JP7366707B2 - Sintered material and its manufacturing method - Google Patents

Sintered material and its manufacturing method Download PDF

Info

Publication number
JP7366707B2
JP7366707B2 JP2019211032A JP2019211032A JP7366707B2 JP 7366707 B2 JP7366707 B2 JP 7366707B2 JP 2019211032 A JP2019211032 A JP 2019211032A JP 2019211032 A JP2019211032 A JP 2019211032A JP 7366707 B2 JP7366707 B2 JP 7366707B2
Authority
JP
Japan
Prior art keywords
sintered material
sintered
manufacturing
material according
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019211032A
Other languages
Japanese (ja)
Other versions
JP2021080542A (en
Inventor
翔 草田
勝廣 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2019211032A priority Critical patent/JP7366707B2/en
Publication of JP2021080542A publication Critical patent/JP2021080542A/en
Application granted granted Critical
Publication of JP7366707B2 publication Critical patent/JP7366707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は焼結材料及びその製造方法に関する。 The present invention relates to a sintered material and a method for manufacturing the same.

刃具等に広く利用されている焼結材料は、マトリクス金属中に硬質粒子が分散したミクロ組織を有し、耐摩耗性に優れている。例えば特許文献1-3に開示されているように、Co基合金やNi基合金などのマトリクス金属中に、WC等の金属炭化物粒子や、WBやMoB等の金属ホウ化物粒子が分散した焼結材料が知られている。 Sintered materials widely used for cutting tools and the like have a microstructure in which hard particles are dispersed in a matrix metal, and have excellent wear resistance. For example, as disclosed in Patent Documents 1 to 3, sintering in which metal carbide particles such as WC or metal boride particles such as WB or MoB are dispersed in a matrix metal such as a Co-based alloy or a Ni-based alloy The material is known.

特開平5-132734号公報Japanese Patent Application Publication No. 5-132734 特開2018-111851号公報Japanese Patent Application Publication No. 2018-111851 特開2010-099693号公報Japanese Patent Application Publication No. 2010-099693

発明者は、マトリクス金属中に硬質粒子として金属ホウ化物粒子が分散した焼結材料に関し、以下の問題を見出した。
金属ホウ化物粒子は脆いため、焼結材料の耐摩耗性を高めるために金属ホウ化物粒子の添加量を増やすと、割れが発生し易くなり、強度が低下してしまう。すなわち、このような焼結材料では、耐摩耗性と強度とを両立させるのが難しいという問題があった。
その他の課題と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
The inventor discovered the following problem regarding a sintered material in which metal boride particles are dispersed as hard particles in a matrix metal.
Since metal boride particles are brittle, if the amount of metal boride particles added is increased in order to improve the wear resistance of the sintered material, cracks will easily occur and the strength will decrease. That is, such a sintered material has a problem in that it is difficult to achieve both wear resistance and strength.
Other objects and novel features will become apparent from the description of this specification and the accompanying drawings.

一実施の形態に係る焼結材料の製造方法は、マトリクス金属中に金属ホウ化物粒子が分散した焼結材料の製造方法であって、製造する焼結材料の組成を有する粉末をアトマイズ法によって作製し、当該粉末を固相焼結する。 A method for producing a sintered material according to one embodiment is a method for producing a sintered material in which metal boride particles are dispersed in a matrix metal, in which powder having the composition of the sintered material to be produced is produced by an atomization method. Then, the powder is solid-phase sintered.

一実施の形態に係る焼結材料は、マトリクス金属中に金属ホウ化物粒子が分散した焼結材料であって、相対密度が99.0%以上であり、前記金属ホウ化物粒子のメジアン径が2.0μm以下である。 The sintered material according to one embodiment is a sintered material in which metal boride particles are dispersed in a matrix metal, the relative density is 99.0% or more, and the median diameter of the metal boride particles is 2. .0 μm or less.

前記一実施の形態によれば、耐摩耗性と強度とを両立可能な焼結材料及びその製造方法を提供することができる。 According to the embodiment, it is possible to provide a sintered material that can achieve both wear resistance and strength, and a method for manufacturing the same.

第1の実施形態に係る焼結材料の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing a sintered material according to the first embodiment. 実施例1~3及び比較例1~3に係る焼結材料のミクロ組織写真である。1 is a microstructure photograph of sintered materials according to Examples 1 to 3 and Comparative Examples 1 to 3. 相対密度及び曲げ強度の焼結温度依存性を示すグラフである。It is a graph showing the sintering temperature dependence of relative density and bending strength. 実施例1~3及び比較例1~3に係る焼結材料における摩耗体積を示す棒グラフである。3 is a bar graph showing wear volume in sintered materials according to Examples 1 to 3 and Comparative Examples 1 to 3.

以下、具体的な実施の形態について、図面を参照しながら詳細に説明する。但し、以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜簡略化されている。 Hereinafter, specific embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings are appropriately simplified.

(第1の実施形態)
<焼結材料の製造方法>
図1を参照して、第1の実施形態に係る焼結材料の製造方法について説明する。図1は、第1の実施形態に係る焼結材料の製造方法を示すフローチャートである。第1の実施形態に係る焼結材料は、Ni(ニッケル)もしくはCo(コバルト)を主成分とする合金中にW(タングステン)やMo(モリブデン)のホウ化物粒子が分散した焼結材料である。この焼結材料は、例えば刃具に用いられる。
(First embodiment)
<Method for manufacturing sintered material>
With reference to FIG. 1, a method for manufacturing a sintered material according to a first embodiment will be described. FIG. 1 is a flowchart showing a method for manufacturing a sintered material according to a first embodiment. The sintered material according to the first embodiment is a sintered material in which boride particles of W (tungsten) and Mo (molybdenum) are dispersed in an alloy mainly composed of Ni (nickel) or Co (cobalt). . This sintered material is used, for example, in cutting tools.

まず、図1に示すように、W、Mo、B(ホウ素)、Cr(クロム)、Cu(銅)、Si(ケイ素)、C(炭素)を所定量含有し、残部がCo及びNiの少なくとも一方からなる粉末をアトマイズ法によって作製する(ステップST1)。詳細には、当該粉末は、質量%で、W及びMoを合計で13.7~55.3%、Bを1.3~4.4%、Crを8.9~18.6%、Cuを0~3.4%、Siを0~2.0%、Cを0~1.3%、含有し、残部がCo及びNiの少なくとも一方及び不可避不純物とからなる。 Firstly, as shown in FIG. A powder consisting of one of the two is produced by an atomization method (step ST1). Specifically, the powder contains a total of 13.7 to 55.3% of W and Mo, 1.3 to 4.4% of B, 8.9 to 18.6% of Cr, and Cu. It contains 0 to 3.4% of Si, 0 to 2.0% of Si, and 0 to 1.3% of C, with the remainder consisting of at least one of Co and Ni and inevitable impurities.

次に、図1に示すように、ステップST1において得られた粉末を1050℃よりも高温において固相焼結する(ステップST2)。ステップST2において、粉末を加圧しつつ焼結してもよい。例えば、固相焼結には、放電プラズマ焼結(SPS:Spark Plasma Sintering)法や熱間等方加圧(HIP:Hot Isostatic Pressing)法を用いることができる。
ステップST2によって、第1の実施形態に係る焼結材料が得られる。
Next, as shown in FIG. 1, the powder obtained in step ST1 is solid phase sintered at a temperature higher than 1050° C. (step ST2). In step ST2, the powder may be sintered while being pressurized. For example, a spark plasma sintering (SPS) method or a hot isostatic pressing (HIP) method can be used for solid phase sintering.
The sintered material according to the first embodiment is obtained by step ST2.

発明者らは、ステップST2における焼結温度が1050℃以下では、ボイド等の焼結欠陥が増加することによって、耐摩耗性が急激に低下することを見出した。そこで、本実施形態に係る焼結材料の製造方法では、1050℃よりも高温において固相焼結する。その結果、焼結欠陥が少ない高密度の焼結材料が得られる。具体的には、焼結材料の相対密度が99.0%以上となり、耐摩耗性と強度とを高いレベルで両立させることができる。焼結温度は、1100℃以上であることがより好ましい。
ここで、相対密度は、焼結材料の組成と各元素の密度から算出した密度を基準(すなわち100%)とする百分率で示されている。
The inventors have found that when the sintering temperature in step ST2 is 1050° C. or lower, sintering defects such as voids increase, resulting in a sharp decline in wear resistance. Therefore, in the method for manufacturing a sintered material according to the present embodiment, solid phase sintering is performed at a temperature higher than 1050°C. As a result, a high-density sintered material with few sintering defects is obtained. Specifically, the relative density of the sintered material is 99.0% or more, making it possible to achieve both high levels of wear resistance and strength. The sintering temperature is more preferably 1100°C or higher.
Here, the relative density is expressed as a percentage based on the density calculated from the composition of the sintered material and the density of each element (ie, 100%).

他方、焼結材料が溶融しない限り、焼結温度は高くてもよい。しかしながら、焼結温度が高い程、オストワルド(Ostwald)成長によって、金属ホウ化物粒子が粗大化し易くなる。そのため、金属ホウ化物粒子を微細に維持する観点からは、焼結温度は低い方が好ましい。例えば、焼結温度は1200℃以下が好まく、1180℃以下がより好ましい。 On the other hand, the sintering temperature may be high as long as the sintered material does not melt. However, the higher the sintering temperature, the more likely the metal boride particles become coarse due to Ostwald growth. Therefore, from the viewpoint of keeping the metal boride particles fine, the sintering temperature is preferably lower. For example, the sintering temperature is preferably 1200°C or lower, more preferably 1180°C or lower.

このように、本実施形態に係る焼結材料の製造方法では、製造する焼結材料と同じ組成を有する粉末をアトマイズ法によって作製し(ステップST1)、当該粉末を固相焼結する(ステップST2)。アトマイズ法では、上記組成を有する合金の溶湯に高圧のガスや水を吹き付け、溶湯を飛散及び凝固させて粉末化する。そのため、得られた粉末は、金属中に極めて微細なWBやMoB等の金属ホウ化物粒子が分散した組織、あるいは、金属ホウ化物粒子を構成するW、Mo、B等が金属中に過飽和に固溶した組織を有している。 As described above, in the method for producing a sintered material according to the present embodiment, a powder having the same composition as the sintered material to be produced is produced by the atomization method (step ST1), and the powder is solid-phase sintered (step ST2). ). In the atomization method, high-pressure gas or water is sprayed onto a molten alloy having the above composition, causing the molten metal to scatter and solidify into powder. Therefore, the obtained powder has a structure in which extremely fine metal boride particles such as WB and MoB are dispersed in the metal, or W, Mo, B, etc. that make up the metal boride particles are supersaturated and solidified in the metal. It has dissolved tissue.

従って、固相焼結工程(ステップST2)において、原料である粉末中の微細な金属ホウ化物粒子がそのままマトリクス金属中に分散するか、過飽和固溶状態から微細な金属ホウ化物粒子がマトリクス金属中に析出する。その結果、製造された焼結材料は、微細な金属ホウ化物粒子がマトリクス金属中に均一に分散した組織を有している。また、1050℃よりも高温において固相焼結することによって、焼結欠陥が少ない高密度の焼結材料が得られる。 Therefore, in the solid phase sintering process (step ST2), either the fine metal boride particles in the raw material powder are dispersed as they are in the matrix metal, or the fine metal boride particles are dispersed in the matrix metal from a supersaturated solid solution state. It precipitates out. As a result, the manufactured sintered material has a structure in which fine metal boride particles are uniformly dispersed in the matrix metal. Further, solid-phase sintering at a temperature higher than 1050° C. provides a high-density sintered material with fewer sintering defects.

以上に説明したように、本実施形態に係る焼結材料の製造方法によって、焼結欠陥が少なく高密度であると共に、微細な金属ホウ化物粒子がマトリクス金属中に均一に分散した組織を有する焼結材料が得られる。従って、当該焼結材料は、耐摩耗性と強度とを従来よりも高いレベルで両立させることができる。 As explained above, the method for manufacturing the sintered material according to the present embodiment allows the sintered material to have a structure with few sintering defects, high density, and fine metal boride particles uniformly dispersed in the matrix metal. A binding material is obtained. Therefore, the sintered material can achieve both wear resistance and strength at a higher level than before.

<焼結材料の構成>
次に、第1の実施形態に係る焼結材料の構成について説明する。第1の実施形態に係る焼結材料は、例えば上述の第1の実施形態に係る焼結材料の製造方法によって製造された焼結材料である。
<Composition of sintered material>
Next, the structure of the sintered material according to the first embodiment will be explained. The sintered material according to the first embodiment is a sintered material manufactured by, for example, the method for manufacturing a sintered material according to the above-described first embodiment.

第1の実施形態に係る焼結材料は、W、Mo、B、Cr、Cu、Si、Cを所定量含有し、残部がCo及びNiの少なくとも一方からなる。詳細には、当該焼結材料は、質量%で、W及びMoを合計で13.7~55.3%、Bを1.3~4.4%、Crを8.9~18.6%、Cuを0~3.4%、Siを0~2.0%、Cを0~1.3%、含有し、残部がCo及びNiの少なくとも一方及び不可避不純物とからなる。 The sintered material according to the first embodiment contains predetermined amounts of W, Mo, B, Cr, Cu, Si, and C, and the remainder consists of at least one of Co and Ni. In detail, the sintered material contains a total of 13.7 to 55.3% of W and Mo, 1.3 to 4.4% of B, and 8.9 to 18.6% of Cr in mass%. , contains 0 to 3.4% of Cu, 0 to 2.0% of Si, and 0 to 1.3% of C, with the remainder consisting of at least one of Co and Ni and inevitable impurities.

なお、当該焼結材料は、原子%では、W及びMoを合計で8.0~22.5%、Bを8.0~22.5%、Crを12.0~24.0%、Cuを0~3.5%、Siを0~4.5%、Cを0~6.0%、含有することが好ましい。 The sintered material contains a total of 8.0 to 22.5% of W and Mo, 8.0 to 22.5% of B, 12.0 to 24.0% of Cr, and Cu in terms of atomic percent. It is preferable to contain 0 to 3.5% of Si, 0 to 4.5% of Si, and 0 to 6.0% of C.

Co及びNiは、当該焼結材料のマトリクス金属を構成すると共に焼結材料の耐食性を高める。
W及びMoは、Bと結合してWB型のホウ化物や、WCoB型あるいはWCoB型の硬質の複ホウ化物を形成し、焼結材料の耐摩耗性を高める。
Cr及びCuは、マトリックス金属中に固溶し、焼結材料の耐食性を高める。
なお、上記組成に示されているように、焼結材料におけるCuの添加は必須ではない。
Co and Ni constitute the matrix metal of the sintered material and enhance the corrosion resistance of the sintered material.
W and Mo combine with B to form a WB type boride, a WCoB type or a W 2 CoB 2 type hard double boride, and improve the wear resistance of the sintered material.
Cr and Cu form a solid solution in the matrix metal and enhance the corrosion resistance of the sintered material.
Note that, as shown in the above composition, addition of Cu to the sintered material is not essential.

Bは上記ホウ化物を形成すると共に、高温ではマトリックス金属中に固溶し、マトリックス金属の融点を下げる効果を有する。他方、余剰なBはNiBなどの硬度が低く脆いホウ化物を形成するため、Bとの原子数に対するW及びMoの原子数の合計の比すなわち(W及びMoの原子数の合計)/(Bの原子数)は1に近いことが好ましい。例えば、(W及びMoの原子数の合計)/(Bの原子数)=0.75~2.0である。 B forms the above-mentioned boride, and also forms a solid solution in the matrix metal at high temperatures, and has the effect of lowering the melting point of the matrix metal. On the other hand, excess B forms brittle borides with low hardness such as Ni 3 B, so the ratio of the total number of W and Mo atoms to the number of B atoms, that is, (total number of W and Mo atoms)/ (Number of atoms of B) is preferably close to 1. For example, (total number of atoms of W and Mo)/(number of atoms of B)=0.75 to 2.0.

Siは、Bと共にマトリックス金属の融点を下げるため、Si添加によってアトマイズ法が容易になる。但し、過剰なSiはマトリックス金属中のCrと結合して脆いラーベス(Laves)相を形成する。そのため、Si添加量が多過ぎると、焼結材料の靭性が損なわれる。
なお、上記組成に示されているように、焼結材料におけるSiの添加は必須ではない。
Since Si lowers the melting point of the matrix metal together with B, the addition of Si facilitates the atomization method. However, excessive Si combines with Cr in the matrix metal to form a brittle Laves phase. Therefore, if the amount of Si added is too large, the toughness of the sintered material will be impaired.
Note that, as shown in the above composition, addition of Si to the sintered material is not essential.

Cは、WC等の金属炭化物を形成し、耐摩耗性に寄与する。但し、金属炭化物は高温でもマトリクス金属中に溶融し難いため、C添加量が多過ぎると、アトマイズ法による粉末の作製が難しくなる。
なお、上記組成に示されているように、焼結材料におけるCの添加は必須ではない。
C forms metal carbides such as WC and contributes to wear resistance. However, since metal carbides are difficult to melt into the matrix metal even at high temperatures, if the amount of C added is too large, it becomes difficult to produce powder by the atomization method.
Note that, as shown in the above composition, addition of C to the sintered material is not essential.

発明者らは、相対密度が99.0%未満では、ボイド等の焼結欠陥が増加することによって、耐摩耗性が急激に低下することを見出した。これに対し、第1の実施形態に係る焼結材料は、相対密度が99.0%以上であって、焼結欠陥が少ない。また、当該焼結材料では、マトリクス金属中に分散した金属ホウ化物粒子のメジアン径が2.0μm以下である。すなわち、当該焼結材料は、微細な金属ホウ化物粒子がマトリクス金属中に均一に分散した組織を有している。金属ホウ化物粒子のメジアン径は、1.5μm以下であることがより好ましい。 The inventors have found that when the relative density is less than 99.0%, sintering defects such as voids increase, resulting in a sharp decline in wear resistance. In contrast, the sintered material according to the first embodiment has a relative density of 99.0% or more and has few sintering defects. Further, in the sintered material, the median diameter of metal boride particles dispersed in the matrix metal is 2.0 μm or less. That is, the sintered material has a structure in which fine metal boride particles are uniformly dispersed in the matrix metal. The median diameter of the metal boride particles is more preferably 1.5 μm or less.

このように、第1の実施形態に係る焼結材料は、焼結欠陥が少なく高密度であると共に、微細な金属ホウ化物粒子がマトリクス金属中に均一に分散した組織を有している。従って、第1の実施形態に係る焼結材料は、耐摩耗性と強度とを従来よりも高いレベルで両立させることができる。 As described above, the sintered material according to the first embodiment has a high density with few sintering defects, and has a structure in which fine metal boride particles are uniformly dispersed in the matrix metal. Therefore, the sintered material according to the first embodiment can achieve both wear resistance and strength at a higher level than conventional ones.

以下、第1の実施形態に係る焼結材料及びその製造方法を、実施例を挙げて詳細に説明する。しかしながら、第1の実施形態に係る焼結材料及びその製造方法は、以下の実施例のみに限定されるものではない。
表1に全ての実施例及び比較例に係る焼結材料の組成を質量%及び原子%で示す。全ての実施例及び比較例に係る焼結材料の組成は同一である。
Hereinafter, the sintered material and the manufacturing method thereof according to the first embodiment will be described in detail using examples. However, the sintered material and the manufacturing method thereof according to the first embodiment are not limited to the following examples.
Table 1 shows the compositions of the sintered materials according to all Examples and Comparative Examples in mass % and atomic %. The composition of the sintered materials in all Examples and Comparative Examples is the same.

Figure 0007366707000001
Figure 0007366707000001

<実施例1>
実施例1に係る焼結材料の製造方法について説明する。
表1に示した組成を有する母合金を溶融させ、ガスアトマイズ法により表1に示した組成を有する粉末を作製した。ガスアトマイズにおける出湯温度は1520℃とした。ガスアトマイズにおける噴射ガス及び置換ガスにはAr(アルゴン)ガスを用い、噴射ガス流量は4000L/分とした。
<Example 1>
A method for manufacturing a sintered material according to Example 1 will be described.
A master alloy having the composition shown in Table 1 was melted, and a powder having the composition shown in Table 1 was produced by a gas atomization method. The hot water temperature during gas atomization was 1520°C. Ar (argon) gas was used as the injection gas and replacement gas in gas atomization, and the injection gas flow rate was 4000 L/min.

次に、篩を用いて得られた粉末を分級し、粒径20~106μmの粉末を原料とした。放電プラズマ焼結(SPS:Spark Plasma Sintering)法を用いて原料とした粉末を固相焼結した。焼結条件は、焼結温度を1100℃、加圧力を30MPa、保持時間を60分とした。
以上の製造工程によって、実施例1に係る焼結材料を得た。
Next, the obtained powder was classified using a sieve, and powder with a particle size of 20 to 106 μm was used as a raw material. The powder used as the raw material was solid phase sintered using the Spark Plasma Sintering (SPS) method. The sintering conditions were a sintering temperature of 1100° C., a pressure of 30 MPa, and a holding time of 60 minutes.
Through the above manufacturing process, a sintered material according to Example 1 was obtained.

<実施例2>
焼結温度を1150℃とした以外は、実施例1と同様にして実施例2に係る焼結材料を得た。
<実施例3>
焼結温度を1180℃とした以外は、実施例1と同様にして実施例3に係る焼結材料を得た。
<Example 2>
A sintered material according to Example 2 was obtained in the same manner as in Example 1 except that the sintering temperature was 1150°C.
<Example 3>
A sintered material according to Example 3 was obtained in the same manner as Example 1 except that the sintering temperature was 1180°C.

<比較例1>
焼結温度を1000℃とした以外は、実施例1と同様にして比較例1に係る焼結材料を得た。
<比較例2>
焼結温度を1050℃とした以外は、実施例1と同様にして比較例2に係る焼結材料を得た。
<Comparative example 1>
A sintered material according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the sintering temperature was 1000°C.
<Comparative example 2>
A sintered material according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the sintering temperature was 1050°C.

<比較例3>
Co、Ni、Mo、Cr、Cu、及びSiの各金属粉末及び硬質粒子粉末(平均粒子径3μmのWB粉末及び平均粒子径2.4μmのMoC粉末)を表1と同組成となるように調製し、乳鉢を用いて15分間混合した。
混合した粉末を原料として、SPS法を用いて固相焼結することによって、比較例3に係る焼結材料を得た。焼結条件は、実施例2と同様に、焼結温度を1150℃、加圧力を30MPa、保持時間を60分とした。
<Comparative example 3>
Co, Ni, Mo, Cr, Cu, and Si metal powders and hard particle powders (WB powder with an average particle size of 3 μm and Mo 2 C powder with an average particle size of 2.4 μm) were prepared to have the same composition as in Table 1. and mixed for 15 minutes using a mortar.
A sintered material according to Comparative Example 3 was obtained by solid-phase sintering using the mixed powder as a raw material using the SPS method. The sintering conditions were the same as in Example 2, with a sintering temperature of 1150° C., a pressure of 30 MPa, and a holding time of 60 minutes.

表2には、全ての実施例1~3及び比較例1~3について、製造条件(原料、焼結温度、加圧力)及びに得られた焼結材料の特性(相対密度、硬質粒子径、曲げ強度、摩耗体積)をまとめて示した。 Table 2 shows the manufacturing conditions (raw materials, sintering temperature, pressure) and the properties of the sintered materials (relative density, hard particle diameter, The bending strength and wear volume are shown together.

Figure 0007366707000002
Figure 0007366707000002

密度の測定は、JIS規格Z8807に規定された幾何学的測定に準拠した。表2には、表1に示された焼結材料の組成と各元素の密度から算出された密度を基準とする相対密度が百分率で示されている。
曲げ強度の測定は、JIS規格R1601に規定された3点曲げ試験に準拠した。
摩耗体積の測定は、ASTM規格G65に規定されたラバーホイール摩耗試験に準拠した。
The measurement of density was based on the geometric measurement specified in JIS standard Z8807. Table 2 shows the relative density as a percentage based on the density calculated from the composition of the sintered material shown in Table 1 and the density of each element.
The measurement of bending strength was based on the three-point bending test specified in JIS standard R1601.
The measurement of wear volume was based on the rubber wheel wear test specified in ASTM standard G65.

硬質粒子径は、画像解析ソフトを用いてSEM(Scanning Electron Microscope)画像における硬質粒子径を計測した。粒子径計測用の画像解析ソフトとしては、イノテック社製QuickGrain PadPlus ver5.15を使用した。詳細には、SEM画像におけるコントラストから硬質粒子を抽出し、硬質粒子の面積に等しい円の直径(面積円相当径)をその硬質粒子の粒子径とした。実施例1~3及び比較例1~3に係る焼結材料のそれぞれにおいて、300個以上の硬質粒子の粒子径を計測し、メジアン径を硬質粒子径とした。 The hard particle diameter was determined by measuring the hard particle diameter in an SEM (Scanning Electron Microscope) image using image analysis software. QuickGrain PadPlus ver. 5.15 manufactured by Innotek was used as image analysis software for particle size measurement. Specifically, hard particles were extracted from the contrast in the SEM image, and the diameter of a circle equal to the area of the hard particle (area circle equivalent diameter) was defined as the particle diameter of the hard particle. In each of the sintered materials according to Examples 1 to 3 and Comparative Examples 1 to 3, the particle diameters of 300 or more hard particles were measured, and the median diameter was taken as the hard particle diameter.

図2は、実施例1~3及び比較例1~3に係る焼結材料のミクロ組織写真である。
図2に示すように、いずれの焼結材料も、Co基合金である黒色のマトリクス金属中に、白色の硬質粒子(金属ホウ化物粒子)が分散した組織を有している。
FIG. 2 is a photograph of the microstructure of the sintered materials according to Examples 1 to 3 and Comparative Examples 1 to 3.
As shown in FIG. 2, each sintered material has a structure in which white hard particles (metal boride particles) are dispersed in a black matrix metal that is a Co-based alloy.

原料としてアトマイズ粉末を用いた実施例1~3及び比較例1、2(すなわち比較例3以外)に係る焼結材料は、微細な硬質粒子がマトリクス金属中に均一に分散した組織を有している。図2に示すように、焼結温度Tsが高くなるにつれて、硬質粒子が成長し、粒子径が大きくなった。しかしながら、硬質粒子径が最大の実施例3に係る焼結材料においても、硬質粒子径は1.43μmであって、比較例3に係る焼結材料の硬質粒子径(3.86μm)の半分以下であり、充分に微細であった。 The sintered materials according to Examples 1 to 3 and Comparative Examples 1 and 2 (i.e., other than Comparative Example 3), which used atomized powder as a raw material, had a structure in which fine hard particles were uniformly dispersed in the matrix metal. There is. As shown in FIG. 2, as the sintering temperature Ts became higher, the hard particles grew and the particle size became larger. However, even in the sintered material according to Example 3, which has the largest hard particle diameter, the hard particle diameter is 1.43 μm, which is less than half the hard particle diameter (3.86 μm) of the sintered material according to Comparative Example 3. and was sufficiently fine.

他方、原料として金属粉末及び硬質粒子粉末の混合粉末を用いた比較例3に係る焼結材料は、アトマイズ粉末を用いた実施例1~3及び比較例1、2に係る焼結材料に比べ、粗大な硬質粒子が不均一に分散した組織を有している。 On the other hand, the sintered material according to Comparative Example 3, which used a mixed powder of metal powder and hard particle powder as the raw material, had lower It has a structure in which coarse hard particles are unevenly dispersed.

図3は、相対密度及び曲げ強度の焼結温度依存性を示すグラフである。図3の横軸は焼結温度、縦軸は相対密度及び曲げ強度であり、相対密度及び曲げ強度が縦方向に並べて示されている。図3において、比較例1、2は白丸印、実施例1~3は黒丸印、比較例3は白四角印によって示されている。 FIG. 3 is a graph showing the dependence of relative density and bending strength on sintering temperature. The horizontal axis of FIG. 3 is the sintering temperature, and the vertical axis is the relative density and bending strength, and the relative density and bending strength are shown side by side in the vertical direction. In FIG. 3, Comparative Examples 1 and 2 are indicated by white circles, Examples 1 to 3 are indicated by black circles, and Comparative Example 3 is indicated by white squares.

表2及び図3に示すように、異なる原料を用いた比較例3を含め、全ての実施例1~3及び比較例1~3に係る焼結材料において、焼結温度Tsが高い程、ボイド等の焼結欠陥が減少し、密度が高くなった。具体的には、1100℃以上の焼結温度Tsでは、相対密度が99.0%以上であった。 As shown in Table 2 and FIG. 3, in the sintered materials according to all Examples 1 to 3 and Comparative Examples 1 to 3, including Comparative Example 3 using different raw materials, the higher the sintering temperature Ts, the more voids The number of sintering defects such as sintering defects decreased and the density increased. Specifically, at a sintering temperature Ts of 1100° C. or higher, the relative density was 99.0% or higher.

また、表2及び図3に示すように、アトマイズ粉末を用いた実施例1~3及び比較例1、2に係る焼結材料は、いずれも混合粉末を用いた比較例3に係る焼結材料よりも曲げ強度が大きかった。アトマイズ粉末を用いた実施例1~3及び比較例1、2に係る焼結材料では、焼結温度Tsが1150℃までは曲げ強度も密度の上昇と共に向上するが、焼結温度Tsが1180℃では低下した。硬質粒子の粒成長に起因して、曲げ強度が低下したものと推察される。 Furthermore, as shown in Table 2 and FIG. 3, the sintered materials according to Examples 1 to 3 and Comparative Examples 1 and 2 using atomized powder are the same as the sintered materials according to Comparative Example 3 using mixed powder. The bending strength was greater than that of In the sintered materials according to Examples 1 to 3 and Comparative Examples 1 and 2 using atomized powder, the bending strength increases as the density increases up to a sintering temperature Ts of 1150°C, but when the sintering temperature Ts reaches 1180°C It has declined. It is presumed that the bending strength decreased due to grain growth of the hard particles.

図4は、実施例1~3及び比較例1~3に係る焼結材料における摩耗体積を示す棒グラフである。図4において、実施例1~3の棒は、ドット表示されている。図4に示すように、焼結温度Tsが1050℃以下であって、相対密度が99.0%未満の比較例1、2に係る焼結材料は、摩耗体積が比較例3より大きく、耐摩耗性に劣っていた。これに対し、焼結温度Tsが1100℃以上であって、相対密度が99.0%以上の実施例1~3に係る焼結材料は、いずれも摩耗体積が比較例3と同等以下で安定しており、耐摩耗性に優れていた。 FIG. 4 is a bar graph showing the wear volumes of the sintered materials according to Examples 1 to 3 and Comparative Examples 1 to 3. In FIG. 4, the bars of Examples 1 to 3 are displayed as dots. As shown in FIG. 4, the sintered materials according to Comparative Examples 1 and 2, in which the sintering temperature Ts is 1050°C or less and the relative density is less than 99.0%, have a larger wear volume than Comparative Example 3, and have higher durability. It had poor abrasion resistance. On the other hand, the sintered materials according to Examples 1 to 3 whose sintering temperature Ts is 1100°C or higher and whose relative density is 99.0% or higher are stable with wear volumes equal to or lower than that of Comparative Example 3. It had excellent wear resistance.

以上に説明したように、上述の第1の実施形態に係る焼結材料の製造方法によって、焼結欠陥が少なく高密度であると共に、微細な硬質粒子(金属ホウ化物粒子)がマトリクス金属中に均一に分散した組織を有する焼結材料が得られた。従って、当該焼結材料は、耐摩耗性と強度とを従来よりも高いレベルで両立させることができる。 As explained above, by the method for manufacturing the sintered material according to the first embodiment described above, the sintered material has few sintering defects and has a high density, and fine hard particles (metal boride particles) are formed in the matrix metal. A sintered material with a uniformly distributed structure was obtained. Therefore, the sintered material can achieve both wear resistance and strength at a higher level than before.

以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。 Although the invention made by the present inventor has been specifically explained based on the embodiments above, the present invention is not limited to the embodiments already described, and various changes can be made without departing from the gist thereof. It goes without saying that it is possible.

Claims (6)

マトリクス金属中に金属ホウ化物粒子が分散した焼結材料の製造方法であって、
(a)質量%で、W及びMoを合計で13.7~55.3%、Bを1.3~4.4%、Crを8.9~18.6%、Cuを0~3.4%、Siを0~2.0%、Cを0~1.3%、含有し、残部がCo及びNiの少なくとも一方及び不可避不純物とからなる粉末を、アトマイズ法によって作製する工程、及び
(b)前記粉末を1100℃よりも高温かつ1200℃以下の温度において固相焼結する工程、を備えた、
焼結材料の製造方法。
A method for producing a sintered material in which metal boride particles are dispersed in a matrix metal, the method comprising:
(a) In terms of mass %, the total content of W and Mo is 13.7 to 55.3%, B is 1.3 to 4.4%, Cr is 8.9 to 18.6%, and Cu is 0 to 3. 4% of Si, 0 to 2.0% of C, and 0 to 1.3% of C, with the balance consisting of at least one of Co and Ni and unavoidable impurities, by an atomization method, and ( b) solid phase sintering the powder at a temperature higher than 1100 °C and lower than 1200 °C ,
Method of manufacturing sintered materials.
前記アトマイズ法が、ガスアトマイズ法である、
請求項1に記載の焼結材料の製造方法。
The atomization method is a gas atomization method,
A method for manufacturing the sintered material according to claim 1.
前記工程(b)において、加圧しつつ固相焼結する、
請求項1に記載の焼結材料の製造方法。
In the step (b), solid phase sintering is performed while pressurizing.
A method for manufacturing the sintered material according to claim 1.
前記工程(b)において、放電プラズマ焼結法を用いて固相焼結する、
請求項3に記載の焼結材料の製造方法。
In the step (b), solid phase sintering is performed using a discharge plasma sintering method.
A method for producing a sintered material according to claim 3.
製造された当該焼結材料の相対密度が99.0%以上であり、前記金属ホウ化物粒子のメジアン径が2.0μm以下である、
請求項1に記載の焼結材料の製造方法。
The relative density of the produced sintered material is 99.0% or more, and the median diameter of the metal boride particles is 2.0 μm or less,
A method for manufacturing the sintered material according to claim 1.
Bの原子数に対するW及びMoの原子数の合計の比が0.75~2.0である、
請求項1に記載の焼結材料の製造方法。
The ratio of the total number of atoms of W and Mo to the number of atoms of B is 0.75 to 2.0,
A method for manufacturing the sintered material according to claim 1.
JP2019211032A 2019-11-22 2019-11-22 Sintered material and its manufacturing method Active JP7366707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019211032A JP7366707B2 (en) 2019-11-22 2019-11-22 Sintered material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019211032A JP7366707B2 (en) 2019-11-22 2019-11-22 Sintered material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021080542A JP2021080542A (en) 2021-05-27
JP7366707B2 true JP7366707B2 (en) 2023-10-23

Family

ID=75964298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019211032A Active JP7366707B2 (en) 2019-11-22 2019-11-22 Sintered material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7366707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116121579A (en) * 2022-11-25 2023-05-16 西安近代化学研究所 Preparation method of MoCoB-WCoB based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325436A (en) 2004-05-17 2005-11-24 Riken Corp Hard-particle dispersion type iron-based sintered alloy
JP2016513170A (en) 2013-01-24 2016-05-12 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH Method for producing thermal spraying powder containing chromium nitride
WO2016186037A1 (en) 2015-05-15 2016-11-24 東洋鋼鈑株式会社 Hard sintered alloy and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325436A (en) 2004-05-17 2005-11-24 Riken Corp Hard-particle dispersion type iron-based sintered alloy
JP2016513170A (en) 2013-01-24 2016-05-12 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH Method for producing thermal spraying powder containing chromium nitride
WO2016186037A1 (en) 2015-05-15 2016-11-24 東洋鋼鈑株式会社 Hard sintered alloy and method for manufacturing same

Also Published As

Publication number Publication date
JP2021080542A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
JP4773416B2 (en) Method for producing sintered body, powder mixture used in the method, and sintered body produced by the method
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP5876490B2 (en) Method for producing a sintered composite
WO2007145844A1 (en) Infiltrant matrix powder and product using such powder
JP5309394B2 (en) Cemented carbide
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
CN110923535A (en) Hard alloy and preparation method and application thereof
CN109070216A (en) Carbide with toughness enhancing structure
TWI652352B (en) Eutectic porcelain gold material
JP7366707B2 (en) Sintered material and its manufacturing method
WO2011125663A1 (en) Molybdenum alloy and process for producing same
JP2001181777A (en) Cylinder core and anvil core for superhigh pressure generating device
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP4366803B2 (en) Cemented carbide extruded material, method for producing the same, and cutting tool
JP2023518477A (en) Cobalt-free tungsten carbide cemented carbide material
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
JP3341776B2 (en) Super hard alloy
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2010253607A (en) Cutting tool
JP2010115657A (en) Binderless powder for surface hardening
WO2020032235A1 (en) NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
JP7209216B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7131738B1 (en) Cemented Carbide and Molds for Ultra High Pressure Generators Using Cemented Carbide
JP2004238660A (en) Chromium-containing cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7366707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150