US20190100492A1 - Treatment for lipodystrophy - Google Patents

Treatment for lipodystrophy Download PDF

Info

Publication number
US20190100492A1
US20190100492A1 US15/992,957 US201815992957A US2019100492A1 US 20190100492 A1 US20190100492 A1 US 20190100492A1 US 201815992957 A US201815992957 A US 201815992957A US 2019100492 A1 US2019100492 A1 US 2019100492A1
Authority
US
United States
Prior art keywords
formula
compound
pharmaceutical composition
agent
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/992,957
Inventor
Dhiraj Gambhire
Rajendrakumar Hariprasad Jani
Bipin Pandey
Kaushik Sata
Himanshu Kothari
Pankaj Ramanbhai Patel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zydus Lifesciences Ltd
Original Assignee
Cadila Healthcare Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cadila Healthcare Ltd filed Critical Cadila Healthcare Ltd
Priority to US15/992,957 priority Critical patent/US20190100492A1/en
Publication of US20190100492A1 publication Critical patent/US20190100492A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/333Radicals substituted by oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats

Definitions

  • the present invention is related to the development of therapeutic compound for prevention and treatment of lipodystrophy.
  • the invention relates to the development of therapeutic compound for prevention and treatment of lipodystrophy in HIV-infected patients (LDHIV).
  • the present invention further provides a suitable composition useful in the treatment or prevention or alleviation of the symptoms of lipodystrophy in HIV infected patients (LDHIV)
  • Lipodystrophy is a very dreadful disease and has become a major global health problem. It is a disorder of fat metabolism which causes lipohypertrophy, Lipoatrophy and Metabolic abnormalities. Moreover, lipohypertrophy includes the enlargement of dorsocervical fat pad (commonly called “buffalo hump”), expansion of the circumference of the neck by 5-10 cm, hypertrophy occurring in breast, central truncal adiposity resulting from abdominal visceral fat accumulation, symmetric and asymmetric lipomatoses. A rare pattern of lipoaccumulation involves formation of band like lipomatosis tissue symmetrically from the breasts, laterally to the axillae, Suprapubic fat pads (pubic lipomas) and the development of multiple angiolipomas.
  • pubic lipomas Suprapubic fat pads
  • Lipoatrophy includes a temporal wasting and loss of subcutaneous fat from the cheeks (buccal fat pad) which produces an emaciated appearance with prominent nasolabial creases. Further subcutaneous tissue is depleted from the arms, shoulders, thighs, and buttocks (peripheral wasting), with prominence of the superficial veins in these sites.
  • Metabolic abnormalities include augmentation in cholesterol and triglyceride levels and reduced high-density lipoprotein (HDL) cholesterol levels, Insulin resistance, type 2 diabetes mellitus, and lactic academia.
  • HDL high-density lipoprotein
  • Lipodystrophy is very commonly associated with the HIV patients who are being treated anti-retroviral medicines.
  • Such medicines can include HIV-1 protease inhibitors (PIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs), Fusion Inhibitors, Entry Inhibitors—CCR5 co-receptor antagonist, HIV integrase strand transfer inhibitors etc.
  • PIs HIV-1 protease inhibitors
  • NRTIs Nucleoside reverse transcriptase inhibitors
  • NRTIs Non-nucleoside Reverse Transcriptase Inhibitors
  • Fusion Inhibitors CCR5 co-receptor antagonist
  • HIV integrase strand transfer inhibitors etc etc.
  • HIV-1 protease inhibitors appear to be the strongest link to lipodystrophy in HIV-infected patients LDHIV as it inhibits maturation of sterol response element binding proteins (SREBP), which affect intracellular fatty acid and glucose metabolism and adipocyte differentiation (Mallon et al, J Infect Dis, 2005). Furthermore, the PIs also down-regulate peroxisome proliferator-activated receptor gamma (PPAR ⁇ ), an important nuclear transcription factor that is affected by SREBPs and is necessary for adipocyte differentiation and function and fatty acid metabolism.
  • SREBP sterol response element binding proteins
  • PPAR ⁇ peroxisome proliferator-activated receptor gamma
  • LDHIV length of HIV infection, age, and gender
  • Other factors such as duration of HIV infection, age, and gender, may also contribute to the risk of development of LDHIV.
  • the molecular basis of LDHIV is still remains unknown and no specific therapy is available for LDHIV.
  • nRTIs Reverse transcriptase inhibitors like stavudine, didanosine and zidovudine may cause mitochondrial toxicity by inhibiting mitochondrial DNA polymerase-yin fat and other tissues and thus interfering with respiratory chain complexes. The result is impaired fatty acid oxidation and intracellular accumulation of triglycerides and lactate
  • lipodystrophy is also observed in acute HIV infection, lending support to a direct viral role as well.
  • Potential host risk factors include age, sex, and race or ethnicity. Lipodystrophy is more common in older patients; fat accumulation is more common in women and lipoatrophy in men; and non-Hispanic black patients appear to be at lower risk of lipoatrophy.
  • a genetic component is indicated by a recent analysis in AIDS Clinical Trials Group (ACTG), study 5005s, suggesting either predisposition or protection associated with mitochondrial DNA polymorphisms.
  • ACTG AIDS Clinical Trials Group
  • Testosterone replacement to physiologic levels reduces visceral adipose tissue (VAT), total fat, and abdominal fat and improves insulin sensitivity and lipid profile in older, non-HIV-infected men with upper body obesity and low testosterone levels.
  • VAT visceral adipose tissue
  • 88 HIV-infected men with central obesity (waist circumference >100 cm) and low testosterone levels ( ⁇ 400 ng/dL) underwent randomization to testosterone as a transdermal gel at a dose of 10 g daily or placebo for 24 weeks (Bhasin et al, J Clin Endocrinol Metab, 2007).
  • the testosterone group had statistically significant reductions in abdominal fat ( ⁇ 1.5% vs+4.3%), abdominal subcutaneous adipose tissue (SAT) ( ⁇ 7.2% vs+8.1%), trunk fat ( ⁇ 9.9% vs+4.6%), and limb fat ( ⁇ 10.1% vs+3.1%); the latter finding is of potential concern in a population predisposed to lipoatrophy. No statistically significant difference in change in VAT (+0.9% vs+2.3%) was observed, and no statistically significant differences were observed in changes in lipid levels, fasting blood glucose levels, insulin levels, or insulin resistance.
  • SAT abdominal subcutaneous adipose tissue
  • GH growth hormone
  • GHRH GH releasing hormone
  • somatostatin tone which suppresses GH.
  • a number of recent studies have assessed GH treatment in HIV patients with fat accumulation. In 1 study, 325 HIV patients with increased waist:hip ratios and increased VAT measurements received.
  • GH and GHRH GH releasing hormone
  • hypolipidemic agents which are PPAR modulators have been disclosed in WO 91/19702, WO 94/01420, WO 94/13650, WO 95/03038, WO 95/17394, WO 96/04260, WO 96/04261, WO 96/33998, WO 97/25042, WO 97/36579, WO 98/28534, WO 99/08501, WO 99/16758, WO 99/19313, WO99/20614, WO 00/23417, WO 00/23445, WO 00/23451, WO 01/53257.
  • WO 03009841 discloses compounds of the following general formula
  • the sodium salts of the compounds of the present invention was difficult to isolate due to rapid degradation while the Calcium salt was poorly absorbed limiting its efficacy and possibility of further development. Further, the calcium salt was also found to degrade on long term storage. It has surprisingly now been found that certain compounds and their selected salts are effective in the treatment of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patients.
  • the present invention provides a compound of formula (I) suitable for the treatment and prevention of lipodystrophy.
  • the conditions associated with lipodystrophy includes the symptoms of lipohypertrophy, lipoatrophy and other metabolic abnormalities.
  • the present invention provides a compound of formula (I) for the treatment and prevention or alleviation of symptoms of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.
  • the present invention provides the administration of compound of formula (I) and their pharmaceutically acceptable salts alone or in combination with other suitable agents as therapeutic agent for the treatment and prevention alleviation of symptoms of lipodystrophy.
  • the present invention provides a suitable composition comprising the compound of formula (I) or their suitable pharmaceutical compositions suitable for the treatment and prevention alleviation of symptoms of lipodystrophy.
  • the present invention provides for certain pharmaceutical salts of compound of formula (I).
  • the present invention provides a compound of formula (I) and their pharmaceutically acceptable salts for the prevention and treatment or alleviation of symptoms of lipodystrophy.
  • the present invention provides a compound of formula (I) and their pharmaceutically acceptable salts for the prevention and treatment or alleviation of symptoms of lipodystrophy caused either because of HIV infection or due to treatment with anti-retrovirals:
  • anti-retrovirals can include HIV-1 protease inhibitors (PIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs), Fusion Inhibitors, Entry Inhibitors—CCR5 co-receptor antagonist, HIV integrase strand transfer inhibitors etc.
  • the compound of formula (I) neutralizes lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.
  • the present invention also provides a suitable composition comprising compound of formula (I) useful in the treatment or prevention or alleviation of the symptoms of lipodystrophy in HIV infected patients (LDHIV).
  • the present invention describes compound of formula (I) which is suitable for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • R is selected from hydroxy, hydroxyalkyl, acyl, alkoxy, alkylthio, thioalkyl, aryloxy, arylthio and M + represents suitable metal cations such as Na + , K + , Ca +2 , Mg +2 , and the like.
  • ‘R’ represents thioalkyl, alkoxy or hydroxyalkyl group; In a still preferred embodiment, ‘R’ represents —SCH 3 or —OCH 3 group.
  • suitable pharmaceutical composition for the treatment of lipodystrophy or HIV associated lipodystrophy comprising the compound of formula (I).
  • the pharmaceutical-composition of the present invention comprises compound of formula (I) along with suitable excipients as defined hereinafter for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • the present invention provides a method of treating a subject suffering from lipodystrophy or HIV associated lipodystrophy which comprises treatment of a patient in need of such therapy, with compound of formula (I) or suitable pharmaceutical compositions containing them.
  • the present invention provides use of the compound of formula (I) or their suitable pharmaceutical compositions for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • the present invention provides certain new salts of compound of formula (Ia)
  • R is selected from hydroxy, hydroxyalkyl, acyl, alkoxy, alkylthio, thioalkyl, aryloxy, arylthio and M + represents suitable metal cations selected from K + , Mg +2 .
  • ‘R’ represents thioalkyl and alkoxy or hydroxyalkyl group; In a still preferred embodiment, ‘R’ represents —SCH 3 or —OCH 3 group. In another preferred embodiment, M + represents Mg +2 .
  • the effective amount of the said compound of formula (I) is selected from 1 mg to 500 mg preferably 1 mg to 250 mg and more preferably 4 mg to 50 mg.
  • the compound of formula (I) or its suitable salts is administrated orally, intravenously, parentally in the subject who is in need of treatment.
  • the compound of formula (I) is useful for the treatment or prevention or alleviation of the symptoms of lipodystrophy.
  • the compound of formula (I) is useful in the treatment or prevention or alleviation of the symptoms of HIV associated lipodystrophy.
  • the Lipodystrophy is a disorder of fat metabolism which causes lipohypertrophy lipoatrophy and metabolic abnormalities.
  • the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to, acting as an agent for lowering &/or control blood glucose levels, an agent used to control lipid levels, e.g., as an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent, a probiotic or an anti-inflammatory agent.
  • the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to triglyceride level, VLDL level and Apo B level in serum.
  • the compound of formula (I) cure or prevent of lipodystrophy by improving at least one of the condition selected from HDL level, Apo A1 level, HOMA of beta cell function derived from c-peptide.
  • the present invention also provides a suitable pharmaceutical composition of compounds of formula (I) or their derivative.
  • the pharmaceutical composition of the present invention essentially comprises of:
  • the suitable stabilizers used in pharmaceutical composition are selected from Polacrilin potassium, Potassium chloride, Sodium stearyl fumarate and preferably selected from Sodium stearyl fumarate.
  • the suitable buffering agent are selected from sodium acetate, ammonia solution, ammonium carbonate, sodium borate, adipic Acid, glycine, monosodium glutamate and preferably selected from ammonia solution.
  • the pharmaceutically acceptable excipients are selected at least one from carriers, binders, antioxidant agents, disintegrating agents, wetting agents, lubricating agents, chelating agents, surface active agents, and the like.
  • Diluents include, but are not limited to lactose monohydrate, lactose, polymethacrylates selected from Eudragit, potassium chloride, sulfobutylether b-cyclodextrin, sodium chloride, spray dried lactose, and preferably sulfobutyl ether b-cyclodextrin.
  • Carriers include, but are not limited to lactose, white sugar, sodium chloride, glucose, urea, starch, calcium carbonate and kaolin, crystalline cellulose, and silicic acid.
  • Binders include, but are not limited to carbomers selected from carbopol, gellan, gum Arabic, hydrogenated vegetable oil, polymethacrylates selected from Eudragit, xanthan, lactose and Zein.
  • Antioxidant agents include, but are not limited to, Hypophosphorous acid, Sodium formaldehyde, sodium formaldehylde sulfoxylate, sulfur dioxide, tartaric acid, thymol and methionine.
  • Disintegrating agents include, but are not limited to, bicarbonate salt, chitin, gellan gum, polacrillin potassium and Docusate Sodium.
  • Wetting agents include, but are not limited to, Glycerin, lactose, Docusate Sodium and Glycine
  • Lubricating agents used include, but are not limited to, Glycerin behenate, hydrogenated vegetable oil, sodium stearyl fumarate and Myristic Acid.
  • Chelating agents include, but are not limited to, Maltol and Pentetic Acid.
  • Nonionic surfactant selected from alkyl polyglucosides, cocamide DEA, cocamide MBA, cocamide TEA, decyl maltoside and octyl glucoside;
  • Anionic surfactant selected from arachidic acid and arachidonic acid;
  • Cationic surfactant selected from cetyl trimethylammonium bromide and cetylpyridinium chloride.
  • the formulation is useful for the treatment or prevention or alleviation of the symptoms of lipodystrophy. In a preferred embodiment the said formulation is useful in the treatment or prevention or alleviation of the symptoms of HIV associated lipodystrophy.
  • Lipodystrophy is a disorder of fat metabolism which causes lipohypertrophy, lipoatrophy and metabolic abnormalities. Moreover, lipohypertrophy includes the enlargement of dorsocervical fat pad (commonly called “buffalo hump”), expansion of the circumference of the neck by 5-10 cm, hypertrophy occurs in breast, Central truncal adiposity results from abdominal visceral fat accumulation, symmetric and asymmetric lipomatoses. A rare pattern of lipoaccumulation involving bandlike lipomatosis tissue symmetrically from the breasts, laterally to the axillae, suprapubic fat pads (pubic lipomas) and the development of multiple angiolipomas.
  • dorsocervical fat pad commonly called “buffalo hump”
  • Lipoatrophy includes a temporal wasting and loss of subcutaneous fat from the cheeks (buccal fat pad) produces an emaciated appearance with prominent nasolabial creases, subcutaneous tissue is depleted from the arms, shoulders, thighs, and buttocks (peripheral wasting), with prominence of the superficial veins in these sites.
  • Metabolic abnormalities include augmentation in cholesterol and triglyceride levels and reduced high-density lipoprotein (HDL) cholesterol levels, Insulin resistance, type 2 diabetes mellitus, and lactic academia.
  • HDL high-density lipoprotein
  • the compounds of the present invention due to their beneficial effect on lipodystrophy, will have beneficial effect on Body fat redistribution (Lioatrophy or Hypertrophy or abnormal distribution), Dyslipidemia, Glucose homeostatis, Pro-inflammatory conditions, impact on morbidity and mortality, impact on quality of life, impact on patient's reported outcomes like self perception etc
  • HIV-1 HIV type 1
  • PIs HIV type 1 protease inhibitors
  • NRTIs nucleoside reverse transcriptase inhibitors
  • the compound of formula (I) or pharmaceutical composition containing the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to, acting as an agent for lowering &/or an agent used to control blood glucose levels, an agent used to control lipid levels, e.g., as an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent, an antibiotic/probiotic or an anti-inflammatory agent.
  • the pharmaceutical composition cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to triglyceride level, VLDL level and Apo B level in serum.
  • the pharmaceutical composition cure or prevent of lipodystrophy by improving at least one of the condition selected from HDL level, Apo A1 level, HOMA of beta cell function derived from c-peptide.
  • the compounds according to Formula (I) can be used alone or in combination e.g., as an adjunct therapy, with at least one other therapeutic agent.
  • Compound according to formula (I) can be co-administered with a therapeutic agent used to reduce one or more of the symptoms of lipodystrophy including, but not limited to, an agent used to control blood glucose levels, an agent used to control lipid levels, e.g., an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent an antibiotic/probiotic or an anti-inflammatory agent.
  • a therapeutic agent used to reduce one or more of the symptoms of lipodystrophy including, but not limited to, an agent used to control blood glucose levels, an agent used to control lipid levels, e.g., an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent an antibiotic/probiotic or an anti-inflammatory agent.
  • Such combination treatment may be adjunct to anti-retroviral therapy.
  • the compound of the present invention when M+ represents K, Mg can be prepared by the processes disclosed herein below along with suitable modifications known to a skilled person.
  • reaction mixture was stirred under heating, using Dean-stark apparatus, to remove water azeotropically.
  • the reaction mixture was cooled to 50° C.
  • 319 g anhydrous potassium carbonate was added and stirred at 90-92° C. for 1 hr. Cooled to 65° C. and added 500 g 2-(2-methyl-5-(4-(methylthio)phenyl)-1H-pyrrol-1-yl)ethyl methanesulfonate and 22 g tetra butyl ammonium bromide.
  • Reaction mixture was heated to 87-92° C. and stirred for 46 hrs.
  • Example 3 10 g 5.02 g 61.21% 98.22% 98.58% 2
  • Example 4 10 g 4.97 g 60.68% 97.91% — 3
  • Example 5 15 g 7.34 g 61.94% 98.20% — 4
  • Example 6 15 g 8.38 g 67.50% 99.05% Similar reaction carried out using Magnesium chloride 5
  • Example 7 10 g 6.5 g 79.25% 98.53% 99.32%
  • Example 8 10 g 6.8 g 82.91% 98.5%
  • the present invention further discloses use of said compound of formula (I) or their suitable pharmaceutical compositions for the treatment of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.
  • subjects with hypertriglyceridemia in HIV associated lipodystrophy, on treatment with HAART for at least 18 months and satisfying the inclusion and exclusion criteria were enrolled in the study.
  • the subjects received 4 mg of compound of formula (I) tablet orally, once daily for a period of 12 weeks. During this 12-week program, safety parameters were assessed at weeks 2, 6, and 12 and the efficacy was evaluated at week 6 and 12.
  • the primary efficacy endpoint was to assess the percent change in TG levels from baseline to Week 6 and Week 12.
  • the secondary efficacy endpoint was the assessment of LDL, VLDL, HDL, Non HDL cholesterol, Total cholesterol, Apo A1, Apo B, and C-peptide and fasting insulin for HOMA beta and HOMA IR.
  • Haematological examination included haemoglobin, haematocrit, red blood cell (RBC) count, white blood cell (WBC) count with differential (neutrophils, lymphocytes, monocytes, eosinophils and basophils) and platelet count.
  • treatment effect was evaluated using an analysis of variance (ANOVA) model with factors for baseline and treatment.
  • Treatment effects were estimated using the least-square means (LSM) and 95% confidence intervals (Cis) from the ANOVA model.
  • LSM least-square means
  • Cis 95% confidence intervals
  • Adverse events were coded using the Medical Dictionary for Regulatory Activities (MedDRA) (Version 14). Adverse events and SAEs were summarized overall, by system organ class (SOC) and by MedDRA preferred term for treatment emergent adverse events (TEAEs). All AEs, including those arising before or after treatment was included in the listings. Separate listings were provided for SAEs and AEs leading to discontinuation from the study.
  • MedDRA Medical Dictionary for Regulatory Activities
  • Compound of formula (I) is divalent magnesium salt of carboxylic acid in the form of white, amorphous powder, which is freely soluble in dimethyl sulfoxide, dichloromethane, slightly soluble in methanol and insoluble in water.
  • the drug was supplied as uncoated tablets of 4 mg of the active ingredient.
  • the primary efficacy endpoint was to determine the percent change in TG levels from baseline to Week 6 and Week 12.
  • the secondary efficacy endpoint was to determine the percent change in LDL, VLDL, HDL, total cholesterol, non-HDL Cholesterol (measured value), Apo A1, and Apo B, C-peptide and fasting insulin for HOMA beta and HOMA IR levels from baseline to Week 6 and Week 12.
  • the demographic and baseline characteristics were summarized for compound of formula (I) 4 mg treatment arm.
  • the mean, median, standard deviation (SD) and range were tabulated.
  • the frequencies were computed;
  • the primary efficacy variable was the reduction in TG at Week 6 and Week 12 of the treatment period compared with baseline.
  • the change from baseline was determined as the difference between the means for the treatment period (Weeks 6/Weeks 12) and the baseline.
  • treatment effect was evaluated using an analysis of variance (ANOVA) model with factors for baseline and treatment.
  • Treatment effects were estimated using the least-square means (LSM) and 95% confidence intervals (CIs) from the ANOVA model.
  • LSM least-square means
  • CIs 95% confidence intervals
  • ITT Intent-to-treat
  • PP Per Protocol
  • EHT004 One subject identified as EHT004 in the study, a 35-year-old male, was reported with abnormally low levels of HDL (3.95 mg/L) and LDL (6.25 mg/L) at Visit 1. Though this subject completed the study and was assessable for efficacy, it was decided to exclude this subject from the efficacy analyses. Therefore a total of 49 subjects were analyzed for efficacy.
  • the compound of the present invention including pharmaceutical compositions containing the same was found to be useful for the treatment of lipohypertrophy, lipoatrophy and Metabolic abnormalities in HIV patients.

Abstract

The present invention provides a therapeutic compound of formula (I) and their pharmaceutically acceptable salts for the prevention and treatment of lipodystrophy caused because of HIV infection or combination therapy of HIV-1 protease inhibitors (PIs) and/or reverse transcriptase inhibitors (nRTIs) by neutralizing lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.

Description

    FIELD OF THE INVENTION
  • The present invention is related to the development of therapeutic compound for prevention and treatment of lipodystrophy. In particular the invention relates to the development of therapeutic compound for prevention and treatment of lipodystrophy in HIV-infected patients (LDHIV). Specifically, the present invention further provides a suitable composition useful in the treatment or prevention or alleviation of the symptoms of lipodystrophy in HIV infected patients (LDHIV)
  • BACKGROUND OF THE INVENTION
  • Lipodystrophy is a very dreadful disease and has become a major global health problem. It is a disorder of fat metabolism which causes lipohypertrophy, Lipoatrophy and Metabolic abnormalities. Moreover, lipohypertrophy includes the enlargement of dorsocervical fat pad (commonly called “buffalo hump”), expansion of the circumference of the neck by 5-10 cm, hypertrophy occurring in breast, central truncal adiposity resulting from abdominal visceral fat accumulation, symmetric and asymmetric lipomatoses. A rare pattern of lipoaccumulation involves formation of band like lipomatosis tissue symmetrically from the breasts, laterally to the axillae, Suprapubic fat pads (pubic lipomas) and the development of multiple angiolipomas.
  • Lipoatrophy includes a temporal wasting and loss of subcutaneous fat from the cheeks (buccal fat pad) which produces an emaciated appearance with prominent nasolabial creases. Further subcutaneous tissue is depleted from the arms, shoulders, thighs, and buttocks (peripheral wasting), with prominence of the superficial veins in these sites.
  • Metabolic abnormalities include augmentation in cholesterol and triglyceride levels and reduced high-density lipoprotein (HDL) cholesterol levels, Insulin resistance, type 2 diabetes mellitus, and lactic academia.
  • Lipodystrophy is very commonly associated with the HIV patients who are being treated anti-retroviral medicines. Such medicines can include HIV-1 protease inhibitors (PIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs), Fusion Inhibitors, Entry Inhibitors—CCR5 co-receptor antagonist, HIV integrase strand transfer inhibitors etc. These medicines improve the survival of the patient but also produce lipohypertrophy, Lipoatrophy and other Metabolic abnormalities.
  • HIV-1 protease inhibitors (PIs) appear to be the strongest link to lipodystrophy in HIV-infected patients LDHIV as it inhibits maturation of sterol response element binding proteins (SREBP), which affect intracellular fatty acid and glucose metabolism and adipocyte differentiation (Mallon et al, J Infect Dis, 2005). Furthermore, the PIs also down-regulate peroxisome proliferator-activated receptor gamma (PPAR γ), an important nuclear transcription factor that is affected by SREBPs and is necessary for adipocyte differentiation and function and fatty acid metabolism.
  • Other factors, such as duration of HIV infection, age, and gender, may also contribute to the risk of development of LDHIV. The molecular basis of LDHIV is still remains unknown and no specific therapy is available for LDHIV.
  • Reverse transcriptase inhibitors (nRTIs) like stavudine, didanosine and zidovudine may cause mitochondrial toxicity by inhibiting mitochondrial DNA polymerase-yin fat and other tissues and thus interfering with respiratory chain complexes. The result is impaired fatty acid oxidation and intracellular accumulation of triglycerides and lactate
  • In addition, lipodystrophy is also observed in acute HIV infection, lending support to a direct viral role as well. Potential host risk factors include age, sex, and race or ethnicity. Lipodystrophy is more common in older patients; fat accumulation is more common in women and lipoatrophy in men; and non-Hispanic black patients appear to be at lower risk of lipoatrophy. A genetic component is indicated by a recent analysis in AIDS Clinical Trials Group (ACTG), study 5005s, suggesting either predisposition or protection associated with mitochondrial DNA polymorphisms. Hulgan et al, J Infect Dis, 2008 describes that patients homozygous for C/C at the HFE187 locus (n=71) had a 0.6-kg and 12.5% loss of limb fat at weeks 48 to 64, with 37 (52%) of the 71 patients diagnosed with clinical lipoatrophy. By comparison, heterozygous patients with HFE187C/G had a 0.2-kg and 6.1% increase in limb fat, with 6 (26%) of 23 patients having clinical lipoatrophy (P<0.05 for all comparisons).
  • A number of strategies for reducing central obesity have been investigated such as stopping PI treatment but it is not effective. Changes in diet and exercise have produced improvements, but adherence to a regimen of lifestyle change is difficult for most patients. Liposuction may be applied particularly with dorsocervical fat accumulation, i.e., “buffalo hump”.
  • It is evident from the several studies that thiazolidinediones show no change in VAT (Pathogenesis and treatment of lipodystrophy, vol. 16, issue 4, October/November, 2004)
  • Testosterone replacement to physiologic levels reduces visceral adipose tissue (VAT), total fat, and abdominal fat and improves insulin sensitivity and lipid profile in older, non-HIV-infected men with upper body obesity and low testosterone levels. In a recent study, 88 HIV-infected men with central obesity (waist circumference >100 cm) and low testosterone levels (<400 ng/dL) underwent randomization to testosterone as a transdermal gel at a dose of 10 g daily or placebo for 24 weeks (Bhasin et al, J Clin Endocrinol Metab, 2007). The testosterone group had statistically significant reductions in abdominal fat (−1.5% vs+4.3%), abdominal subcutaneous adipose tissue (SAT) (−7.2% vs+8.1%), trunk fat (−9.9% vs+4.6%), and limb fat (−10.1% vs+3.1%); the latter finding is of potential concern in a population predisposed to lipoatrophy. No statistically significant difference in change in VAT (+0.9% vs+2.3%) was observed, and no statistically significant differences were observed in changes in lipid levels, fasting blood glucose levels, insulin levels, or insulin resistance.
  • Like testosterone, growth hormone (GH) has fat-oxidizing and lipolytic properties. A substantial proportion of HIV patients with central obesity (approximately 30%-40%) have impaired GH biology, including reduced GH mass secretion, reduced response to GH releasing hormone (GHRH) and free fatty acids, and increased somatostatin tone, which suppresses GH. A number of recent studies have assessed GH treatment in HIV patients with fat accumulation. In 1 study, 325 HIV patients with increased waist:hip ratios and increased VAT measurements received.
  • Although, the growth hormone (GH) and GH releasing hormone (GHRH) therapies show some promising result as they have fat-oxidizing and lipolytic properties however, there are limitations to their use. They are parenteral therapies and either expensive (rhGH) or not FDA-approved (tesamorelin). Thus far, there is evidence of waning durability of the reduction in VAT after their discontinuation, short-term increases in insulin resistance with rhGH, and small short-term reductions.
  • Recent research publications have shown the use of two lipid-lowering classes of drugs, statins and fibrates, antiretroviral switching strategies and use of insulin-sensitising drugs as having some beneficial effect on lipodystrophy. However, no single therapy is able to reach desirable clinical end point for HIV associated lipodystrophy.
  • Hence it is desirable to develop a compound which can overcome the above discussed drawback associated with prior art and develop a therapy for HIV associated lipodystrophy.
  • Hypolipidemic agents which are PPAR modulators have been disclosed in WO 91/19702, WO 94/01420, WO 94/13650, WO 95/03038, WO 95/17394, WO 96/04260, WO 96/04261, WO 96/33998, WO 97/25042, WO 97/36579, WO 98/28534, WO 99/08501, WO 99/16758, WO 99/19313, WO99/20614, WO 00/23417, WO 00/23445, WO 00/23451, WO 01/53257.
  • WO 03009841 discloses compounds of the following general formula
  • Figure US20190100492A1-20190404-C00001
  • These compounds are reported to be hypolipidaemic agents. This document also discloses sodium and calcium salts of some of the compounds disclosed therein.
  • However, the sodium salts of the compounds of the present invention was difficult to isolate due to rapid degradation while the Calcium salt was poorly absorbed limiting its efficacy and possibility of further development. Further, the calcium salt was also found to degrade on long term storage. It has surprisingly now been found that certain compounds and their selected salts are effective in the treatment of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patients.
  • EMBODIMENTS OF THE INVENTION
  • In an embodiment the present invention provides a compound of formula (I) suitable for the treatment and prevention of lipodystrophy.
  • In an embodiment, the conditions associated with lipodystrophy includes the symptoms of lipohypertrophy, lipoatrophy and other metabolic abnormalities.
  • In another embodiment, the present invention provides a compound of formula (I) for the treatment and prevention or alleviation of symptoms of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.
  • In yet another embodiment the present invention provides the administration of compound of formula (I) and their pharmaceutically acceptable salts alone or in combination with other suitable agents as therapeutic agent for the treatment and prevention alleviation of symptoms of lipodystrophy.
  • In yet another embodiment the present invention provides a suitable composition comprising the compound of formula (I) or their suitable pharmaceutical compositions suitable for the treatment and prevention alleviation of symptoms of lipodystrophy.
  • In another embodiment, the present invention provides for certain pharmaceutical salts of compound of formula (I).
  • SUMMARY OF THE INVENTION
  • The present invention provides a compound of formula (I) and their pharmaceutically acceptable salts for the prevention and treatment or alleviation of symptoms of lipodystrophy. The present invention provides a compound of formula (I) and their pharmaceutically acceptable salts for the prevention and treatment or alleviation of symptoms of lipodystrophy caused either because of HIV infection or due to treatment with anti-retrovirals: Such anti-retrovirals can include HIV-1 protease inhibitors (PIs), Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside Reverse Transcriptase Inhibitors (NNRTIs), Fusion Inhibitors, Entry Inhibitors—CCR5 co-receptor antagonist, HIV integrase strand transfer inhibitors etc. or combination therapy involving one or more anti-retrovirals. The compound of formula (I) neutralizes lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient. Moreover, the present invention also provides a suitable composition comprising compound of formula (I) useful in the treatment or prevention or alleviation of the symptoms of lipodystrophy in HIV infected patients (LDHIV).
  • In a further embodiment are disclosed certain new salts corresponding to the compound of formula (I) wherein M represents K or Mg.
  • DESCRIPTION OF THE INVENTION
  • The present invention describes compound of formula (I) which is suitable for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • Figure US20190100492A1-20190404-C00002
  • wherein ‘R’ is selected from hydroxy, hydroxyalkyl, acyl, alkoxy, alkylthio, thioalkyl, aryloxy, arylthio and M+ represents suitable metal cations such as Na+, K+, Ca+2, Mg+2, and the like.
  • In a preferred embodiment, ‘R’ represents thioalkyl, alkoxy or hydroxyalkyl group; In a still preferred embodiment, ‘R’ represents —SCH3 or —OCH3 group.
  • In an embodiment is provided suitable pharmaceutical composition for the treatment of lipodystrophy or HIV associated lipodystrophy comprising the compound of formula (I). The pharmaceutical-composition of the present invention comprises compound of formula (I) along with suitable excipients as defined hereinafter for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • In another embodiment, the present invention provides a method of treating a subject suffering from lipodystrophy or HIV associated lipodystrophy which comprises treatment of a patient in need of such therapy, with compound of formula (I) or suitable pharmaceutical compositions containing them.
  • In a further embodiment the present invention provides use of the compound of formula (I) or their suitable pharmaceutical compositions for the treatment of lipodystrophy or HIV associated lipodystrophy.
  • In an embodiment the present invention provides certain new salts of compound of formula (Ia)
  • Figure US20190100492A1-20190404-C00003
  • wherein ‘R’ is selected from hydroxy, hydroxyalkyl, acyl, alkoxy, alkylthio, thioalkyl, aryloxy, arylthio and M+ represents suitable metal cations selected from K+, Mg+2.
  • In a preferred embodiment, ‘R’ represents thioalkyl and alkoxy or hydroxyalkyl group; In a still preferred embodiment, ‘R’ represents —SCH3 or —OCH3 group. In another preferred embodiment, M+ represents Mg+2.
  • The effective amount of the said compound of formula (I) is selected from 1 mg to 500 mg preferably 1 mg to 250 mg and more preferably 4 mg to 50 mg. The compound of formula (I) or its suitable salts is administrated orally, intravenously, parentally in the subject who is in need of treatment.
  • In an embodiment the compound of formula (I) is useful for the treatment or prevention or alleviation of the symptoms of lipodystrophy. In a preferred embodiment the compound of formula (I) is useful in the treatment or prevention or alleviation of the symptoms of HIV associated lipodystrophy. In such embodiment the Lipodystrophy is a disorder of fat metabolism which causes lipohypertrophy lipoatrophy and metabolic abnormalities.
  • In an embodiment the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to, acting as an agent for lowering &/or control blood glucose levels, an agent used to control lipid levels, e.g., as an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent, a probiotic or an anti-inflammatory agent. In another embodiment the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to triglyceride level, VLDL level and Apo B level in serum. In another embodiment the compound of formula (I) cure or prevent of lipodystrophy by improving at least one of the condition selected from HDL level, Apo A1 level, HOMA of beta cell function derived from c-peptide.
  • In an embodiment the present invention also provides a suitable pharmaceutical composition of compounds of formula (I) or their derivative. The pharmaceutical composition of the present invention essentially comprises of:
  • the pharmaceutically active substance;
  • a suitable buffering agent;
  • a suitable stabilizer;
  • optionally with one or more pharmaceutically acceptable excipients.
  • The suitable stabilizers used in pharmaceutical composition are selected from Polacrilin potassium, Potassium chloride, Sodium stearyl fumarate and preferably selected from Sodium stearyl fumarate. The suitable buffering agent are selected from sodium acetate, ammonia solution, ammonium carbonate, sodium borate, adipic Acid, glycine, monosodium glutamate and preferably selected from ammonia solution.
  • The pharmaceutically acceptable excipients are selected at least one from carriers, binders, antioxidant agents, disintegrating agents, wetting agents, lubricating agents, chelating agents, surface active agents, and the like.
  • Diluents include, but are not limited to lactose monohydrate, lactose, polymethacrylates selected from Eudragit, potassium chloride, sulfobutylether b-cyclodextrin, sodium chloride, spray dried lactose, and preferably sulfobutyl ether b-cyclodextrin. Carriers include, but are not limited to lactose, white sugar, sodium chloride, glucose, urea, starch, calcium carbonate and kaolin, crystalline cellulose, and silicic acid. Binders include, but are not limited to carbomers selected from carbopol, gellan, gum Arabic, hydrogenated vegetable oil, polymethacrylates selected from Eudragit, xanthan, lactose and Zein. Antioxidant agents include, but are not limited to, Hypophosphorous acid, Sodium formaldehyde, sodium formaldehylde sulfoxylate, sulfur dioxide, tartaric acid, thymol and methionine. Disintegrating agents include, but are not limited to, bicarbonate salt, chitin, gellan gum, polacrillin potassium and Docusate Sodium. Wetting agents include, but are not limited to, Glycerin, lactose, Docusate Sodium and Glycine, Lubricating agents used include, but are not limited to, Glycerin behenate, hydrogenated vegetable oil, sodium stearyl fumarate and Myristic Acid. Chelating agents include, but are not limited to, Maltol and Pentetic Acid. Surface active agents include but are not limited to, Nonionic surfactant selected from alkyl polyglucosides, cocamide DEA, cocamide MBA, cocamide TEA, decyl maltoside and octyl glucoside; Anionic surfactant selected from arachidic acid and arachidonic acid; Cationic surfactant selected from cetyl trimethylammonium bromide and cetylpyridinium chloride.
  • In an embodiment the formulation is useful for the treatment or prevention or alleviation of the symptoms of lipodystrophy. In a preferred embodiment the said formulation is useful in the treatment or prevention or alleviation of the symptoms of HIV associated lipodystrophy.
  • Lipodystrophy is a disorder of fat metabolism which causes lipohypertrophy, lipoatrophy and metabolic abnormalities. Moreover, lipohypertrophy includes the enlargement of dorsocervical fat pad (commonly called “buffalo hump”), expansion of the circumference of the neck by 5-10 cm, hypertrophy occurs in breast, Central truncal adiposity results from abdominal visceral fat accumulation, symmetric and asymmetric lipomatoses. A rare pattern of lipoaccumulation involving bandlike lipomatosis tissue symmetrically from the breasts, laterally to the axillae, suprapubic fat pads (pubic lipomas) and the development of multiple angiolipomas.
  • Lipoatrophy includes a temporal wasting and loss of subcutaneous fat from the cheeks (buccal fat pad) produces an emaciated appearance with prominent nasolabial creases, subcutaneous tissue is depleted from the arms, shoulders, thighs, and buttocks (peripheral wasting), with prominence of the superficial veins in these sites.
  • Metabolic abnormalities include augmentation in cholesterol and triglyceride levels and reduced high-density lipoprotein (HDL) cholesterol levels, Insulin resistance, type 2 diabetes mellitus, and lactic academia.
  • The compounds of the present invention due to their beneficial effect on lipodystrophy, will have beneficial effect on Body fat redistribution (Lioatrophy or Hypertrophy or abnormal distribution), Dyslipidemia, Glucose homeostatis, Pro-inflammatory conditions, impact on morbidity and mortality, impact on quality of life, impact on patient's reported outcomes like self perception etc
  • Moreover, the precise mechanisms underlying this syndrome are not well understood, several hypotheses based on in vitro and human studies may explain the pathogenesis of the changes. Some experts presently believe that HIV type 1 (HIV-1) protease inhibitors (PIs) and nucleoside reverse transcriptase inhibitors (NRTIs), especially stavudine and zidovudine, are implicated as follows:
    • (i) decreased production of retinoic acid and triglyceride uptake: PIs have a high affinity for the catalytic site of HIV-1 protease, which shares a 60% sequence homology with 2 proteins involved in lipid metabolism, cytoplasmic retinoic acid-binding protein type 1 (CRABP-1) and low-density lipoprotein receptor-related protein (LDLR-RP). Inhibition of CRABP-1 impairs the production of retinoic acid, leading to decreased fat storage and adipocyte apoptosis with the subsequent release of lipids into the circulation. Inhibition of LDLR-RP results in hyperlipidemia secondary to the failure of hepatic and endothelial removal of chylomicrons and triglycerides from the circulation.
    • (ii) inhibition of mitochondrial DNA (mtDNA) polymerase gamma: NRTIs inhibit mtDNA polymerase gamma, leading to mtDNA depletion, respiratory chain dysfunction, and reduced energy production, which, in turn, causes insulin resistance and secondary dyslipidemia. Interestingly, mtDNA is depleted only at normal oxygen levels-hypoxic adipocytes do not take up triglycerides and are resistant to mtDNA-induced damage, except after treatment with NRTIs.
    • (iii) inhibition of lipid metabolism: Some PIs, particularly ritonavir, inhibit cytochrome P450 3A, a key enzyme in lipid metabolism.
    • (iv) prevention of the development of adipocytes: Saquinavir, ritonavir, and nelfinavir (all PIs) directly inhibit the development of adipocytes from stem cells and increase the metabolic destruction of fat in existing adipocytes.
  • In an embodiment the compound of formula (I) or pharmaceutical composition containing the compound of formula (I) cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to, acting as an agent for lowering &/or an agent used to control blood glucose levels, an agent used to control lipid levels, e.g., as an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent, an antibiotic/probiotic or an anti-inflammatory agent. In another embodiment the pharmaceutical composition cure or prevent or alleviate at least one symptoms of lipodystrophy including, but not limited to triglyceride level, VLDL level and Apo B level in serum. In another embodiment the pharmaceutical composition cure or prevent of lipodystrophy by improving at least one of the condition selected from HDL level, Apo A1 level, HOMA of beta cell function derived from c-peptide.
  • In another embodiment the compounds according to Formula (I) can be used alone or in combination e.g., as an adjunct therapy, with at least one other therapeutic agent. Compound according to formula (I) can be co-administered with a therapeutic agent used to reduce one or more of the symptoms of lipodystrophy including, but not limited to, an agent used to control blood glucose levels, an agent used to control lipid levels, e.g., an agent used to lower control cholesterol, an antioxidant, an appetite suppressing agent, an anti-obesity agent an antibiotic/probiotic or an anti-inflammatory agent. Such combination treatment may be adjunct to anti-retroviral therapy. In a preferred embodiment the compound of formula (I) administrated alone or in combination for the treatment of lipohypertrophy, lipoatrophy and Metabolic abnormalities in HIV patient.
  • The compound of the present invention when M+ represents K, Mg can be prepared by the processes disclosed herein below along with suitable modifications known to a skilled person.
  • Example 1 Preparation of (S)-α-Ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzene-propanoic acid ethyl ester
  • In a dry, 5 L round bottom flask 2.1 L toluene was taken under nitrogen. To this 366.1 g ethyl (S)-α-2-ethoxy-3-(4-hydroxyphenyl)propionate was added at room temperature.
  • The reaction mixture was stirred under heating, using Dean-stark apparatus, to remove water azeotropically. The reaction mixture was cooled to 50° C. To this was added 319 g anhydrous potassium carbonate and stirred at 90-92° C. for 1 hr. Cooled to 65° C. and added 500 g 2-(2-methyl-5-(4-(methylthio)phenyl)-1H-pyrrol-1-yl)ethyl methanesulfonate and 22 g tetra butyl ammonium bromide. Reaction mixture was heated to 87-92° C. and stirred for 46 hrs. Cooled to 70-75° C., added 1.5 L toluene, charcoalised using 75 g charcoal and cooled to room temperature. Filtrate washed with alkaline solution, washed with water, dried over sodium sulfate and concentrated under vacuum to obtain (S)-α-Ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzene-propanoic acid ethyl ester.
  • Yield: 650 g, HPLC purity: 84.10%; % Yield 76.0%.
  • Example 2 Preparation of (S)-α-Ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy] benzenepropanoic acid magnesium salt
  • In a dry, 250 mL round bottom flask 80 mL methanol was taken. To this 20 g (S)-α-ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzene-propanoic acid ethyl ester was added at room temperature, under nitrogen. To this 1.89 g sodium hydroxide dissolved in 20 mL water was added and stirred at room temperature for 3 hours to complete hydrolysis. Solvent was removed under reduced pressure. 150 mL water was added to concentrate the material. Impurity was removed by solvent washing. To aqueous layer was added 5 g magnesium acetate tetra hydrate (dissolved in 20 mL water) and stirred with for 15 min. Sticky material was extracted with dichloromethane and subsequently add n-heptane to precipitate (S)-α-ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzenepropanoic acid magnesium salt. Solid was filtered, and dried.
  • Yield: 10.3 g; HPLC Purity: 98.32%; Chiral purity: 97.64%.
  • Following the process similar to those described in Examples 1 & 2 the following batches of )-α-Ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy] benzenepropanoic acid magnesium salt were prepared.
  • No. Batch no. Input Output % Yield HPLC purity Chiral purity
    1 Example 3 10 g 5.02 g 61.21% 98.22% 98.58%
    2 Example 4 10 g 4.97 g 60.68% 97.91%
    3 Example 5 15 g 7.34 g 61.94% 98.20%
    4 Example 6 15 g 8.38 g 67.50% 99.05%
    Similar reaction carried out using Magnesium chloride
    5 Example 7 10 g  6.5 g 79.25% 98.53% 99.32%
    Similar reaction carried out using Magnesium sulfate
    6 Example 8 10 g  6.8 g 82.91%  98.5%
  • The present invention further discloses use of said compound of formula (I) or their suitable pharmaceutical compositions for the treatment of lipohypertrophy, lipoatrophy and metabolic abnormalities in HIV patient.
  • Example 9 (S)-α-Ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzenepropanoic acid potassium salt
  • In a dry, 250 mL round bottom flask 72 mL ethyl acetate was taken. To this 10 g (S)-(−)α-1-phenylethylamine salt of (S)-α-ethoxy-4-[2-[-methyl-5-[4-(methylthio) phenyl]-1H-pyrrol-1-yl]ethoxy]benzene-propanoic acid was added at room temperature and subsequently 50 mL water and 4.8 mL dilute hydrochloric acid (water 1: 1:35% HCl) was added and stirred at room temperature till solid was dissolved.
  • Layer was separated and organic layer was washed with water, dried over sodium sulfate and solvent removed. 9.2 g oily mass obtained. To this was added 50 mL methanol and stirred under nitrogen. To this was added 1.81 g potassium t-butoxide and was stirred at room temperature for 15 min. Solvent removed and added n-Hexane. Again n-hexane was removed and added methanol. Solvent removed under vacuum. Hygroscopic material obtained. Dried it under vacuum to get (S)-α-ethoxy-4-[2-[-methyl-5-[4-(methylthio)phenyl]-1H-pyrrol-1-yl]ethoxy]benzenepropanoic acid potassium salt.
  • Yield—7.6 g, (92.77%), HPLC Purity 98.60%, Chiral purity 99.56%
  • Example 10
  • Title of Study: A Prospective, Multi-Centric, Open-Label, Single Arm Study to Evaluate the Safety and Efficacy of 4 mg of compound of formula (I) in Hypertriglyceridemia in HIV Associated Lipodystrophy.
    Objectives: The objective of this study was to evaluate the safety and efficacy of 4 mg of compound of formula (I) in hypertriglyceridemia in HIV associated lipodystrophy.
  • Methodology: This was a prospective, multi-centric, open-label, single arm study to evaluate the safety and efficacy of 4 mg of compound of formula (I) in hypertriglyceridemia in HIV associated lipodystrophy.
  • After obtaining informed written consent, subjects with hypertriglyceridemia in HIV associated lipodystrophy, on treatment with HAART for at least 18 months and satisfying the inclusion and exclusion criteria were enrolled in the study. The subjects received 4 mg of compound of formula (I) tablet orally, once daily for a period of 12 weeks. During this 12-week program, safety parameters were assessed at weeks 2, 6, and 12 and the efficacy was evaluated at week 6 and 12.
  • Number of patients: Planned: 50, Analyzed: 50
    Test product: Compound of formula (I)
  • Dose 4 mg
  • Duration of treatment: 12 weeks
  • Mode of administration: Oral
  • Batch number: EMK328
  • Criteria for evaluation: Efficacy:
  • The primary efficacy endpoint was to assess the percent change in TG levels from baseline to Week 6 and Week 12. The secondary efficacy endpoint was the assessment of LDL, VLDL, HDL, Non HDL cholesterol, Total cholesterol, Apo A1, Apo B, and C-peptide and fasting insulin for HOMA beta and HOMA IR.
  • Safety:
  • Clinical examination and recording of adverse events (AEs) was done on all visits. Electrocardiogram was recorded at screening visit and at Week 12. Urine pregnancy test was conducted at screening visit
  • Haematological examination included haemoglobin, haematocrit, red blood cell (RBC) count, white blood cell (WBC) count with differential (neutrophils, lymphocytes, monocytes, eosinophils and basophils) and platelet count.
  • Biochemistry tests included AST, ALT, ALP, total bilirubin, serum proteins, total albumin and globulin, γ-GTT, BUN, Serum creatinine, serum uric acid, CPK, and urine R/Ms (including microalbuminuria and ketonuria).
  • All laboratory parameters were evaluated at enrolment visit (Week 0) and at Weeks 2, 6, and 12.
  • Statistical Methods
  • For the efficacy endpoints, treatment effect was evaluated using an analysis of variance (ANOVA) model with factors for baseline and treatment. Treatment effects were estimated using the least-square means (LSM) and 95% confidence intervals (Cis) from the ANOVA model. Statistical significance was defined as a two-sided p-value <0.05. All other secondary endpoints were analyzed using appropriate statistical methods.
  • For safety analysis the frequency tabulations of abnormal physical examination and abnormal clinical laboratory parameters were presented for each visit. Summary statistics for clinical laboratory parameters and vital signs were presented for each visit.
  • A list of concomitant medications taken during the study period was summarised. Adverse events were coded using the Medical Dictionary for Regulatory Activities (MedDRA) (Version 14). Adverse events and SAEs were summarized overall, by system organ class (SOC) and by MedDRA preferred term for treatment emergent adverse events (TEAEs). All AEs, including those arising before or after treatment was included in the listings. Separate listings were provided for SAEs and AEs leading to discontinuation from the study.
  • Study Design
  • This was a safety and efficacy study to evaluate 4 mg of compound of formula (I) in hypertriglyceridemia in HIV associated lipodystrophy. This was exploratory proof of concept study designed to assess the proof of safety and efficacy in intended population. The results of compound of formula (I) from phase 11 studies in Dyslipidemia subjects demonstrated that compound of formula (I) 4 mg is well tolerated and effective at once daily dosing. Phase I study demonstrated food significantly affects absorption of compound of formula (I), so drug was recommended to be consumed preferably in fasting condition. Based upon these observations 4 mg once daily in fasted condition was selected for present study
  • Selection of Study Population Inclusion Criteria
  • Subjects who satisfied all of the following criteria were eligible for enrolment in the study:
      • 1. Males and females aged 18-65 years.
      • 2. Confirmed diagnosis of HIV1 and on HAART for at least 18 months.
      • 3. On stable ART regimen for at least 8 weeks prior to inclusion in the study and ART regimen not expected to change in next 3 months.
      • 4. Subjects clinically diagnosed as HIV lipodystrophy (at least 1 moderate or severe lipodystrophy feature identified by doctor and patient, except isolated abdominal obesity)
      • 5. Triglycerides >200 to 500 mg %.
      • 6. CD4 count of >50/mm3
      • 7. Subject who had given informed consent for participation in this trial.
    Treatments Treatments Administered
  • The study had a single arm. Subjects received 4 mg of compound of formula (I) orally once daily in the morning before breakfast, for a period of 12 weeks.
  • Identity of Investigational Product(s)
  • Compound of formula (I) is divalent magnesium salt of carboxylic acid in the form of white, amorphous powder, which is freely soluble in dimethyl sulfoxide, dichloromethane, slightly soluble in methanol and insoluble in water. The drug was supplied as uncoated tablets of 4 mg of the active ingredient.
  • Supply from batch no EMK328 was used during the study. The study drug was manufactured and packaged in cGMP facility.
  • Primary Efficacy Variable(s)
  • The primary efficacy endpoint was to determine the percent change in TG levels from baseline to Week 6 and Week 12.
  • Secondary Efficacy Variables
  • The secondary efficacy endpoint was to determine the percent change in LDL, VLDL, HDL, total cholesterol, non-HDL Cholesterol (measured value), Apo A1, and Apo B, C-peptide and fasting insulin for HOMA beta and HOMA IR levels from baseline to Week 6 and Week 12.
  • Statistical Methods Planned in the Protocol and Determination of Sample Size Statistical and Analytical Plans
  • The demographic and baseline characteristics were summarized for compound of formula (I) 4 mg treatment arm. For continuous measurements such as age, the mean, median, standard deviation (SD) and range were tabulated. For categorical measurements such as gender, the frequencies were computed;
  • Efficacy Analyses:
  • The primary efficacy variable was the reduction in TG at Week 6 and Week 12 of the treatment period compared with baseline. The change from baseline was determined as the difference between the means for the treatment period (Weeks 6/Weeks 12) and the baseline.
  • For the efficacy endpoints, treatment effect was evaluated using an analysis of variance (ANOVA) model with factors for baseline and treatment. Treatment effects were estimated using the least-square means (LSM) and 95% confidence intervals (CIs) from the ANOVA model. Statistical significance was defined as a two-sided p-value <0.05. All other secondary endpoints were analyzed using appropriate statistical methods.
  • Intent-to-treat (ITT) and/or Per Protocol (PP) analysis were carried out for the study. The PP analysis was considered definitive while the ITT analysis was considered supportive during the trial analysis.
  • Efficacy Results and Tabulations of Individual Patient Data Analysis of Efficacy
  • One subject identified as EHT004 in the study, a 35-year-old male, was reported with abnormally low levels of HDL (3.95 mg/L) and LDL (6.25 mg/L) at Visit 1. Though this subject completed the study and was assessable for efficacy, it was decided to exclude this subject from the efficacy analyses. Therefore a total of 49 subjects were analyzed for efficacy.
  • Primary Endpoints
  • The percent change from baseline in serum TG levels at Week 6 and Week 12 following compound of formula (I) 4 mg was statistically significant (−40.98±4.89 and −45.11±3.60, respectively [p-value: <0.0001, each]) (Table 1).
  • TABLE 1
    Analysis of change in Triglyceride (mg/dL) from baseline by visit
    COMPOUND OF
    Laboratory FORMULA (I)
    Test (Unit) Visit 4 mg (N = 49)
    TG Visit 1 n 49
    (mg/dL) Mean ± SD 301.68 ± 86.99
    Median 275.45
    Minimum 200.10
    Maximum 481.42
    Visit 3 n 49
    (Week 6) Mean ± SD  172.81 ± 106.30
    Median 147.68
    Minimum 42.61
    Maximum 631.08
    Change from Visit 1 −128.87 ± 14.96 
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 −40.98 ± 4.89 
    (LS Mean ± SE)
    p-values <0.0001
    Visit 4 n 49
    (Week 12) Mean ± SD 166.97 ± 89.17
    Median 145.91
    Minimum 46.88
    Maximum 387.69
    Change from Visit 1 −134.71 ± 10.78 
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 −45.11 ± 3.60 
    (LS Mean ± SE)
    p-values <0.0001
    Key to abbreviations: LSM = least square means; N = number of subjects in the treatment group; n = number of subjects having non-missing baseline and post-baseline values; SD = standard deviation; SE = standard error; TG = triglycerides.
    Note:
    p-values < 0.05 indicates significant and from ANOVA model
  • Secondary Endpoints HDL Cholesterol:
  • There was an increase in the HDL cholesterol levels following administration of compound of formula (I) 4 mg. The percent change from baseline in HDL cholesterol following compound of formula (I) 4 mg at Week 6 and Week 12 was statistically significant (29.92±5.73 and 34.56±6.13, respectively [p-value: <0.0001 each]) (Table 2).
  • TABLE 2
    Analysis of change in HDL Cholesterol
    (mg/dL) from baseline by visit
    COMPOUND OF
    Laboratory FORMULA(I)
    Test (Unit) Visit 4 mg (N = 49)
    HDL Visit 1 n 49
    Cholesterol Mean ± SD 35.27 ± 7.85
    (mg/dL) Median 34.52
    Minimum 22.23
    Maximum 49.90
    Visit 3 n 49
    (Week 6) Mean ± SD  44.44 ± 14.04
    Median 43.36
    Minimum 20.13
    Maximum 73.50
    Change from Visit 1  9.17 ± 1.99
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 29.92 ± 5.73
    (LS Mean ± SE)
    p-values <0.0001
    Visit 4 n 49
    (Week 12) Mean ± SD  46.14 ± 14.84
    Median 47.70
    Minimum 17.61
    Maximum 82.89
    Change from Visit 1 10.87 ± 2.08
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 34.56 ± 6.13
    (LS Mean ± SE)
    p-values <0.0001
    Key to abbreviations: LSM = least square means; N = number of subjects in the treatment group; n = number of subjects having non-missing baseline and post-baseline values; SD = standard deviation; SE = standard error; HDL = high density lipoprotein.
    Note:
    p-values < 0.05 indicates significant and from ANOVA model
  • C-Peptide HOMA of Insulin Resistance:
  • There was an increase in insulin resistance after treatment with compound of formula (I). The percent change in HOMA IR from baseline following administration of compound of formula (I) 4 mg at Week 6 and Week 12 was statistically significant (27.87±4.22 and 58.29±5.74 respectively[p-value: <0.0001 each]) (Table 3).
  • TABLE 3
    Analyses of change in HOMA of insulin resistance
    for C-Peptide from baseline by visit
    COMPOUND OF
    Laboratory FORMULA(I)
    Test (Unit) Visit 4 mg (N = 49)
    Homa of Insulin Visit 1 n 49
    Resistance Mean ± SD 1.59 ± 0.82
    for C-Peptide Median 1.40
    Minimum 0.50
    Maximum 3.80
    Visit 3 n 49
    (Week 6) Mean ± SD 1.86 ± 0.77
    Median 1.70
    Minimum 0.90
    Maximum 3.60
    Change from Visit 1 0.27 ± 0.05
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 27.87 ± 4.22 
    (LS Mean ± SE)
    p-values <0.0001
    Visit 4 n 49
    (Week 12) Mean ± SD 2.15 ± 0.62
    Median 2.10
    Minimum 1.10
    Maximum 3.60
    Change from Visit 1 0.56 ± 0.05
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 58.29 ± 5.74 
    (LS Mean ± SE)
    p-values <0.0001
    Key to abbreviations: HOMA: homeostasis model assessment, IR: insulin resistance, LSM = least square means; N = number of subjects in the treatment group; n = number of subjects having non-missing baseline and post-baseline values; SD = standard deviation; SE = standard error
    Note:
    p-values < 0.05 indicates significant and from ANOVA model
  • Insulin (Fasting):
  • There was an increase in insulin resistance after treatment with compound of formula (I). The percent change in Insulin from baseline following administration of compound of formula (I) 4 mg at Week 6 and Week 12 was statistically significant (23.71±3.55 and 47.10±4.21 respectively [p-value: <0.0001 each]) (Table 4).
  • TABLE 4
    Analyses of change in Insulin (fasting) from baseline by visit
    COMPOUND OF
    Laboratory FORMULA (I)
    Test (Unit) Visit 4 mg (N = 49)
    Insulin Visit 1 n 49
    (fasting) Mean ± SD 9.21 ± 6.26
    μu/mL Median 7.40
    Minimum 2.65
    Maximum 28.06
    Visit 3 n 49
    (Week 6) Mean ± SD 10.42 ± 5.74 
    Median 8.35
    Minimum 2.14
    Maximum 26.82
    Change from Visit 1 1.21 ± 0.22
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 23.71 ± 3.55
    (LS Mean ± SE)
    p-values <0.0001
    Visit 4 n 49
    (Week 12) Mean ± SD 11.40 ± 4.45 
    Median 10.18
    Minimum 5.93
    Maximum 24.29
    Change from Visit 1 2.20 ± 0.21
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 47.10 ± 4.21 
    (LS Mean ± SE)
    p-values <0.0001
    Key to abbreviations: LSM = least square means; N = number of subjects in the treatment group; n = number of subjects having non-missing baseline and post-baseline values; SD = standard deviation; SE = standard error
    Note:
    p-values < 0.05 indicates significant and from ANOVA model
  • Insulin HOMA of Beta-Cell Function:
  • There was an increase in HOMA of Beta-cell function derived from Insulin after treatment with compound of formula (I). The percent change in the HOMA of Beta-cell function derived from Insulin from baseline at Week 6 and Week 12 was statistically significant (52.50±14.94 and 45.64±6.22, respectively [p-value: 0.0010 and <0.0001, respectively])(Table 5).
  • TABLE 5
    Analyses of change in HOMA of Beta Cell Function
    for Insulin from baseline by visit
    COMPOUND OF
    Laboratory FORMULA (I)
    Test (Unit) Visit 4 mg (N = 49)
    HOMA of Beta Visit 1 n 48
    Cell Function Mean ± SD 107.82 ± 52.85
    for Insulin Median 97.25
    Minimum 10.20
    Maximum 234.50
    Visit 3 n 49
    (Week 6) Mean ± SD 136.41 ± 76.00
    Median 116.50
    Minimum 34.90
    Maximum 348.00
    Change from Visit 1 29.55 ± 8.76
    (LS Mean ± SE)
    p-values 0.0015
    % Change from Visit 1  52.50 ± 14.94
    (LS Mean ± SE)
    p-values 0.0010
    Visit 4 n 49
    (Week 12) Mean ± SD 137.56 ± 46.11
    Median 125.60
    Minimum 9.80
    Maximum 273.30
    Change from Visit 1 30.78 ± 4.25
    (LS Mean ± SE)
    p-values <0.0001
    % Change from Visit 1 45.64 ± 6.22
    (LS Mean ± SE)
    p-values <0.0001
    Key to abbreviations: HOMA: homeostasis model assessment, LSM = least square means; N = number of subjects in the treatment group; n = number of subjects having non-missing baseline and post-baseline values; SD = standard deviation; SE = standard error
    Note:
    p-values < 0.05 indicates significant and from ANOVA model
  • Efficacy Conclusions Primary Endpoint:
      • There was a statistically significant reduction from baseline in serum TG levels at Week 6 and Week 12 following compound of formula (I) 4 mg (percent change of −40.98±4.89 and −45.11±3.60, respectively [p value: <0.0001, each])
    Secondary Endpoints:
      • There was no statistically significant change in the non-HDL cholesterol levels from baseline following administration of compound of formula (I) 4 mg at Week 6 and Week 12 (p-values: 0.3963 and 0.4646, respectively)
      • There was a statistically significant increase in the HDL cholesterol levels from baseline following administration of compound of formula (I) 4 mg at Week 6 and Week 12 (percent change: 29.92±5.73 and 34.56±6.13, respectively [p-value: <0.0001 each]).
      • There was a statistically significant increase in the HOMA of Beta-cell function derived from C-peptide from baseline following administration of compound of formula (I) 4 mg at Week 6 and Week 12 (68.25±25.58 and 71.67±16.20, respectively [p-value: 0.0104 and <0.0001, respectively]).
      • There was a statistically significant increase in the HOMA of insulin resistance derived from insulin from baseline after treatment with compound of formula (I) at Week 6 and Week 12 (percent change: 29.10±3.94 and 42.65±3.79, respectively [p-value: <0.0001 each]).
  • Therefore, the compound of the present invention including pharmaceutical compositions containing the same was found to be useful for the treatment of lipohypertrophy, lipoatrophy and Metabolic abnormalities in HIV patients.

Claims (16)

1-32. (canceled)
33. A pharmaceutical composition comprising:
a compound of formula (I)
Figure US20190100492A1-20190404-C00004
wherein the compound of formula (I) is present in an amount between about 1 mg to about 500 mg; and
a pharmaceutically acceptable excipient.
34. The pharmaceutical composition of claim 33, wherein the compound of formula (I) is present in an amount between about 1 mg to about 250 mg.
35. The pharmaceutical composition of claim 33, wherein the compound of formula (I) is present in an amount between about 4 mg to about 50 mg.
36. The pharmaceutical composition of claim 33, wherein the pharmaceutical composition is suitable to be administered orally, intravenously, or parenterally.
37. A pharmaceutical composition comprising:
a) a compound of formula (I)
Figure US20190100492A1-20190404-C00005
wherein the compound of formula (I) is present in an amount between about 1 mg to about 500 mg;
b) a buffering agent;
c) a stabilizer;
d) optionally a second therapeutic agent; and
e) optionally one or more pharmaceutically acceptable excipients.
38. The pharmaceutical composition of claim 37, wherein the compound of formula (I) is present in an amount between about 1 mg to about 250 mg.
39. The pharmaceutical composition of claim 37, wherein the compound of formula (I) is present in an amount between about 4 mg to about 50 mg.
40. The pharmaceutical composition of claim 37, wherein the buffering agent is selected from the group consisting of sodium acetate, ammonia solution, ammonium carbonate, sodium borate, adipic acid, glycine, and monosodium glutamate.
41. The pharmaceutical composition of claim 37, wherein the stabilizer is selected from the group consisting of polacrilin potassium, potassium chloride, and sodium stearyl fumarate.
42. The pharmaceutical composition of claim 37, wherein the one or more pharmaceutically acceptable excipients is selected from the group consisting of a carrier, a binder, an antioxidant agent, a disintegrating agent, a wetting agent, a lubricating agent, a chelating agent, and a surface active agent.
43. The pharmaceutical composition of claim 37, wherein the pharmaceutical composition is suitable to be administered orally, intravenously, or parenterally.
44. A pharmaceutical composition comprising:
i) a compound of formula (I)
Figure US20190100492A1-20190404-C00006
wherein the compound of formula (I) is present in an amount between about 1 mg to about 500 mg; and
ii) a second therapeutic agent,
wherein the second therapeutic agent is selected from the group consisting of an agent used to control blood glucose levels, an agent used to control lipid levels, an antioxidant, an appetite suppressing agent, an anti-obesity agent, an antibiotic, a probiotic, and an anti-inflammatory agent.
45. The pharmaceutical composition of claim 44, wherein the compound of formula (I) is present in an amount between about 1 mg to about 250 mg.
46. The pharmaceutical composition of claim 44, wherein the compound of formula (I) is present in an amount between about 4 mg to about 50 mg.
47. The pharmaceutical composition of claim 44, wherein the pharmaceutical composition is suitable to be administered orally, intravenously, or parenterally.
US15/992,957 2011-01-31 2018-05-30 Treatment for lipodystrophy Abandoned US20190100492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/992,957 US20190100492A1 (en) 2011-01-31 2018-05-30 Treatment for lipodystrophy

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
IN257/MUM/2011 2011-01-31
IN257MU2011 2011-01-31
PCT/IN2012/000069 WO2012104869A1 (en) 2011-01-31 2012-01-30 Treatment for lipodystrophy
US201313978791A 2013-09-04 2013-09-04
US15/992,957 US20190100492A1 (en) 2011-01-31 2018-05-30 Treatment for lipodystrophy

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/978,791 Continuation US10017470B2 (en) 2011-01-31 2012-01-30 Treatment for lipodystrophy
PCT/IN2012/000069 Continuation WO2012104869A1 (en) 2011-01-31 2012-01-30 Treatment for lipodystrophy

Publications (1)

Publication Number Publication Date
US20190100492A1 true US20190100492A1 (en) 2019-04-04

Family

ID=54192841

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/978,791 Active 2032-11-11 US10017470B2 (en) 2011-01-31 2012-01-30 Treatment for lipodystrophy
US15/345,035 Active US9783495B2 (en) 2011-01-31 2016-11-07 Treatment for lipodystrophy
US15/992,957 Abandoned US20190100492A1 (en) 2011-01-31 2018-05-30 Treatment for lipodystrophy

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/978,791 Active 2032-11-11 US10017470B2 (en) 2011-01-31 2012-01-30 Treatment for lipodystrophy
US15/345,035 Active US9783495B2 (en) 2011-01-31 2016-11-07 Treatment for lipodystrophy

Country Status (29)

Country Link
US (3) US10017470B2 (en)
EP (2) EP2670486B1 (en)
JP (2) JP2014504610A (en)
KR (3) KR101633720B1 (en)
CN (2) CN103354757A (en)
AP (1) AP3920A (en)
AU (2) AU2012212992B2 (en)
BR (1) BR112013019352A2 (en)
CA (1) CA2825456C (en)
CL (1) CL2013002166A1 (en)
CO (1) CO6781497A2 (en)
CY (1) CY1117564T1 (en)
DK (1) DK2670486T3 (en)
EA (1) EA025421B1 (en)
ES (1) ES2569248T3 (en)
HR (1) HRP20160403T1 (en)
HU (1) HUE027512T2 (en)
IL (2) IL227266B (en)
ME (1) ME02392B (en)
MX (1) MX350611B (en)
MY (1) MY191100A (en)
NZ (1) NZ612804A (en)
PL (1) PL2670486T3 (en)
RS (1) RS54735B1 (en)
SG (1) SG191772A1 (en)
SI (1) SI2670486T1 (en)
SM (1) SMT201600129B (en)
UA (1) UA110813C2 (en)
WO (1) WO2012104869A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2670486T1 (en) 2011-01-31 2016-09-30 Cadila Healthcare Limited Zydus Tower Satellite Cross Roads Treatment for lipodystrophy
US9897565B1 (en) 2012-09-11 2018-02-20 Aseko, Inc. System and method for optimizing insulin dosages for diabetic subjects
US9171343B1 (en) 2012-09-11 2015-10-27 Aseko, Inc. Means and method for improved glycemic control for diabetic patients
AU2013387996B2 (en) * 2013-04-22 2015-12-10 Cadila Healthcare Limited A novel composition for nonalcoholic fatty liver disease (NAFLD)
WO2014195967A2 (en) 2013-05-30 2014-12-11 Cadila Healthcare Limited A process for preparation of pyrroles having hypolipidemic hypocholesteremic activities
TW201636015A (en) * 2013-07-05 2016-10-16 卡地拉保健有限公司 Synergistic compositions
IN2013MU02470A (en) * 2013-07-25 2015-06-26 Cadila Healthcare Ltd
IN2013MU02828A (en) * 2013-08-29 2015-07-03 Cadila Healthcare Ltd
IN2013MU02905A (en) 2013-09-06 2015-07-03 Cadila Healthcare Ltd
US9898585B2 (en) 2014-01-31 2018-02-20 Aseko, Inc. Method and system for insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
EP3050023B1 (en) 2014-10-27 2021-08-25 Aseko, Inc. Subcutaneous outpatient management
US11081226B2 (en) 2014-10-27 2021-08-03 Aseko, Inc. Method and controller for administering recommended insulin dosages to a patient
BR112017015307A2 (en) * 2015-02-27 2018-01-16 Ionis Pharmaceuticals Inc modulation of apolipoprotein c-iii (apociii) expression in lipodystrophy populations
WO2017031440A1 (en) 2015-08-20 2017-02-23 Aseko, Inc. Diabetes management therapy advisor
US10385017B2 (en) 2015-10-14 2019-08-20 Cadila Healthcare Limited Pyrrole compound, compositions and process for preparation thereof
WO2017089980A1 (en) 2015-11-26 2017-06-01 Cadila Healthcare Limited Dual ppar modulators for the treatment of diabetic retinopathy and diabetic eye diseases
WO2017089979A1 (en) 2015-11-26 2017-06-01 Cadila Healthcare Limited Dual ppar modulators for the treatment of diabetic nephropathy and related diseases
BR112019011740A2 (en) 2016-12-09 2019-10-29 Cadila Healthcare Ltd Pharmaceutical composition and method for the treatment of primary biliary cholangitis
US20220071954A1 (en) 2018-12-18 2022-03-10 Cadila Healthcare Limited Saroglitazar for the treatment of hepatocellular carcinoma

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231938A (en) 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
US4444784A (en) 1980-08-05 1984-04-24 Merck & Co., Inc. Antihypercholesterolemic compounds
DK149080C (en) 1980-06-06 1986-07-28 Sankyo Co METHOD FOR PREPARING ML-236B CARBOXYLIC ACID DERIVATIVES
US5354772A (en) 1982-11-22 1994-10-11 Sandoz Pharm. Corp. Indole analogs of mevalonolactone and derivatives thereof
FI94339C (en) 1989-07-21 1995-08-25 Warner Lambert Co Process for the preparation of pharmaceutically acceptable [R- (R *, R *)] - 2- (4-fluorophenyl) -, - dihydroxy-5- (1-methylethyl) -3-phenyl-4 - [(phenylamino) carbonyl] -1H- for the preparation of pyrrole-1-heptanoic acid and its pharmaceutically acceptable salts
US5089514A (en) 1990-06-14 1992-02-18 Pfizer Inc. 3-coxazolyl [phenyl, chromanyl or benzofuranyl]-2-hydroxypropionic acid derivatives and analogs as hypoglycemic agents
PL174610B1 (en) 1992-07-03 1998-08-31 Smithkline Beecham Plc Novel heterocyclic compounds for use as pharmaceuticals
GB9225386D0 (en) 1992-12-04 1993-01-27 Smithkline Beecham Plc Novel compounds
US5387613A (en) 1993-07-23 1995-02-07 Ribogene, Inc. Treatment of tachyarrhythmias of supraventricular origin
GB9326171D0 (en) 1993-12-22 1994-02-23 Smithkline Beecham Plc Novel compounds
BR9508468A (en) 1994-07-29 1997-11-25 Smithkline Beecham Plc Compound process for the preparation of the same pharmaceutical composition processes for the treatment and / or prophylaxis of hyperglycemia in a human or non-human mammal and for the treatment of hyperlipidemia hypertension cardiovascular disease some eating disorders the treatment and / or prophylaxis of kidney disease prevention revers o stabilization or retardation of microalbuminuria progression in a human or non-human mammal use of the compound and intermediate compound
DE69615016T2 (en) 1995-04-28 2002-05-02 Daiichi Seiyaku Co PENTACYCLIC COMPOUNDS
GB9600464D0 (en) 1996-01-09 1996-03-13 Smithkline Beecham Plc Novel method
GB9606805D0 (en) 1996-03-30 1996-06-05 Glaxo Wellcome Inc Medicaments
US6039033A (en) 1996-12-24 2000-03-21 Daewoo Motor Co., Ltd. Apparatus of exhaust gas recirculation valve for an internal combustion engine
WO1999019313A1 (en) 1997-10-27 1999-04-22 Dr. Reddy's Research Foundation Novel tricyclic compounds and their use in medicine; process for their preparation and pharmaceutical compositions containing them
EP1124807A1 (en) 1997-10-27 2001-08-22 Dr. Reddy's Research Foundation Novel heterocyclic compounds and their use in medicine, process for their preparation and pharmaceutical compositions containing them
ATE286032T1 (en) 1998-04-23 2005-01-15 Reddys Lab Ltd Dr HETEROCYCLIC COMPOUNDS AND THEIR USE IN MEDICINAL PRODUCTS, PROCESS FOR THE PRODUCTION THEREOF AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
CN100357281C (en) 1998-05-27 2007-12-26 雷迪实验室有限公司 Bicyclic compounds, process for their preparation and pharmaceutical composition containing them
AU6325799A (en) 1998-10-21 2000-05-08 Dr. Reddy's Research Foundation New compounds, their preparation and use
WO2000023417A1 (en) 1998-10-21 2000-04-27 Novo Nordisk A/S New compounds, their preparation and use
AU6325599A (en) 1998-10-21 2000-05-08 Dr. Reddy's Research Foundation New compounds, their preparation and use
CO5150173A1 (en) 1998-12-10 2002-04-29 Novartis Ag COMPOUNDS N- (REPLACED GLYCLE) -2-DIPEPTIDYL-IV PEPTIDASE INHIBITING CYANOPIRROLIDINS (DPP-IV) WHICH ARE EFFECTIVE IN THE TREATMENT OF CONDITIONS MEDIATED BY DPP-IV INHIBITION
EP1250323B1 (en) 2000-01-19 2014-01-01 Cadila Healthcare Limited Compounds having hypolipidemic and hypocholesterolemic activities, process for their preparation and pharmaceutical compositions containing them
US6395767B2 (en) 2000-03-10 2002-05-28 Bristol-Myers Squibb Company Cyclopropyl-fused pyrrolidine-based inhibitors of dipeptidyl peptidase IV and method
WO2002024625A2 (en) 2000-09-22 2002-03-28 Dr. Reddy's Research Foundation Process for the preparation of 3-aryl-2-hydroxy propanoic acid derivatives
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
US6987123B2 (en) 2001-07-26 2006-01-17 Cadila Healthcare Limited Heterocyclic compounds, their preparation, pharmaceutical compositions containing them and their use in medicine
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
WO2005031335A1 (en) 2003-09-26 2005-04-07 Mitsubishi Rayon Co., Ltd. Cataphoresis apparatus, cataphoresis method, and detection method for organism-related material using the apparatus and the method
CN102134229B (en) 2004-03-15 2020-08-04 武田药品工业株式会社 Dipeptidyl peptidase inhibitors
EP2018157A2 (en) * 2006-04-26 2009-01-28 Astron Research Limited Controlled release formulation comprising anti-epileptic drugs
NZ600439A (en) 2009-11-26 2014-06-27 Genfit Use of 1,3-diphenylprop-2-en-1-one derivatives for treating liver disorders
CN103347506A (en) 2010-10-12 2013-10-09 约翰.霍普金斯大学 Antitussive composition comprising memantine
SI2670486T1 (en) 2011-01-31 2016-09-30 Cadila Healthcare Limited Zydus Tower Satellite Cross Roads Treatment for lipodystrophy
AU2013387996B2 (en) 2013-04-22 2015-12-10 Cadila Healthcare Limited A novel composition for nonalcoholic fatty liver disease (NAFLD)
WO2014195967A2 (en) 2013-05-30 2014-12-11 Cadila Healthcare Limited A process for preparation of pyrroles having hypolipidemic hypocholesteremic activities
TW201636015A (en) 2013-07-05 2016-10-16 卡地拉保健有限公司 Synergistic compositions
IN2013MU02470A (en) 2013-07-25 2015-06-26 Cadila Healthcare Ltd
IN2013MU02828A (en) 2013-08-29 2015-07-03 Cadila Healthcare Ltd
IN2013MU02905A (en) 2013-09-06 2015-07-03 Cadila Healthcare Ltd

Also Published As

Publication number Publication date
EP2670486A1 (en) 2013-12-11
CN107056671A (en) 2017-08-18
NZ612804A (en) 2015-09-25
IL262611A (en) 2018-12-31
RS54735B1 (en) 2016-10-31
CA2825456C (en) 2016-01-05
US10017470B2 (en) 2018-07-10
AP3920A (en) 2016-12-02
KR20160038073A (en) 2016-04-06
AU2012212992A1 (en) 2013-07-25
CA2825456A1 (en) 2012-08-09
IL227266A0 (en) 2013-09-30
HRP20160403T1 (en) 2016-06-03
JP2014504610A (en) 2014-02-24
US20130338209A1 (en) 2013-12-19
PL2670486T3 (en) 2016-08-31
KR20130128451A (en) 2013-11-26
DK2670486T3 (en) 2016-05-17
ME02392B (en) 2016-09-20
EP3009136A1 (en) 2016-04-20
MX2013008012A (en) 2013-08-21
EA201391108A1 (en) 2013-12-30
MY191100A (en) 2022-05-30
US9783495B2 (en) 2017-10-10
CL2013002166A1 (en) 2014-04-11
JP2016028069A (en) 2016-02-25
BR112013019352A2 (en) 2020-07-14
CO6781497A2 (en) 2013-10-31
EA025421B1 (en) 2016-12-30
KR101633720B1 (en) 2016-06-27
CN103354757A (en) 2013-10-16
AU2015249076A1 (en) 2015-11-12
MX350611B (en) 2017-09-11
ES2569248T3 (en) 2016-05-09
JP5956664B2 (en) 2016-07-27
US20170088514A1 (en) 2017-03-30
KR101733414B1 (en) 2017-05-10
UA110813C2 (en) 2016-02-25
SI2670486T1 (en) 2016-09-30
CY1117564T1 (en) 2017-04-26
EP2670486B1 (en) 2016-04-06
KR20150100949A (en) 2015-09-02
SG191772A1 (en) 2013-08-30
IL227266B (en) 2019-10-31
WO2012104869A1 (en) 2012-08-09
AP2013006988A0 (en) 2013-07-31
HUE027512T2 (en) 2016-10-28
SMT201600129B (en) 2016-07-01
AU2012212992B2 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
US9783495B2 (en) Treatment for lipodystrophy
US20240050458A1 (en) Compositions And Methods For Inducing Apopotosis In Anaerobic Cells And Related Clinical Methods For Treating Cancer And Pathogenic Infections
US20180333399A1 (en) Method of improving liver function
US20220265614A1 (en) Treatment comprising fxr agonists
AU2015268725B2 (en) Treatment for lipodystrophy
JP2023512366A (en) Methods for treating neurological conditions associated with lysosomal storage diseases
JP2022520747A (en) Methods for treating symptoms and disorders associated with lysosomal storage disorders
CN117919231A (en) Compound for preventing and treating diabetic cardiomyopathy and application thereof
AU2016206292A1 (en) A method of improving liver function

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION