5.5~6.5であり、その処理時間は、好ましくは3~40分、より好ましくは5~30分である。一段目の分解工程における原料澱粉の濃度は、15~40質量%程度であることが好ましい。これらの分解工程においては、加熱加圧蒸煮釜やジェットクッカーなどの加熱装置を用いてもよい。 In any of the above decomposition steps, the temperature is preferably 70-100°C, more preferably 80-95°C, and the pH is preferably 5.0-7.0, more preferably 5.5-95°C. 6.5, and the treatment time is preferably 3 to 40 minutes, more preferably 5 to 30 minutes. The concentration of raw starch in the first decomposition step is preferably about 15 to 40% by mass. In these decomposition steps, a heating device such as a heating pressure steamer or a jet cooker may be used.

一段目の分解工程では、分解処理物のDEが所定の範囲、例えば、0.5~1.9に到達した時点で、0.1MPa程度の加圧処理又はシュウ酸などの酸により反応を終了させてもよい。 In the first decomposition step, when the DE of the decomposed product reaches a predetermined range, for example, 0.5 to 1.9, the reaction is terminated by pressure treatment at about 0.1 MPa or by an acid such as oxalic acid. You may let them.

二段目の分解工程では、分解処理物のDEが所定の範囲、例えば、1.3~2.1に到達した時点で、0.1MPa程度の加圧処理又はシュウ酸などの酸により反応を終了させてもよい。 In the second decomposition step, when the DE of the decomposed product reaches a predetermined range, for example, 1.3 to 2.1, the reaction is carried out by pressure treatment at about 0.1 MPa or with an acid such as oxalic acid. You may terminate it.

上記両分解工程を経て得られた反応溶液は、精製工程としての珪藻土によるろ過及びイオン交換樹脂による脱塩を経て、濃縮して液状品とするか、噴霧乾燥等により粉末化して粉末品とすることができる。そして、その精製後の澱粉分解物の液をそのまま還元(水素添加)して還元型澱粉分解物とすることもできる。 The reaction solution obtained through both of the above decomposition steps is purified through filtration with diatomaceous earth and desalting with an ion exchange resin, and then concentrated to a liquid product or pulverized by spray drying etc. to a powder product. be able to. Then, the purified starch decomposition product can be directly reduced (hydrogenated) to obtain a reduced starch decomposition product.

このようにして得られる本発明の澱粉分解物は、30℃における30質量%水溶液の粘度が250~700mPa・sであり、DE値が1.2~1.7と非常に低い。そして、DE値が非常に低いにもかかわらず、その水溶液の透明性は非常に高く、一晩-18℃で冷凍した後、自然解凍した際の濁度は1.0以下であり、老化しにくい。 The starch decomposition product of the present invention obtained in this way has a viscosity of 250 to 700 mPa·s as a 30% by mass aqueous solution at 30° C., and a very low DE value of 1.2 to 1.7. Even though the DE value is very low, the transparency of the aqueous solution is very high, and the turbidity when thawed naturally after being frozen at -18°C overnight was less than 1.0, indicating that it does not age. Hateful.

なお、低DE値の澱粉分解物の代表例としては、松谷化学工業株式会社製の「パインデックス#100」がある。「パインデックス#100」は、DE値が約4と非常に低く、30℃における30質量%水溶液の粘度は100mPa・sである。そして、この溶液を-18℃で一晩冷凍した後に自然解凍した際の濁度は2.33である。つまり、パインデックス#100に代表される既存の「低DE値」の澱粉分解物は、本発明の澱粉分解物と比べて非常に老化しやすいといえる。 A typical example of a starch decomposition product with a low DE value is "Paindex #100" manufactured by Matsutani Chemical Industry Co., Ltd. "Paindex #100" has a very low DE value of about 4, and the viscosity of a 30% by mass aqueous solution at 30° C. is 100 mPa·s. When this solution was frozen overnight at -18°C and then thawed naturally, the turbidity was 2.33. In other words, it can be said that the existing starch decomposition product with a "low DE value" represented by Paindex #100 is much more susceptible to aging than the starch decomposition product of the present invention.

一方、上記「パインデックス#100」と同じくDE値が約4である、加工澱粉の酵素分解品として、松谷化学工業株式会社製の「フードテックス」がある。その30℃における30質量%水溶液の粘度は250mPa・sであって、「パインデックス#100」より高く、この溶液を-18℃で一晩冷凍した後に自然解凍した際の濁度は0.06である。つまり、「フードテックス」は、「低DE値」であるにもかかわらず、その溶液の透明性は非常に高いといえる。しかし、その原料澱粉は加工澱粉であるヒドロキシプロピル化リン酸架橋澱粉であることから、これを加水分解等して得られるものは食品添加物であり、利用目的によっては使用できないことがある。 On the other hand, there is "Foodtex" manufactured by Matsutani Kagaku Kogyo Co., Ltd., which is an enzymatically decomposed product of processed starch that has a DE value of about 4, like the above-mentioned "Paindex #100". The viscosity of the 30% by mass aqueous solution at 30°C is 250 mPa・s, which is higher than "Paindex #100", and the turbidity when this solution is frozen overnight at -18°C and then naturally thawed is 0.06. It is. In other words, although ``Foodtex'' has a ``low DE value'', it can be said that its solution has very high transparency. However, since the raw material starch is hydroxypropylated phosphate cross-linked starch, which is a processed starch, the product obtained by hydrolyzing this starch is a food additive and may not be used depending on the purpose of use.

以上より、本発明の澱粉分解物は、既存の低DE値の澱粉分解物とは全く異なる新規の、食品の範疇にある低DE値の澱粉分解物であるといえる。 From the above, it can be said that the starch decomposition product of the present invention is a new starch decomposition product with a low DE value that is completely different from existing starch decomposition products with a low DE value and which is in the category of food.

本発明の他の態様としては、本発明である澱粉分解物を含む飲食品が挙げられる。飲食品の種類は特に限定されないが、例えば、コーヒー、紅茶、ジュース等の清涼飲料、アルコール飲料などの飲料、アイスクリーム、ミルクプリン、カスタードクリーム、ヨーグルト、ムース等の乳含有食品、ゼリーなどのデザート製品、つゆ・たれ類、すし酢、ドレッシング、ケチャップ、ソース等の調味料、カレー、シチューなどが挙げられる。特に、飲料、ムースなどのデザート製品、つゆ・たれ類、ソース、ドレッシングなどの透明性が重視される飲食品においては、濃厚感に優れるだけでなく透明性が良好となるため、有利である。 Other aspects of the present invention include foods and drinks containing the starch decomposition product of the present invention. The types of food and beverages are not particularly limited, but include, for example, soft drinks such as coffee, tea, and juice, beverages such as alcoholic beverages, milk-containing foods such as ice cream, milk pudding, custard cream, yogurt, and mousse, and desserts such as jelly. Products, soups and sauces, sushi vinegar, dressings, ketchup, seasonings such as sauces, curry, stews, etc. This is particularly advantageous for beverages, dessert products such as mousses, soups, sauces, dressings, and other foods where transparency is important, as they not only have an excellent richness but also good transparency.

これら飲食品における本発明の澱粉分解物の含有量は、好ましくは1~30量%、より好ましくは2~15質量%、さらに好ましくは2~11質量%であり、その場合に、透明感を損なうことなく濃厚感に優れた飲食品を得ることができる。 The content of the starch decomposition product of the present invention in these foods and beverages is preferably 1 to 30% by weight, more preferably 2 to 15% by weight, and even more preferably 2 to 11% by weight, in which case transparency can be improved. It is possible to obtain food and drink products with excellent richness without spoiling the taste.

また、本発明の別の態様は、本発明である澱粉分解物を含む濃厚流動食、経腸栄養剤、エナジー系スポーツ飲料などである。本発明の澱粉分解物は、低DEであることから浸透圧が低く、他の澱粉分解物に比べて対象製品に対して多く配合できるとともに、血糖値が長時間低下しないことから、持続的なエネルギー補給が期待される。したがって、エネルギー補給を必要とする老人や病後回復期の病者、運動家にとって、非常に有利に利用できる。 Further, another aspect of the present invention is a concentrated liquid diet, an enteral nutritional supplement, an energy sports drink, etc. containing the starch decomposition product of the present invention. The starch decomposition product of the present invention has a low osmotic pressure due to its low DE, and can be incorporated in a larger amount into target products compared to other starch decomposition products, as well as does not lower blood sugar levels for a long period of time, resulting in a sustained Expected to replenish energy. Therefore, it can be used very advantageously for the elderly, patients recovering from illness, and athletes who need energy supply.

以下、本発明の実施形態を記載するが、実施例に特に限定されるものではない。実施例内において特に説明がない場合には、「%」は「質量%」を意味する。 Hereinafter, embodiments of the present invention will be described, but the present invention is not particularly limited to the examples. Unless otherwise specified in the examples, "%" means "% by mass".

(実施例1)
原料となるワキシータピオカ澱粉の22質量%水懸濁液を消石灰でpH6.0に調整し、原料固形分に対して0.09質量%となるようα-アミラーゼ(クライスターゼSD-KM、天野エンザイム社製)を添加した。この酵素-澱粉水懸濁液を、80℃に保温された加熱加圧蒸煮釜へ投入して酵素反応を行い、0.1MPaにて酵素を失活して一段分解液を得た(以上、一段目の分解工程)。酵素失活させてその分解処理物のDE値を測定したところ、1.7であった。
次に、この分解液を、蓚酸または消石灰を用いてpHを6.0に調整し、原料固形分に対して0.009質量%となるよう上述のα-アミラーゼを再度添加し、85℃で反応後、蓚酸を添加し、pH3.5以下に調整して酵素を失活することにより二段分解液を得た(以上、二段目の分解工程)。酵素失活させてその分解処理物のDE値を測定したところ、1.8であった。
得られた二段分解液を、珪藻土によるろ過及びイオン交換樹脂による脱塩によって精製した後、15質量%まで濃縮し、噴霧乾燥により粉末化して得た澱粉分解物のDE値は1.6、30℃における30質量%水溶液の粘度は300mPa・sであった。
(Example 1)
A 22% by mass aqueous suspension of waxy tapioca starch as a raw material was adjusted to pH 6.0 with slaked lime, and α-amylase (Clistase SD-KM, Amano Enzyme ) was added. This enzyme-starch water suspension was put into a heated and pressurized steaming pot kept at 80°C to perform an enzyme reaction, and the enzyme was deactivated at 0.1 MPa to obtain a first-stage decomposition solution (as described above, (first stage disassembly process). When the enzyme was deactivated and the DE value of the decomposed product was measured, it was 1.7.
Next, the pH of this decomposed solution was adjusted to 6.0 using oxalic acid or slaked lime, and the above-mentioned α-amylase was added again to give a concentration of 0.009% by mass based on the solid content of the raw material. After the reaction, a two-stage decomposition solution was obtained by adding oxalic acid and adjusting the pH to 3.5 or less to inactivate the enzyme (the above is the second decomposition step). When the enzyme was deactivated and the DE value of the decomposed product was measured, it was 1.8.
The obtained two-stage decomposition liquid was purified by filtration with diatomaceous earth and desalting with an ion exchange resin, concentrated to 15% by mass, and powdered by spray drying. The DE value of the starch decomposition product obtained was 1.6. The viscosity of the 30% by mass aqueous solution at 30°C was 300 mPa·s.

(実施例2~5及び比較例1~2)
表1記載の条件及び上記実施例1の工程に従って、各澱粉分解物を調製した。各澱粉分解物について、(1)一段目の分解工程での酵素の添加量、(2)一段目の分解工程を終了させたときの分解処理物のDE値、(3)二段目の分解工程での酵素の添加量及び(4)二段目の分解工程を終了させたときの分解処理物のDE値を測定した結果を表1に示す。なお、比較例2は二段目の分解工程後の粘度が非常に高く、その後の精製工程にすすめることが非常に困難であったことから、この段階で操作を中断した。
(Examples 2-5 and Comparative Examples 1-2)
Each starch decomposition product was prepared according to the conditions listed in Table 1 and the steps of Example 1 above. For each starch decomposition product, (1) the amount of enzyme added in the first decomposition process, (2) the DE value of the decomposed product when the first decomposition process is completed, and (3) the second decomposition process. Table 1 shows the results of measuring the amount of enzyme added in the step and (4) the DE value of the decomposed product upon completion of the second decomposition step. In addition, in Comparative Example 2, the viscosity after the second decomposition step was extremely high and it was extremely difficult to proceed to the subsequent purification step, so the operation was discontinued at this stage.

(澱粉分解物の水溶液の粘度)
各澱粉分解物の粘度は、その30質量%水溶液を30℃に保ち、60回転/分に設定した粘度計(BM形 東機産業社製)及びローター番号2又は3を用いて30秒間測定した。
(Viscosity of aqueous solution of starch decomposition product)
The viscosity of each starch decomposition product was measured by keeping its 30% by mass aqueous solution at 30°C for 30 seconds using a viscometer (Model BM, manufactured by Toki Sangyo Co., Ltd.) set at 60 rotations/min and rotor number 2 or 3. .

(分解処理物又は澱粉分解物のDE値)
製造工程段階の分解処理物、又は最終的に得られる澱粉分解物のDE値は、ウイルシュテッターシューデル法(「澱粉糖関連工業分析法」、食品化学新聞社発行(平成3年11月1日発行))により測定した。
(DE value of decomposed product or starch decomposed product)
The DE value of the decomposed product at the manufacturing process stage or the starch decomposed product finally obtained is determined by the Willstätter-Schudel method ("Starch sugar-related industrial analysis method", published by Food Chemical Newspaper Co., Ltd. (November 1991). (issued on the 1st)).

(官能評価)
各澱粉分解物の5質量%水溶液について、よく訓練されたパネラー5名により官能評価を行った。官能評価項目は、「濃厚感」(試料溶液を口に含んだ瞬間に感じるコクの強さ)とした。評価は、フードテックスの水溶液を基準(0点)とし、-2、-1、0、+1、+2の5段階評価で実施した。パネラー5名の平均値が0を超えたときを「○」とした。
(sensory evaluation)
A 5% by mass aqueous solution of each starch decomposition product was subjected to sensory evaluation by five well-trained panelists. The sensory evaluation item was "richness" (the strength of the richness felt at the moment the sample solution was put in the mouth). The evaluation was performed using a 5-level evaluation of -2, -1, 0, +1, +2, using the Foodtex aqueous solution as the standard (0 points). When the average value of the five panelists exceeded 0, it was marked as "○".

(老化耐性)
各澱粉分解物の30質量%水溶液をガラス製のバイアル瓶に入れて-18℃で一晩冷凍後、自然解凍した際の溶液を、10cmのプラスティック材質のセルに入れ、720nmの波長における吸光度を分光光度計(U-2900、日立ハイテクノロジーズ社製)を用いて測定し、この測定値を「濁度」とした。
(Aging resistance)
A 30% by mass aqueous solution of each starch decomposition product was placed in a glass vial, frozen at -18°C overnight, and then thawed naturally. The solution was placed in a 10 cm plastic cell and the absorbance at a wavelength of 720 nm was measured. It was measured using a spectrophotometer (U-2900, manufactured by Hitachi High Technologies), and this measured value was defined as "turbidity".

(分子量5,000以上の糖組成物含有量)
分子量5,000以上の糖組成物含有量は、ゲルろ過によるHPLCより得られる分子量分布から求めた。HPLCの分析条件は以下であり、プルラン標準品、マルトトリオース及びグルコースを用いて検出時間に対する分子量の検量線を作成し、この検量線より分子量5,000の検出時間を算出したのち、算出された検出時間より前に検出されるピークの面積%を分子量5,000以上の糖組成物含有量とした。
[カラム]:TSKgel G2500PWXL,G3000PWXL、G6000PWXL(東ソー(株)製)
[カラム温度]:80℃、
[移動相]:蒸留水、
[流速]:0.5ml/min、
[検出器]:示差屈折率計、
[サンプル注入量]:1質量%水溶液100μL、
[検量線]:プルラン標準品(昭和電工(株)製)、マルトトリオース及びグルコース
(Sugar composition content with a molecular weight of 5,000 or more)
The content of the sugar composition having a molecular weight of 5,000 or more was determined from the molecular weight distribution obtained by HPLC using gel filtration. The analysis conditions for HPLC are as follows. A calibration curve of molecular weight versus detection time is created using pullulan standard, maltotriose, and glucose, and the detection time for a molecular weight of 5,000 is calculated from this calibration curve. The area % of the peak detected before the detection time was defined as the content of the sugar composition having a molecular weight of 5,000 or more.
[Column]: TSKgel G2500PWXL, G3000PWXL, G6000PWXL (manufactured by Tosoh Corporation)
[Column temperature]: 80°C,
[Mobile phase]: Distilled water,
[Flow rate]: 0.5ml/min,
[Detector]: Differential refractometer,
[Sample injection amount]: 100 μL of 1% by mass aqueous solution,
[Calibration curve]: Pullulan standard product (manufactured by Showa Denko K.K.), maltotriose and glucose

(澱粉分解物の浸透圧)
各澱粉分解物の浸透圧は、10質量%水溶液を浸透圧計(ModelOsmometer3250、ADVANCED INSTRUMENTS社製)により測定した。
(Osmotic pressure of starch decomposition product)
The osmotic pressure of each starch decomposition product was measured using an osmometer (Model Osmometer 3250, manufactured by ADVANCED INSTRUMENTS) using a 10% by mass aqueous solution.

以上の各澱粉分解物の官能評価及び目視評価の結果並びに分析値を、以下の表2に示す。 The results and analytical values of the sensory evaluation and visual evaluation of each of the above starch decomposition products are shown in Table 2 below.

表2より、DE値が2未満であって、30℃における30質量%水溶液の粘度が240mPa・sを超えて700mPa・sまでの範囲にあり、分子量5,000以上の割合(%)が90以上のときに、その澱粉分解物は老化耐性が高く、官能評価において十分な濃厚感があった。すなわち、上記のDE、粘度、分子量分布の範囲内にある本発明の澱粉分解物にあっては、飲食品の風味や味質に影響を与えることなく濃厚感を与え、高い老化耐性を有することがわかった。 From Table 2, the DE value is less than 2, the viscosity of the 30% by mass aqueous solution at 30°C is in the range of more than 240 mPa·s to 700 mPa·s, and the proportion (%) of molecular weights of 5,000 or more is 90 In the above cases, the starch decomposition product had high aging resistance and a sufficiently rich feeling in sensory evaluation. In other words, the starch decomposition product of the present invention, which falls within the above DE, viscosity, and molecular weight distribution ranges, imparts a rich feeling without affecting the flavor or taste quality of foods and drinks, and has high aging resistance. I understand.

一方、比較例の結果からわかるように、上記範囲の何れかを満たさない澱粉分解物にあっては、老化耐性はあるものの、官能評価において十分な濃厚感が得られなかった。 On the other hand, as can be seen from the results of the comparative examples, starch decomposition products that did not meet any of the above ranges had aging resistance, but did not provide a sufficient rich feeling in the sensory evaluation.

(食品例1:レトルトコーンスープ)
実施例3及び比較例1の各澱粉分解物と、対照としてパインデックス#100及びフードテックスを用いて、表3の配合でレトルトコーンスープを作製した。具体的には、原料すべてをホモミキサーで5000rpm・5分間処理し、次いで高圧ホモジナイザーによる150kgf/cm2の均質化処理後、缶に充填して125℃・20分間のレトルト殺菌を行った。
(Food example 1: Retort corn soup)
Retort corn soup was prepared using the starch decomposition products of Example 3 and Comparative Example 1, and Pine Index #100 and Foodtex as controls, according to the formulations shown in Table 3. Specifically, all the raw materials were treated with a homomixer at 5000 rpm for 5 minutes, then homogenized with a high-pressure homogenizer at 150 kgf/cm2, and then filled into cans and retort sterilized at 125°C for 20 minutes.

得られたコーンスープについて、訓練されたパネラー5名の官能評価により、「濃厚感」について評価を行った。評価結果を表4に示す。なお、以降の食品の評価は、前述した澱粉分解物の評価方法に準じて行った。 The resulting corn soup was evaluated for "thickness" through sensory evaluation by five trained panelists. The evaluation results are shown in Table 4. Note that the subsequent evaluation of the food was performed in accordance with the evaluation method for starch decomposition products described above.

その結果、実施例3の澱粉分解物を使用したコーンスープは、しっかりと濃厚感が付与されていた。一方、比較例1の澱粉分解物を用いたコーンスープは、フードテックスに比べて濃厚感は低かった。なお、澱粉分解物溶液の官能評価では、パインデックス#100のほうがフードテックスより濃厚感があったものの、コーンスープではフードテックスのほうがパインデックス#100より濃厚感があった。 As a result, the corn soup using the starch decomposition product of Example 3 had a firm rich taste. On the other hand, the corn soup using the starch decomposition product of Comparative Example 1 had a lower richness than Foodtex. In addition, in the sensory evaluation of starch decomposition product solutions, Paindex #100 had a richer feel than Foodtex, but in corn soup, Foodtex had a richer feel than Paindex #100.

(食品例2:アイスクリーム)
実施例3及び比較例1の各澱粉分解物と、対照としてパインデックス#100及びフードテックスを用い、表5の配合でアイスクリームを作製した。具体的には、まず、無塩バター、生クリーム及びバニラフレーバー以外の原料を混合して60℃に達するまで撹拌加熱し、無塩バターと生クリームを加えて85℃に達するまで加熱撹拌した。次いで、ホモミキサーによる8000rpm・5分間処理と、高圧ホモジナイザーによる150kgf/cm2の均質化処理の後、冷水で5℃まで冷却してから冷蔵庫(5℃)で12時間静置した。その後、バニラフレーバーを添加してアイスクリームフリーザーで-4℃まで冷却し、これをカップ充填してから-30℃の急速冷凍庫で1時間硬化させて各アイスクリームを作製した。
(Food example 2: ice cream)
Ice cream was prepared using the starch decomposition products of Example 3 and Comparative Example 1, and Paindex #100 and Foodtex as controls, according to the formulations shown in Table 5. Specifically, first, raw materials other than unsalted butter, fresh cream, and vanilla flavor were mixed, stirred and heated until it reached 60°C, then unsalted butter and fresh cream were added, and the mixture was heated and stirred until it reached 85°C. Next, after treatment with a homomixer at 8000 rpm for 5 minutes and homogenization treatment with a high-pressure homogenizer at 150 kgf/cm2, the mixture was cooled to 5°C with cold water and then left to stand in a refrigerator (5°C) for 12 hours. Thereafter, vanilla flavor was added and the mixture was cooled to -4°C in an ice cream freezer, filled into cups, and hardened in a -30°C deep freezer for 1 hour to produce each ice cream.

得られたアイスクリームについて、訓練されたパネラー5名の官能評価により、「濃厚感」について評価を行った。評価結果を表6に示す。 The resulting ice cream was evaluated for "richness" through sensory evaluation by five trained panelists. The evaluation results are shown in Table 6.

その結果、実施例3の澱粉分解物を使用したアイスクリームは、濃厚感が付与されていた。一方、比較例1の澱粉分解物を使用したアイスクリームの濃厚感はフードテックスより低かった。なお、パインデックス#100については、前述のコーンスープと同様に、フードテックスより濃厚感は低かった。 As a result, the ice cream using the starch decomposition product of Example 3 had a rich texture. On the other hand, the richness of the ice cream using the starch decomposition product of Comparative Example 1 was lower than that of Foodtex. Note that, as with the aforementioned corn soup, Pine Index #100 had a lower richness than Foodtex.

(食品例3:コーヒー飲料)
実施例3及び比較例1の各澱粉分解物と、対照としてパインデックス#100及びフードテックスを用いて、表7の配合でコーヒー飲料を作製した。具体的には、まず、コーヒー豆を10倍量の85℃熱水で5分間抽出し、冷却後にろ過してコーヒー抽出液を得て、さらに他の原料を加えて混合溶解した後、水で全量補正した。これを60℃まで加熱後、ホモジナイザーでの5000rpm・5分間処理と高圧ホモジナイザーによる200kgf/cm2の均質化処理後に缶充填し、125℃・20分間のレトルト殺菌を行った。
(Food example 3: coffee drink)
Coffee beverages were prepared using the starch decomposition products of Example 3 and Comparative Example 1, and Paindex #100 and Foodtex as controls, according to the formulations shown in Table 7. Specifically, coffee beans are first extracted with 10 times the amount of 85°C hot water for 5 minutes, cooled and filtered to obtain a coffee extract, and other raw materials are added and mixed and dissolved, and then extracted with water. The total amount was corrected. After heating this to 60°C, it was treated with a homogenizer at 5000 rpm for 5 minutes and homogenized with a high-pressure homogenizer at 200 kgf/cm2, then filled into cans and sterilized in a retort at 125°C for 20 minutes.

得られたコーヒー飲料について、訓練されたパネラー5名の官能評価により、「濃厚感」について評価を行った。評価結果を表8に示す。 The resulting coffee beverage was evaluated for "richness" through sensory evaluation by five trained panelists. The evaluation results are shown in Table 8.

その結果、実施例3の澱粉分解物を使用したコーヒー飲料は、濃厚感が付与されていた。一方、比較例1の澱粉分解物を使用したコーヒー飲料の濃厚感はフードテックスより低かった。なお、パインデックス#100については、前述のコーンスープおよびアイスクリームと同様に、フードテックスより濃厚感は低かった。 As a result, the coffee beverage using the starch decomposition product of Example 3 had a rich taste. On the other hand, the richness of the coffee beverage using the starch decomposition product of Comparative Example 1 was lower than that of Foodtex. Note that, as with the corn soup and ice cream described above, Pine Index #100 had a lower richness than Foodtex.

(糖負荷試験)
健常成人男女7名(平均年齢38.1±2.6歳)には、試験前日午後9時以降、水以外の飲食を禁止した。実施例3の澱粉分解物(DE1.5、浸透圧:4mOSmol/kg(10質量%))又は通常の澱粉分解物(松谷化学工業社製「グリスターP」、DE15、浸透圧:92mOSmol/kg(10質量%))各50gを水に溶解して200gとしたものを試料とし、試験当日午前9時に摂取した。試料摂取前、試料摂取15分後、30分後、45分後、60分後、90分後、120分後に、それぞれ指先からヘマトクリット管へ採血し、血中グルコース濃度および血中インスリン濃度を測定した。その結果を図2及び図3に示す。なお、グリスターPは、エネルギー補給目的で栄養剤などによく使用される澱粉分解物であり、比較対照試料として選択した。
(glucose tolerance test)
Seven healthy adult men and women (average age 38.1±2.6 years) were prohibited from eating or drinking anything other than water after 9:00 pm on the day before the test. The starch decomposition product of Example 3 (DE1.5, osmolality: 4 mOSmol/kg (10% by mass)) or the normal starch decomposition product (“Glister P” manufactured by Matsutani Chemical Co., Ltd., DE15, osmolality: 92 mOSmol/kg ( 10% by mass)) 50g of each was dissolved in water to make 200g, and the sample was taken at 9 am on the day of the test. Blood was collected from the fingertip into a hematocrit tube before sample intake, 15 minutes, 30 minutes, 45 minutes, 60 minutes, 90 minutes, and 120 minutes after sample intake, and the blood glucose concentration and blood insulin concentration were measured. did. The results are shown in FIGS. 2 and 3. Note that Glister P is a starch decomposition product often used in nutritional supplements for the purpose of energy supplementation, and was selected as a comparative sample.

一般的に、浸透圧が高い食品を摂取した場合、胃内で浸透圧の調整が行われる、すなわち、胃内に摂取された食品が滞留することから、胃を通過する速度が遅くなる。一方、浸透圧の低い食品を摂取した場合、胃内での浸透圧調整がさほど必要とならないため、浸透圧の高い食品に比べて胃を通過する速度が速くなる。したがって、浸透圧の低い実施例3の澱粉分解物を摂取したときには、血糖値は比較的早く上昇するものと予想された。しかし、実際には、摂取後の血糖値の上昇は、浸透圧の高い一般的な澱粉分解物を摂取したときに比べて緩やかであることに加え、血糖値が長時間にわたって低下しなかった。特に、摂取後90分では、t検定において有意な差が認められた。 Generally, when food with high osmotic pressure is ingested, the osmotic pressure is adjusted in the stomach, meaning that the ingested food stays in the stomach, slowing down the rate at which it passes through the stomach. On the other hand, when foods with low osmotic pressure are ingested, the osmotic pressure does not need to be adjusted as much in the stomach, so the food passes through the stomach faster than food with high osmotic pressure. Therefore, it was expected that when the starch decomposition product of Example 3, which had a low osmotic pressure, was ingested, the blood sugar level would rise relatively quickly. However, in reality, the rise in blood sugar levels after ingestion was slower than when ingesting common starch decomposition products with high osmotic pressure, and blood sugar levels did not fall for a long period of time. In particular, a significant difference was observed in the t-test 90 minutes after ingestion.

一方、血中インスリン濃度は、実施例3の澱粉分解物が血糖値で低値を示した0~45分において、一般的な澱粉分解物摂取時に比べて低値を示し、血糖値が高値を示した45~120分においては、一般的な澱粉分解物摂取時と同等の値を示した。すなわち、血糖値を下げるためのインスリンの過剰分泌は確認されなかった。 On the other hand, the blood insulin concentration was lower than that when ingesting a general starch decomposition product from 0 to 45 minutes, when the starch decomposition product of Example 3 showed a low blood sugar level, and the blood sugar level was high. During the period of 45 to 120 minutes shown, the values were equivalent to those obtained when ingesting general starch decomposition products. In other words, excessive secretion of insulin to lower blood sugar levels was not confirmed.

以上の結果から、本発明の澱粉分解物は、インスリンを過剰分泌することなく長時間血中グルコースとして栄養源を供給できる長時間持続型のエネルギー補給用として有用であると考えられ、特に、栄養補助食品、ダイエット食品、スポーツドリンクなどのエネルギー持続型食品に有利に利用できる。 From the above results, the starch decomposition product of the present invention is considered to be useful as a long-lasting energy supply that can supply a nutritional source as blood glucose for a long time without excessively secreting insulin. It can be advantageously used in energy-sustaining foods such as supplements, diet foods, and sports drinks.

Claims (5)

下記(A)から(C)の数値を満たす、糯種タピオカ澱粉を原料とする澱粉分解物:
(A)DE値が1.2~1.7、
(B)30℃における30質量%水溶液の粘度が250~700mPa・s、及び
(C)30質量%水溶液の冷解凍1回実施後の濁度が1.0以下。
A starch decomposition product made from glutinous tapioca starch that satisfies the following values (A) to (C):
(A) DE value is 1.2 to 1.7,
(B) The viscosity of the 30% by mass aqueous solution at 30° C. is 250 to 700 mPa·s, and (C) the turbidity of the 30% by mass aqueous solution after freezing and thawing once is 1.0 or less.
さらに下記(D)の数値を満たす、請求項1記載の澱粉分解物:
(D)分子量5,000以上の糖組成物含有量が固形分当たり90質量%以上。
The starch decomposition product according to claim 1, which further satisfies the following numerical value (D):
(D) The content of the sugar composition having a molecular weight of 5,000 or more is 90% by mass or more based on solid content.
栄養エネルギー補給用又は栄養エネルギー持続用である、請求項1又は2に記載の澱粉分解物。 The starch decomposition product according to claim 1 or 2 , which is for supplying nutritional energy or sustaining nutritional energy. 請求項1~のいずれかに記載の澱粉分解物を含む飲食品。 A food or drink containing the starch decomposition product according to any one of claims 1 to 3 . 原料の糯種タピオカ澱粉を液化酵素で加水分解してその分解処理物のDE値が0.8~1.7にあるときに加水分解反応を停止させ、さらに液化酵素で加水分解してその分解処理物のDE値が 1.5~1.8にあるときに加水分解反応を停止させる、請求項1~のいずれかに記載の澱粉分解物の製造方法。

The raw material , glutinous tapioca starch, is hydrolyzed with a liquefaction enzyme, and when the DE value of the decomposed product is between 0.8 and 1.7, the hydrolysis reaction is stopped, and further hydrolyzed with a liquefaction enzyme to decompose it. The method for producing a starch decomposition product according to any one of claims 1 to 3 , wherein the hydrolysis reaction is stopped when the DE value of the treated product is between 1.5 and 1.8.

JP2019218143A 2019-12-02 2019-12-02 New starch decomposition product and its production method Active JP7371903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218143A JP7371903B2 (en) 2019-12-02 2019-12-02 New starch decomposition product and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218143A JP7371903B2 (en) 2019-12-02 2019-12-02 New starch decomposition product and its production method

Publications (2)

Publication Number Publication Date
JP2021088623A JP2021088623A (en) 2021-06-10
JP7371903B2 true JP7371903B2 (en) 2023-10-31

Family

ID=76219625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218143A Active JP7371903B2 (en) 2019-12-02 2019-12-02 New starch decomposition product and its production method

Country Status (1)

Country Link
JP (1) JP7371903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120720A1 (en) * 2021-12-24 2023-06-29 松谷化学工業株式会社 New starch degradation product production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204207A (en) 2005-01-28 2006-08-10 Matsutani Chem Ind Ltd Method for producing starch decomposition product and white dextrin
JP2019089932A (en) 2017-11-14 2019-06-13 松谷化学工業株式会社 Novel decomposed starch and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006204207A (en) 2005-01-28 2006-08-10 Matsutani Chem Ind Ltd Method for producing starch decomposition product and white dextrin
JP2019089932A (en) 2017-11-14 2019-06-13 松谷化学工業株式会社 Novel decomposed starch and method for producing the same

Also Published As

Publication number Publication date
JP2021088623A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP6072499B2 (en) Branched dextrin and its use
JP5341601B2 (en) Gelling agent for liquid food and method for producing gelled food
US6139895A (en) Viscosity stable acidic edible liquid compositions and method of making
JP4973454B2 (en) Maltooligosaccharide composition
US4374860A (en) Process for the production of a readily water miscible powder form amylaceous food product
CN111741685A (en) Method for producing resistant pea dextrins
JP5931421B2 (en) Method for improving the taste of high-intensity sweeteners
JP6470099B2 (en) Starch decomposition product, and powdered rice cake, syrup and food and drink using the starch decomposition product
JP2023504253A (en) High-fiber, low-sugar water-soluble dietary fiber, products containing them, and methods of making and using them
JP2021528088A (en) Mixed sugar composition containing malto-oligosaccharide
JP2013252075A (en) Method for improving taste quality of edible composition caused by sweetener with high sweetness
JP6298210B1 (en) Novel starch degradation product and method for producing the same
JP7371903B2 (en) New starch decomposition product and its production method
JP2011097873A (en) Fruit juice drink and method for producing the same
JP2013034457A (en) Method of producing rice starch syrup, jam using the rice starch syrup, and method of producing the jam
JP5507105B2 (en) Novel starch degradation product, food additive, food and drink, and drug containing the starch degradation product
KR20030092042A (en) Method for Producing Fibre-Enriched Fruit-Based Compositions and Compositions Thus Obtained
CN103667388A (en) Production technology of maltodextrin
JPH02154673A (en) Production of beverage containing water-soluble dietary fiber
Goñi et al. Dietary fiber in beer: Content, composition, colonic fermentability, and contribution to the diet
Alatorre-Santamaría et al. Fructooligosaccharides (FOS)
JP3969511B2 (en) Sugar composition with an effect of improving the taste of food and drink
JP2020015871A (en) Decomposed starch, and composition for food and drink including decomposed starch, and food and drink
WO2023120720A1 (en) New starch degradation product production method
JP2019140992A (en) Manufacturing method of packed amazake beverage, and method for improving flavor of packed amazake beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R150 Certificate of patent or registration of utility model

Ref document number: 7371903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150