JP7366408B2 - Preventive and therapeutic agents for lysosomal diseases - Google Patents

Preventive and therapeutic agents for lysosomal diseases Download PDF

Info

Publication number
JP7366408B2
JP7366408B2 JP2019571189A JP2019571189A JP7366408B2 JP 7366408 B2 JP7366408 B2 JP 7366408B2 JP 2019571189 A JP2019571189 A JP 2019571189A JP 2019571189 A JP2019571189 A JP 2019571189A JP 7366408 B2 JP7366408 B2 JP 7366408B2
Authority
JP
Japan
Prior art keywords
cells
lovastatin
disease
autophagy
preventive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019571189A
Other languages
Japanese (ja)
Other versions
JPWO2019156252A1 (en
Inventor
英俊 櫻井
洋平 西
章 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2019156252A1 publication Critical patent/JPWO2019156252A1/en
Application granted granted Critical
Publication of JP7366408B2 publication Critical patent/JP7366408B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、ライソゾーム病の予防又は治療剤に関する。より詳細には、本発明は、HMG-CoA還元酵素阻害薬を含有してなるライソゾーム病の予防又は治療剤に関する。 The present invention relates to a prophylactic or therapeutic agent for lysosomal diseases. More specifically, the present invention relates to a prophylactic or therapeutic agent for lysosomal diseases containing an HMG-CoA reductase inhibitor.

ライソゾーム病(以下、「LSD」と略記する場合がある)はライソゾーム内の酸性分解酵素の遺伝的欠損又はライソゾームの機能障害を来たす遺伝子の異常により発症する。それらの欠損によりライソゾーム内に様々な基質や不要物質が蓄積し、その結果、肝臓、脾臓の腫大、骨変形、神経障害(痙攣、知能障害など)、眼障害、腎障害、心不全など種々の症状を呈する疾患であり、厚生労働省の指定難病に指定されている。 Lysosomal diseases (hereinafter sometimes abbreviated as "LSD") are caused by genetic defects in acid degrading enzymes in lysosomes or genetic abnormalities that cause lysosomal dysfunction. Due to their deficiency, various substrates and unnecessary substances accumulate in lysosomes, resulting in various problems such as enlargement of the liver and spleen, bone deformities, neurological disorders (convulsions, intellectual disabilities, etc.), eye disorders, kidney disorders, heart failure, etc. It is a disease that exhibits symptoms and is designated as an intractable disease by the Ministry of Health, Labor and Welfare.

LSDの原因は、ライソゾーム内の酸性分解酵素の遺伝的欠損が多数であり、蓄積する基質や欠損する酵素の種類により数多くの疾患に分類される(ゴーシェ病、ファブリー病、ニーマン・ピック病、GM1ガングリオシドーシス、ムコ多糖症I型など)。 Many causes of LSD are genetic defects in acid-degrading enzymes in lysosomes, and they are classified into many diseases depending on the substrates that accumulate and the types of enzymes that are defective (Gaucher disease, Fabry disease, Niemann-Pick disease, GM1). gangliosidosis, mucopolysaccharidosis type I, etc.).

現在、LSDの治療薬としていくつかの酵素補充療法が施行されいる。例えば、ファブリー病なら、リプレガルTM(大日本住友製薬)やファブラザイムTM(JCRファーマ)が、ポンペ病ではマイオザイムTM(サノフィ)が上市され、施行されている。しかしながら、これらの酵素補充療法は臨床症状の改善や生存期間の延長など一定の効果を示すが、1)中枢神経症状や骨格筋症状に効果がない、2)自己抗体の出現、3)アレルギー反応、4)オートファジーの機能不全など問題点がある。特に、マイオザイムTMを用いた酵素補充療法において、生命予後が改善される一方で、骨格筋症状に対する効果は認められず運動機能は改善しない。また、中枢神経症状も改善しない。その原因として、オートファジービルドアップと呼ばれる過剰のオートファゴソームの蓄積を原因とするオートファジーの機能不全が報告されている(非特許文献1)。Currently, several enzyme replacement therapies are being used as therapeutic agents for LSD. For example, for Fabry disease, Repregal TM (Dainippon Sumitomo Pharma) and Fabrazyme TM (JCR Pharma) are on the market, and for Pompe disease, Myozyme TM (Sanofi) is on the market and is being administered. However, although these enzyme replacement therapies show certain effects such as improvement of clinical symptoms and prolongation of survival time, they are not effective against 1) central nervous system symptoms or skeletal muscle symptoms, 2) appearance of autoantibodies, and 3) allergic reactions. , 4) There are problems such as autophagy dysfunction. In particular, enzyme replacement therapy using MyozymeTM improves life prognosis, but has no effect on skeletal muscle symptoms and does not improve motor function. In addition, central nervous system symptoms do not improve. The cause of this has been reported to be autophagy dysfunction caused by the accumulation of excessive autophagosomes called autophagy buildup (Non-Patent Document 1).

ところで、Yamanakaらが樹立した人工多能性幹細胞(以下、「iPS細胞」という)(特許文献1)は、各組織の細胞へと分化させることができるため、in vitroで病態の再現をすることが可能と考えられている。実際、上記の方法で、様々な難病患者由来のiPS細胞が作製され、目的の細胞へ分化させ治療薬のスクリーンングが行われている。本発明者らは以前、骨格筋細胞を特異的に誘導しない条件で培養した多能性幹細胞において外因性のMyoDやMyf5を発現させ、その発現期間を調節することにより、多能性幹細胞から骨格筋細胞を効率よく分化誘導させる方法を確立し(特許文献2)、当該方法を用いてポンペ病患者由来iPS細胞から同疾患のモデル細胞を樹立している(非特許文献2)。 By the way, the induced pluripotent stem cells (hereinafter referred to as "iPS cells") established by Yamanaka et al. (Patent Document 1) can be differentiated into cells of various tissues, so it is difficult to reproduce pathological conditions in vitro. is considered possible. In fact, iPS cells derived from patients with various incurable diseases have been produced using the above method, differentiated into target cells, and screened for therapeutic agents. The present inventors previously expressed exogenous MyoD and Myf5 in pluripotent stem cells cultured under conditions that do not specifically induce skeletal muscle cells, and by regulating the expression period, the skeletal muscle cells were extracted from pluripotent stem cells. We have established a method for efficiently inducing differentiation of muscle cells (Patent Document 2), and have used this method to establish model cells for the disease from iPS cells derived from Pompe disease patients (Non-Patent Document 2).

WO 2008/118820 A2WO 2008/118820 A2 WO 2013/073246 A1WO 2013/073246 A1

Fukuda,T.,and H.Sugie.Brain and nerve=Shinkeikenkyu no shinpo 67.9(2015):1091-1098.Fukuda, T. , and H. Sugie. Brain and nerve = Shinkeikenkyu no Shinpo 67.9 (2015): 1091-1098. Yoshida,T.et al.,Sci.Rep.,7:13473(2017)Yoshida, T. et al. , Sci. Rep. , 7:13473 (2017)

本発明の目的は、より有効かつ副作用の少ないLSDの新規な予防及び/又は治療薬を提供することである。 An object of the present invention is to provide a new preventive and/or therapeutic agent for LSD that is more effective and has fewer side effects.

本発明者らは、上記の目的を達成すべく、ポンペ病患者由来の線維芽細胞からiPS細胞を樹立し、本発明者らが開発した分化誘導法(上記特許文献2)を用いて筋細胞へ分化誘導を行った。ここで、得られた筋細胞においてオートファゴソームが蓄積していることに着目し、当該筋細胞と試験化合物を接触させ、オートファゴソームの蓄積を低下させる化合物をスクリーニングした。その結果、HMG-CoA還元酵素(以下、「HMGCR」ともいう)阻害薬がオートファゴソームの蓄積を低下させることを見出した。さらに、別のLSDである縁取り空胞を伴う遠位型ミオパチー(GNEミオパチー)患者由来iPS細胞から分化させた筋細胞を用いた実験でも、HMGCR阻害薬によるオートファゴソームの蓄積減少を確認した。
本発明者らは、これらの知見に基づいて、HMGCR阻害薬がLSDの予防及び/又は治療に有効であると結論し、本発明を完成するに至った。
In order to achieve the above object, the present inventors established iPS cells from fibroblasts derived from Pompe disease patients, and used the differentiation induction method developed by the present inventors (Patent Document 2 above) to induce muscle cells. Differentiation was induced into Here, focusing on the fact that autophagosomes were accumulated in the obtained muscle cells, a test compound was brought into contact with the muscle cells, and a compound that reduced the accumulation of autophagosomes was screened. As a result, it was found that an HMG-CoA reductase (hereinafter also referred to as "HMGCR") inhibitor reduces the accumulation of autophagosomes. Furthermore, in experiments using myocytes differentiated from iPS cells derived from patients with distal myopathy with rimmed vacuoles (GNE myopathy), another LSD, we confirmed that HMGCR inhibitors reduced the accumulation of autophagosomes.
Based on these findings, the present inventors concluded that HMGCR inhibitors are effective in preventing and/or treating LSD, and completed the present invention.

すなわち、本発明は以下のとおりである。
[1]HMG-CoA還元酵素阻害薬を含有してなるライソゾーム病の予防又は治療剤。
[2]HMG-CoA還元酵素阻害薬がロバスタチンである、[1]に記載の剤。
[3]ライソゾーム病がポンペ病又はGNEミオパチーである、[1]又は[2]に記載の剤。
[4]対象におけるライソゾーム病の予防又は治療方法であって、該対象に有効量のHMG-CoA還元酵素阻害薬を投与することを含む、方法。
[5]HMG-CoA還元酵素阻害薬がロバスタチンである、[4]に記載の方法。
[6]ライソゾーム病がポンペ病又はGNEミオパチーである、[4]又は[5]に記載の方法。
[7]ライソゾーム病の予防又は治療における使用のためのHMG-CoA還元酵素阻害薬。
[8]HMG-CoA還元酵素阻害薬がロバスタチンである、[7]に記載の阻害薬。
[9]ライソゾーム病がポンペ病又はGNEミオパチーである、[7]又は[8]に記載の剤。
That is, the present invention is as follows.
[1] A prophylactic or therapeutic agent for lysosomal diseases containing an HMG-CoA reductase inhibitor.
[2] The agent according to [1], wherein the HMG-CoA reductase inhibitor is lovastatin.
[3] The agent according to [1] or [2], wherein the lysosomal disease is Pompe disease or GNE myopathy.
[4] A method for preventing or treating lysosomal disease in a subject, the method comprising administering to the subject an effective amount of an HMG-CoA reductase inhibitor.
[5] The method according to [4], wherein the HMG-CoA reductase inhibitor is lovastatin.
[6] The method according to [4] or [5], wherein the lysosomal disease is Pompe disease or GNE myopathy.
[7] HMG-CoA reductase inhibitor for use in the prevention or treatment of lysosomal diseases.
[8] The inhibitor according to [7], wherein the HMG-CoA reductase inhibitor is lovastatin.
[9] The agent according to [7] or [8], wherein the lysosomal disease is Pompe disease or GNE myopathy.

本発明によれば、LSDに共通する病態でありながら、従来の酵素補充療法では介入できなかったオートファジーの機能不全を改善することができるので、LSDの有効な新規予防及び/又は治療手段として期待される。 According to the present invention, it is possible to improve autophagy dysfunction, which is a pathological condition common to LSD, but which could not be intervened with conventional enzyme replacement therapy, and therefore can be used as an effective new preventive and/or therapeutic means for LSD. Be expected.

LSD予防/治療薬のスクリーニング結果を示す図である。横軸に蛍光強度を、縦軸に細胞内のオートファジー小胞の面積を、それぞれ示す。FIG. 3 is a diagram showing the results of screening for LSD preventive/therapeutic drugs. The horizontal axis shows the fluorescence intensity, and the vertical axis shows the area of intracellular autophagy vesicles. ロバスタチンがポンペ病特異的筋細胞におけるオートファジーマーカーLS3の発現を抑制することを示す図である。FIG. 3 shows that lovastatin suppresses the expression of autophagy marker LS3 in Pompe disease-specific muscle cells. ポンペ病特異的筋細胞におけるロバスタチンの治療効果を示す電子顕微鏡写真である。FIG. 3 is an electron micrograph showing the therapeutic effect of lovastatin on Pompe disease-specific muscle cells. ポンペ病特異的筋細胞におけるロバスタチンの治療効果を示す電子顕微鏡写真である。FIG. 3 is an electron micrograph showing the therapeutic effect of lovastatin on Pompe disease-specific muscle cells. ロバスタチンがGNEミオパチー特異的筋細胞におけるオートファジー空胞を消失させることを示す図である。FIG. 3 shows that lovastatin abolishes autophagic vacuoles in GNE myopathy-specific myocytes. GNEミオパチー特異的筋細胞におけるロバスタチンの治療効果を示す電子顕微鏡写真である。FIG. 3 is an electron micrograph showing the therapeutic effect of lovastatin on GNE myopathy-specific muscle cells.

本発明は、HMG-CoA還元酵素(HMGCR)阻害薬を含有してなるライソゾーム病(LSD)の予防及び/又は治療剤(以下、「本発明の予防/治療剤」ともいう)を提供する。 The present invention provides a prophylactic and/or therapeutic agent for lysosomal disease (LSD) containing an HMG-CoA reductase (HMGCR) inhibitor (hereinafter also referred to as "preventive/therapeutic agent of the present invention").

本発明において治療対象となるLSDは、ライソゾームに関連する酵素の欠損により分解されるべき物質が老廃物として蓄積し、ライソゾームとオートファゴソームとの融合が阻害され、オートファゴソームが蓄積してオートファジーの機能不全の病態を呈する疾患であれば特に制限はなく、例えば、α-グルコシダーゼ(GAA)の欠損によりグリコーゲンが蓄積するポンペ病、UDP-N-アセチルグルコサミン 2-エピメラーゼ/N-アセチルマンノサミンキナーゼ(GNE)を欠損する縁取り空胞を伴う遠位型ミオパチー(GNEミオパチー)、GM1ガングリオシドーシス、GM2ガングリオシドーシス、異染性白質ジストロフィー(MLD)、ファブリー病(α-ガラクトシダーゼA欠損)、ファーバー病、ゴーシェ病(β-グルコセレブロシダーゼ欠損)、ニーマン・ピック病(A,B,C型)、クラッベ病等のスフィンゴ脂質が蓄積する疾患、ムコ多糖症(I-VII型)、ダノン病、α-マンノーシドーシスなどが挙げられるが、それらに限定されない、好ましくは、ポンペ病又はGNEミオパチーである。 LSD, which is the target of treatment in the present invention, is caused by defects in enzymes related to lysosomes, which cause substances to be degraded to accumulate as waste products, inhibit fusion between lysosomes and autophagosomes, and cause autophagosomes to accumulate and inhibit autophagy. There are no particular restrictions as long as the disease exhibits a dysfunctional pathology, such as Pompe disease, in which glycogen accumulates due to α-glucosidase (GAA) deficiency, and UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. (GNE)-deficient distal myopathy with rimmed vacuoles (GNE myopathy), GM1 gangliosidosis, GM2 gangliosidosis, metachromatic leukodystrophy (MLD), Fabry disease (α-galactosidase A deficiency), Fabry diseases, Gaucher disease (β-glucocerebrosidase deficiency), Niemann-Pick disease (types A, B, C), diseases in which sphingolipids accumulate such as Krabbe disease, mucopolysaccharidosis (types I-VII), Danon's disease, Examples include, but are not limited to, α-mannosidosis, preferably Pompe disease or GNE myopathy.

本発明の予防/治療剤の有効成分であるHMG-CoA還元酵素(HMGCR)阻害薬は、ヒドロキシメチルグルタリルCoAレダクターゼの酵素活性を阻害する活性を有する化合物であれば特に制限はなく、微生物由来の天然物質、それから誘導される半合成物質、及び全合成化合物のすべてが含まれ、例えば、(+)-(1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-ヘキサヒドロ-3,7-ジメチル-8-[2-[(2R,4R)-テトラヒドロ-4-ヒドロキシ-6-オキソ-2H-ピラン-2-イル]エチル]-1-ナフチル(S)-2-メチルブチレート(ロバスタチン、特開昭57-163374号公報(USP4231938)参照)、(+)-(1S,3R,7S,8S,8aR)-1,2,3,7,8,8a-ヘキサヒドロ-3,7-ジメチル-8-[2-[(2R,4R)-テトラヒドロ-4-ヒドロキシ-6-オキソ-2H-ピラン-2-イル]エチル]-1-ナフチル 2,2-ジメチルブチレート(シンバスタチン、特開昭56-122375号公報(USP4444784)参照)、(±)(3R*,5S*,6E)-7-[3-(4-フルオロフェニル)-1-(1-メチルエチル)-1H-インド-ル-2-イル]-3,5-ジヒドロキシ-6-ヘプテン酸(フルバスタチン、特表昭60-500015号公報(USP4739073)参照)、(3R,5S)-7-[2-(4-フルオロフェニル)-5-(1-メチルエチル)-3-フェニル-4-フェニルアミノカルボニル-1H-ピロ-ル-1-イル]-3,5-ジヒドロキシヘプタン酸(アトルバスタチン、特開平3-58967号公報(USP5273995)参照)、(1S,7R,8S,8aR)-8-{2-[(2R,4R)-4-ヒドロキシ-6-オキソテトラヒドロ-2H-ピラン-2-イル]エチル}-7-メチル-1,2,3,7,8,8a-ヘキサヒドロナフタレン-1-イル(2S)-2-メチルブタノエート(メバスタチン、Journal of Antibiotics(Tokyo)29(12):1346-8(1976))、(3R,5S,6E)-7-[4-(4-フルオロフェニル)-5-(メトキシメチル)-2,6-ビス(プロパン-2-イル)ピリジン-3-イル]-3,5-ジヒドロキシヘプト-6-エノイン酸(セリバスタチン、Br J Pharmacol.1999 Feb;126(4):961-968.)、(+)-(3R,5R)-3,5-ジヒドロキシ-7-[(1S,2S,6S,8S,8aR)-6-ヒドロキシ-2-メチル-8-[(S)-2-メチルブチリルオキシ]-1,2,6,7,8,8a-ヘキサヒドロ-1-ナフチル]ヘプタン酸(プラバスタチン、特開昭57-2240号公報(USP4346227)参照)、(+)-(3R,5S)-7-[4-(4-フルオロフェニル)-6-イソプロピル-2-(N-メチル-N-メタンスルフォニルアミノ)ピリミジン-5-イル]-3,5-ジヒドロキシ-6(E)-ヘプテン酸(ロスバスタチン、特開平5-178841号公報(USP5260440)参照)又は(E)-3,5-ジヒドロキシ-7-[4’-(4’’-フルオロフェニル)-2’-シクロプロピルキノリン-3’-イル]-6-ヘプテン酸(ピタバスタチン、特開平1-279866号公報(USP5854259及びUSP5856336)参照)のようなスタチン化合物である。好ましいHMGCR阻害薬としては、ロバスタチンである。 The HMG-CoA reductase (HMGCR) inhibitor, which is the active ingredient of the prophylactic/therapeutic agent of the present invention, is not particularly limited as long as it is a compound having the activity of inhibiting the enzymatic activity of hydroxymethylglutaryl-CoA reductase, and is derived from microorganisms. natural substances, semi-synthetic substances derived therefrom, and fully synthetic compounds, such as (+)-(1S,3R,7S,8S,8aR)-1,2,3,7,8, 8a-Hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthyl(S)- 2-Methylbutyrate (lovastatin, see JP-A-57-163374 (USP 4231938)), (+)-(1S,3R,7S,8S,8aR)-1,2,3,7,8,8a- hexahydro-3,7-dimethyl-8-[2-[(2R,4R)-tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl]ethyl]-1-naphthyl 2,2-dimethylbuty rate (simvastatin, see JP-A-56-122375 (USP 4444784)), (±)(3R*,5S*,6E)-7-[3-(4-fluorophenyl)-1-(1-methylethyl) )-1H-indol-2-yl]-3,5-dihydroxy-6-heptenoic acid (fluvastatin, see Japanese Patent Application Publication No. 60-500015 (USP 4739073)), (3R,5S)-7-[ 2-(4-fluorophenyl)-5-(1-methylethyl)-3-phenyl-4-phenylaminocarbonyl-1H-pyrrol-1-yl]-3,5-dihydroxyheptanoic acid (atorvastatin, esp. (See Japanese Patent Publication No. 3-58967 (USP5273995)), (1S,7R,8S,8aR)-8-{2-[(2R,4R)-4-hydroxy-6-oxotetrahydro-2H-pyran-2-yl ] Ethyl}-7-methyl-1,2,3,7,8,8a-hexahydronaphthalen-1-yl (2S)-2-methylbutanoate (mevastatin, Journal of Antibiotics (Tokyo) 29 (12) :1346-8 (1976)), (3R,5S,6E)-7-[4-(4-fluorophenyl)-5-(methoxymethyl)-2,6-bis(propan-2-yl)pyridine- 3-yl]-3,5-dihydroxyhept-6-enoic acid (cerivastatin, Br J Pharmacol. 1999 Feb; 126(4):961-968. ), (+)-(3R,5R)-3,5-dihydroxy-7-[(1S,2S,6S,8S,8aR)-6-hydroxy-2-methyl-8-[(S)-2- methylbutyryloxy]-1,2,6,7,8,8a-hexahydro-1-naphthyl]heptanoic acid (pravastatin, see JP-A-57-2240 (USP 4346227)), (+)-(3R, 5S)-7-[4-(4-fluorophenyl)-6-isopropyl-2-(N-methyl-N-methanesulfonylamino)pyrimidin-5-yl]-3,5-dihydroxy-6(E)- Heptenoic acid (rosuvastatin, see JP-A-5-178841 (USP 5260440)) or (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropylquinoline- 3'-yl]-6-heptenoic acid (pitavastatin, see JP-A-1-279866 (USP 5854259 and USP 5856336)). A preferred HMGCR inhibitor is lovastatin.

上記のスタチン化合物は、そのラクトン閉環体又はその薬理上許容される塩(好適には、ナトリウム塩又はカルシウム塩等)を包含する。 The above-mentioned statin compounds include closed lactones thereof or pharmacologically acceptable salts thereof (preferably sodium salts, calcium salts, etc.).

本発明の予防/治療剤は、有効成分であるHMGCR阻害薬をそのまま単独で、または薬理学的に許容される担体、賦形剤、希釈剤等と混合し、適当な剤型の医薬組成物として経口的又は非経口的に投与することができる。 The prophylactic/therapeutic agent of the present invention can be prepared by preparing the active ingredient HMGCR inhibitor alone or by mixing it with a pharmacologically acceptable carrier, excipient, diluent, etc., and preparing a pharmaceutical composition in an appropriate dosage form. It can be administered orally or parenterally.

経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。一方、非経口投与のための組成物としては、例えば、注射剤、坐剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を包含しても良い。これらの製剤は、賦形剤(例えば、乳糖、白糖、葡萄糖、マンニトール、ソルビトールのような糖誘導体;トウモロコシデンプン、バレイショデンプン、α澱粉、デキストリンのような澱粉誘導体;結晶セルロースのようなセルロース誘導体;アラビアゴム;デキストラン;プルランのような有機系賦形剤;及び、軽質無水珪酸、合成珪酸アルミニウム、珪酸カルシウム、メタ珪酸アルミン酸マグネシウムのような珪酸塩誘導体;燐酸水素カルシウムのような燐酸塩;炭酸カルシウムのような炭酸塩;硫酸カルシウムのような硫酸塩等の無機系賦形剤である)、滑沢剤(例えば、ステアリン酸、ステアリン酸カルシウム、ステアリン酸マグネシウムのようなステアリン酸金属塩;タルク;コロイドシリカ;ビーズワックス、ゲイ蝋のようなワックス類;硼酸;アジピン酸;硫酸ナトリウムのような硫酸塩;グリコール;フマル酸;安息香酸ナトリウム;DLロイシン;ラウリル硫酸ナトリウム、ラウリル硫酸マグネシウムのようなラウリル硫酸塩;無水珪酸、珪酸水和物のような珪酸類;及び、上記澱粉誘導体である)、結合剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、マクロゴール、及び、前記賦形剤と同様の化合物である)、崩壊剤(例えば、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、内部架橋カルボキシメチルセルロースナトリウムのようなセルロース誘導体;カルボキシメチルスターチ、カルボキシメチルスターチナトリウム、架橋ポリビニルピロリドンのような化学修飾されたデンプン・セルロース類である)、乳化剤(例えば、ベントナイト、ビーガムのようなコロイド性粘土;水酸化マグネシウム、水酸化アルミニウムのような金属水酸化物;ラウリル硫酸ナトリウム、ステアリン酸カルシウムのような陰イオン界面活性剤;塩化ベンザルコニウムのような陽イオン界面活性剤;及び、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ショ糖脂肪酸エステルのような非イオン界面活性剤である)、安定剤(メチルパラベン、プロピルパラベンのようなパラオキシ安息香酸エステル類;クロロブタノール、ベンジルアルコール、フェニルエチルアルコールのようなアルコール類;塩化ベンザルコニウム;フェノール、クレゾールのようなフェノール類;チメロサール;デヒドロ酢酸;及び、ソルビン酸である)、矯味矯臭剤(例えば、通常使用される、甘味料、酸味料、香料等である)、希釈剤等の添加剤を用いて周知の方法で製造される。 Compositions for oral administration include solid or liquid dosage forms, in particular tablets (including dragees and film-coated tablets), pills, granules, powders, capsules (including soft capsules), syrups. Examples include formulations, emulsions, suspensions, and the like. On the other hand, as compositions for parenteral administration, for example, injections, suppositories, etc. are used, and injections include intravenous injections, subcutaneous injections, intradermal injections, intramuscular injections, drip injections, etc. Dosage forms may also be included. These formulations contain excipients (e.g. sugar derivatives such as lactose, sucrose, glucose, mannitol, sorbitol; starch derivatives such as corn starch, potato starch, alpha starch, dextrin; cellulose derivatives such as crystalline cellulose; Gum arabic; dextran; organic excipients such as pullulan; and silicate derivatives such as light anhydrous silicic acid, synthetic aluminum silicate, calcium silicate, and magnesium aluminate metasilicate; phosphates such as calcium hydrogen phosphate; carbonic acid carbonates such as calcium; inorganic excipients such as sulfates such as calcium sulfate), lubricants (such as stearic acid, metal salts of stearate such as calcium stearate, magnesium stearate; talc; Colloidal silica; waxes such as beeswax and gay wax; boric acid; adipic acid; sulfates such as sodium sulfate; glycol; fumaric acid; sodium benzoate; DL leucine; lauryl such as sodium lauryl sulfate and magnesium lauryl sulfate sulfates; silicic acids such as silicic anhydride and silicic acid hydrate; and the above-mentioned starch derivatives), binders (for example, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, macrogol, and the above-mentioned excipients) disintegrants (e.g. cellulose derivatives such as low-substituted hydroxypropylcellulose, carboxymethylcellulose, calcium carboxymethylcellulose, internally cross-linked sodium carboxymethylcellulose; carboxymethyl starch, sodium carboxymethyl starch, cross-linked polyvinylpyrrolidone) emulsifiers (e.g. colloidal clays such as bentonite, vegum; metal hydroxides such as magnesium hydroxide, aluminum hydroxide; sodium lauryl sulfate, calcium stearate) anionic surfactants such as; cationic surfactants such as benzalkonium chloride; and nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, sucrose fatty acid ester. ), stabilizers (paraoxybenzoic acid esters such as methylparaben and propylparaben; alcohols such as chlorobutanol, benzyl alcohol and phenylethyl alcohol; benzalkonium chloride; phenols such as phenol and cresol; thimerosal; Dehydroacetic acid; .

HMGCR阻害薬の投与量は、患者の症状、年齢、体重等の種々の条件により変化し得る。
その投与量は症状、年齢等により異なるが、経口投与の場合には、1回当たり下限0.1mg、上限1000mg(好適には500mg)を、非経口的投与の場合には、1回当たり下限0.01mg、上限100mg(好適には50mg)を、成人に対して1日当たり1乃至6回投与することができる。症状に応じて増量もしくは減量してもよい。
The dosage of the HMGCR inhibitor may vary depending on various conditions such as the patient's symptoms, age, and weight.
The dosage varies depending on symptoms, age, etc., but in the case of oral administration, the lower limit is 0.1 mg and the upper limit is 1000 mg (preferably 500 mg) per dose, and in the case of parenteral administration, the lower limit is 0.1 mg per dose. 0.01 mg up to 100 mg (preferably 50 mg) can be administered to adults 1 to 6 times per day. The dose may be increased or decreased depending on the symptoms.

本発明の予防/治療剤は、他の薬剤、例えば、ライソゾーム病の治療に従来使用されている薬剤、例えば、酵素補充療法剤(例、α-グルコシダーゼ(ポンペ病)、α-ガラクトシダーゼA(ファブリー病)、ゴーシェ病(β-グルコセレブロシダーゼ)等)、薬理学的シャペロン療法剤、基質低減療法剤などと併用してもよい。本発明の予防/治療剤及びこれらの他の薬剤は、同時に、順次又は別個に投与することができる。 The prophylactic/therapeutic agent of the present invention may be used in combination with other drugs, such as drugs conventionally used for the treatment of lysosomal diseases, such as enzyme replacement therapy agents (e.g., α-glucosidase (Pompe disease), α-galactosidase A (Fabry Gaucher's disease (β-glucocerebrosidase), etc.), pharmacological chaperone therapy agents, substrate reduction therapy agents, etc. may be used in combination. The prophylactic/therapeutic agents of the invention and these other agents can be administered simultaneously, sequentially or separately.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。 EXAMPLES The present invention will be described in more detail with reference to Examples below, but it goes without saying that the present invention is not limited thereto.

実施例1:ポンペ病患者から樹立したiPS細胞を用いた薬理評価
(1)ポンペ病患者由来の線維芽細胞
生検した4mmの皮膚を3週間の培養後、ポンペ病患者由来の線維芽細胞として用いた。
Example 1: Pharmacological evaluation using iPS cells established from Pompe disease patients (1) Fibroblasts derived from Pompe disease patients After culturing 4 mm of biopsied skin for 3 weeks, they were cultured as fibroblasts derived from Pompe disease patients. Using.

(2)iPS細胞誘導
KLF4、Sox2、Oct3/4およびc-Mycに対するヒトcDNAを、Takahashi K,et al,Cell 131(5),861,2007に記載の方法に従って、レトロウィルスを用いて前記線維芽細胞へ導入した。導入後6日目に、線維芽細胞をSNLフィーダー細胞上に移し、翌日に4ng/mlのbFGF(Wako)を添加した霊長類ES細胞用培養液へ培地を交換した。培地は、1日おきに交換し、遺伝子導入後30日目に、コロニーをピックアップした。
(2) iPS cell induction Human cDNAs for KLF4, Sox2, Oct3/4 and c-Myc were injected into the fibers using a retrovirus according to the method described in Takahashi K, et al, Cell 131(5), 861, 2007. introduced into blast cells. On the 6th day after the introduction, the fibroblasts were transferred onto SNL feeder cells, and the next day, the medium was replaced with a culture medium for primate ES cells supplemented with 4 ng/ml bFGF (Wako). The medium was replaced every other day, and colonies were picked up 30 days after gene introduction.

(3)骨格筋細胞分化誘導
上記のポンペ病患者由来iPS細胞に、テトラサイクリン応答性のMyoD発現ベクターを導入し(Tanaka et al.Plos One,2013)、筋分化良好なクローン(MyoD-hiPSC)を選別した。
MyoD-hiPSCを、フィーダー細胞の不在下、マトリゲル(BD)コートディッシュ又はi-matrix(ニッキ)に播種した。マトリゲルは、霊長類ES培地で1:50に希釈した。MyoD-hiPSCをトリプシン処理し、単一の細胞に解離した。96ウェル培養プレート1ウェルに対する細胞数は3.0×10~1.0×10の範囲であった。培養液を、bFGFを有さず、10μM Y-27632(wako)を有するヒトiPS培地に変更した。24時間後、1μg/mLのドキシサイクリン(LKT Laboratories)を含むAK02NもしくはAK03(Ajinomoto)ヒトiPS培養液に添加した。Knockout Serum Replacement(KSR)(Invitrogen)、50mU/Lペニシリン/50μg/Lストレプトマイシン(Invitrogen)、1μg/mLのドキシサイクリン(LKT Laboratories)および100μM 2-メルカプトエタノール(2-ME)(Invitrogen)を添加したものに変更した。さらに5日後まで細胞培養を継続し骨格筋細胞へ分化誘導させた。これらの培養は、すべて37℃、5% CO、加湿雰囲気下でインキュベートすることで行った。この方法により、MHC陽性の細胞が得られ、骨格筋細胞への分化誘導が確認された。
(3) Induction of skeletal muscle cell differentiation A tetracycline-responsive MyoD expression vector was introduced into the above Pompe disease patient-derived iPS cells (Tanaka et al. Plos One, 2013), and clones with good muscle differentiation (MyoD-hiPSC) were generated. Selected.
MyoD-hiPSCs were seeded on Matrigel (BD) coated dishes or i-matrix (Nikki) in the absence of feeder cells. Matrigel was diluted 1:50 in primate ES medium. MyoD-hiPSCs were trypsinized and dissociated into single cells. The number of cells per well of a 96-well culture plate ranged from 3.0×10 3 to 1.0×10 4 . The culture medium was changed to human iPS medium without bFGF and with 10 μM Y-27632 (wako). After 24 hours, it was added to AK02N or AK03 (Ajinomoto) human iPS culture medium containing 1 μg/mL doxycycline (LKT Laboratories). Knockout Serum Replacement (KSR) (Invitrogen), 50 mU/L penicillin/50 μg/L streptomycin (Invitrogen), 1 μg/mL doxycycline (LKT Laboratories) and 100 μM 2-mercaptoethanol (2-ME) (Invitrogen) added Changed to Cell culture was continued until 5 days later to induce differentiation into skeletal muscle cells. All these cultures were performed by incubating at 37° C., 5% CO 2 and a humidified atmosphere. By this method, MHC-positive cells were obtained, and induction of differentiation into skeletal muscle cells was confirmed.

(4)オートファジーを指標としたLSD予防/治療薬のスクリーニング方法及び薬理評価
上記(3)で得られた疾患iPS細胞由来の骨格筋細胞に、それぞれ基剤(0.3% dimethylsulfoxide(DMSO))、スクリーニングの場合は終濃度3μMの各種化合物、薬理評価の場合は終濃度10,3,1,0.3,0.1,0.03,0.01,0.003μMのどちらかを加えて48時間インキュベートした。その後、細胞を回収し、オートファジーを検出できるKit、Cyto-ID autophagy detection kit(Enzo Life Science,Inc.,)を用いて細胞染色した。また、染色の方法は、Kit添付の方法に従った。細胞染色したプレートをArrayScan(Thermo Scientific)を用いて測定・解析した。評価に用いた指標として、細胞内のオートファジーの蛍光値と領域の2つを用い、散布図にて化合物の評価を実施した(図1)。その中でオートファジーの領域を減少させる一群がHMGCoA阻害剤群であり、その一つが、ロバスタチンであった。
(4) Screening method and pharmacological evaluation of LSD preventive/therapeutic drugs using autophagy as an indicator. ), for screening, add various compounds at a final concentration of 3 μM; for pharmacological evaluation, add either a final concentration of 10, 3, 1, 0.3, 0.1, 0.03, 0.01, or 0.003 μM. and incubated for 48 hours. Thereafter, the cells were collected and stained using a kit capable of detecting autophagy, the Cyto-ID autophagy detection kit (Enzo Life Science, Inc.). Moreover, the staining method followed the method attached to the kit. The cell-stained plate was measured and analyzed using ArrayScan (Thermo Scientific). Compounds were evaluated using a scatter diagram using the fluorescence value and area of intracellular autophagy as indicators for evaluation (Figure 1). Among them, a group of HMGCoA inhibitors that reduce the autophagy area was one of them, and one of them was lovastatin.

(5)LC3を指標としたLSD予防/治療薬の薬理評価法
HTSスクリーニングにより見出されたスタチン類の中で、代表的な化合物としてロバスタチンを評価した。上記(3)で得られた疾患iPS細胞由来の骨格筋細胞に、それぞれ基剤(0.3% dimethylsulfoxide(DMSO))、終濃度10,3,1,0.3μMのロバスタチンを加えて48時間インキュベートした。分化した細胞を、4%パラフォルムアルデヒド(wako)/PBSを用いて室温で10分間固定し、PBSで洗浄した後、PBS(ナカライテスク)に0.5% Triton X-100(Sigma-aldrich)を加えたものでpermeabilizationを室温で10分間行った。その後、PBSで洗浄し、Blocking one(ナカライテスク)を用いて4℃、30分間ブロッキングを行った後、再度PBSで洗浄した。一次抗体は、上記10% blocking one液中に、ウサギモノクローナル抗体(mAb)抗LC3B(1:200;Cellsignaling)を希釈して使用した。4℃、5時間細胞を反応させ、PBSで洗浄した。次いで、上記10% blocking one液中に、二次抗体としてAlexa fluor488結合抗ウサギIgGヤギ抗体(1:500;Invitrogen)および核染色用のHoechst33342(1:10000;Dojindo)をそれぞれ希釈したものを、室温で1時間反応させた。PBSにて洗浄した後、ArrayScan(Thermo Scientific)にて測定・解析した。その結果、オートファジーの代表的なマーカータンパク質であるLC3が健常者由来の筋細胞より、疾患由来の筋細胞では多く発現されていたが、ロバスタチン処置群では濃度依存的に減少することが確認できた(図2)。
(5) Pharmacological evaluation method of LSD preventive/therapeutic drugs using LC3 as an index Among the statins discovered by HTS screening, lovastatin was evaluated as a representative compound. A base (0.3% dimethylsulfoxide (DMSO)) and lovastatin at final concentrations of 10, 3, 1, and 0.3 μM were added to the diseased iPS cell-derived skeletal muscle cells obtained in (3) above for 48 hours. Incubated. Differentiated cells were fixed with 4% paraformaldehyde (WAKO)/PBS for 10 min at room temperature, washed with PBS, and then incubated with 0.5% Triton X-100 (Sigma-Aldrich) in PBS (Nacalai Tesque). permeabilization was performed at room temperature for 10 minutes. Thereafter, the plate was washed with PBS, blocked using Blocking one (Nacalai Tesque) at 4°C for 30 minutes, and then washed again with PBS. As the primary antibody, rabbit monoclonal antibody (mAb) anti-LC3B (1:200; Cellsignaling) was diluted in the above 10% blocking one solution. Cells were reacted at 4°C for 5 hours and washed with PBS. Next, Alexa fluor488-conjugated anti-rabbit IgG goat antibody (1:500; Invitrogen) as a secondary antibody and Hoechst 33342 for nuclear staining (1:10000; Dojindo) were diluted in the 10% blocking one solution, respectively. The reaction was allowed to proceed at room temperature for 1 hour. After washing with PBS, it was measured and analyzed using ArrayScan (Thermo Scientific). As a result, it was confirmed that LC3, a typical marker protein for autophagy, was expressed more in muscle cells derived from disease than in muscle cells derived from healthy subjects, but it decreased in a concentration-dependent manner in the lovastatin treatment group. (Figure 2).

(6)LSD予防/治療薬の電子顕微鏡を用いた薬理評価
ロバスタチンの効果を電子顕微鏡によっても評価した。上記(3)で得られた疾患iPS細胞由来の骨格筋細胞に、それぞれ基剤(0.3% dimethylsulfoxide(DMSO))、終濃度10μMのロバスタチンを加えて48時間インキュベートした。その後、細胞を回収し、2%パラフォルムアルデヒドと2%のグルタルアルデヒドで30分間、固定した。PBSで3回洗浄後、サンプルを、PBS中の2%のオスミウムで4℃、1時間固定化した。次いで60℃で48時間重合化後、切片を切り出し、透過型電子顕微鏡(日本電子)にて観察した。その結果、ロバスタチン無処置群では、ポンペ病の病態であるグリコーゲン顆粒が多数蓄積したオートファジー空胞(図3 黒矢印)が観察されたが、ロバスタチン処置群ではオートファジー空胞が消失しており、より健常者由来の筋分化細胞と近い電子顕微鏡像が得られた(図4)。以上より、オートファジー機能の制御不全による細胞への影響について数多くの知見(Galluzzi et al.Nature Reviews Drug Discovery 16:487-511,2017およびParenti et al.Annual review of medicine 66:471-486,2015)を考慮すると、ロバスタチンはLSDにおけるライソゾーム機能不全と、それに伴うオートファジーの過剰蓄積の予防及び治療に有用であることが示唆された。
(6) Pharmacological evaluation of LSD preventive/therapeutic agents using electron microscopy The effects of lovastatin were also evaluated using electron microscopy. A base (0.3% dimethylsulfoxide (DMSO)) and lovastatin at a final concentration of 10 μM were added to the diseased iPS cell-derived skeletal muscle cells obtained in (3) above, and incubated for 48 hours. Thereafter, cells were collected and fixed with 2% paraformaldehyde and 2% glutaraldehyde for 30 minutes. After washing three times with PBS, samples were fixed with 2% osmium in PBS for 1 hour at 4°C. After polymerization at 60° C. for 48 hours, sections were cut out and observed using a transmission electron microscope (JEOL). As a result, in the lovastatin-untreated group, autophagic vacuoles (black arrows in Figure 3) in which many glycogen granules accumulated, which is a pathological condition of Pompe disease, were observed, but in the lovastatin-treated group, autophagic vacuoles disappeared. , an electron microscopic image closer to that of muscle differentiated cells derived from healthy individuals was obtained (Figure 4). From the above, there are many findings regarding the effects on cells due to dysregulation of autophagy function (Galluzzi et al. Nature Reviews Drug Discovery 16:487-511, 2017 and Parenti et al. Annual review of medici ne 66:471-486, 2015 ), it was suggested that lovastatin is useful for the prevention and treatment of lysosomal dysfunction in LSD and the associated excessive accumulation of autophagy.

実施例2:縁取り空胞をともなう遠位型ミオパチー(GNEミオパチー)患者から樹立したiPS細胞を用いた薬理評価
(1)GNEミオパチー患者由来の線維芽細胞
生検した4mmの皮膚を3週間の培養後、GNEミオパチー患者由来の線維芽細胞として用いた。
Example 2: Pharmacological evaluation using iPS cells established from patients with distal myopathy with edging vacuoles (GNE myopathy) (1) Fibroblasts derived from patients with GNE myopathy 4 mm of biopsied skin was cultured for 3 weeks Thereafter, the cells were used as fibroblasts derived from patients with GNE myopathy.

(2)iPS細胞誘導
OCT3/4,SOX2,KLF4,L-Myc,LIN28に対するヒトcDNAと,shRNA-p53を、Okita K,et al,Nature Methods,2011に記載の方法に従って、エピゾーマルベクターを用いて前記線維芽細胞へ導入した。導入後6日目に、線維芽細胞をSNLフィーダー細胞上に移し、翌日に4ng/mlのbFGF(Wako)を添加した霊長類ES細胞用培養液へ培地を交換した。培地は、1日おきに交換し、遺伝子導入後30日目に、コロニーをピックアップした。
(2) iPS cell induction Human cDNA for OCT3/4, SOX2, KLF4, L-Myc, LIN28 and shRNA-p53 were added to an episomal vector according to the method described in Okita K, et al, Nature Methods, 2011. was used to introduce the fibroblasts into the fibroblasts. On the 6th day after the introduction, the fibroblasts were transferred onto SNL feeder cells, and the next day, the medium was replaced with a culture medium for primate ES cells supplemented with 4 ng/ml bFGF (Wako). The medium was replaced every other day, and colonies were picked up 30 days after gene introduction.

(3)骨格筋細胞分化誘導
上記のGNEミオパチー患者由来iPS細胞に、テトラサイクリン応答性のMyoD発現ベクターを導入し(Tanaka et al.Plos One,2013)、筋分化良好なクローン(MyoD-hiPSC)を選別した。
MyoD-hiPSCを、フィーダー細胞の不在下、マトリゲル(BD)コートディッシュ又はi-matrix(ニッキ)に播種した。マトリゲルは、霊長類ES培地で1:50に希釈した。MyoD-hiPSCをトリプシン処理し、単一の細胞に解離した。96ウェル培養プレート1ウェルに対する細胞数は3.0×10~1.0×10の範囲であった。培養液を、bFGFを有さず、10μM Y-27632(wako)を有するヒトiPS培地に変更した。24時間後、1μg/mLのドキシサイクリン(LKT Laboratories)を含むAK02NもしくはAK03(Ajinomoto)ヒトiPS培養液に添加した。さらに24時間後、培養液を、α最小必須培地(αMEM)(ナカライテスク)に5% Knockout Serum Replacement(KSR)(Invitrogen)、50mU/Lペニシリン/50μg/Lストレプトマイシン(Invitrogen)、1μg/mLのドキシサイクリン(LKT Laboratories)および100μM 2-メルカプトエタノール(2-ME)(Invitrogen)を添加したものに変更した。さらに5日後まで細胞培養を継続し骨格筋細胞へ分化誘導させた。これらの培養は、すべて37℃、5% CO、加湿雰囲気下でインキュベートすることで行った。この方法により、MHC陽性の細胞が得られ、骨格筋細胞への分化誘導が確認された。
(3) Induction of skeletal muscle cell differentiation A tetracycline-responsive MyoD expression vector was introduced into the above GNE myopathy patient-derived iPS cells (Tanaka et al. Plos One, 2013), and clones with good muscle differentiation (MyoD-hiPSC) were generated. Selected.
MyoD-hiPSCs were seeded on Matrigel (BD) coated dishes or i-matrix (Nikki) in the absence of feeder cells. Matrigel was diluted 1:50 in primate ES medium. MyoD-hiPSCs were trypsinized and dissociated into single cells. The number of cells per well of a 96-well culture plate ranged from 3.0×10 3 to 1.0×10 4 . The culture medium was changed to human iPS medium without bFGF and with 10 μM Y-27632 (wako). After 24 hours, it was added to AK02N or AK03 (Ajinomoto) human iPS culture medium containing 1 μg/mL doxycycline (LKT Laboratories). After another 24 hours, the culture solution was supplemented with α minimal essential medium (αMEM) (Nacalai Tesque) containing 5% Knockout Serum Replacement (KSR) (Invitrogen), 50 mU/L penicillin/50 μg/L streptomycin (Invitrogen), and 1 μg/mL. Doxycycline (LKT Laboratories) and 100 μM 2-mercaptoethanol (2-ME) (Invitrogen) were added. Cell culture was continued until 5 days later to induce differentiation into skeletal muscle cells. All these cultures were performed by incubating at 37° C., 5% CO 2 and a humidified atmosphere. By this method, MHC-positive cells were obtained, and induction of differentiation into skeletal muscle cells was confirmed.

(4)オートファジーを指標とした薬理評価
GNEミオパチーに対するロバスタチンを評価した。筋分化させた細胞に終濃度、10μMのロバスタチンを加え、48時間インキュベート後、オートファジー検出KitであるCyto-ID autophagy detection kit 2.0(Enzo Life Science,Inc.,)により評価した。染色の方法は、Kit添付の方法に従った。細胞染色したプレートはArrayScan(ThermoScientific)を用いて測定・解析した。その結果、ロバスタチン処置群のオートファジー蓄積の消失が確認された(図5)。
(4) Pharmacological evaluation using autophagy as an index Lovastatin was evaluated for GNE myopathy. Lovastatin at a final concentration of 10 μM was added to the muscle-differentiated cells, and after incubation for 48 hours, evaluation was performed using an autophagy detection kit, Cyto-ID autophagy detection kit 2.0 (Enzo Life Science, Inc.). The staining method followed the method attached to the kit. The cell-stained plate was measured and analyzed using ArrayScan (Thermo Scientific). As a result, it was confirmed that autophagy accumulation disappeared in the lovastatin treated group (FIG. 5).

(5)電子顕微鏡を用いた薬理評価
ロバスタチンの効果を電子顕微鏡によっても評価した。上記(3)で得られた疾患iPS細胞由来の骨格筋細胞に、それぞれ基剤(0.3% dimethylsulfoxide(DMSO))、終濃度10μMのロバスタチンを加えて48時間インキュベートした。その後、細胞を回収し、2%パラフォルムアルデヒドと2%のグルタルアルデヒドで30分間、固定した。PBSで3回洗浄後、サンプルを、PBS中の2%のオスミウムで4℃、1時間固定化した。次いで、60℃で48時間重合化後、切片を切り出し、透過型電子顕微鏡(日本電子)にて観察した。その結果、ロバスタチン無処置群では、凝集体が多数蓄積した小胞(図6上パネル 黒矢印)が観察されたが、ロバスタチン処置群ではその小胞が消失した(図6下パネル)。
(5) Pharmacological evaluation using an electron microscope The effects of lovastatin were also evaluated using an electron microscope. A base (0.3% dimethylsulfoxide (DMSO)) and lovastatin at a final concentration of 10 μM were added to the diseased iPS cell-derived skeletal muscle cells obtained in (3) above, and incubated for 48 hours. Thereafter, cells were collected and fixed with 2% paraformaldehyde and 2% glutaraldehyde for 30 minutes. After washing three times with PBS, samples were fixed with 2% osmium in PBS for 1 hour at 4°C. After polymerization at 60°C for 48 hours, sections were cut out and observed with a transmission electron microscope (JEOL). As a result, in the lovastatin-untreated group, vesicles in which many aggregates had accumulated (black arrows in the upper panel of FIG. 6) were observed, but in the lovastatin-treated group, the vesicles disappeared (lower panel of FIG. 6).

本発明によれば、LSDに共通する病態でありながら、従来の酵素補充療法では介入できなかったオートファジーの機能不全を改善することができるので、オートファジーの機能不全による毒性物質の蓄積による細胞の損傷/ストレスや、ミトコンドリアの機能不全等による細胞死が抑制され、生命予後の改善のみならず、骨格筋症状や中枢神経症状の改善も期待できる点で極めて有用である。 According to the present invention, it is possible to improve autophagy dysfunction, which is a pathological condition common to LSD, but which could not be intervened with conventional enzyme replacement therapy. It is extremely useful in that it suppresses cell death due to damage/stress and mitochondrial dysfunction, and is expected to improve not only life prognosis but also skeletal muscle symptoms and central nervous system symptoms.

本出願は、2018年2月6日付で日本国に出願された特願2018-019698を基礎としており、ここで言及することにより、その内容はすべて本明細書に包含されるものである。 This application is based on Japanese Patent Application No. 2018-019698 filed in Japan on February 6, 2018, and by mentioning it here, the entire contents thereof are included in the present specification.

Claims (1)

ロバスタチン、シンバスタチン、又はセリバスタチンを含有してなるポンペ病又は縁取り空胞を伴う遠位型ミオパチー(GNEミオパチー)の予防又は治療剤。 A prophylactic or therapeutic agent for Pompe disease or distal myopathy with rimmed vacuoles ( GNE myopathy ) containing lovastatin, simvastatin, or cerivastatin .
JP2019571189A 2018-02-06 2019-02-05 Preventive and therapeutic agents for lysosomal diseases Active JP7366408B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018019698 2018-02-06
JP2018019698 2018-02-06
PCT/JP2019/004766 WO2019156252A1 (en) 2018-02-06 2019-02-05 Preventive and therapeutic agent for lysosomal diseases

Publications (2)

Publication Number Publication Date
JPWO2019156252A1 JPWO2019156252A1 (en) 2021-01-28
JP7366408B2 true JP7366408B2 (en) 2023-10-23

Family

ID=67549668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019571189A Active JP7366408B2 (en) 2018-02-06 2019-02-05 Preventive and therapeutic agents for lysosomal diseases

Country Status (2)

Country Link
JP (1) JP7366408B2 (en)
WO (1) WO2019156252A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117553A (en) 2004-10-19 2006-05-11 National Institute Of Advanced Industrial & Technology Conjugate with lysosomal enzyme included in type ii cubic liquid crystal composition
WO2009040816A1 (en) 2007-09-26 2009-04-02 Ramot At Tel Aviv University Ltd. Methods of treating lysosomal storage disorders
WO2010131712A1 (en) 2009-05-15 2010-11-18 財団法人ヒューマンサイエンス振興財団 Therapeutic pharmaceutical agent for diseases associated with decrease in function of gne protein, food composition, and food additive
JP2017536363A (en) 2014-11-19 2017-12-07 ラッシュ・ユニバーシティ・メディカル・センター Compositions and methods for the treatment of lysosomal storage diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117553A (en) 2004-10-19 2006-05-11 National Institute Of Advanced Industrial & Technology Conjugate with lysosomal enzyme included in type ii cubic liquid crystal composition
WO2009040816A1 (en) 2007-09-26 2009-04-02 Ramot At Tel Aviv University Ltd. Methods of treating lysosomal storage disorders
WO2010131712A1 (en) 2009-05-15 2010-11-18 財団法人ヒューマンサイエンス振興財団 Therapeutic pharmaceutical agent for diseases associated with decrease in function of gne protein, food composition, and food additive
JP2017536363A (en) 2014-11-19 2017-12-07 ラッシュ・ユニバーシティ・メディカル・センター Compositions and methods for the treatment of lysosomal storage diseases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
全陽,ライソゾーム酸性リパーゼ欠損症-コレステロールエステル蓄積症(CESD)を中心に-,肝胆膵,2014年,第69巻第3号,第445-453頁,第450頁右欄第3段落

Also Published As

Publication number Publication date
WO2019156252A1 (en) 2019-08-15
JPWO2019156252A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
Zhang et al. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway
Vellas et al. EHT0202 in Alzheimer's disease: a 3-month, randomized, placebo-controlled, double-blind study
Lei et al. N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy
RU2294744C2 (en) Application of rosuvastatin (zd-4522) in treating heterozygous familial hypercholesterolemia
US20190100492A1 (en) Treatment for lipodystrophy
US20080188524A1 (en) Methods of treating pain
US20080027088A1 (en) Imidazole-Based Hmg-Coa Reductase Inhibitors
US20200325148A1 (en) Compositions and methods of treatment for neurological disorders comprising motor neuron diseases
JP2021507945A (en) Compositions and treatments for neuropathy, including dementia
Li et al. Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons
JP7366408B2 (en) Preventive and therapeutic agents for lysosomal diseases
US20120121554A1 (en) Hmg-coa secondary metabolites and uses thereof
JPWO2006132091A1 (en) Novel triglyceride lowering agent
US8252524B2 (en) Method of screening pharmaceutical compositions that promote nuclear transfer of Cdc42 protein
US8637274B2 (en) Inhibitor for the formation of gamma-secretase complex
US20040087597A1 (en) Preventives and remedies for complications of diabetes
US9345671B2 (en) Adiponectin production enhancer
AU2017322708A1 (en) Neuroregeneration improved by ketone
US20060247299A1 (en) Sugar intake-ability enhancer
WO2019131989A1 (en) Prophylactic or therapeutic for gm1 gangliosidosis, and composition for preventing or treating gm1 gangliosidosis
JP4719572B2 (en) LKLF / KLF2 gene expression promoter
EP1702626A1 (en) Inhibitor for the formation of gammad-secretase complex
AU2015268725B2 (en) Treatment for lipodystrophy
Bejarano Fernández et al. Defective recruitment of motor proteins to autophagic compartments contributes to autophagic failure in aging
JP4395633B2 (en) Method for differentiation and maturation of non-neuronal cells into neurons, the composition and the method for searching for the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7366408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150