JP7368688B2 - grain-oriented electrical steel sheet - Google Patents

grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP7368688B2
JP7368688B2 JP2019005061A JP2019005061A JP7368688B2 JP 7368688 B2 JP7368688 B2 JP 7368688B2 JP 2019005061 A JP2019005061 A JP 2019005061A JP 2019005061 A JP2019005061 A JP 2019005061A JP 7368688 B2 JP7368688 B2 JP 7368688B2
Authority
JP
Japan
Prior art keywords
steel plate
coating
region
film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019005061A
Other languages
Japanese (ja)
Other versions
JP2020111809A (en
Inventor
真介 高谷
克 高橋
翔二 長野
俊介 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019005061A priority Critical patent/JP7368688B2/en
Publication of JP2020111809A publication Critical patent/JP2020111809A/en
Application granted granted Critical
Publication of JP7368688B2 publication Critical patent/JP7368688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、変圧器の鉄心材料として好適な方向性電磁鋼板に関し、とくに、張力絶縁被膜と母材鋼板との間にフォルステライト系被膜以外の中間被膜であって且つ張力絶縁被膜の密着性を高めることが可能な中間被膜を有する方向性電磁鋼板に関する。 The present invention relates to a grain-oriented electrical steel sheet suitable as a core material for a transformer, and in particular, an intermediate coating other than a forsterite coating between a tension insulation coating and a base steel plate, and which improves the adhesion of the tension insulation coating. The present invention relates to a grain-oriented electrical steel sheet having an intermediate coating that can be enhanced.

変圧器の鉄心材料として好適な方向性電磁鋼板は、一般的に、7質量%以下のSiを含有し且つGoss方位と呼ばれる{110}<001>方位に各結晶粒の結晶方位が一致するように制御された集合組織を有する母材鋼板と、この母材鋼板に絶縁性を付与するための絶縁被膜とを有する。このような方向性電磁鋼板では、二次再結晶とよばれる粒成長現象を利用して、結晶方位がGoss方位に一致するように結晶粒の配向を制御することが一般的である。 A grain-oriented electrical steel sheet suitable as a core material for a transformer generally contains 7% by mass or less of Si and is made so that the crystal orientation of each crystal grain matches the {110}<001> orientation called the Goss orientation. The base steel plate has a controlled texture, and an insulating coating for imparting insulation to the base steel plate. In such grain-oriented electrical steel sheets, the orientation of crystal grains is generally controlled using a grain growth phenomenon called secondary recrystallization so that the crystal orientation matches the Goss orientation.

方向性電磁鋼板の磁気特性として、圧延方向の磁束密度が高く、且つ鉄損が低いことが要求される。近年では、省エネルギーの観点から、電力損失の低減、即ち、鉄損の低減に対する要求が一層高まっている。一般的に、磁束密度を評価する指標としてB値が用いられ、鉄損を評価する指標としてW17/50値が用いられる。 The magnetic properties of grain-oriented electrical steel sheets require high magnetic flux density in the rolling direction and low iron loss. In recent years, from the viewpoint of energy conservation, there has been an increasing demand for reducing power loss, that is, reducing iron loss. Generally, the B 8 value is used as an index for evaluating magnetic flux density, and the W 17/50 value is used as an index for evaluating iron loss.

従来から、母材鋼板に張力を付与することが鉄損の低減に有効であることが知られている。母材鋼板に張力を付与するための方法として、母材鋼板より熱膨張係数の小さい被膜を、母材鋼板と絶縁被膜との間に高温下で形成する方法が知られている。例えば、母材鋼板の仕上げ焼鈍工程において、母材鋼板の表面に存在する酸化物が焼鈍分離剤と反応することで生成されるフォルステライト系被膜は、母材鋼板に張力を与えることができる。このフォルステライト系被膜と母材鋼板との界面には凹凸が存在するため、この凹凸によるアンカー効果により、フォルステライト系被膜は、絶縁被膜と母材鋼板との密着性を高める中間被膜としても機能する。 It has been known that applying tension to a base steel plate is effective in reducing iron loss. As a method for imparting tension to a base steel plate, a method is known in which a coating having a coefficient of thermal expansion smaller than that of the base steel plate is formed between the base steel plate and an insulating coating at a high temperature. For example, in the final annealing process of the base steel plate, a forsterite film produced when oxides present on the surface of the base steel plate react with an annealing separator can impart tension to the base steel plate. Since there are irregularities at the interface between this forsterite-based coating and the base steel plate, the anchor effect caused by these irregularities allows the forsterite-based coating to also function as an intermediate coating that increases the adhesion between the insulating coating and the base steel plate. do.

特許文献20で開示された、コロイド状シリカとリン酸塩とを主体とするコーティング液を焼き付けることによって絶縁被膜を形成する方法は、母材鋼板に対する張力付与の効果が大きく、鉄損低減に有効である。したがって、仕上げ焼鈍工程で生じたフォルステライト系被膜を残した上で、リン酸塩を主体とする絶縁コーティングを施すことが、一般的な方向性電磁鋼板の製造方法となっている。なお、本願明細書では、母材鋼板に絶縁性のみならず、張力を与えることが可能な絶縁被膜を張力絶縁被膜と呼称する。 The method disclosed in Patent Document 20, in which an insulating film is formed by baking a coating liquid mainly composed of colloidal silica and phosphate, has a large effect of applying tension to the base steel plate and is effective in reducing iron loss. It is. Therefore, a common method for manufacturing grain-oriented electrical steel sheets is to leave the forsterite-based film produced in the final annealing step and then apply an insulating coating mainly composed of phosphate. In this specification, an insulating coating that can provide not only insulation but also tension to the base steel plate is referred to as a tension insulating coating.

一方、近年、フォルステライト系被膜により磁壁の移動が阻害され、鉄損に悪影響を及ぼすことが明らかになってきた。方向性電磁鋼板において、磁区は、交流磁場の下では磁壁の移動を伴って変化する。この磁壁の移動がスムーズに行われることが、鉄損改善に効果的であるが、フォルステライト系被膜と母材鋼板との界面に凹凸が存在することに起因して磁壁の移動が妨げられ、その結果、張力付与による鉄損改善効果がキャンセルされて十分な鉄損改善効果が得られないことが判明した。 On the other hand, in recent years, it has become clear that forsterite-based coatings inhibit the movement of domain walls and have an adverse effect on iron loss. In grain-oriented electrical steel sheets, magnetic domains change with movement of domain walls under an alternating magnetic field. Smooth movement of this domain wall is effective in improving iron loss, but the presence of unevenness at the interface between the forsterite coating and the base steel plate prevents the movement of the domain wall. As a result, it was found that the effect of improving iron loss by applying tension was canceled and a sufficient effect of improving iron loss could not be obtained.

磁壁の移動が阻害されることを防止するために、フォルステライト系被膜と母材鋼板との界面に存在する凹凸によるアンカー効果を低減することが有効である。当然ながら、フォルステライト系被膜を形成しなければ、アンカー効果を完全に消失させることができる。 In order to prevent the movement of the domain wall from being inhibited, it is effective to reduce the anchoring effect due to the unevenness existing at the interface between the forsterite coating and the base steel plate. Naturally, unless a forsterite film is formed, the anchor effect can be completely eliminated.

アンカー効果を低減する方法として、例えば、特許文献1~19には、脱炭焼鈍雰囲気の露点を制御することにより、脱炭焼鈍時に母材鋼板の表面に生成される酸化層において、Fe系酸化物(Fe2SiO4、FeO等)を生成させないこと、及び、焼鈍分離剤としてシリカと反応しないアルミナ等の物質を用いて、仕上げ焼鈍後の母材鋼板の表面を平滑化することが開示されている。 As a method for reducing the anchor effect, for example, Patent Documents 1 to 19 disclose that by controlling the dew point of the decarburization annealing atmosphere, Fe-based oxidation is It is disclosed that the surface of the base steel sheet after finish annealing is smoothed by not producing any substances (Fe 2 SiO 4 , FeO, etc.) and by using a substance such as alumina that does not react with silica as an annealing separator. ing.

張力絶縁被膜をフォルステライト系被膜の上に形成した場合、フォルステライト系被膜のアンカー効果により、張力絶縁被膜の密着性は向上する。フォルステライト系被膜を除去した場合、又は、仕上げ焼鈍工程で意図的にフォルステライト系被膜を形成しなかった場合などのように、母材鋼板の表面にフォルステライト系被膜が存在しない場合、磁壁の移動を阻害する凹凸が母材鋼板の表面から消失するため、鉄損を改善させることができる。しかしながら、この場合、張力絶縁被膜が母材鋼板の表面に直接形成されることから、張力絶縁被膜の密着性が低下するという問題がある。 When a tension insulation coating is formed on a forsterite coating, the adhesion of the tension insulation coating is improved due to the anchor effect of the forsterite coating. When a forsterite-based film is not present on the surface of the base steel sheet, such as when a forsterite-based film is removed or a forsterite-based film is not intentionally formed in the final annealing process, the domain wall Since the unevenness that inhibits movement disappears from the surface of the base steel plate, iron loss can be improved. However, in this case, since the tension insulation coating is directly formed on the surface of the base steel plate, there is a problem that the adhesion of the tension insulation coating decreases.

フォルステライト系被膜は、それ自身でも、母材鋼板に張力を付与することができるが、フォルステライト系被膜が存在しない場合、張力絶縁被膜のみで、母材鋼板に付与する所要の張力を確保する必要がある。それ故、張力絶縁被膜を必然的に厚膜化しなければならないが、その結果、母材鋼板と張力絶縁被膜との界面に、より応力が集中することになるので、張力絶縁被膜の密着性を、より一層高める必要がある。 The forsterite-based coating itself can apply tension to the base steel sheet, but in the absence of the forsterite-based coating, the required tension to be applied to the base steel sheet can be secured with only the tension insulating coating. There is a need. Therefore, it is necessary to thicken the tension insulation coating, but as a result, stress will be concentrated at the interface between the base steel plate and the tension insulation coating, so the adhesion of the tension insulation coating must be improved. , there is a need to further improve this.

従来の絶縁被膜形成法では、母材鋼板の表面を鏡面化することの効果を十分に引き出し得る被膜張力を達成し、かつ、絶縁被膜の密着性を十分に確保することは困難であり、方向性電磁鋼板の鉄損を十分に低減することができていなかった。そこで、張力絶縁被膜の密着性を確保する技術として、張力絶縁被膜を母材鋼板の表面に形成する前に、仕上げ焼鈍後の母材鋼板の表面に、ごく薄い酸化膜を形成する方法が、例えば、特許文献20~29にて提案された。 With conventional insulation coating formation methods, it is difficult to achieve coating tension that can fully bring out the effect of mirror-finishing the surface of the base steel plate, and to ensure sufficient adhesion of the insulation coating. However, it has not been possible to sufficiently reduce the iron loss of magnetic steel sheets. Therefore, as a technique to ensure the adhesion of the tension insulation coating, there is a method of forming a very thin oxide film on the surface of the base steel plate after finish annealing before forming the tension insulation coating on the surface of the base steel plate. For example, it was proposed in Patent Documents 20 to 29.

例えば、特許文献22には、母材鋼板の表面を鏡面化する、又は、鏡面に近い状態に調製する工程を経て得られた仕上げ焼鈍後の母材鋼板に、温度毎に特定の雰囲気で焼鈍を施して、母材鋼板の表面に外部酸化型の酸化膜を形成し、この酸化膜により、張力絶縁被膜と母材鋼板との密着性を確保する技術が提案されている。 For example, in Patent Document 22, a base steel plate is annealed in a specific atmosphere at each temperature after finish annealing, which is obtained through a process of mirror-finishing the surface of the base steel plate or preparing it to a state close to a mirror surface. A technique has been proposed in which an external oxidation-type oxide film is formed on the surface of the base steel plate by applying this process, and this oxide film ensures adhesion between the tension insulation coating and the base steel plate.

特許文献23には、張力絶縁被膜が結晶質である場合において、無機鉱物質被膜(フォルステライト系被膜)の存在しない仕上げ焼鈍後の母材鋼板の表面に、非晶質酸化物の下地被膜を形成して、結晶質の張力絶縁被膜を形成する際に起きる母材鋼板の酸化、即ち、鏡面度の減退を防止する技術が提案されている。 Patent Document 23 discloses that when the tension insulation coating is crystalline, a base coating of an amorphous oxide is applied to the surface of the base steel plate after finish annealing where no inorganic mineral coating (forsterite coating) is present. A technique has been proposed to prevent oxidation of the base steel sheet, that is, a decrease in specularity, which occurs when forming a crystalline tensile insulating film.

特許文献25には、母材鋼板の表面に外部酸化型の酸化膜を形成し、その内部に粒状酸化物を形成して、張力絶縁被膜の密着性を改善する技術が提案されている。特許文献26には、母材鋼板の表面に、Fe、Al、Mn、Ti、及びCrの酸化物を50%以下の断面面積率で含むシリカ外部酸化膜を形成し、張力絶縁被膜の密着性を改善する技術が提案されている。 Patent Document 25 proposes a technique in which an external oxidation type oxide film is formed on the surface of a base steel plate, and granular oxides are formed inside the oxide film to improve the adhesion of a tension insulation coating. Patent Document 26 discloses that a silica external oxide film containing oxides of Fe, Al, Mn, Ti, and Cr with a cross-sectional area ratio of 50% or less is formed on the surface of a base steel plate, and the adhesion of the tension insulation coating is improved. Techniques have been proposed to improve this.

変圧器の鉄心として、積鉄心及び巻鉄心があることは周知であるが、近年、特に、巻鉄心で製造した変圧器に、一層の高効率化が求められている。そのため、巻鉄心用の方向性電磁鋼板には、鉄損の低減に加え、巻鉄心製造時、方向性電磁鋼板を湾曲状に塑性加工する際の張力絶縁被膜の密着性の向上が強く求められており、フォルステライト系被膜を有しない方向性電磁鋼板においても、同様に、張力絶縁被膜の密着性の向上が強く求められている。 It is well known that there are laminated cores and wound cores as transformer cores, but in recent years, there has been a demand for even higher efficiency, particularly in transformers manufactured using wound cores. Therefore, in addition to reducing core loss, grain-oriented electrical steel sheets for wound cores are strongly required to improve the adhesion of the tension insulation coating when plastically working grain-oriented electrical steel sheets into curved shapes during the manufacturing of wound cores. Therefore, there is a strong demand for improving the adhesion of the tension insulation coating in grain-oriented electrical steel sheets that do not have a forsterite coating.

しかし、フォルステライト系被膜を有しない方向性電磁鋼板に従来技術を適用しても、巻鉄心製造時、張力絶縁被膜の密着性を十分に確保することができないことが解った。これは、巻鉄心の製造方法が変化し、方向性電磁鋼板の塑性加工(鉄心加工)において曲げ径が小さくなり、方向性電磁鋼板に厳しい塑性加工が要求されることが原因で、張力絶縁被膜の剥離が生じることによるものである。 However, it has been found that even if the conventional technology is applied to a grain-oriented electrical steel sheet that does not have a forsterite coating, sufficient adhesion of the tension insulating coating cannot be ensured during the manufacture of the wound core. This is due to changes in the manufacturing method of wound cores, which have resulted in smaller bending diameters in the plastic working (core processing) of grain-oriented electrical steel sheets, which require severe plastic working for grain-oriented electrical steel sheets. This is because peeling occurs.

また、巻鉄心は、方向性電磁鋼板に一定の曲率半径で曲げ加工を施し、方向性電磁鋼板を、曲げ加工部の外側に順次巻き付けて製造するが、単に、曲げ加工のみでは被膜剥離が生じない場合でも、方向性電磁鋼板を巻き付けていく過程で生じる鋼板間の摩擦力が重畳することが原因で、被膜剥離が生じることが解った。上記摩擦力の重畳による被膜剥離は、従来の張力絶縁被膜の密着性の評価では知見し得なかった剥離現象であり、上記被膜剥離を抑制する必要性が高まっている。本願明細書では、母材鋼板に対する張力絶縁被膜の密着性を被膜密着性と略称する。 In addition, wound cores are manufactured by bending a grain-oriented electrical steel sheet with a fixed radius of curvature and sequentially winding the grain-oriented electrical steel sheet around the outside of the bent portion, but simply bending the sheet may cause the coating to peel off. It has been found that even in cases where there is no coating, peeling occurs due to the superposition of frictional forces between the steel plates that occur during the process of winding the grain-oriented electrical steel sheets. The peeling of the coating due to the superimposition of the frictional force is a peeling phenomenon that could not be detected in conventional evaluations of the adhesion of tension insulation coatings, and there is an increasing need to suppress the peeling of the coating. In this specification, the adhesion of the tension insulation coating to the base steel plate is abbreviated as coating adhesion.

特開昭64-062417号公報Japanese Unexamined Patent Publication No. 64-062417 特開平07-118750号公報Japanese Patent Application Publication No. 07-118750 特開平07-278668号公報Japanese Patent Application Publication No. 07-278668 特開平07-278669号公報Japanese Patent Application Publication No. 07-278669 特開平07-278670号公報Japanese Patent Application Publication No. 07-278670 特開平10-046252号公報Japanese Patent Application Publication No. 10-046252 特開平11-106827号公報Japanese Patent Application Publication No. 11-106827 特開平11-152517号公報Japanese Patent Application Publication No. 11-152517 特開2002-060843号公報Japanese Patent Application Publication No. 2002-060843 特開2002-173715号公報Japanese Patent Application Publication No. 2002-173715 特開2002-348613号公報Japanese Patent Application Publication No. 2002-348613 特開2002-363646号公報Japanese Patent Application Publication No. 2002-363646 特開2003-055717号公報Japanese Patent Application Publication No. 2003-055717 特開2003-003213号公報JP2003-003213A 特開2003-041320号公報JP2003-041320A 特開2003-247021号公報Japanese Patent Application Publication No. 2003-247021 特開2003-247024号公報Japanese Patent Application Publication No. 2003-247024 特開2008-001980号公報Japanese Patent Application Publication No. 2008-001980 特表2011-518253号公報Special Publication No. 2011-518253 特開昭48-039338号公報Japanese Unexamined Patent Publication No. 48-039338 特開昭60-131976号公報Japanese Unexamined Patent Publication No. 1983-131976 特開平06-184762号公報Japanese Patent Application Publication No. 06-184762 特開平07-278833号公報Japanese Patent Application Publication No. 07-278833 特開平09-078252号公報Japanese Patent Application Publication No. 09-078252 特開2002-322566号公報Japanese Patent Application Publication No. 2002-322566 特開2002-348643号公報Japanese Patent Application Publication No. 2002-348643 特開2002-363763号公報Japanese Patent Application Publication No. 2002-363763 特開2003-293149号公報Japanese Patent Application Publication No. 2003-293149 特開2003-313644号公報Japanese Patent Application Publication No. 2003-313644

鉄損低減のため、フォルステライト系被膜の生成を意図的に抑制したり、フォルステライト系被膜を研削や酸洗等の手段で除去したり、さらに、鏡面状態となるまで平滑化した母材鋼板の表面に張力絶縁被膜を形成した場合、張力絶縁被膜には、巻鉄心製造時に必要な、曲げ加工部における高度な被膜密着性、及び、曲げ加工後、摩擦力が重畳する環境における高度な被膜密着性が要求されるが、このように方向性電磁鋼板に要求される高度な被膜密着性を従来技術によって実現することは困難である。 In order to reduce iron loss, the formation of a forsterite film is intentionally suppressed, the forsterite film is removed by grinding, pickling, etc., and the base material steel sheet is smoothed to a mirror-like surface. When a tension insulating film is formed on the surface of the wound core, the tension insulating film has a high degree of film adhesion at the bending part, which is necessary when manufacturing the wound core, and a high level of film adhesion in the environment where frictional forces are superimposed after the bending process. Although adhesion is required, it is difficult to achieve the high degree of film adhesion required for grain-oriented electrical steel sheets using conventional techniques.

本発明は上記事情に鑑みてなされたものであり、張力絶縁被膜と母材鋼板との間にフォルステライト系被膜以外の中間被膜であって且つ被膜密着性を高めることが可能な中間被膜を有する方向性電磁鋼板を提供することを目的とする。すなわち、本発明は、優れた被膜密着性及び磁気特性を有する方向性電磁鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes an intermediate coating other than a forsterite coating between the tension insulating coating and the base steel plate, which is capable of increasing coating adhesion. The purpose is to provide grain-oriented electrical steel sheets. That is, an object of the present invention is to provide a grain-oriented electrical steel sheet having excellent film adhesion and magnetic properties.

本発明者らは、上記課題を解決するため、張力絶縁被膜と母材鋼板との間に挟まれる中間被膜として、フォルステライト系被膜以外の被膜であって且つ被膜密着性を高めることが可能な被膜という条件を満たす被膜の化学組成及び構造について鋭意研究した。 In order to solve the above-mentioned problems, the present inventors have proposed that the intermediate coating sandwiched between the tension insulation coating and the base steel plate be a coating other than a forsterite coating and that can improve coating adhesion. We conducted extensive research on the chemical composition and structure of films that meet the requirements of being a film.

その結果、本発明者らは、先行技術文献(例えば、特許文献22、25等)に開示された酸化珪素主体の外部酸化膜が母材鋼板の表面に形成されたとき、その外部酸化膜がFe2SiO4及びFeSiO3の少なくとも1種を含む領域を、特定の条件を満たすように内包している場合に限り、その外部酸化膜上に形成される張力絶縁被膜の密着性が顕著に向上することを見出した。具体的には、外部酸化膜内において、Fe2SiO4及びFeSiO3の少なくとも1種を含有する領域が、母材鋼板と外部酸化膜との界面に断続的に接するように存在し、それらの領域が酸化珪素を含有する領域に内包されるという条件下において、張力絶縁被膜の密着性が顕著に向上する。 As a result, the present inventors found that when the external oxide film mainly composed of silicon oxide disclosed in prior art documents (for example, Patent Documents 22, 25, etc.) is formed on the surface of the base steel sheet, the external oxide film is Only when a region containing at least one of Fe 2 SiO 4 and FeSiO 3 is included to meet specific conditions, the adhesion of the tensile insulation film formed on the external oxide film will be significantly improved. I found out what to do. Specifically, in the external oxide film, regions containing at least one of Fe 2 SiO 4 and FeSiO 3 exist intermittently in contact with the interface between the base steel plate and the external oxide film, and Under the condition that the region is included in a region containing silicon oxide, the adhesion of the tension insulation coating is significantly improved.

本発明者らは、上記のような特定の条件を満たす外部酸化膜を、母材鋼板と張力絶縁被膜との間の中間被膜として使用することで張力絶縁被膜の密着性が向上する理由を以下のように考察した。
すなわち、上記のようなFe2SiO4及びFeSiO3の少なくとも1種を含有する領域を有していない外部酸化膜(酸化珪素主体の酸化物被膜)を中間被膜として使った場合、その外部酸化膜と母材鋼板との間の格子整合性は良好であるので、張力絶縁被膜の密着性が良好であると考えられる。しかしながら、酸化珪素は弾性率が高いため、巻鉄心の製造過程または他の過度な塑性加工過程において、張力絶縁被膜に負荷された摩擦力は、母材鋼板と外部酸化膜との界面に集中すると考えられる。その結果、上記の格子整合性が阻害され、張力絶縁被膜の密着性が低下すると考えられる。
一方、外部酸化膜の内部に、Fe2SiO4及びFeSiO3の少なくとも1種を含有する領域が母材鋼板の表面(外部酸化膜と母材鋼板との界面)に断続的に接する形態で存在する場合、この領域、すなわちFe2SiO4及びFeSiO3の少なくとも1種を含有する鉄系酸化物が、上記摩擦力を緩和する緩衝物として機能することにより、上記摩擦力に起因する張力絶縁被膜の剥離が抑制され、その結果、張力絶縁被膜の密着性が向上すると考えられる。
The present inventors have explained the reason why the adhesion of the tension insulation coating is improved by using an external oxide film that satisfies the above specific conditions as an intermediate coating between the base steel plate and the tension insulation coating as follows. I considered it as follows.
That is, when an external oxide film (oxide film mainly composed of silicon oxide) that does not have a region containing at least one of Fe 2 SiO 4 and FeSiO 3 as described above is used as an intermediate film, the external oxide film Since the lattice matching between the steel plate and the base steel plate is good, it is considered that the adhesion of the tension insulation coating is good. However, since silicon oxide has a high elastic modulus, during the manufacturing process of the wound core or other excessive plastic working processes, the frictional force applied to the tension insulation coating is concentrated at the interface between the base steel plate and the external oxide film. Conceivable. As a result, the above-mentioned lattice matching is inhibited, and it is thought that the adhesion of the tension insulating film is reduced.
On the other hand, a region containing at least one of Fe 2 SiO 4 and FeSiO 3 exists inside the external oxide film in a form that is intermittently in contact with the surface of the base steel sheet (the interface between the external oxide film and the base steel sheet). In this case, this region, that is, the iron-based oxide containing at least one of Fe 2 SiO 4 and FeSiO 3 functions as a buffer to alleviate the frictional force, thereby reducing the tension insulating coating caused by the frictional force. It is thought that the peeling of the tensile insulation coating is suppressed, and as a result, the adhesion of the tension insulation coating is improved.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)本発明の一態様に係る方向性電磁鋼板は、母材鋼板と、張力絶縁被膜と、前記母材鋼板と前記張力絶縁被膜との間に挟まれた中間被膜と、を備える。前記母材鋼板は、化学組成として、質量%で、C:0.100%以下、Si:0.80~7.00%、Mn:1.00%以下、酸可溶性Al:0.010~0.070%、S:0.080%以下、N:0.012%以下、B:0~0.010%、Sn:0~0.20%、Cr:0~0.50%、Cu:0~0.50%、を含有し、残部がFe及び不純物からなる。前記中間被膜は、フォルステライト系被膜以外の被膜であって、前記母材鋼板と前記中間被膜との界面に断続的に接する第1領域と、前記第1領域を内包する第2領域とを有する。前記第1領域は、Fe2SiO4及びFeSiO3の少なくとも1種を含み、前記第2領域は、酸化珪素を含前記母材鋼板の圧延方向に直交する方向に長さLsumを有する断面をみた場合に、前記断面内に現れる前記第1領域が前記界面に接する長さの合計値をΣLとしたとき、下記(1)式で定義される前記第1領域の存在比率Rが1%以上50%以下であり、前記中間被膜の平均膜厚は10~100nmであり、前記中間被膜の膜厚方向における前記第1領域の平均厚さは1~20nmである。 (1) A grain-oriented electrical steel sheet according to one aspect of the present invention includes a base steel plate, a tension insulation coating, and an intermediate coating sandwiched between the base steel plate and the tension insulation coating. The base steel plate has a chemical composition, in mass %, of C: 0.100% or less, Si: 0.80 to 7.00%, Mn: 1.00% or less, and acid-soluble Al: 0.010 to 0. .070%, S: 0.080% or less, N: 0.012% or less, B: 0 to 0.010%, Sn: 0 to 0.20%, Cr: 0 to 0.50%, Cu: 0 ~0.50%, with the remainder consisting of Fe and impurities. The intermediate coating is a coating other than a forsterite coating, and has a first region that is intermittently in contact with the interface between the base steel plate and the intermediate coating, and a second region that includes the first region. . The first region contains at least one of Fe 2 SiO 4 and FeSiO 3 , and the second region contains silicon oxide, and has a cross section having a length Lsum in a direction perpendicular to the rolling direction of the base steel plate. If ΣL is the total length of the first region that appears in the cross section and touches the interface, then the abundance ratio R of the first region defined by the following equation (1) is 1%. The average thickness of the intermediate coating is 10 to 100 nm, and the average thickness of the first region in the thickness direction of the intermediate coating is 1 to 20 nm.

)上記(1)に記載の方向性電磁鋼板において、前記Fe2SiO4及び前記FeSiO3の少なくとも1種が結晶質であってもよい。 ( 2 ) In the grain-oriented electrical steel sheet according to (1) above, at least one of the Fe 2 SiO 4 and the FeSiO 3 may be crystalline.

)上記(1)または(2)に記載の方向性電磁鋼板において、前記母材鋼板が、前記化学組成として、質量%で、B:0.001~0.010%、Sn:0.01~0.20%、Cr:0.01~0.50%、及び、Cu:0.01~0.50%の1種または2種以上を含有していてもよい。 ( 3 ) In the grain-oriented electrical steel sheet according to (1) or (2) above, the base steel sheet has the chemical composition, in mass %, of B: 0.001 to 0.010%, Sn: 0. 01 to 0.20%, Cr: 0.01 to 0.50%, and Cu: 0.01 to 0.50%.

本発明の上記態様によれば、張力絶縁被膜と母材鋼板との間にフォルステライト系被膜以外の中間被膜であって且つ被膜密着性を高めることが可能な中間被膜を有する方向性電磁鋼板を提供することができる。すなわち、本発明の上記態様によれば、優れた被膜密着性及び磁気特性を有する方向性電磁鋼板を提供することができる。 According to the above aspect of the present invention, a grain-oriented electrical steel sheet is provided which has an intermediate coating other than a forsterite coating between the tension insulating coating and the base steel sheet and which is capable of increasing coating adhesion. can be provided. That is, according to the above aspect of the present invention, it is possible to provide a grain-oriented electrical steel sheet having excellent film adhesion and magnetic properties.

本発明の一実施形態に係る方向性電磁鋼板1の要部断面を模式的に示す図である。1 is a diagram schematically showing a cross section of a main part of a grain-oriented electrical steel sheet 1 according to an embodiment of the present invention. 摩擦力を負荷した張力絶縁被膜の密着性を評価する態様を示す図である。It is a figure which shows the aspect which evaluates the adhesion of the tension insulation coating which loaded the frictional force.

以下、図面を参照しながら、本発明の一実施形態について詳細に説明する。 Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本実施形態に係る方向性電磁鋼板1の要部断面を模式的に示す図である。図1に示すように、本実施形態に係る方向性電磁鋼板1は、母材鋼板10と、中間被膜20と、張力絶縁被膜30とを有する。なお、図1は、母材鋼板10の圧延方向に直交する方向に長さLsumを有する断面で方向性電磁鋼板1をみた図である。 FIG. 1 is a diagram schematically showing a cross section of a main part of a grain-oriented electrical steel sheet 1 according to the present embodiment. As shown in FIG. 1, the grain-oriented electrical steel sheet 1 according to the present embodiment includes a base steel sheet 10, an intermediate coating 20, and a tension insulation coating 30. Note that FIG. 1 is a view of the grain-oriented electrical steel sheet 1 in a cross section having a length Lsum in a direction orthogonal to the rolling direction of the base steel sheet 10.

〔母材鋼板10の説明〕
母材鋼板10は、方向性電磁鋼板1の母材となる鋼板であり、Goss方位と呼ばれる{110}<001>方位に各結晶粒の結晶方位が一致するように制御された集合組織を有する。母材鋼板10は、化学組成として、質量%で、C:0.100%以下、Si:0.80~7.00%、Mn:1.00%以下、酸可溶性Al:0.010~0.070%、S:0.080%以下、N:0.012%以下、B:0~0.010%、Sn:0~0.20%、Cr:0~0.50%、Cu:0~0.50%、を含有し、残部がFe及び不純物からなる。
[Description of base material steel plate 10]
The base steel plate 10 is a steel plate that serves as the base material of the grain-oriented electrical steel sheet 1, and has a texture controlled so that the crystal orientation of each crystal grain matches the {110}<001> orientation called the Goss orientation. . The base steel plate 10 has a chemical composition in mass %: C: 0.100% or less, Si: 0.80 to 7.00%, Mn: 1.00% or less, acid-soluble Al: 0.010 to 0. .070%, S: 0.080% or less, N: 0.012% or less, B: 0 to 0.010%, Sn: 0 to 0.20%, Cr: 0 to 0.50%, Cu: 0 ~0.50%, with the remainder consisting of Fe and impurities.

以下、母材鋼板10の化学組成について詳細に説明する。以下の説明において、成分組成に係る%は、質量%を意味する。 Hereinafter, the chemical composition of the base steel plate 10 will be explained in detail. In the following description, % in the component composition means mass %.

<C:0.100%以下>
Cは、一次再結晶の制御に有効な元素であるが、磁気時効によって鉄損を増大させるので、仕上げ焼鈍前に脱炭焼鈍で除去される元素である。C含有量が0.100%を超えると、仕上げ焼鈍において鋼が相変態し、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性が得られないので、C含有量は0.100%以下とする。
<C: 0.100% or less>
C is an element effective in controlling primary recrystallization, but because it increases core loss due to magnetic aging, it is an element that is removed by decarburization annealing before final annealing. If the C content exceeds 0.100%, the steel undergoes phase transformation during finish annealing, secondary recrystallization does not proceed sufficiently, and good magnetic flux density and iron loss characteristics cannot be obtained. 0.100% or less.

C含有量は、少ないほど、鉄損低減の点で好ましいので、好ましくは0.045%以下、より好ましくは0.038%以下である。C含有量の下限は0%を含むが、C含有量の検出限界が0.0001%程度であり、また、C含有量が0.0001%未満に低減すると、製造コストが大幅に上昇するので、実用上、0.0001%が実質的なC含有量の下限である。 Since the smaller the C content, the better from the viewpoint of reducing iron loss, the C content is preferably 0.045% or less, more preferably 0.038% or less. The lower limit of C content includes 0%, but the detection limit of C content is about 0.0001%, and if the C content is reduced to less than 0.0001%, the manufacturing cost will increase significantly. In practice, 0.0001% is the lower limit of the substantial C content.

<Si:0.80~7.00%>
Siは、母材鋼板10の電気抵抗を高めて、鉄損の低減に寄与する元素である。Si含有量が0.80%未満であると、仕上げ焼鈍において鋼が相変態して、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性が得られないので、Si含有量は0.80%以上とする。Si含有量の好ましい値は2.50%以上であり、Si含有量のより好ましい値は3.00%以上である。
<Si: 0.80-7.00%>
Si is an element that increases the electrical resistance of the base steel plate 10 and contributes to reducing iron loss. If the Si content is less than 0.80%, the steel undergoes phase transformation during final annealing, secondary recrystallization does not proceed sufficiently, and good magnetic flux density and iron loss characteristics cannot be obtained. The amount shall be 0.80% or more. A preferable value of the Si content is 2.50% or more, and a more preferable value of the Si content is 3.00% or more.

一方、Si含有量が7.00%を超えると、母材鋼板10が脆化し、製造工程での通板性が顕著に劣化するので、Si含有量は7.00%以下とする。Si含有量の好ましい値は4.50%以下であり、Si含有量のより好ましい値は4.00%以下である。 On the other hand, if the Si content exceeds 7.00%, the base steel plate 10 will become brittle and the passability in the manufacturing process will be significantly deteriorated, so the Si content should be 7.00% or less. A preferable value of the Si content is 4.50% or less, and a more preferable value of the Si content is 4.00% or less.

<酸可溶性Al:0.010~0.070%>
酸可溶性Al(sol.Al)は、Nと結合して、インヒビターとして機能する(Al、Si)Nを生成し、仕上げ焼鈍での二次再結晶の進行に寄与する元素である。
<Acid-soluble Al: 0.010 to 0.070%>
Acid-soluble Al (sol.Al) is an element that combines with N to generate (Al, Si)N that functions as an inhibitor and contributes to the progress of secondary recrystallization in final annealing.

酸可溶性Al含有量が0.010%未満であると、添加効果が十分に発現せず、二次再結晶が十分に進行せず、鉄損特性が向上しないので、酸可溶性Al含有量は0.010%以上とする。酸可溶性Al含有量の好ましい値は0.015%以上であり、酸可溶性Al含有量のより好ましい値は0.020%以上である。 If the acid-soluble Al content is less than 0.010%, the addition effect will not be sufficiently expressed, secondary recrystallization will not proceed sufficiently, and iron loss characteristics will not improve, so the acid-soluble Al content will be 0. .010% or more. A preferable value of the acid-soluble Al content is 0.015% or more, and a more preferable value of the acid-soluble Al content is 0.020% or more.

一方、酸可溶性Al含有量が0.070%を超えると、母材鋼板10が脆化し、特に、Si含有量が多い方向性電磁鋼板1では、母材鋼板10の脆化が顕著となるので、酸可溶性Al含有量は0.070%以下とする。酸可溶性Al含有量の好ましい値は0.050%以下であり、酸可溶性Al含有量のより好ましい値は0.040%以下である。 On the other hand, if the acid-soluble Al content exceeds 0.070%, the base steel plate 10 becomes embrittled, and the embrittlement of the base steel plate 10 becomes particularly noticeable in the grain-oriented electrical steel sheet 1 with a high Si content. , the acid-soluble Al content is 0.070% or less. A preferable value of the acid-soluble Al content is 0.050% or less, and a more preferable value of the acid-soluble Al content is 0.040% or less.

<N:0.012%以下>
Nは、Alと結合して、インヒビターとしての機能するAlNを形成する元素であるが、一方で、冷間圧延時に、母材鋼板10の内部にブリスター(空孔)を形成する元素でもある。
<N: 0.012% or less>
N is an element that combines with Al to form AlN that functions as an inhibitor, but on the other hand, it is also an element that forms blisters (holes) inside the base steel sheet 10 during cold rolling.

N含有量が0.012%を超えると、冷延時に、母材鋼板10の内部にブリスター(空孔)が生じるうえに、母材鋼板10の強度が上昇し、製造時の通板性が悪化するので、N含有量は0.012%以下とする。N含有量の好ましい値は0.010%以下であり、N含有量のより好ましい値は0.009%以下である。 If the N content exceeds 0.012%, blisters (holes) will occur inside the base steel sheet 10 during cold rolling, and the strength of the base steel sheet 10 will increase, resulting in poor threadability during manufacturing. Since this causes deterioration, the N content is set to 0.012% or less. A preferable value of the N content is 0.010% or less, and a more preferable value of the N content is 0.009% or less.

一方、NとAlとが結合して、インヒビターとして機能するAlNを形成するためには、N含有量は0.004%以上が好ましい。N含有量のより好ましい値は0.006%以上である。 On the other hand, in order for N and Al to combine to form AlN that functions as an inhibitor, the N content is preferably 0.004% or more. A more preferable value of the N content is 0.006% or more.

<Mn:1.00%以下>
Mnは、オーステナイト形成元素であり、熱間圧延時の割れを防止するとともに、S及びSeの少なくとも一方と結合して、インヒビターとして機能するMnSを形成する元素である。
<Mn: 1.00% or less>
Mn is an austenite-forming element that prevents cracking during hot rolling and combines with at least one of S and Se to form MnS, which functions as an inhibitor.

Mn含有量が1.00%を超えると、仕上げ焼鈍における二次再結晶において鋼が相変態し、二次再結晶が十分に進行せず、良好な磁束密度と鉄損特性が得られないので、Mn含有量は1.00%以下とする。Mn含有量の好ましい値は0.70%以下であり、Mn含有量のより好ましい値は0.40%以下である。 If the Mn content exceeds 1.00%, the steel undergoes phase transformation during secondary recrystallization during finish annealing, secondary recrystallization does not proceed sufficiently, and good magnetic flux density and iron loss characteristics cannot be obtained. , the Mn content is 1.00% or less. A preferable value of the Mn content is 0.70% or less, and a more preferable value of the Mn content is 0.40% or less.

MnSを、二次再結晶時に、インヒビターとして活用することができるが、AlNをインヒビターとして活用する場合、MnSは必須でないので、Mn含有量の下限は0%を含む。MnSをインヒビターとして活用する場合、Mn含有量は0.02%以上とする。Mn含有量の好ましい値は0.05%以上であり、Mn含有量のより好ましい値は0.07%以上である。 MnS can be used as an inhibitor during secondary recrystallization, but when AlN is used as an inhibitor, MnS is not essential, so the lower limit of the Mn content includes 0%. When utilizing MnS as an inhibitor, the Mn content should be 0.02% or more. A preferable value of the Mn content is 0.05% or more, and a more preferable value of the Mn content is 0.07% or more.

<S:0.080%以下>
Sは、Mnと結合して、インヒビターとして機能するMnSを形成する元素である。S含有量が0.080%を超えると、熱間脆性の原因となり、熱延が著しく困難になるので、S含有量は0.080%以下とする。S含有量の好ましい値は0.050%以下であり、S含有量のより好ましい値は0.030%以下である。
<S: 0.080% or less>
S is an element that combines with Mn to form MnS, which functions as an inhibitor. If the S content exceeds 0.080%, it causes hot brittleness and makes hot rolling extremely difficult, so the S content is set to 0.080% or less. A preferable value of the S content is 0.050% or less, and a more preferable value of the S content is 0.030% or less.

AlNをインヒビターとして活用する場合、MnSは必須でないので、S含有量の下限は0%を含むが、MnSを、二次再結晶時のインヒビターとして活用する場合、S含有量は0.005%以上とする。S含有量の好ましい値は0.010%以上であり、S含有量のより好ましい値は0.020%以上である。 When using AlN as an inhibitor, MnS is not essential, so the lower limit of the S content includes 0%, but when using MnS as an inhibitor during secondary recrystallization, the S content is 0.005% or more. shall be. A preferable value of the S content is 0.010% or more, and a more preferable value of the S content is 0.020% or more.

Sの一部を、Se又はSbで置き換えてもよく、その場合は、原子量比を考慮して規定した式、Seq=S+0.406・Se、又は、Seq=S+0.406・Sbで換算した値を用いる。 A part of S may be replaced with Se or Sb, and in that case, the value converted by the formula specified by considering the atomic weight ratio, Seq = S + 0.406 · Se, or Seq = S + 0.406 · Sb. Use.

また、方向性電磁鋼板1の特性を向上させるために、母材鋼板10が、上記の元素に加えて、B:0.001~0.010%、Sn:0.01~0.20%、Cr:0.01~0.50%、及び、Cu:0.01~0.50%の1種又は2種以上を含有してもよい。これらのB、Sn、Cr、及びCuは、必須の元素ではないので、それぞれの含有量の下限は0%である。 In addition, in order to improve the properties of the grain-oriented electrical steel sheet 1, the base steel sheet 10 contains, in addition to the above elements, B: 0.001 to 0.010%, Sn: 0.01 to 0.20%, It may contain one or more of Cr: 0.01 to 0.50% and Cu: 0.01 to 0.50%. Since B, Sn, Cr, and Cu are not essential elements, the lower limit of their content is 0%.

<B:0.001~0.010%>
Bは、Sn、Cr、Cuとともに、被膜密着性の向上に寄与する元素である。B含有量が0.001%未満では、その向上効果が十分に得られないので、B含有量は0.001%以上とする。B含有量の好ましい値は0.002%以上、B含有量のより好ましい値は0.004%以上である。
<B: 0.001-0.010%>
B, along with Sn, Cr, and Cu, is an element that contributes to improving film adhesion. If the B content is less than 0.001%, the improvement effect cannot be sufficiently obtained, so the B content is set to 0.001% or more. A preferable value of the B content is 0.002% or more, and a more preferable value of the B content is 0.004% or more.

一方、B含有量が0.010%を超えると、母材鋼板10の強度が増加し、冷延時の通板性が劣化するので、B含有量は0.010%以下とする。B含有量の好ましい値は0.008%以下であり、B含有量のより好ましい値は0.006%以下である。 On the other hand, if the B content exceeds 0.010%, the strength of the base steel sheet 10 will increase and the threadability during cold rolling will deteriorate, so the B content is set to 0.010% or less. A preferable value of the B content is 0.008% or less, and a more preferable value of the B content is 0.006% or less.

<Sn:0.01~0.20%>
Snは、B、Cr、Cuとともに、被膜密着性の向上に寄与する元素である。Snの被膜密着性の向上機構は明らかでないが、Snの添加により母材鋼板10の表面の平滑度の向上が認められたので、Snは、母材鋼板10の表面の平滑化に寄与すると考えられる。
<Sn: 0.01-0.20%>
Sn, along with B, Cr, and Cu, is an element that contributes to improving film adhesion. Although the mechanism by which Sn improves film adhesion is not clear, since it was observed that the smoothness of the surface of the base steel plate 10 was improved by the addition of Sn, it is thought that Sn contributes to smoothing the surface of the base steel plate 10. It will be done.

Sn含有量が0.01%未満では、平滑化の効果が十分に得られないので、Sn含有量は0.01%以上とする。Sn含有量の好ましい値は0.02%以上であり、Sn含有量のより好ましい値は0.03%以上である。 If the Sn content is less than 0.01%, a sufficient smoothing effect cannot be obtained, so the Sn content is set to 0.01% or more. A preferable value of Sn content is 0.02% or more, and a more preferable value of Sn content is 0.03% or more.

一方、Sn含有量が0.20%を超えると、二次再結晶が不安定となり、磁気特性が劣化するので、Sn含有量は0.20%以下とする。Sn含有量の好ましい値は0.15%以下であり、Sn含有量のより好ましい値は0.10%以下である。 On the other hand, if the Sn content exceeds 0.20%, secondary recrystallization becomes unstable and magnetic properties deteriorate, so the Sn content is set to 0.20% or less. A preferable value of Sn content is 0.15% or less, and a more preferable value of Sn content is 0.10% or less.

<Cr:0.01~0.50%>
Crは、B、Sn、Cuとともに、被膜密着性の向上に寄与する元素である。Cr含有量が0.01%未満では、被膜密着性の向上効果が十分に得られないので、Cr含有量は0.01%以上とする。Cr含有量の好ましい値は0.05%以上であり、Cr含有量のより好ましい値は0.10%以上である。
<Cr:0.01~0.50%>
Cr, along with B, Sn, and Cu, is an element that contributes to improving film adhesion. If the Cr content is less than 0.01%, a sufficient effect of improving film adhesion cannot be obtained, so the Cr content is set to 0.01% or more. A preferable value of the Cr content is 0.05% or more, and a more preferable value of the Cr content is 0.10% or more.

一方、Cr含有量が0.50%を超えると、Crは易酸化性元素であるため、後述の鉄系酸化物(Fe-Si-O酸化物)及び酸化珪素を含有する中間被膜20の形成を阻害することがあるので、Cr含有量は0.50%以下とする。Cr含有量の好ましい値は0.30%以下であり、Cr含有量のより好ましい値は0.20%以下である。 On the other hand, if the Cr content exceeds 0.50%, since Cr is an easily oxidizable element, an intermediate film 20 containing an iron-based oxide (Fe-Si-O oxide) and silicon oxide, which will be described later, is formed. Since Cr content may be inhibited, the Cr content is set to 0.50% or less. A preferable value of the Cr content is 0.30% or less, and a more preferable value of the Cr content is 0.20% or less.

<Cu:0.01~0.50%>
Cuは、B、Sn、Crとともに、被膜密着性の向上に寄与する元素である。Cu含有量が0.01%未満では、被膜密着性の向上効果が十分に得られないので、Cu含有量は0.01%以上とする。Cu含有量の好ましい値は0.05%以上であり、Cu含有量のより好ましい値は0.10%以上である。
<Cu: 0.01 to 0.50%>
Cu, along with B, Sn, and Cr, is an element that contributes to improving film adhesion. If the Cu content is less than 0.01%, the effect of improving film adhesion cannot be sufficiently obtained, so the Cu content is set to 0.01% or more. A preferable value of the Cu content is 0.05% or more, and a more preferable value of the Cu content is 0.10% or more.

一方、Cu含有量が0.50%を超えると、熱間圧延中、母材鋼板10が脆化するので、Cu含有量は0.50%以下とする。Cu含有量の好ましい値は0.40%以下であり、Cu含有量のより好ましい値は0.30%以下である。 On the other hand, if the Cu content exceeds 0.50%, the base steel plate 10 becomes brittle during hot rolling, so the Cu content is set to 0.50% or less. A preferable value of the Cu content is 0.40% or less, and a more preferable value of the Cu content is 0.30% or less.

母材鋼板10において、上記元素を除く残部は、Fe及び不純物である。不純物は、鋼原料から不可避的に混入する元素及び製鋼過程で不可避的に混入する元素の少なくとも一方を含み、方向性電磁鋼板1の特性を阻害しない範囲で混入が許容される元素である。 In the base material steel plate 10, the remainder other than the above elements is Fe and impurities. Impurities include at least one of elements that are unavoidably mixed in from steel raw materials and elements that are unavoidably mixed in during the steel manufacturing process, and are elements that are allowed to be mixed in as long as they do not impede the properties of grain-oriented electrical steel sheet 1.

さらに、磁気特性の向上、強度、耐食性、疲労特性などの構造部材に求められる特性の向上、鋳造性や通板性の向上、スクラップ等使用による生産性の向上を目的として、母材鋼板10が、Mo、W、In、Bi、Sb、Ag、Te、Ce、V、Co、Ni、Se、Ca、Re、Os、Nb、Zr、Hf、Ta、Y、及びLaの1種又は2種以上を、合計で5.00%以下、好ましくは3.00%以下、より好ましくは1.00%以下含有してもよい。 Furthermore, the base steel plate 10 is used to improve magnetic properties, improve properties required for structural members such as strength, corrosion resistance, and fatigue properties, improve castability and threadability, and improve productivity by using scrap. , Mo, W, In, Bi, Sb, Ag, Te, Ce, V, Co, Ni, Se, Ca, Re, Os, Nb, Zr, Hf, Ta, Y, and one or more of La. may be contained in a total amount of 5.00% or less, preferably 3.00% or less, more preferably 1.00% or less.

〔中間被膜20の説明〕
中間被膜20は、母材鋼板10の表面に設けられた酸化珪素(例えばSiO)主体の外部酸化膜である。この中間被膜20は、母材鋼板10と張力絶縁被膜30との間に挟まれている。中間被膜20は、フォルステライト系被膜以外の被膜であるので、母材鋼板10と中間被膜20との界面40に凹凸はほとんど存在しない。つまり、フォルステライト系被膜を中間被膜として使用する従来の方向性電磁鋼板と比較して、本実施形態の方向性電磁鋼板1では、上記界面40の平坦度が極めて高く、交流磁場下での磁壁の移動がスムーズに行われるため、鉄損低減に寄与する。また、以下で説明するように、中間被膜20は、特定の構造を有する外部酸化膜であるため、張力絶縁被膜30の密着性向上にも寄与する。
[Description of intermediate film 20]
The intermediate coating 20 is an external oxide film mainly composed of silicon oxide (for example, SiO 2 ) provided on the surface of the base steel plate 10 . This intermediate coating 20 is sandwiched between the base steel plate 10 and the tension insulation coating 30. Since the intermediate coating 20 is a coating other than a forsterite coating, there are almost no irregularities at the interface 40 between the base steel plate 10 and the intermediate coating 20. That is, compared to the conventional grain-oriented electrical steel sheet that uses a forsterite-based film as an intermediate film, in the grain-oriented electrical steel sheet 1 of this embodiment, the flatness of the interface 40 is extremely high, and the flatness of the domain wall under an alternating magnetic field is Since the movement of the iron is carried out smoothly, it contributes to reducing iron loss. Further, as explained below, since the intermediate coating 20 is an external oxide film having a specific structure, it also contributes to improving the adhesion of the tension insulation coating 30.

図1に示すように、中間被膜20は、母材鋼板10と中間被膜20との界面40に断続的に接する第1領域21と、第1領域21を内包する第2領域22とを有する。それぞれの第1領域21は、Fe2SiO4及びFeSiO3の少なくとも1種を含む。図1では、隣り合う第1領域21の間隔が一定であるように示されているが、隣り合う第1領域21の間隔が異なる場合もある。第2領域22は、中間被膜20の内部において第1領域21以外の領域であり、酸化珪素(例えばSiO)を主体の酸化物として含む。 As shown in FIG. 1, the intermediate coating 20 has a first region 21 that is intermittently in contact with an interface 40 between the base steel plate 10 and the intermediate coating 20, and a second region 22 that includes the first region 21. Each first region 21 contains at least one of Fe 2 SiO 4 and FeSiO 3 . In FIG. 1, the distance between adjacent first regions 21 is shown to be constant, but the distance between adjacent first regions 21 may be different. The second region 22 is a region inside the intermediate film 20 other than the first region 21, and contains silicon oxide (for example, SiO 2 ) as a main oxide.

図1に示すように、中間被膜20の膜厚T1は、母材鋼板10の表面(界面40)と張力絶縁被膜30との間の膜厚であり、特に特定の膜厚に限定されないが、中間被膜20の平均膜厚は10~100nmが好ましい。 As shown in FIG. 1, the film thickness T1 of the intermediate film 20 is the film thickness between the surface (interface 40) of the base material steel plate 10 and the tension insulation film 30, and is not particularly limited to a specific film thickness, The average thickness of the intermediate film 20 is preferably 10 to 100 nm.

<中間被膜20の平均膜厚:10~100nm>
中間被膜20の平均膜厚が10nm未満であると、母材鋼板10と中間被膜20との界面40における密着力が不十分となり、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて、張力絶縁被膜30が剥離し易くなるので、中間被膜20の平均膜厚は10nm以上が好ましい。中間被膜20のより好ましい平均膜厚は20nm以上である。
<Average film thickness of intermediate film 20: 10 to 100 nm>
If the average film thickness of the intermediate coating 20 is less than 10 nm, the adhesion force at the interface 40 between the base steel plate 10 and the intermediate coating 20 will be insufficient, and the steel plate may be damaged during the manufacturing of the wound core or other excessive plastic working. The average thickness of the intermediate coating 20 is preferably 10 nm or more because the tension insulation coating 30 is likely to peel off in an environment where frictional force is superimposed between the two. A more preferable average thickness of the intermediate film 20 is 20 nm or more.

一方、中間被膜20の平均膜厚が100nmを超えると、中間被膜20自体の凝集力が大きくなり、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて、SiOを主体の酸化物として含む第2領域22内を起点として、張力絶縁被膜30が剥離し易くな、また、被膜密着性が十分であれば、非磁性層は薄い方が好ましいので、中間被膜20の平均膜厚は100nm以下が好ましい。中間被膜20のより好ましい平均膜厚は80nm以下である。 On the other hand, if the average film thickness of the intermediate coating 20 exceeds 100 nm, the cohesive force of the intermediate coating 20 itself becomes large, which may occur during the manufacturing of the wound core or other excessive plastic working, and in environments where frictional force is superimposed between steel plates. The tension insulating film 30 is likely to peel off starting from the second region 22 containing SiO 2 as the main oxide, and if the film adhesion is sufficient, the thinner the nonmagnetic layer is, the better. Therefore, the average thickness of the intermediate film 20 is preferably 100 nm or less. A more preferable average thickness of the intermediate film 20 is 80 nm or less.

中間被膜20の平均膜厚の特定方法は以下の通りである。 The method for determining the average thickness of the intermediate film 20 is as follows.

まず、方向性電磁鋼板1から、母材鋼板10の圧延方向に直交する断面が露出するようにサンプルを採取する。そのサンプル断面を研磨することにより、母材鋼板10と中間被膜20との界面40の長さが約10μm程度含まれる断面を現出させた後、図1に示すように、母材鋼板10の表面と張力絶縁被膜30との間の平均膜厚を次のように測定する。
母材鋼板10と中間被膜20との界面40に、フォルステライト系被膜を使った場合のような凹凸は存在しないが、界面40の形状が、長周期で山部と谷部が現れる波形状となっている場合が多い。同じく、張力絶縁被膜30と中間被膜20との界面50の形状も、長周期で山部と谷部が現れる波形状となっている場合が多い。
そこで、波形状を有する界面40及び界面50のそれぞれについて波中心線を引く。ここで、波曲線の平均線に平行な直線を引いたとき、この直線と波曲線で囲まれる面積が、この直線の両側で等しくなる直線を波中心線とする。これら2本の波中心線間の距離を膜厚と定義する。
そして、中間被膜20の内部において、第1領域21に重ならないように、界面40に垂直な線を、界面40に平行な方向に10本以上引き、その線上で、上記定義に従う膜厚を測定し、その平均を、中間被膜20の平均膜厚とする。
First, a sample is taken from the grain-oriented electrical steel sheet 1 so that a cross section perpendicular to the rolling direction of the base steel sheet 10 is exposed. By polishing the cross section of the sample, a cross section including the length of the interface 40 between the base steel plate 10 and the intermediate coating 20 of about 10 μm is created, and then the base steel plate 10 is polished as shown in FIG. The average film thickness between the surface and the tensile insulation coating 30 is measured as follows.
Although there is no unevenness at the interface 40 between the base steel plate 10 and the intermediate coating 20 as in the case where a forsterite coating is used, the shape of the interface 40 is a wave shape in which peaks and valleys appear over a long period. In many cases, it is. Similarly, the shape of the interface 50 between the tension insulating film 30 and the intermediate film 20 is often a wave shape in which peaks and valleys appear over a long period.
Therefore, a wave center line is drawn for each of the interface 40 and the interface 50 having a wave shape. Here, when a straight line parallel to the average line of the wave curve is drawn, the straight line in which the area surrounded by this straight line and the wave curve is equal on both sides of this straight line is defined as the wave center line. The distance between these two wave center lines is defined as the film thickness.
Then, inside the intermediate coating 20, draw 10 or more lines perpendicular to the interface 40 in a direction parallel to the interface 40 so as not to overlap the first region 21, and measure the film thickness according to the above definition on the line. The average thereof is defined as the average film thickness of the intermediate film 20.

次に、中間被膜20を構成する第1領域21と第2領域22について詳細に説明する。 Next, the first region 21 and the second region 22 that constitute the intermediate film 20 will be explained in detail.

<第1領域21>
中間被膜20の内部に、母材鋼板10の表面(界面40)に断続的に接する形態で存在する第1領域21は、FeとSiを含む酸化物からなる領域であればよいが、該酸化物は、主に、Fe2SiO4及びFeSiO3の少なくとも1種である。
<First area 21>
The first region 21 that exists inside the intermediate coating 20 and is intermittently in contact with the surface (interface 40) of the base steel plate 10 may be a region made of an oxide containing Fe and Si; The material is mainly at least one of Fe 2 SiO 4 and FeSiO 3 .

中間被膜20の内部における第1領域21の機能は明確でないが、巻鉄心製造過程又は他の過度な塑性加工過程で、張力絶縁被膜30に摩擦力が負荷されたとき、負荷された摩擦力を緩和する緩衝物として機能すると考えられる。 The function of the first region 21 inside the intermediate coating 20 is not clear, but when a frictional force is applied to the tension insulation coating 30 during the core manufacturing process or other excessive plastic working process, it is used to absorb the applied frictional force. It is thought that it functions as a relaxing buffer.

仮に、第1領域21が存在しない場合、母材鋼板10と酸化珪素主体の外部酸化膜との間の格子整合性は良好であるので、張力絶縁被膜30の密着性は良好であるが、酸化珪素は弾性率が高いので、張力絶縁被膜30に負荷された摩擦力、即ち、せん断応力(ずり応力)は、全て、母材鋼板10と第1領域21が存在しない外部酸化膜との界面に集中して、上記格子整合性が阻害され、張力絶縁被膜30の密着性が不安定になると考えられる。 If the first region 21 does not exist, the lattice matching between the base steel plate 10 and the external oxide film mainly composed of silicon oxide is good, so the adhesion of the tension insulation coating 30 is good, but the oxidation Since silicon has a high elastic modulus, all of the frictional force, that is, shear stress, applied to the tension insulation coating 30 is transferred to the interface between the base steel plate 10 and the external oxide film where the first region 21 is not present. It is thought that the above-mentioned lattice matching is inhibited in a concentrated manner, and the adhesion of the tension insulation coating 30 becomes unstable.

即ち、本実施形態のように、中間被膜20の内部で、Fe2SiO4及びFeSiO3の少なくとも1種を含有する第1領域21が母材鋼板10の表面(界面40)に断続的に接する形態で存在する場合、この第1領域21、すなわちFe2SiO4及びFeSiO3の少なくとも1種を含有する鉄系酸化物が、張力絶縁被膜30に摩擦力が負荷された際の応力を緩和する緩衝物として機能し、母材鋼板10と中間被膜20との間の良好な格子整合性が維持されて、張力絶縁被膜30の密着性が良好に維持されると考えられる。 That is, as in the present embodiment, inside the intermediate coating 20, the first region 21 containing at least one of Fe 2 SiO 4 and FeSiO 3 is intermittently in contact with the surface (interface 40) of the base steel plate 10. When the first region 21, that is, the iron-based oxide containing at least one of Fe 2 SiO 4 and FeSiO 3 , relieves stress when frictional force is applied to the tensile insulating coating 30. It is thought that it functions as a buffer, maintains good lattice matching between base steel plate 10 and intermediate coating 20, and maintains good adhesion of tension insulation coating 30.

第1領域21の存在及び中間被膜20の膜厚方向における第1領域21の厚さT2(図1参照)は、方向性電磁鋼板1の断面を物理的に研磨した後、透過型電子顕微鏡(TEM)で観察して確認することができる。方向性電磁鋼板1の断面を、例えば、Gaをイオン源とする集束イオンビームで研磨し、その後、TEMで、10000倍以上の倍率で撮影する。 The presence of the first region 21 and the thickness T2 (see FIG. 1) of the first region 21 in the film thickness direction of the intermediate coating 20 can be determined by physically polishing the cross section of the grain-oriented electrical steel sheet 1, and then using a transmission electron microscope. It can be confirmed by observing with TEM). A cross section of the grain-oriented electrical steel sheet 1 is polished, for example, with a focused ion beam using Ga as an ion source, and then photographed with a TEM at a magnification of 10,000 times or more.

第1領域21がFeとSiを含む酸化物からなる領域であることは、EDS分析等で元素分析を行うことで確認することができる。電子線回折法で確認することも可能である。電子線回折法は、主に、Fe2SiO4及びFeSiO3を確認する場合に用いられ、Fe2SiO4及びFeSiO3の少なくとも1種が結晶質であることも同時に確認することができる。 That the first region 21 is a region made of an oxide containing Fe and Si can be confirmed by elemental analysis such as EDS analysis. It is also possible to confirm by electron diffraction method. The electron diffraction method is mainly used to confirm Fe 2 SiO 4 and FeSiO 3 , and it can also confirm that at least one of Fe 2 SiO 4 and FeSiO 3 is crystalline.

Fe2SiO4及びFeSiO3の少なくとも1種が結晶質であることにより、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて必要な被膜密着性を高めることができる。これは、第1領域21と母材鋼板10との間の格子整合性が増大するか、又は、中間被膜20自体が緻密化することによるものと考えられる。 Because at least one of Fe 2 SiO 4 and FeSiO 3 is crystalline, it provides the necessary film adhesion during the production of wound cores or other excessive plastic working, and in environments where frictional forces are superimposed between steel plates. can be increased. This is considered to be due to an increase in the lattice matching between the first region 21 and the base steel plate 10, or to an increase in the density of the intermediate coating 20 itself.

中間被膜20の膜厚方向における第1領域21の平均厚さは1~20nmであることが好ましい。また、後述するように、第1領域21の存在比率Rは1%以上であることが好ましい。 The average thickness of the first region 21 in the thickness direction of the intermediate coating 20 is preferably 1 to 20 nm. Further, as will be described later, the abundance ratio R of the first region 21 is preferably 1% or more.

<第1領域21の平均厚さ:1~20nm>
第1領域21の平均厚さが1nm未満であると、第1領域21の応力緩和機能が十分に機能せず、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて必要な被膜密着性の確保が困難になるので、第1領域21の平均厚さは1nm以上が好ましい。第1領域21のより好ましい平均厚さは5nm以上である。
<Average thickness of first region 21: 1 to 20 nm>
If the average thickness of the first region 21 is less than 1 nm, the stress relaxation function of the first region 21 will not function sufficiently, and frictional force between the steel plates will occur during the manufacturing of the wound core or other excessive plastic working. The average thickness of the first region 21 is preferably 1 nm or more, since it becomes difficult to ensure the necessary film adhesion in an environment where there is overlap. A more preferable average thickness of the first region 21 is 5 nm or more.

一方、第1領域21の平均厚さが20nmを超えると、第1領域21自体の凝集力が大きくなり、同様に、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて必要な被膜密着性の確保が困難になるので、第1領域21の平均厚さは20nm以下が好ましい。第1領域21のより好ましい平均厚さは15nm以下である。 On the other hand, if the average thickness of the first region 21 exceeds 20 nm, the cohesive force of the first region 21 itself becomes large, and similarly, friction between the steel plates occurs during the manufacturing of the wound core or other excessive plastic working. Since it becomes difficult to ensure necessary film adhesion in an environment where forces are superimposed, the average thickness of the first region 21 is preferably 20 nm or less. A more preferable average thickness of the first region 21 is 15 nm or less.

第1領域21の平均厚さの特定方法は以下の通りである。 The method for determining the average thickness of the first region 21 is as follows.

まず、方向性電磁鋼板1から、母材鋼板10の圧延方向に直交する断面が露出するようにサンプルを採取する。そのサンプル断面を研磨することにより、母材鋼板10と中間被膜20との界面40の長さが約10μm程度含まれる断面を現出させる。
母材鋼板10と第1領域21との界面の形状は、長周期で山部と谷部が現れる波形状となっている場合が多い。同じく、第1領域21と第2領域22との界面の形状も、長周期で山部と谷部が現れる波形状となっている場合が多い。
そこで、母材鋼板10と第1領域21との界面と、第1領域21と第2領域22との界面のそれぞれについて波中心線を引く。ここで、波曲線の平均線に平行な直線を引いたとき、この直線と波曲線で囲まれる面積が、この直線の両側で等しくなる直線を波中心線とする。これら2本の波中心線間の距離を厚さと定義する。
First, a sample is taken from the grain-oriented electrical steel sheet 1 so that a cross section perpendicular to the rolling direction of the base steel sheet 10 is exposed. By polishing the cross section of the sample, a cross section including a length of the interface 40 between the base steel plate 10 and the intermediate coating 20 of about 10 μm is revealed.
The shape of the interface between the base steel plate 10 and the first region 21 is often a wavy shape in which peaks and valleys appear over a long period. Similarly, the shape of the interface between the first region 21 and the second region 22 is often a wave shape in which peaks and valleys appear in long periods.
Therefore, wave center lines are drawn for each of the interface between the base steel plate 10 and the first region 21 and the interface between the first region 21 and the second region 22. Here, when a straight line parallel to the average line of the wave curve is drawn, the straight line in which the area surrounded by this straight line and the wave curve is equal on both sides of this straight line is defined as the wave center line. The distance between these two wave center lines is defined as thickness.

そして、中間被膜20の内部において、第1領域21に重なるように、界面40に垂直な線を、界面40に平行な方向に10本以上引き、その線上で、上記定義に従う厚さを測定し、その平均を、第1領域21の平均厚さとする。 Then, inside the intermediate coating 20, ten or more lines perpendicular to the interface 40 are drawn in a direction parallel to the interface 40 so as to overlap the first region 21, and the thickness according to the above definition is measured on the lines. , the average thereof is taken as the average thickness of the first region 21.

<第1領域21の存在比率:界面の全長さ当たり1%以上>
図1に示すように、母材鋼板10の表面には、第1領域21が断続的な形態で形成されており、第1領域21が形成されていない母材鋼板10の表面には、第1領域21を覆い包む形態で第2領域22が形成されている。
<Existence ratio of first region 21: 1% or more per total length of interface>
As shown in FIG. 1, first regions 21 are formed intermittently on the surface of the base steel plate 10, and the first regions 21 are formed on the surface of the base steel plate 10 where the first regions 21 are not formed. A second region 22 is formed to cover and wrap the first region 21 .

図1に示すように、母材鋼板10の圧延方向に直交する方向に長さLsumを有する断面をみた場合に、その断面内に現れる第1領域21が界面40に接する長さの合計値をΣLとしたとき、第1領域21の存在比率Rは下記(1)式で定義される。
R=(ΣL×100)/Lsum …(1)
As shown in FIG. 1, when looking at a cross section having a length Lsum in the direction perpendicular to the rolling direction of the base steel plate 10, the total length of the first region 21 appearing within the cross section touching the interface 40 is calculated as follows: When ΣL, the abundance ratio R of the first region 21 is defined by the following equation (1).
R=(ΣL×100)/Lsum…(1)

上記(1)式において、ΣLは下記(2)式で定義される。(2)式において、Liは、長さLsumを有する断面内に現れるi番目の第1領域21が界面40に接する長さである(図1参照)。長さLsumは、少なくとも10μm程度必要である。
ΣL=L1+L2+L3+・・+Li+・・+Ln …(2)
In the above equation (1), ΣL is defined by the following equation (2). In equation (2), Li is the length at which the i-th first region 21 appearing in the cross section having length Lsum contacts the interface 40 (see FIG. 1). The length Lsum is required to be at least about 10 μm.
ΣL=L 1 +L 2 +L 3 +...+Li+...+L n ...(2)

第1領域21の存在比率Rは1%以上が好ましい。存在比率Rが1%未満であると、巻鉄心製造時又は他の過度な塑性加工時、及び、鋼板間に摩擦力が重畳する環境にて必要な被膜密着性を確保することが困難になるので、存在比率Rは1%以上が好ましい。存在比率Rのより好ましい値は5%以上である。 The abundance ratio R of the first region 21 is preferably 1% or more. If the abundance ratio R is less than 1%, it will be difficult to ensure the necessary film adhesion during the production of wound cores or other excessive plastic working, and in environments where frictional forces are superimposed between steel plates. Therefore, the abundance ratio R is preferably 1% or more. A more preferable value of the abundance ratio R is 5% or more.

存在比率Rは膜形成条件によるので、その上限は、特に限定できないが、概ね50%を超えると、被膜密着性向上効果が飽和し、また、交流励磁下における磁壁移動が円滑に進行し難くなり、磁気特性が低下、特に、鉄損が増大するので、存在比率Rは50%以下が好ましい。安定した被膜密着性と優れた磁気特性を確保する点から、存在比率Rは、40%以下がより好ましい。 Since the abundance ratio R depends on the film formation conditions, its upper limit cannot be set in particular, but if it exceeds approximately 50%, the effect of improving film adhesion will be saturated, and domain wall movement under AC excitation will be difficult to proceed smoothly. The abundance ratio R is preferably 50% or less, since the magnetic properties are lowered and, in particular, the iron loss is increased. From the viewpoint of ensuring stable film adhesion and excellent magnetic properties, the abundance ratio R is more preferably 40% or less.

<第2領域22>
第2領域22は酸化珪素を主体の酸化物として含有する。酸化珪素の化学組成はSiOαである。化学的安定性の観点から、α=1.0~2.0が好ましい。α=1.5~2.0が、より好ましく、α≒2.0が、化学的安定性に加え、被膜密着性の観点から、さらに好ましい。
<Second area 22>
The second region 22 contains silicon oxide as a main oxide. The chemical composition of silicon oxide is SiO α . From the viewpoint of chemical stability, α=1.0 to 2.0 is preferable. α=1.5 to 2.0 is more preferable, and α≈2.0 is even more preferable from the viewpoint of film adhesion as well as chemical stability.

酸化珪素領域(第2領域22)の存在は、第1領域21と同様に、方向性電磁鋼板1の断面を物理的に研磨し、その後、透過型電子顕微鏡(TEM)で観察して確認することができる。酸化珪素であることの確認は、EDS分析等の元素分析で行うことができる。なお、酸化珪素が、例えば、βクリストバライト構造の酸化珪素である場合、その結晶化温度は1470℃程度と高温で、通常の製造工程では形成されないので、その同定は、EDS分析等の元素分析によるSiとOの原子比で行う。 The presence of the silicon oxide region (second region 22) is confirmed by physically polishing the cross section of the grain-oriented electrical steel sheet 1 and then observing it with a transmission electron microscope (TEM), similarly to the first region 21. be able to. Confirmation that it is silicon oxide can be performed by elemental analysis such as EDS analysis. Note that if silicon oxide is, for example, silicon oxide with a β-cristobalite structure, its crystallization temperature is as high as about 1470°C, and it is not formed in normal manufacturing processes, so its identification is performed by elemental analysis such as EDS analysis. This is done based on the atomic ratio of Si and O.

〔張力絶縁被膜30の説明〕
次に、中間被膜20の上に形成される張力絶縁被膜30について説明する。
[Description of tension insulation coating 30]
Next, the tension insulation coating 30 formed on the intermediate coating 20 will be explained.

張力絶縁被膜30として、りん酸マグネシウム又はりん酸アルミニウムと、クロム酸及びコロイダルシリカからなる絶縁被膜(特許文献20、参照)や、該絶縁被膜より高張力が得られる、結晶質のほう酸とアルミナ酸化物からなる絶縁被膜(特許文献23、参照)等を用いることができる。 The tension insulation coating 30 may be an insulation coating made of magnesium phosphate or aluminum phosphate, chromic acid, and colloidal silica (see Patent Document 20), or crystalline boric acid and alumina oxide, which can provide higher tension than the insulation coating. An insulating coating made of a material (see Patent Document 23) or the like can be used.

張力絶縁被膜30の膜厚T3は、磁気特性の改善に必要な張力、及び、鉄心における鋼板の占積率等を勘案して設定するが、0.5~10μmが好ましい。張力絶縁被膜30の膜厚T3が0.5μm未満であると、張力付与による鉄損低減効果が乏しいので、上記膜厚T3は0.5μm以上が好ましい。より好ましくは0.8μm以上である。 The thickness T3 of the tension insulation coating 30 is set in consideration of the tension required to improve the magnetic properties, the space factor of the steel plate in the iron core, etc., and is preferably 0.5 to 10 μm. If the thickness T3 of the tension insulating coating 30 is less than 0.5 μm, the effect of reducing iron loss by applying tension is poor, so the thickness T3 is preferably 0.5 μm or more. More preferably, it is 0.8 μm or more.

一方、張力絶縁被膜30の膜厚T3が10μmを超えると、中間被膜20が適切に形成されていても、十分な被膜密着性が得られない場合があり、また、上記占積率が低下するので、上記膜厚T3は10μm以下が好ましい。より好ましくは8μm以下である。 On the other hand, if the thickness T3 of the tension insulating coating 30 exceeds 10 μm, sufficient coating adhesion may not be obtained even if the intermediate coating 20 is properly formed, and the above-mentioned space factor may decrease. Therefore, the film thickness T3 is preferably 10 μm or less. More preferably, it is 8 μm or less.

〔方向性電磁鋼板1の製造方法〕
次に、方向性電磁鋼板1の製造方法について説明する。
[Method for manufacturing grain-oriented electrical steel sheet 1]
Next, a method for manufacturing the grain-oriented electrical steel sheet 1 will be explained.

<製造方法>
(i)(a)仕上げ焼鈍で、鋼板表面に生成したフォルステライト等の無機鉱物質の被膜を、酸洗、研削等の手段で除去した鋼板、(b)仕上げ焼鈍で上記無機鉱物質の被膜の生成を意図的に抑制した鋼板、又は、(c)鋼板表面を鏡面光沢を呈するまで平滑化した鋼板を基材(母材鋼板10)とする。
(ii)上記基材表面に、張力絶縁被膜30用の形成液を塗布して焼き付けて張力絶縁被膜30を形成する際、焼付け時の加熱及び雰囲気を適切に制御して、張力絶縁被膜30と基材との界面を酸化し、Fe2SiO4及びFeSiO3の少なくとも一種を含む第1領域21と、酸化珪素を主体の酸化物として含有する第2領域22とを有する中間被膜20を基材表面に形成するとともに、この中間被膜20上に張力絶縁被膜30を形成する。
<Manufacturing method>
(i) (a) A steel plate from which a coating of inorganic minerals such as forsterite formed on the surface of the steel plate during final annealing has been removed by means such as pickling or grinding; (b) A coating of the above-mentioned inorganic minerals during final annealing. The base material (base material steel sheet 10) is a steel sheet in which the formation of .
(ii) When coating the surface of the base material with a forming liquid for the tension insulation coating 30 and baking it to form the tension insulation coating 30, the heating and atmosphere during baking are appropriately controlled, and the tension insulation coating 30 and the tension insulation coating 30 are formed. An intermediate film 20 that is oxidized at the interface with the base material and has a first region 21 containing at least one of Fe 2 SiO 4 and FeSiO 3 and a second region 22 containing silicon oxide as a main oxide is applied to the base material. At the same time, a tension insulation coating 30 is formed on the intermediate coating 20.

フォルステライト等の無機鉱物質の被膜を酸洗、研削等の手段で除去した鋼板、及び、上記無機鉱物質の被膜の生成を抑制した鋼板は、例えば、次のように作製する。 A steel plate from which a film of inorganic mineral such as forsterite has been removed by means such as pickling or grinding, and a steel plate from which the formation of the film of inorganic mineral is suppressed are produced, for example, as follows.

Siを2.0~4.0質量%程度含有する珪素鋼片を熱間圧延に供して熱延鋼板とし、必要に応じ、熱延鋼板に焼鈍を施し、その後、熱延鋼板又は焼鈍熱延鋼板に、1回又は中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚の鋼板に仕上げ、次いで、該鋼板に脱炭焼鈍を施すとともに、一次再結晶を進行させる。脱炭焼鈍により鋼板表面には酸化層が形成される。 A silicon steel slab containing about 2.0 to 4.0 mass% of Si is hot rolled to obtain a hot rolled steel sheet, and if necessary, the hot rolled steel sheet is annealed, and then hot rolled steel sheet or annealed hot rolled The steel plate is subjected to cold rolling once or twice or more with intermediate annealing in between to finish the steel plate to the final thickness, and then the steel plate is subjected to decarburization annealing and primary recrystallization is advanced. An oxidized layer is formed on the surface of the steel sheet due to decarburization annealing.

酸化層を有する鋼板の表面に、マグネシア(MgO)を主成分とする焼鈍分離剤を塗布して乾燥し、乾燥後、コイル状に巻き取って、仕上げ焼鈍(二次再結晶)に供する。仕上げ焼鈍により、鋼板表面には、フォルステライト(Mg2SiO4)を主体とする無機鉱物質の被膜が形成されるが、該被膜を、酸洗、研削等の手段で除去する。被膜除去後、好ましくは、化学研磨又は電界研磨で、鋼板表面を平滑に仕上げる。 An annealing separator containing magnesia (MgO) as a main component is applied to the surface of a steel sheet having an oxidized layer and dried. After drying, the steel sheet is wound into a coil shape and subjected to final annealing (secondary recrystallization). As a result of final annealing, a film of an inorganic mineral substance mainly composed of forsterite (Mg 2 SiO 4 ) is formed on the surface of the steel sheet, and this film is removed by means such as pickling and grinding. After the coating is removed, the surface of the steel plate is preferably smoothed by chemical polishing or electropolishing.

マグネシア(MgO)を主成分とする焼鈍分離剤の代わりに、アルミナを主成分とする焼鈍分離剤を塗布して乾燥し、乾燥後、コイル状に巻き取って、仕上げ焼鈍(二次再結晶)に供する。仕上げ焼鈍により、フォルステライト等の無機鉱物質の被膜の生成を意図的に抑制した鋼板を得ることができる。仕上げ焼鈍後、好ましくは、化学研磨又は電界研磨で、鋼板表面を平滑に仕上げる。 Instead of an annealing separator whose main ingredient is magnesia (MgO), an annealing separator whose main ingredient is alumina is applied and dried. After drying, it is wound up into a coil shape and subjected to final annealing (secondary recrystallization). Serve. Finish annealing makes it possible to obtain a steel sheet in which the formation of a film of inorganic minerals such as forsterite is intentionally suppressed. After final annealing, the surface of the steel plate is preferably finished smooth by chemical polishing or electric field polishing.

(a)フォルステライト等の無機鉱物質の被膜を除去した鋼板、(b)フォルステライト等の無機鉱物質の被膜の生成を抑制した鋼板、又は、(c)鋼板表面を鏡面光沢を呈するまで平滑化した鋼板の表面に、張力絶縁被膜30用の形成液を塗布して焼き付ける。 (a) Steel sheet from which a film of inorganic minerals such as forsterite has been removed, (b) Steel sheet from which the formation of a film of inorganic minerals such as forsterite has been suppressed, or (c) Steel sheet surface smoothed to a specular luster. A forming liquid for the tension insulation coating 30 is applied to the surface of the steel plate and baked.

例えば、張力絶縁被膜30用の形成液として代表的に用いられる、りん酸塩とコロイド状シリカを主体とする液の場合、該液を、乾燥被膜厚で0.5~10μmとなる量を鋼板表面に塗布して焼き付けて、張力絶縁被膜30を形成する。 For example, in the case of a liquid mainly composed of phosphate and colloidal silica, which is typically used as a forming liquid for the tensile insulation coating 30, apply the liquid to the steel sheet in an amount that gives a dry coating thickness of 0.5 to 10 μm. The tensile insulation coating 30 is formed by applying it to the surface and baking it.

上記焼付けは、例えば、水素:窒素が75%:25%で、露点が5~50℃の窒素-水素混合雰囲気で、650~950℃に5~300秒加熱して行う。上記焼付け時の加熱温度、加熱速度、及び、雰囲気(組成、露点)を適切に制御することにより、張力絶縁被膜30内に雰囲気中の酸素及び水分の少なくとも一方が拡散し、鋼板表面を酸化して、Fe2SiO4及びFeSiO3の少なくとも1種を含む第1領域21、及び酸化珪素を含む第2領域22を有する中間被膜20が形成されるとともに、中間被膜20の上に、張力絶縁被膜30が形成される。 The baking is performed, for example, in a nitrogen-hydrogen mixed atmosphere of 75%:25% hydrogen:nitrogen and a dew point of 5 to 50°C, by heating to 650 to 950°C for 5 to 300 seconds. By appropriately controlling the heating temperature, heating rate, and atmosphere (composition, dew point) during the baking process, at least one of oxygen and moisture in the atmosphere diffuses into the tensile insulation coating 30 and oxidizes the steel plate surface. As a result, an intermediate film 20 having a first region 21 containing at least one of Fe 2 SiO 4 and FeSiO 3 and a second region 22 containing silicon oxide is formed, and a tension insulating film is formed on the intermediate film 20. 30 is formed.

上記形成方法における、焼付け時の加熱温度と加熱時間、及び、焼付け後の冷却について説明する。 The heating temperature and heating time during baking and cooling after baking in the above forming method will be explained.

加熱温度:650~950℃
加熱時間:5~300秒
加熱温度と加熱時間は、張力絶縁被膜30の焼付硬化を促進し、完了させ、張力付与効果を得るため、適宜設定するが、加熱温度は650℃以上、加熱時間は5秒以上が好ましい。
Heating temperature: 650-950℃
Heating time: 5 to 300 seconds The heating temperature and heating time are appropriately set in order to promote and complete the baking hardening of the tension insulating coating 30 and obtain the tension imparting effect. 5 seconds or more is preferable.

中間被膜20の効率的な形成をも考慮すると、加熱温度は700℃以上、加熱時間は10秒以上が好ましく、800℃以上、10秒以上がより好ましい。 Considering the efficient formation of the intermediate film 20, the heating temperature is preferably 700° C. or higher and the heating time is preferably 10 seconds or longer, and more preferably 800° C. or higher and 10 seconds or longer.

加熱温度の上限は、特に限定されないが、950℃を超えると、張力絶縁被膜30の張力付与効果が飽和するとともに、張力絶縁被膜30中の化学結合の一部が破断し、張力が却って低下して磁気特性が低下するので、加熱温度は950℃以下が好ましい。より好ましくは920℃以下である。 The upper limit of the heating temperature is not particularly limited, but if it exceeds 950°C, the tension imparting effect of the tension insulation coating 30 will be saturated, and some of the chemical bonds in the tension insulation coating 30 will be broken, causing the tension to decrease instead. The heating temperature is preferably 950° C. or lower because the magnetic properties deteriorate. More preferably it is 920°C or lower.

加熱時間の上限は、特に限定されないが、300秒を超えると、張力絶縁被膜30の張力付与効果が飽和するとともに、張力絶縁被膜30中の化学結合の一部が破断し、張力が却って低下して磁気特性が低下するので、加熱時間は300秒以下が好ましい。より好ましくは280秒以下である。 The upper limit of the heating time is not particularly limited, but if it exceeds 300 seconds, the tension imparting effect of the tension insulation coating 30 will be saturated, and some of the chemical bonds in the tension insulation coating 30 will be broken, causing the tension to decrease instead. The heating time is preferably 300 seconds or less because the magnetic properties deteriorate. More preferably, it is 280 seconds or less.

雰囲気露点:-20~40℃
冷却速度:5~100℃/秒
張力絶縁被膜30の焼付硬化が完了した後は、鋼板の表面が酸化して、中間被膜20が変質しないように、冷却時の雰囲気の酸化度(露点)と冷却速度を適切に制御する必要がある。
Atmosphere dew point: -20~40℃
Cooling rate: 5 to 100°C/sec After the baking hardening of the tension insulation coating 30 is completed, the oxidation degree (dew point) of the atmosphere during cooling is adjusted to prevent the surface of the steel plate from oxidizing and the intermediate coating 20 from deteriorating. It is necessary to properly control the cooling rate.

例えば、鋼板の表面酸化に影響する500℃までの冷却は、水素:窒素が75%:25%、露点が-20~40℃の雰囲気中で行うことが好ましい。通常、冷却速度は、鋼板の酸化を抑制する点で速い方が好ましいが、過度に速いと、鋼板の歪み量が増大し、磁気特性が低下するので、冷却速度は5~100℃/秒が好ましい。より好ましくは10~90℃/秒である。 For example, cooling to 500°C, which affects the surface oxidation of the steel plate, is preferably carried out in an atmosphere of 75%:25% hydrogen:nitrogen and a dew point of -20 to 40°C. Normally, a faster cooling rate is preferable in order to suppress oxidation of the steel plate, but if it is too fast, the amount of distortion in the steel plate will increase and the magnetic properties will deteriorate, so the cooling rate should be 5 to 100°C/sec. preferable. More preferably it is 10 to 90°C/sec.

鋼板の表面酸化を抑制する点や、鋼板の歪み量を抑制する点で、冷却雰囲気の酸化度は、張力絶縁被膜30用の形成液を焼き付ける焼付け雰囲気の酸化度より低い方が好ましい。 The degree of oxidation of the cooling atmosphere is preferably lower than the degree of oxidation of the baking atmosphere in which the forming liquid for the tension insulation coating 30 is baked, in terms of suppressing surface oxidation of the steel plate and suppressing the amount of distortion of the steel plate.

また、鋼板表面に張力絶縁被膜30用の形成液を塗布せず、焼鈍で中間被膜20を形成し、冷却後、張力絶縁被膜30用の形成液を塗布して焼き付けて、張力絶縁被膜30を形成してもよい。 Alternatively, the intermediate coating 20 is formed by annealing without applying a forming liquid for the tension insulation coating 30 on the surface of the steel plate, and after cooling, the forming liquid for the tension insulation coating 30 is applied and baked to form the tension insulation coating 30. may be formed.

加熱温度:600~1150℃
雰囲気露点:-20~20℃
中間被膜20を形成する焼鈍において、加熱温度は600~1150℃が好ましく、雰囲気は、過度な酸化を防ぐ観点で、水素を混合した窒素雰囲気が好ましい。例えば、水素:窒素が75%:25%で、露点が-20~20℃の雰囲気が好ましい。
Heating temperature: 600-1150℃
Atmosphere dew point: -20~20℃
In annealing to form the intermediate coating 20, the heating temperature is preferably 600 to 1150° C., and the atmosphere is preferably a nitrogen atmosphere mixed with hydrogen from the viewpoint of preventing excessive oxidation. For example, an atmosphere with hydrogen:nitrogen ratio of 75%:25% and a dew point of -20 to 20°C is preferable.

第1領域21の源となる鉄系酸化物を鋼板表面に形成するため、焼鈍の初期段階では、雰囲気の露点を0~40℃に制御し、その後、第1領域21と第2領域22を有する中間被膜20を形成するため、露点を-20~20℃に制御し、雰囲気の酸化性を低くすることが好ましい。 In order to form iron-based oxides, which become the source of the first region 21, on the surface of the steel sheet, the dew point of the atmosphere is controlled at 0 to 40°C in the initial stage of annealing, and then the first region 21 and the second region 22 are formed. In order to form the intermediate film 20 having the following properties, it is preferable to control the dew point to -20 to 20°C and to lower the oxidizing nature of the atmosphere.

このように、中間被膜20の形成時に、雰囲気の酸化度を、焼鈍の初期から後期にかけ、高い側から低い側に制御することで、第1領域21及び第2領域22を有する中間被膜20を効率よく、かつ、確実に形成することができる。 In this way, when forming the intermediate coating 20, the oxidation degree of the atmosphere is controlled from the high side to the low side from the early stage to the late stage of annealing, thereby forming the intermediate film 20 having the first region 21 and the second region 22. It can be formed efficiently and reliably.

中間被膜20の形成後、鋼板表面に、りん酸塩とコロイド状シリカを主体とする張力絶縁被膜30用の形成液を塗布して焼き付けて張力絶縁被膜30を形成する。 After forming the intermediate coating 20, a forming liquid for the tension insulation coating 30, which is mainly composed of phosphate and colloidal silica, is applied to the surface of the steel plate and baked to form the tension insulation coating 30.

加熱温度:650~950℃
加熱時間:5~300秒
雰囲気露点:-20~20℃
中間被膜20の形成はほぼ終了しているので、張力絶縁被膜30用の形成液の焼付け時、鋼板がさらに酸化しないよう、雰囲気は、酸化度が低い雰囲気が好ましい。例えば、水素:窒素が75%:25%で、露点が-20~20℃の雰囲気が好ましい。
Heating temperature: 650-950℃
Heating time: 5 to 300 seconds Atmosphere dew point: -20 to 20℃
Since the formation of the intermediate coating 20 is almost completed, the atmosphere is preferably an atmosphere with a low degree of oxidation so that the steel plate is not further oxidized when baking the forming liquid for the tension insulation coating 30. For example, an atmosphere with hydrogen:nitrogen ratio of 75%:25% and a dew point of -20 to 20°C is preferable.

露点が-20℃未満であると、Fe-Si-O酸化物を含有する第1領域21中のFeが還元されて、張力絶縁被膜30の絶縁性を阻害するので、露点は-20℃以上が好ましい。より好ましくは-10℃以上である。 If the dew point is less than -20°C, Fe in the first region 21 containing Fe-Si-O oxide will be reduced and impede the insulation properties of the tensile insulation coating 30, so the dew point should be -20°C or higher. is preferred. More preferably it is -10°C or higher.

一方、露点が20℃を超えると、鋼板表面の酸化が進行し、中間被膜20が厚くなりすぎて張力絶縁被膜30の密着性が低下するので、露点は20℃以下が好ましい。より好ましくは10℃以下である。加熱温度は650~950℃が好ましく、加熱時間は5~300秒が好ましい。 On the other hand, if the dew point exceeds 20°C, oxidation of the surface of the steel plate will progress, the intermediate coating 20 will become too thick, and the adhesion of the tension insulation coating 30 will decrease, so the dew point is preferably 20°C or less. More preferably it is 10°C or lower. The heating temperature is preferably 650 to 950°C, and the heating time is preferably 5 to 300 seconds.

焼付け終了後の鋼板は、好ましくは、露点が-20~20℃の雰囲気で、冷却速度5~100℃/秒で冷却する。 The steel plate after baking is preferably cooled in an atmosphere with a dew point of -20 to 20°C at a cooling rate of 5 to 100°C/sec.

雰囲気露点:-20~20℃
冷却速度:5~100℃/秒
焼付け終了後の鋼板の冷却についても同様で、鋼板の酸化に影響を与える500℃までの冷却は、水素:窒素が75%:25%、露点が-20~20℃の雰囲気で行う。冷却速度は、鋼板の表面酸化を抑制する点で速い方が好ましいが、過度に速いと、鋼板の歪み量が増大し、磁気特性が低下するので、冷却速度は5~100℃/秒が好ましい。
Atmosphere dew point: -20~20℃
Cooling rate: 5 to 100°C/sec The same applies to cooling the steel plate after baking. Cooling to 500°C, which affects the oxidation of the steel plate, requires hydrogen: nitrogen of 75%: 25%, dew point of -20 to -20°C. It is carried out in an atmosphere of 20°C. A fast cooling rate is preferable in order to suppress surface oxidation of the steel plate, but if it is too fast, the amount of distortion in the steel plate will increase and the magnetic properties will decrease, so the cooling rate is preferably 5 to 100°C/sec. .

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.

<実施例1>
表1に示す成分組成の珪素鋼片を1200℃にて60分加熱して熱間圧延に供し、板厚2.30mmの熱延鋼板とし、該熱延鋼板に1080℃にて180秒の熱延板焼鈍を施し、その後、冷間圧延を施して、板厚0.23mmの冷延鋼板を得た。
<Example 1>
A silicon steel slab having the composition shown in Table 1 was heated at 1200°C for 60 minutes and subjected to hot rolling to obtain a hot rolled steel plate with a thickness of 2.30mm. The plate was annealed and then cold rolled to obtain a cold rolled steel plate with a thickness of 0.23 mm.

上記冷延鋼板に、脱炭焼鈍と窒化焼鈍を施した後、アルミナを主成分とする焼鈍分離剤を塗布して、水素雰囲気で1200℃の仕上げ焼鈍を施し、次いで、自然冷却して、平滑な表面の鋼板を得た。 After decarburization annealing and nitriding annealing, the cold-rolled steel sheet was coated with an annealing separator mainly composed of alumina, finished annealed at 1200°C in a hydrogen atmosphere, and then naturally cooled to smooth it. A steel plate with a smooth surface was obtained.

上記鋼板を、25%N2+75%H2で、かつ、露点+10℃の雰囲気で、10℃/秒の昇温速度で1000℃まで昇温し、5秒保持した後、露点を-10℃に切り替て、同様に、1000℃で25秒保持し、その後、10℃/秒で冷却して、鋼板表面に中間被膜を形成した。 The above steel plate was heated to 1000°C at a heating rate of 10°C/sec in an atmosphere of 25% N 2 + 75% H 2 and a dew point of +10°C, held for 5 seconds, and then the dew point was reduced to -10°C. Similarly, the temperature was changed to 1000°C for 25 seconds, and then the temperature was cooled at 10°C/second to form an intermediate film on the surface of the steel plate.

その後、鋼板表面に、りん酸アルミニウムとコロイダルシリカからなる張力絶縁被膜用の形成液を、乾燥膜厚が3μmとなるように塗布し、25%N2+75%H2で、かつ、露点+10℃の雰囲気で、10℃/秒の昇温速度で800℃まで昇温し、30秒保持し、その後、10℃/秒で冷却した。 Thereafter, a forming solution for a tensile insulation film consisting of aluminum phosphate and colloidal silica was applied to the surface of the steel plate so that the dry film thickness was 3 μm, and the temperature was 25% N 2 + 75% H 2 and the dew point was +10°C. In this atmosphere, the temperature was raised to 800°C at a rate of 10°C/second, held for 30 seconds, and then cooled at 10°C/second.

(層組織)
中間被膜の化学組成を、次のように調査した。方向性電磁鋼板の圧延方向に直交する鋼板断面から、集束イオンビーム法で作製した微小試験片の断面を透過型電子顕微鏡(TEM)で観察した。観察は、界面方向(横幅)10μmにわたって行った。また、TEMに付属のエネルギー分散型分光分析装置(EDS)で、酸素(O)、シリコン(Si)、鉄(Fe)等の元素分析及び定量分析を行い、化合物を同定した。
(layer structure)
The chemical composition of the intermediate coating was investigated as follows. A cross section of a micro test piece produced by a focused ion beam method was observed using a transmission electron microscope (TEM) from a steel plate cross section perpendicular to the rolling direction of a grain-oriented electrical steel sheet. The observation was performed over a 10 μm area in the interface direction (width). In addition, elemental and quantitative analyzes of oxygen (O), silicon (Si), iron (Fe), etc. were performed using an energy dispersive spectrometer (EDS) attached to the TEM, and compounds were identified.

観察した界面方向10μmにおいて、中間被膜の平均膜厚、Fe2SiO4及びFeSiO3の少なくとも1種を含有する第1領域の平均厚さ、及び、界面長さLsum当たりの第1領域の存在比率Rを測定した。また、中間被膜の第2領域に含まれる酸化珪素及び第1領域に含まれるFe2SiO4及びFeSiO3の少なくとも1種について、電子線回折パターンにより、結晶性調査及び結晶同定を行った。なお、中間被膜の第2領域に含まれる酸化珪素の組成は、いずれの試料においてもSiO2であった。 In the observed interface direction of 10 μm, the average film thickness of the intermediate film, the average thickness of the first region containing at least one of Fe 2 SiO 4 and FeSiO 3 , and the abundance ratio of the first region per interface length Lsum R was measured. Furthermore, crystallinity investigation and crystal identification were performed using electron beam diffraction patterns for silicon oxide contained in the second region of the intermediate film and at least one of Fe 2 SiO 4 and FeSiO 3 contained in the first region. Note that the composition of silicon oxide contained in the second region of the intermediate film was SiO 2 in all samples.

表2に、中間被膜の同定及び測定結果を示す。 Table 2 shows the identification and measurement results of the intermediate film.

(被膜密着性 曲げ)
張力絶縁被膜の被膜密着性は、評価用試料を、直径20mmの円筒に巻き付け、180°曲げた時の被膜残存面積率で評価した。
(Film adhesion bending)
The film adhesion of the tension insulation film was evaluated by the remaining area ratio of the film when the evaluation sample was wound around a cylinder with a diameter of 20 mm and bent by 180°.

評価基準は、以下のとおりである。
◎:被膜残存面積率が95%以上(非常に優れる)
○:被膜残存面積率が90%以上95%未満(優れる)
△:被膜残存面積率が80%以上90%未満(効果がある)
×:被膜残存面積率が80%未満(効果がない)
The evaluation criteria are as follows.
◎: Film remaining area ratio is 95% or more (excellent)
○: Film remaining area ratio is 90% or more and less than 95% (excellent)
△: Film remaining area ratio is 80% or more and less than 90% (effective)
×: Film remaining area ratio is less than 80% (no effect)

表2に、評価結果を併せて示す。 Table 2 also shows the evaluation results.

(被膜密着性 摩擦)
摩擦力を付与した際の張力絶縁被膜の被膜密着性を評価するため、直径30mmの円筒に巻き付け、180°で、一旦、内側に曲げ、曲げの後、曲げ伸ばした試料を作製した。この試料を、図2に示すように、定盤上に固定して、試料表面に、直径10mmの鋼球を1kgfで押し付け、1mm/秒の速度で30秒スライド(30mm)させて、鋼板表面に摩擦痕を付与した(上図、参照)。この摩擦痕において剥離した被膜の最大剥離幅を評価した(下図、参照)。
(Film adhesion friction)
In order to evaluate the film adhesion of the tension insulating film when a frictional force is applied, a sample was prepared by wrapping it around a cylinder with a diameter of 30 mm, bending it inward at 180°, and then bending and stretching it. As shown in Figure 2, this sample was fixed on a surface plate, a steel ball with a diameter of 10 mm was pressed against the sample surface at 1 kgf, and the steel ball was slid (30 mm) at a speed of 1 mm/sec for 30 seconds to remove the surface of the steel plate. Friction marks were added to the surface (see figure above). The maximum peeling width of the film peeled off from this friction trace was evaluated (see the figure below).

評価基準は、以下のとおりである。
◎:最大剥離幅が1mm以下(非常に優れる)
○:最大剥離幅が2mm以下(優れる)
△:最大剥離幅が4mm以下(効果がある)
×:最大剥離幅は4mmを超える(効果がない)
The evaluation criteria are as follows.
◎: Maximum peeling width is 1 mm or less (excellent)
○: Maximum peeling width is 2 mm or less (excellent)
△: Maximum peeling width is 4 mm or less (effective)
×: Maximum peeling width exceeds 4 mm (no effect)

表2に、評価結果を併せて示す。 Table 2 also shows the evaluation results.

(磁気特性)
磁気特性は、JIS C 2550に準じて評価した。磁束密度は、B8を用いて評価した。B8は、磁界の強さ800A/mにおける磁束密度で、二次再結晶の良否の判断基準となる。B8=1.80T以上を、二次再結晶したものと判断した。
(Magnetic properties)
The magnetic properties were evaluated according to JIS C 2550. The magnetic flux density was evaluated using B8 . B 8 is the magnetic flux density at a magnetic field strength of 800 A/m, and is a criterion for determining the quality of secondary recrystallization. B 8 =1.80T or more was judged to have undergone secondary recrystallization.

表2に、評価結果を併せて示す。 Table 2 also shows the evaluation results.

Figure 0007368688000001
Figure 0007368688000001

Figure 0007368688000002
Figure 0007368688000002

表2において、試料No.B1~B18の発明例は、いずれも良好な被膜密着性及び磁気特性を示している。試料No.B12、及び、B17の発明例は、B、Cr、Cu、及び、Snの添加効果が十分に発現し、特に良好な被膜密着性を示している。 In Table 2, sample No. Invention examples B1 to B18 all exhibit good film adhesion and magnetic properties. Sample No. Inventive examples B12 and B17 fully exhibit the effects of adding B, Cr, Cu, and Sn, and exhibit particularly good film adhesion.

一方、試料No.b3、b5、及び、b6の比較例は、それぞれ、Si、Al、及び、Nを多量に含有するため、室温での脆性が悪く、冷延そのものが不可能であった。また、試料No.b8の比較例は、S含有量が多く、熱間での脆性が悪く、熱延が不可能であった。このため、試料No.b3、b5、b6、及び、b8の比較例においては、いずれも、被膜密着性の評価に至らなかった。 On the other hand, sample No. Comparative examples b3, b5, and b6 each contained large amounts of Si, Al, and N, and therefore had poor brittleness at room temperature, making cold rolling impossible. In addition, sample No. Comparative example b8 had a high S content and poor hot brittleness, making hot rolling impossible. For this reason, sample no. In the comparative examples b3, b5, b6, and b8, the film adhesion could not be evaluated in any of them.

試料No.b1、b2、b4、及び、b7の比較例は、添加元素の含有量が本発明範囲を外れたため、いずれも、二次再結晶せず、磁束密度が非常に小さくなった。なお、二次再結晶をしなかった試料は、いずれも被膜密着性が悪かった。二次再結晶しなかった場合、鋼板の結晶粒径が微細で、中間被膜の形成が好適になされなかったためと考えられる。 Sample No. In Comparative Examples b1, b2, b4, and b7, the content of the additive element was outside the range of the present invention, so secondary recrystallization did not occur in any of them, and the magnetic flux density became very small. Incidentally, all of the samples that were not subjected to secondary recrystallization had poor film adhesion. When secondary recrystallization did not occur, it is considered that the crystal grain size of the steel sheet was so fine that the intermediate coating was not formed properly.

<実施例2>
表1に示す成分組成の珪素鋼片を1200℃にて60分間加熱して熱間圧延に供し、板厚2.30mmの熱延鋼板とし、該熱延鋼板に1080℃にて180秒の熱延板焼鈍を施し、その後、冷間圧延を施して、板厚0.23mmの冷延鋼板を得た。その冷延鋼板に、脱炭焼鈍と窒化焼鈍を施した後、アルミナを主成分とする焼鈍分離剤を塗布して、水素雰囲気で1200℃の仕上げ焼鈍を施し、自然冷却して、平滑な表面の鋼板を得た。
<Example 2>
A silicon steel slab having the composition shown in Table 1 was heated at 1200°C for 60 minutes and subjected to hot rolling to obtain a hot rolled steel plate with a thickness of 2.30mm. The plate was annealed and then cold rolled to obtain a cold rolled steel plate with a thickness of 0.23 mm. After decarburization annealing and nitriding annealing, the cold-rolled steel sheet is coated with an annealing separator containing alumina as a main component, finish annealed at 1200°C in a hydrogen atmosphere, and then naturally cooled to create a smooth surface. steel plate was obtained.

上記鋼板を、25%N2+75%H2かで、かつ、露点15℃(前段露点)の雰囲気で、10℃/秒の昇温速度で1000℃(前段温度)まで昇温し、10秒保持した後、露点を-20~10℃(後段露点)に、かつ、温度を1000~1200℃(後段温度)に調整して40秒保持し、その後、10℃/秒で冷却して、鋼板表面に、中間被膜を形成した。なお、中間被膜の第2領域に含まれる酸化珪素の組成は、いずれの試料においてもSiO2であった。 The above steel plate was heated to 1000°C (previous stage temperature) at a heating rate of 10°C/sec in an atmosphere of 25% N 2 + 75% H 2 and a dew point of 15°C (first stage dew point) for 10 seconds. After holding, the dew point was adjusted to -20 to 10°C (second stage dew point) and the temperature was adjusted to 1000 to 1200°C (second stage temperature), held for 40 seconds, and then cooled at 10°C/second to form a steel plate. An intermediate film was formed on the surface. Note that the composition of silicon oxide contained in the second region of the intermediate film was SiO 2 in all samples.

鋼板表面に、りん酸アルミニウムとコロイダルシリカからなる張力絶縁被膜用の形成液を、乾燥膜厚が3μmとなるよう塗布し、25%N2+75%H2で、かつ、露点+10℃の雰囲気で、10℃/秒の昇温速度で800℃まで昇温して30秒間保持し、その後、10℃/秒で冷却した。中間被膜及び張力絶縁被膜の密着性に関する評価は、実施例1と同様の方法で行った。 A forming solution for a tensile insulation film consisting of aluminum phosphate and colloidal silica was applied to the surface of the steel plate so that the dry film thickness was 3 μm, and the film was coated in an atmosphere of 25% N 2 +75% H 2 and a dew point of +10°C. The temperature was raised to 800°C at a heating rate of 10°C/sec, held for 30 seconds, and then cooled at a rate of 10°C/sec. Evaluation of the adhesion between the intermediate film and the tension insulation film was performed in the same manner as in Example 1.

結果を表3に示す。 The results are shown in Table 3.

Figure 0007368688000003
Figure 0007368688000003

試料No.D1~D9は発明例であり、いずれも、良好な被膜密着性を示している。特に、後段露点が高いと、第1領域の存在比率Rが高く、第1領域が適切に形成され、良好な被膜密着性が得られている。また、後段温度が1150℃以上であると、第1領域に含まれる鉄系酸化物が結晶化し、さらに良好な被膜密着性が得られている。 Sample No. D1 to D9 are invention examples, and all exhibit good film adhesion. In particular, when the latter stage dew point is high, the abundance ratio R of the first region is high, the first region is appropriately formed, and good film adhesion is obtained. Moreover, when the subsequent stage temperature is 1150° C. or higher, the iron-based oxide contained in the first region is crystallized, and even better film adhesion is obtained.

本発明によれば、張力絶縁被膜と母材鋼板との間にフォルステライト系被膜以外の中間被膜であって且つ被膜密着性を高めることが可能な中間被膜を有する方向性電磁鋼板、すなわち、優れた被膜密着性及び磁気特性を有する方向性電磁鋼板を提供することができる。よって、本発明は、電磁鋼板製造産業及び電磁鋼板利用産業において利用可能性が高いものである。 According to the present invention, a grain-oriented electrical steel sheet having an intermediate coating other than a forsterite-based coating between a tension insulating coating and a base steel sheet and capable of improving coating adhesion, that is, an excellent A grain-oriented electrical steel sheet having excellent film adhesion and magnetic properties can be provided. Therefore, the present invention has high applicability in the electrical steel sheet manufacturing industry and the electrical steel sheet utilization industry.

1…方向性電磁鋼板、10…母材鋼板、20…中間被膜、21…第1領域、22…第2領域、30…張力絶縁被膜、40…母材鋼板と中間被膜との界面、50…中間被膜と張力絶縁被膜との界面 DESCRIPTION OF SYMBOLS 1... Grain-oriented electrical steel plate, 10... Base material steel plate, 20... Intermediate coating, 21... First region, 22... Second region, 30... Tension insulation coating, 40... Interface between base material steel plate and intermediate coating, 50... Interface between intermediate coating and tension insulation coating

Claims (3)

母材鋼板と、
張力絶縁被膜と、
前記母材鋼板と前記張力絶縁被膜との間に挟まれた中間被膜と、
を備え、
前記母材鋼板が、化学組成として、質量%で、
C:0.100%以下、
Si:0.80~7.00%、
Mn:1.00%以下、
酸可溶性Al:0.010~0.070%、
S:0.080%以下、
N:0.012%以下、
B:0~0.010%、
Sn:0~0.20%、
Cr:0~0.50%、
Cu:0~0.50%、
を含有し、残部がFe及び不純物からなり、
前記中間被膜は、フォルステライト系被膜以外の被膜であって、前記母材鋼板と前記中間被膜との界面に断続的に接する第1領域と、前記第1領域を内包する第2領域とを有し、
前記第1領域は、Fe2SiO4及びFeSiO3の少なくとも1種を含み、
前記第2領域は、酸化珪素を含
前記母材鋼板の圧延方向に直交する方向に長さLsumを有する断面をみた場合に、前記断面内に現れる前記第1領域が前記界面に接する長さの合計値をΣLとしたとき、下記(1)式で定義される前記第1領域の存在比率Rが1%以上50%以下であり、
前記中間被膜の平均膜厚は10~100nmであり、
前記中間被膜の膜厚方向における前記第1領域の平均厚さは1~20nmである
ことを特徴とする方向性電磁鋼板。
base material steel plate,
a tensile insulation coating;
an intermediate coating sandwiched between the base steel plate and the tension insulation coating;
Equipped with
The base steel plate has a chemical composition in mass%,
C: 0.100% or less,
Si: 0.80-7.00%,
Mn: 1.00% or less,
Acid-soluble Al: 0.010 to 0.070%,
S: 0.080% or less,
N: 0.012% or less,
B: 0 to 0.010%,
Sn: 0-0.20%,
Cr: 0 to 0.50%,
Cu: 0 to 0.50%,
, with the remainder consisting of Fe and impurities,
The intermediate coating is a coating other than a forsterite coating, and has a first region intermittently in contact with an interface between the base steel plate and the intermediate coating, and a second region containing the first region. death,
The first region includes at least one of Fe 2 SiO 4 and FeSiO 3 ,
The second region includes silicon oxide,
When looking at a cross section having a length Lsum in the direction perpendicular to the rolling direction of the base steel plate, and assuming that the total length of the first region appearing in the cross section is in contact with the interface is ΣL, the following ( 1) The abundance ratio R of the first region defined by the formula is 1% or more and 50% or less,
The average thickness of the intermediate film is 10 to 100 nm,
The average thickness of the first region in the thickness direction of the intermediate coating is 1 to 20 nm.
A grain-oriented electrical steel sheet characterized by:
前記Fe2SiO4及び前記FeSiO3の少なくとも1種が結晶質であることを特徴とする請求項1に記載の方向性電磁鋼板。 The grain-oriented electrical steel sheet according to claim 1, wherein at least one of the Fe 2 SiO 4 and the FeSiO 3 is crystalline. 前記母材鋼板が、前記化学組成として、質量%で、B:0.001~0.010%、Sn:0.01~0.20%、Cr:0.01~0.50%、及び、Cu:0.01~0.50%の1種または2種以上を含有することを特徴とする請求項1または2に記載の方向性電磁鋼板。 The base steel plate has the chemical composition, in mass %, of B: 0.001 to 0.010%, Sn: 0.01 to 0.20%, Cr: 0.01 to 0.50%, and The grain-oriented electrical steel sheet according to claim 1 or 2, containing one or more kinds of Cu: 0.01 to 0.50%.
JP2019005061A 2019-01-16 2019-01-16 grain-oriented electrical steel sheet Active JP7368688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019005061A JP7368688B2 (en) 2019-01-16 2019-01-16 grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019005061A JP7368688B2 (en) 2019-01-16 2019-01-16 grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2020111809A JP2020111809A (en) 2020-07-27
JP7368688B2 true JP7368688B2 (en) 2023-10-25

Family

ID=71665837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019005061A Active JP7368688B2 (en) 2019-01-16 2019-01-16 grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP7368688B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309380A (en) 2001-04-12 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on electromagnetic steel sheet
JP2002348643A (en) 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
JP2002363763A (en) 2001-06-08 2002-12-18 Nippon Steel Corp Grain-oriented silicon steel sheet having insulating film excellent in adhesion and method of producing the same
JP2009019274A (en) 2008-07-10 2009-01-29 Nippon Steel Corp Production method of grain-oriented electromagnetic steel sheet with excellent adhesion to insulating film and extremely low core loss
JP2018154881A (en) 2017-03-17 2018-10-04 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406801B2 (en) * 1997-05-06 2003-05-19 新日本製鐵株式会社 Method for producing low iron loss unidirectional silicon steel sheet
KR101353697B1 (en) * 2010-12-28 2014-01-20 주식회사 포스코 Method for preparing grain-oriented electrical steel sheet having improved adhesion and grain-oriented electrical steel sheet prepared by the same
KR101605795B1 (en) * 2013-12-24 2016-03-23 주식회사 포스코 Oriented electrical steel steet and method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309380A (en) 2001-04-12 2002-10-23 Nippon Steel Corp Method of forming insulating coating film on electromagnetic steel sheet
JP2002348643A (en) 2001-05-22 2002-12-04 Nippon Steel Corp Grain-oriented silicon steel sheet superior in adhesiveness of tension-imparting insulation film, and manufacturing method therefor
JP2002363763A (en) 2001-06-08 2002-12-18 Nippon Steel Corp Grain-oriented silicon steel sheet having insulating film excellent in adhesion and method of producing the same
JP2009019274A (en) 2008-07-10 2009-01-29 Nippon Steel Corp Production method of grain-oriented electromagnetic steel sheet with excellent adhesion to insulating film and extremely low core loss
JP2018154881A (en) 2017-03-17 2018-10-04 Jfeスチール株式会社 Production method of grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JP2020111809A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
EP1108794B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
RU2736566C2 (en) Hot-rolled steel sheet for textured electrical steel sheet and method of manufacturing thereof and method for manufacturing of textured electrical steel sheet
CN110832117B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JPWO2019013348A1 (en) Grain-oriented electrical steel sheet
JP7163976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6828820B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
US11450460B2 (en) Grain-oriented electrical steel sheet
JP2001247944A (en) Low magnetostriction bidirectionary oriented silicon steel sheet and its manufacturing method
JP6881581B2 (en) Directional electrical steel sheet
JP7368688B2 (en) grain-oriented electrical steel sheet
JP7355989B2 (en) grain-oriented electrical steel sheet
JP7265187B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP7339549B2 (en) Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
JP7031364B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR102582981B1 (en) Grain-oriented electrical steel sheet
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
RU2776246C1 (en) Anisotropic electrical steel sheet and its production method
JP7230931B2 (en) Method for manufacturing grain-oriented electrical steel sheet
JP7226678B1 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2024111638A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
JP7119474B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH10152780A (en) Insulating film for grain oriented silicon steel sheet, and its formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R151 Written notification of patent or utility model registration

Ref document number: 7368688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151