以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
図1は、本発明の実施の形態における無線通信システムの構成例を示す図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDMシンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。
端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。
上記のように端末20は様々な種類の端末であり得るが、本発明の実施の形態での端末20は主にLTEのRel-16(あるいはRel-16以降のリリース)のIoT-UEであることを想定する。ただし、端末20は、LTEのRel-16(あるいはRel-16以降のリリース)のIoT-UEに限定されない。また、想定するIoT-UEは、NB-IoTのUEであってもよいし、eMTCのUEであってもよい。
本発明の実施の形態における無線通信システムでは、基地局10がWUSを送信し、端末20がWUSをモニタする。ここではまず、WUSについて説明する。
WUSが導入される前において、Idle状態の端末20は、周期的に到来するPO(Paging Occasion、ページング機会)を毎回モニタする。なお、POをモニタすることを、ページングPDCCHをモニタする、又は、ページングサーチスペースをモニタすると言い換えてもよい。
POのモニタにおいて、端末20は、PDCCHで送信されるDCIを復調し、自分宛てのDCIであるかどうかをチェックする。そのため、自分宛てのDCIが送信されているか否かに関わらず、端末20はPO毎に復調動作を行わなければならず、無駄な電力消費となってしまう可能性が高い。特に、ページングPDCCHが繰り返し送信される場合には、DCIの復調も繰り返し行う必要があり、無駄な電力消費が大きくなる可能性が高い。
そこで、Rel-15_LTE-IoTにおいて、WUSが導入された。Rel-15_LTE-IoTにおけるWUS(LTE Rel-15の仕様で規定されたWUS)は、POと1対1に対応付けられている。WUSが送信されるリソースは、例えば、UE-ID(IMSI等)から算出される。また、WUSにおける1ビットで、端末20へのページングがあることが通知される。また、WUSの系列は、例えば、非特許文献1に記載のように、セルID、POの時間位置等から算出される。
端末20は、WUSのリソースでWUSをモニタし、WUS(システム情報で通知されるWUSパラメータで規定される系列等)を検出した場合に、自分宛てのページングが有り得ることを知り、POにおいてページングPDCCHをモニタする。つまり、WUSは、ページング機会のモニタのトリガとなる起動信号である。Rel-15_LTE-IoTのWUSに関わる動作例を図2、図3を参照して説明する。
図2は、Rel-15のWUSを説明するための図(1)である。図2は、ページングPDCCHの繰り返し送信が行われない場合の例を示す。図2に示すように、WUSを端末20が検出した場合、端末20はページングPDCCHをモニタし、自分宛てのDCIを受信した場合はページングメッセージを読む。
図3は、Rel-15のWUSを説明するための図(2)である。図3は、ページングPDCCHの繰り返し送信が行われる場合の例を示す。WUSを端末20が検出した場合、端末20はページングPDCCHを繰り返しモニタする。
図4は、WUSを説明するための図(1)である。Rel-15のWUSは、POと1対1に対応付けられる。一方、POは複数の端末20に共通である。そのため、WUSを検出したIdle状態の複数の全ての端末20が起動して、ページングPDCCHのモニタを行う。すなわち、図4に示すように、ページングの宛先ではない可能性のある多くの端末20が起動してしまう可能がある。
図5は、WUSを説明するための図(2)である。そこで、LTE Rel-16に関わる本発明の実施の形態では、UE-ID等に基づいて、端末20のグルーピングが行われる。すなわち、図5に示されるように、あるグループに属する端末20は、当該グループのアクティブなWUSのみをモニタする。これにより、ページングの宛先ではないにも関わらずに起動してしまう端末20の数を減少させることができる。
グループはUEグループIDにより識別される。また、Rel-16_WUSをサポートする端末20は、Rel-15のWUSもサポートする。すなわち、Rel-16_WUSをサポートする端末20は、Rel-16_WUSを受信して関連する処理を実行することもできるし、Rel-15のWUSを受信して関連する処理を実行することもできる。
以下、Rel-16のWUSをRel-16_WUSと記載し、Rel-15のWUSをレガシWUSと記載する。また、これらを特に区別しない場合には、WUSと記載する。レガシWUSをレガシ起動信号と呼んでもよい。
また、UEグループIDはRel-16_WUSの系列の生成に使用される。UEグループの数は、基地局10から端末20に設定可能であり、例えば、システム情報(SIB:System Information Block)により、基地局10からブロードキャストされる。
Rel-16_WUSとレガシWUSとの多重は、例えば、次の方法1)-3)のいずれか又は組み合わせによって実行されてもよい。
1)TDM(Time division multiplexing)
2)FDM(Frequency division multiplexing)
3)single sequence CDM(Code division multiplexing)
また、複数のWUS間の多重は、例えば、次の方法1)-3)のいずれか又は組み合わせによって実行されてもよい。
1)TDM
2)FDM
3)single sequence CDM
なお、single sequence CDMとは、例えば、ベースとなるWUSの系列に対して、直交した符号すなわち相互相関が0または小さい符号を乗算することで、複数のWUS系列を生成し、生成したWUS系列のいずれか1つを選択して送信する手法である。
本発明の実施の形態において、基地局10が端末20にWUSを送信する際に使用するリソース(端末20が、WUSのモニタを行うリソース)であるWUSリソース(時間・周波数リソース)の割り当て方法について説明する。
本発明の実施の形態では、時間領域と周波数領域の各領域のおいて、最大で、2つのWUSリソースが設定される。ここでの「設定」とは、各WUSリソースが基地局10から端末20に設定されることであってもよいし、基地局10が各WUSリソースを決定することであってもよい。
また、1つのWUSリソースの中で、CDM(例えば、single sequence CDM)を用いることで、複数のWUSが多重されてもよい。
図6、図7及び図8に、複数の直交するWUSリソースが設定される場合の例を示す。いずれの図においても縦軸が周波数であり、横軸が時間である。なお、「直交する」とは、リソースが重複しないという意味である。
図6は、時間方向において、2つのWUSリソースが設定された例を示す。図7は、周波数方向において、2つのWUSリソースが設定された例を示す。図8は、4つのWUSリソースが設定された例を示す。
図9-図13を用いて、上述したWUSリソースにおいて、Rel-16_WUSあるいはレガシWUSが基地局10から端末20に送信される場合の例を説明する。なお、図9-図13はそれぞれ、WUSリソースにレガシWUSが配置される場合を示しているが、WUSリソースにレガシWUSが配置されなくてもよい。
図9は、本発明の実施の形態におけるWUSのリソース割り当ての例(4)を示す図である。図9は、時間方向にWUSリソースAとWUSリソースBが配置された例を示す。図9に示されるとおり、WUSリソースAで、CDM多重された複数のRel-16_WUSが送信され、WUSリソースBでレガシWUSが送信される。なお、WUSリソースAで複数のRel-16_WUSが多重されず、1つのRel-16_WUSが送信されてもよい。
図10は、本発明の実施の形態におけるWUSのリソース割り当ての例(5)を示す図である。図10は、周波数方向にWUSリソースCとWUSリソースDが配置された例を示す。図10に示されるとおり、WUSリソースCでレガシWUSが送信され、WUSリソースDでCDM多重された複数のRel-16_WUSが送信される。なお、WUSリソースDで複数のRel-16_WUSが多重されず、1つのRel-16_WUSが送信されてもよい。
図11は、本発明の実施の形態におけるWUSのリソース割り当ての例(6)を示す図である。図11は、時間方向、周波数方向にWUSリソースE、WUSリソースF、WUSリソースG、WUSリソースHが配置された例を示す。図11に示されるとおり、WUSリソースE、GのそれぞれでRel-16_WUSが送信され、WUSリソースFでレガシWUSが送信される。
図12は、本発明の実施の形態におけるWUSのリソース割り当ての例(7)を示す図である。図12は、時間方向、周波数方向にWUSリソースE、WUSリソースF、WUSリソースG、WUSリソースHが配置された例を示す。図12に示されるとおり、WUSリソースE、GのそれぞれでRel-16_WUSが送信され、WUSリソースFでレガシWUSが送信される。
図13は、本発明の実施の形態におけるWUSのリソース割り当ての例(8)を示す図である。図13は、時間方向、周波数方向にWUSリソースE、WUSリソースF、WUSリソースG及びWUSリソースHが配置された例を示す。図13に示されるとおり、WUSリソースE及びWUSリソースGのそれぞれでCDM多重された複数のRel-16_WUSが送信され、WUSリソースFでレガシWUSが送信される。
ここで、端末20は、時間領域及び周波数領域で特定されるWUSリソースを1つのみモニタしてもよい。したがって、以下のステップ1-ステップ3によって、端末20は、WUSを検出してもよい。
ステップ1)Rel-16_WUSをサポートする端末20に対してUEグループIDが設定される。POとWUS間のギャップ設定も合わせて実行されてもよい。
ステップ2)設定されたUEグループIDに基づいて、端末20は、モニタするWUSリソースの時間領域及び周波数領域の位置を決定する。
ステップ3)端末20は、決定した1つの時間領域及び周波数領域のWUSリソースをモニタする。
Rel-16_WUSの設定に関するRRC(Radio Resource Control)シグナリングについて、例えば、Rel-16_WUSをサポートする端末20は、Rel-15_WUSに係るシグナリングをサポートしてもよい。また、例えば、WUSの送信時間タイミングに関するパラメータをRel-15及びRel-16で共通にして効率的なシグナリングを行ってもよい。
図14は、本発明の実施の形態におけるWUSをモニタリングする例を説明するためのシーケンス図である。図14に示されるステップS1において、基地局10は、「UECapabilityEnquiry」すなわちUE能力の問合せを端末20に送信する。続くステップS2において、端末20は、「UECapabilityInformation」すなわちUE能力の報告を基地局10に送信する。「UECapabilityInformation」は、端末20がサポートするUE能力を含む。基地局10は、受信した「UECapabilityInformation」に基づいて、サポートされるUE能力を特定する。
例えば、ステップS2において基地局10に端末20から報告される「UECapabilityInformation」は、Rel-15_WUSをサポートすることを示す情報と、Rel-16_WUSをサポートすることを示す情報とを含んでもよい。また、Rel-15_WUSに関連付けられるPOと当該WUS間の最短ギャップを示すパラメータと、Rel-16_WUSに関連付けられるPOと当該WUS間の最短ギャップを示すパラメータとを含んでもよい。
ステップS3において、基地局10は、WUSに関する設定情報を端末20に送信する。WUSに関する設定情報は、システム情報であってもよく、例えば「SystemInformationBlockType2」又は「SystemInformationBlockType2-NB-r13」等であってもよい。なお、ステップS3は、ステップS1及びS2より先に実行されてもよい。
例えば、ステップS3において基地局10に端末20から報告される「設定情報」は、Rel-15_WUSの最大区間長を示すパラメータと、Rel-16_WUSの最大区間長を示すパラメータとを含んでもよい。さらに、Rel-15_WUSに関連付けられる連続するPOの数を示すパラメータと、Rel-16_WUSに関連付けられる連続するPOの数を示すパラメータとを含んでもよい。さらに、Rel-15_WUSの周波数領域の位置を示すパラメータと、Rel-16_WUSの周波数領域の位置を示すパラメータとを含んでもよい。
ここで、Rel-16_WUSに関する設定、すなわち、時間オフセット(Time offset)、期間(Time duration)、周波数位置(Freq.location)、PO数(numPOs)等に、Rel-15_WUSと共通の値が設定される場合、基地局10は端末20にRel-16_WUSに関する設定を通知しなくてもよい。例えば、Rel-16_WUSに関する設定が通知されなかった場合、端末20は、デフォルト動作としてRel-15_WUSの設定をRel-16_WUSの設定として使用してもよい。
また、例えば、Rel-15_WUS及びRel-16_WUSで個別の設定がサポートされる場合を想定し、Rel-16_WUS設定の通知はオプションであると規定されてもよい。
また、例えば、Rel-15_WUSの設定及びRel-16_WUSの設定の双方が通知された場合、Rel-16_WUSの設定は、Rel-15_WUSの設定を基準とする定義としてもよい。例えば、時間オフセットは、Rel-15_WUSの時間位置と同一の値としてもよいし、Rel-15_WUSの時間位置を基準とするオフセットとしてもよい。例えば、期間及びPO数は、Rel-15_WUSと同一の値としてもよいし、Rel-15_WUSを基準とする値(例えば、整数倍)としてもよい。例えば、周波数位置は、Rel-15_WUSと同一の値としてもよいし、Rel-15_WUSの周波数位置を除外した位置からRel-16_WUSの周波数位置を決定してもよい。
また、例えば、ステップS3において、端末20は、Rel-16_WUS及びRel-15_WUSすなわちレガシWUSが配置される時間領域及び周波数領域の位置に係る情報を基地局10から受信してもよい。当該情報は、例えば、時間領域及び周波数領域の位置を示すインデックスであってもよいし、さらにWUSの数とジョイントコーディングされたインデックスであってもよい。当該インデックスは、UEグループIDに対応してもよい。
ステップS4において、端末20は、WUSに関する設定情報に基づいて、WUSリソースを決定する。続いて、端末20は、決定したWUSリソースをモニタ開始する(S5)。基地局10はWUS及びページングを端末20に送信し、端末20は決定されたWUSリソースにおいてWUSを受信し、続いてページングを受信する(S6)。
図15-図21を用いて、上述したWUSリソースにおいて、さらに時間領域又は周波数領域が拡張されて配置される場合を含むRel-16_WUSあるいはレガシWUSが基地局10から端末20に送信される場合の例を説明する。なお、図15-図21はそれぞれ、WUSリソースにレガシWUSが配置される場合を含むが、WUSリソースにレガシWUSが配置されなくてもよい。図14のステップS3において、端末20は、図15-図21で示されるRel-16_WUS及びRel-15_WUSすなわちレガシWUSが配置される時間領域及び周波数領域の位置に係る情報を基地局10から受信してもよい。
図15は、本発明の実施の形態におけるWUSの配置の例(1)を示す図である。Rel-16_WUS又はレガシWUSは、以下の候補のような時間領域及び周波数領域に配置されてもよい。図16は、レガシWUSは多くとも1つが配置される例であり、Rel-16_WUSは多くとも2つが配置される例である。例えば、Alt.#4又はAlt.#8のように、レガシWUSは、時間領域又は周波数領域において3番目のリソースに配置されてもよい。レガシWUSが配置されない場合、Rel-16_WUSは、時間領域及び周波数領域においてそれぞれ2つまでのリソースに配置されてもよい。
なお、Alt.#nについて、WUSリソースの配置を時間領域又は周波数領域で反転してもよいし、時間領域及び周波数領域の平面上で90度、180度又は270度回転させてもよい。以下、Alt.#nのリソースの配置候補1つについて、(a,b)は、aは時間領域に配置されるリソース位置、bは周波数領域に配置されるリソースの位置を示すものとする。
Alt.#1のように、レガシWUSは配置されず、Rel-16_WUSが(0,0)に配置されてもよい。Alt.#2のように、Rel-16_WUSが(0,0)、レガシWUSが(0,1)に配置されてもよい。Alt.#3のように、レガシWUSは配置されず、Rel-16_WUSが(0,0)及び(1,0)に配置されてもよい。Alt.#4のように、Rel-16_WUSが(0,0)及び(1,0)、レガシWUSが(2,0)に配置されてもよい。
Alt.#5のように、Rel-16_WUSは配置されず、レガシWUSが(0,0)に配置されてもよい。Alt.#6のように、Rel-16_WUSが(0,0)、レガシWUSが(0,1)に配置されてもよい。Alt.#7のように、レガシWUSは配置されず、Rel-16WUSが(0,0)及び(0,1)に配置されてもよい。Alt.#8のように、Rel-16WUSが(0,0)及び(0,1)、レガシWUSが(0,2)に配置されてもよい。
図16は、本発明の実施の形態におけるWUSの配置の例(2)を示す図である。Alt.#9のように、Rel-16_WUSが(0,0)及び(0,1)、レガシWUSが(1,0)に配置されてもよい。Alt.#10のように、レガシWUSは配置されず、Rel-16_WUSが(0,0)、(1,0)及び(0,1)に配置されてもよい。Alt.#11のように、Rel-16_WUSが(0,0)、(1,0)及び(0,1)、レガシWUSが(1,1)に配置されてもよい。Alt.#12のように、レガシWUSは配置されず、Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)に配置されてもよい。
Alt.#13のように、Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)、レガシWUSが(2,0)に配置されてもよい。Alt.#14のように、Rel-16_WUSが(1,0)及び(1,1)、レガシWUSが(0,0)に配置されてもよい。Alt.#15のように、レガシWUSは配置されず、Rel-16_WUSが(0,0)及び(1,1)に配置されてもよい。Alt.#16のように、Rel-16_WUSが(0,0)、レガシWUSが(1,1)に配置されてもよい。
図17は、本発明の実施の形態におけるWUSの配置の例(3)を示す図である。図17では、レガシWUSとRel-16_WUSは、例えばCDMによって、同一のリソースに配置されてもよい。
Alt.#17のように、レガシWUS及びRel-16_WUSが(0,0)に配置されてもよい。Alt.#18のように、レガシWUS及びRel-16_WUSが(0,0)、Rel-16_WUSが(1,0)に配置されてもよい。Alt.#19のように、レガシWUS及びRel-16_WUSが(0,0)、Rel-16_WUSが(0,1)に配置されてもよい。Alt.#20のように、レガシWUS及びRel-16_WUSが(0,0)、Rel-16_WUSが(0,1)、(1,0)及び(1,1)に配置されてもよい。Alt.#21のように、レガシWUS及びRel-16_WUSが(1,0)、Rel-16_WUSが(0,0)、(0,1)及び(1,1)に配置されてもよい。
図18は、本発明の実施の形態におけるWUSの配置の符号化の例(1)を示す図である。レガシWUSが配置されるか否かに応じて、Rel-16_WUS又はレガシWUSの時間領域及び周波数領域の位置が決定されてもよい。Rel-16_WUS及び/又はレガシWUSの時間領域及び周波数領域の位置と、アクティブなWUSの数とは、連結して符号化(joint-coded)されて、図18に示されるindexのように規定されてもよい。レガシWUSがリソースに配置されるか否かを示す情報が、図14のステップS3で端末20に通知されてもよい。レガシWUSが配置されるか否かに応じて、同じindexが通知された場合であっても、異なるWUSの配置が決定される。
なお、index=nについて、WUSリソースの配置を時間領域又は周波数領域で反転してもよいし、時間領域及び周波数領域の平面上で90度、180度又は270度回転させてもよい。以下、index=nのリソースの配置候補1つについて、(a,b)は、aは時間領域に配置されるリソース位置、bは周波数領域に配置されるリソースの位置を示すものとする。
レガシWUSが配置されないケースにおいて、index=0は、Rel-16_WUSが(0,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUSが(0,0)及び(1,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUSが(0,0)及び(0,1)に配置されることを示してもよい。Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)に配置されることを示してもよい。
レガシWUSが配置されるケースにおいて、index=0は、Rel-16_WUSが(0,0)、レガシWUSが(1,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUSが(0,0)及び(1,0)、レガシWUSが(2,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUSが(0,0)及び(0,1)、レガシWUSが(0,2)に配置されることを示してもよい。同様に、index=3は、Rel-16_WUSが(0,0)及び(0,1)、レガシWUSが(1,0)に配置されることを示してもよい。
図19は、本発明の実施の形態におけるWUSの配置の符号化の例(2)を示す図である。レガシWUSが配置される時間領域及び周波数領域の位置は、Rel-16_WUSの設定に基づいて、自動的に決定されてもよい。すなわち、Rel-16_WUSの時間領域及び周波数領域の位置は明示的に通知され、レガシWUSの時間領域及び周波数領域の位置は暗黙的に通知されてもよい。図18及び図19に示されるように、端末20は、Rel-16WUSが配置される時間領域又は周波数領域の位置と、レガシWUSが配置される時間領域又は周波数領域の位置とを、相互に関連付けて互いの時間領域又は周波数領域の位置を決定してもよい。
レガシWUSが配置されないケースにおいて、index=0は、Rel-16_WUSが(0,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUSが(0,0)及び(1,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUSが(0,0)及び(0,1)に配置されることを示してもよい。同様に、index=3は、Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)に配置されることを示してもよい。
レガシWUSが配置されるケースにおいて、Rel-16_WUSの配置はレガシWUSが配置されないケースと同一である。さらに、index=0である場合、レガシWUSが(1,0)に配置されてもよい。同様に、index=1である場合、レガシWUSが(2,0)に配置されてもよい。同様に、index=2である場合、レガシWUSが(0,2)に配置されてもよい。同様に、index=3である場合、レガシWUSが(0,2)に配置されてもよい。
図20は、本発明の実施の形態におけるWUSの配置の符号化の例(3)を示す図である。レガシWUSが配置される時間領域及び周波数領域の位置は、Rel-16_WUSの設定と関連なく所定の位置に決定されてもよい。
レガシWUSが配置されないケースにおいて、index=0は、Rel-16_WUSが(0,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUSが(0,0)及び(1,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUSが(0,0)及び(0,1)に配置されることを示してもよい。同様に、index=3は、Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)に配置されることを示してもよい。
レガシWUSが配置されるケースにおいて、Rel-16_WUSの配置はレガシWUSが配置されないケースと同一である。さらに、index=0、index=1、index=2及びindex=3である場合、レガシWUSが(-1,0)に配置されてもよい。あるいは、レガシWUSが(0,0)に配置されて、レガシWUSが配置されないケースにおけるRel-16_WUSの位置が時間方向に+1シフトされてもよい。
図21は、本発明の実施の形態におけるWUSの配置の符号化の例(4)を示す図である。レガシWUSが配置される時間領域及び周波数領域の位置は、例えばCDMによって、Rel-16_WUSの位置と同一であってもよい。すなわち、WUSのリソース配置は、レガシWUS及びRel-16_WUSが同一のリソースに配置できるか否かによって決定される。レガシWUS及びRel-16_WUSが同一のリソースに配置できるか否かを示す情報が、図14のステップS3で端末20に通知されてもよい。レガシWUS及びRel-16_WUSが同一のリソースに配置できるか否かに応じて、同じindexが通知された場合であっても、異なるWUSの配置が決定される。
レガシWUS及びRel-16_WUSが同一のリソースに配置できるケースにおいて、index=0は、Rel-16_WUS及びレガシWUSが(0,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUS及びレガシWUSが(0,0)、Rel-16_WUSが(1,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUS及びレガシWUSが(0,0)、Rel-16_WUSが(0,1)に配置されることを示してもよい。同様に、index=3は、Rel-16_WUS及びレガシWUSが(0,0)、Rel-16_WUSが(1,0)、(0,1)及び(1,1)に配置されることを示してもよい。
レガシWUS及びRel-16_WUSが同一のリソースに配置できないケースにおいて、index=0は、Rel-16_WUSが(0,0)、レガシWUSが(1,0)に配置されることを示してもよい。同様に、index=1は、Rel-16_WUSが(0,0)及び(1,0)、レガシWUSが(2,0)に配置されることを示してもよい。同様に、index=2は、Rel-16_WUSが(0,0)及び(0,1)、レガシWUSが(0,2)に配置されることを示してもよい。同様に、index=3は、Rel-16_WUSが(0,0)、(1,0)、(0,1)及び(1,1)、レガシWUSが(0,2)に配置されることを示してもよい。
上述の実施例により、基地局10及び端末20は、Rel-16_WUS及びレガシWUSを、柔軟に時間領域及び周波数領域のリソースに配置することができる。
すなわち、無線通信システムにおいて起動信号を柔軟に配置することができる。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
<基地局10>
図22は、本発明の実施の形態における基地局10の機能構成の一例を示す図である。図22に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図22に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、端末20のUE能力に応じたWUS送信設定及びページング送信設定に係る情報等である。
制御部140は、実施例において説明したように、端末20に送信するWUS及びページングに係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
<端末20>
図23は、本発明の実施の形態における端末20の機能構成の一例を示す図である。図23に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図23に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
設定部230は、受信部220により基地局10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、端末20のUE能力に応じたWUS受信設定及びページング受信設定に係る情報等である。
制御部240は、実施例において説明したように、WUS及びページングの受信に係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図22及び図23)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図24は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図22に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図23に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(実施の形態のまとめ)
以上、説明したように、本発明の実施の形態によれば、ページング機会に関連付けられる第1の起動信号及び第2の起動信号のうち少なくとも1つに係る設定情報を基地局から受信する受信部と、前記設定情報に基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定する制御部と、前記リソースにおいて前記第1の起動信号又は前記第2の起動信号を受信し、受信した前記第1の起動信号又は前記第2の起動信号に関連付けられるページングを前記基地局から受信する通信部とを有し、前記制御部は、前記第1の起動信号が配置されるリソースの時間領域又は周波数領域の位置と、前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置とを、相互に関連付けて互いの時間領域又は周波数領域の位置を決定する端末
が提供される。
上記の構成により、基地局10及び端末20は、Rel-16_WUS及びレガシWUSを、柔軟に時間領域及び周波数領域のリソースに配置することができる。すなわち、無線通信システムにおいて起動信号を柔軟に配置することができる。
前記制御部は、前記設定情報が示す前記第2の起動信号の有無に基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定してもよい。当該構成により、端末20は、Rel-16_WUS及びレガシWUSが配置されるリソースを決定し効率良く通信を実行することができる。
また、本発明の実施の形態によれば、ページング機会に関連付けられる第1の起動信号及び第2の起動信号のうち少なくとも1つに係る設定情報を基地局から受信する受信部と、前記設定情報に基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定する制御部と、前記リソースにおいて前記第1の起動信号又は前記第2の起動信号を受信し、受信した前記第1の起動信号又は前記第2の起動信号に関連付けられるページングを前記基地局から受信する通信部とを有し、前記制御部は、前記設定情報に含まれる起動信号の時間領域の位置又は周波数領域の位置と、起動信号の数とがジョイントコーディングされるインデックスに基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定する端末が提供される。
上記の構成により、基地局10及び端末20は、Rel-16_WUS及びレガシWUSを、柔軟に時間領域及び周波数領域のリソースに配置することができる。すなわち、無線通信システムにおいて起動信号を柔軟に配置することができる。
前記制御部は、前記設定情報に明示的に含まれる前記第1の起動信号の時間領域及び周波数領域の位置と、前記設定情報に暗黙的に含まれる前記第2の起動信号の時間領域及び周波数領域の位置とに基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定してもよい。当該構成により、端末20は、Rel-16_WUS及びレガシWUSが配置されるリソースを決定し効率良く通信を実行することができる。
前記制御部は、前記設定情報が示す前記第1の起動信号と前記第2の起動信号とが、時間領域及び周波数領域が同一の位置に配置されるか否かに基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定してもよい。当該構成により、端末20は、Rel-16_WUS及びレガシWUSが配置されるリソースを決定し効率良く通信を実行することができる。
前記制御部は、前記第1の起動信号の設定によらず、前記第2の起動信号が配置されるリソースの固定された時間領域又は周波数領域の位置を決定してもよい。当該構成により、端末20は、Rel-16_WUS及びレガシWUSが配置されるリソースを決定し効率良く通信を実行することができる。
また、本発明の実施の形態によれば、ページング機会に関連付けられる第1の起動信号及び第2の起動信号のうち少なくとも1つに係る設定情報を基地局から受信する受信手順と、前記設定情報に基づいて、前記第1の起動信号又は前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置を決定する制御手順と、前記リソースにおいて前記第1の起動信号又は前記第2の起動信号を受信し、受信した前記第1の起動信号又は前記第2の起動信号に関連付けられるページングを前記基地局から受信する通信手順とを端末が実行し、前記制御手順は、前記第1の起動信号が配置されるリソースの時間領域又は周波数領域の位置と、前記第2の起動信号が配置されるリソースの時間領域又は周波数領域の位置とを、相互に関連付けて互いの時間領域又は周波数領域の位置を決定する手順を含む通信手順が提供される。
上記の構成により、基地局10及び端末20は、Rel-16_WUS及びレガシWUSを、柔軟に時間領域及び周波数領域のリソースに配置することができる。すなわち、無線通信システムにおいて起動信号を柔軟に配置することができる。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
なお、本開示において、POは、ページング機会の一例である。WUSは、起動信号の一例である。Rel-16_WUSは、第1の起動信号の一例である。レガシWUS又はRel-15_WUSは、第2の起動信号の一例である。送信部210又は受信部220は、通信部の一例である。送信部110又は受信部120は、通信部の一例である。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。