JP7365470B2 - sensor - Google Patents

sensor Download PDF

Info

Publication number
JP7365470B2
JP7365470B2 JP2022127541A JP2022127541A JP7365470B2 JP 7365470 B2 JP7365470 B2 JP 7365470B2 JP 2022127541 A JP2022127541 A JP 2022127541A JP 2022127541 A JP2022127541 A JP 2022127541A JP 7365470 B2 JP7365470 B2 JP 7365470B2
Authority
JP
Japan
Prior art keywords
detection
light
monitoring area
smoke
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022127541A
Other languages
Japanese (ja)
Other versions
JP2022164700A (en
Inventor
学 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2022127541A priority Critical patent/JP7365470B2/en
Publication of JP2022164700A publication Critical patent/JP2022164700A/en
Application granted granted Critical
Publication of JP7365470B2 publication Critical patent/JP7365470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire Alarms (AREA)

Description

本発明は、感知器に関する。 The present invention relates to a sensor.

従来、外部から遮光された遮光領域内に設けられている検出空間を備えており、この検出空間に流入した煙の濃度を検出することにより、火災を判定する散乱光式火災感知器が知られていた(例えば、特許文献1参照)。この散乱光式火災感知器は、検出光を発光する発光部と、発光部から発光された検出光に基づく光を受光する受光部とを備えており、発光部から発光された検出光が検出空間内の煙の粒子によって散乱されることにより生じる散乱光を受光部で受光し、受光部が受光した光の光量と判定用閾値とを比較し、比較結果に基づいて、火災を判定していた。 Conventionally, scattered light type fire detectors are known, which include a detection space provided in a light-shielded area that is shielded from light from the outside, and determine whether there is a fire by detecting the concentration of smoke that has entered this detection space. (For example, see Patent Document 1). This scattered light fire detector is equipped with a light emitting part that emits detection light and a light receiving part that receives light based on the detection light emitted from the light emitting part, and the detection light emitted from the light emitting part is detected. Scattered light generated by being scattered by smoke particles in the space is received by a light receiving section, the amount of light received by the light receiving section is compared with a determination threshold, and a fire is determined based on the comparison result. Ta.

しかしながら、特許文献1の散乱光式火災感知器においては、検出空間に流入する煙の粒子径の違いによって散乱光の光量が変化し、火災を判定する感度が変化してしまう可能性があった。 However, in the scattered light type fire detector of Patent Document 1, the amount of scattered light changes depending on the particle size of smoke flowing into the detection space, which may change the sensitivity for determining fire. .

そこで、検出光を発光する発光装置と、発光装置から離れた位置に設けられている受光装置であって、発光装置からの検出光を受光する受光装置とを備えている減光式分離型感知器が提案されていた。この減光式分離型感知器は、受光装置が受光する検出光の減少量に基づいて煙を検出して火災を判定していた。 Therefore, a light-attenuating separation type sensor is equipped with a light-emitting device that emits detection light, and a light-receiving device that is provided at a position remote from the light-emitting device and that receives the detection light from the light-emitting device. A device was proposed. This attenuation-type separate sensor detects smoke and determines a fire based on the amount of decrease in the detection light received by the light receiving device.

特開2011-248547号公報Japanese Patent Application Publication No. 2011-248547

ところで、本願発明者は、前述の減光式分離型感知器の技術を用いて、特許文献1の散乱光式火災感知器の形状等の一般的な形状(例えば、直径約100mm程度の円盤形状等)の減光式感知器を製造することに想到した。すなわち、例えば直径約100mm程度の円盤形状等の一般的な形状の筐体に、発光装置に対応する構成である発光手段と、受光装置に対応する構成である受光手段とを設けることにより、減光式感知器を製造することに想到した。 By the way, the inventor of the present application has used the above-mentioned technology of the attenuation type separation type sensor to obtain a general shape such as the shape of the scattered light type fire detector of Patent Document 1 (for example, a disk shape with a diameter of about 100 mm). etc.), we came up with the idea of manufacturing a dimming type sensor. That is, by providing a light emitting means having a configuration corresponding to a light emitting device and a light receiving means having a configuration corresponding to a light receiving device in a case having a general shape such as a disk shape with a diameter of about 100 mm, the reduction in energy consumption can be reduced. We came up with the idea of manufacturing a photodetector.

しかしながら、このようにして製造した減光式感知器においては、火災による煙のみならず、火災に無関係な湯気も煙と同様にして検出してしまうことが想定され、実際には火災が発生していないにも関わらず火災を報知する誤報が行われる可能性があった。 However, in the dimming type sensor manufactured in this way, it is assumed that not only smoke from a fire but also steam unrelated to a fire will be detected in the same way as smoke, and in reality, a fire may not occur. There was a possibility that a false alarm could be made to report a fire even though the fire had not been reported.

本発明は上記問題に鑑みてなされたもので、誤報の発生頻度を減少させることが可能な感知器を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a sensor capable of reducing the frequency of occurrence of false alarms.

上述した課題を解決し、目的を達成するために、請求項1に記載の感知器は、感知器であって、監視領域の物質が流入する検出空間と、前記検出空間に流入する前記物質を第1検出手法にて検出する第1検出対象検出手段と、前記検出空間に流入する前記物質を、第2検出手法であって前記第1検出手法とは異なる前記第2検出手法にて検出する第2検出対象検出手段と、前記第1検出対象検出手段の検出結果と、前記第2検出対象検出手段の検出結果とに基づいて、前記監視領域の異常を判定する監視領域異常判定手段と、を備え、前記感知器は、前記検出空間に向けて検出光を発光する発光手段と、前記検出空間に流入する前記物質によって減光され得る前記発光手段からの前記検出光を受光する減光受光手段と、前記発光手段からの前記検出光が前記検出空間に流入する前記物質によって散乱されて発生する散乱光を受光する散乱光受光手段と、を備え、前記第1検出対象検出手段は、前記散乱光受光手段が受光する前記散乱光に基づいて前記物質を検出し、前記第2検出対象検出手段は、前記減光受光手段が受光する前記検出光に基づいて前記物質を検出し、前記監視領域異常判定手段は、前記第2検出対象検出手段の検出結果に基づいて、前記監視領域の異常発生の可能性を検出する第1処理と、前記第1処理にて前記監視領域の異常発生の可能性を検出した場合に、前記第1検出対象検出手段の検出結果と、前記第2検出対象検出手段の検出結果とを比較する第2処理と、前記第2処理での比較結果に基づいて、前記監視領域の異常の発生を判定する第3処理と、を行い、前記監視領域異常判定手段は、前記第3処理において、前記第1処理にて検出した前記監視領域の異常発生の可能性が前記異常の発生に伴い生じた検出対象である煙に起因しているか、又は、前記第1処理にて検出した前記監視領域の異常発生の可能性が前記検出対象ではない湯気に起因しているかを識別し、前記第1処理にて検出した前記監視領域の異常発生の可能性が前記煙に起因していることを識別した場合に、前記監視領域の異常の発生を判定する。 In order to solve the above-mentioned problem and achieve the object, the sensor according to claim 1 is a sensor, and includes a detection space into which a substance in a monitoring area flows, and a detection space in which the substance flows into the detection space. A first detection target detection means detects by a first detection method, and the substance flowing into the detection space is detected by the second detection method, which is a second detection method and is different from the first detection method. monitoring area abnormality determination means for determining an abnormality in the monitoring area based on a second detection object detection means, a detection result of the first detection object detection means, and a detection result of the second detection object detection means; The sensor includes: a light emitting device that emits detection light toward the detection space; and a dimming light receiver that receives the detection light from the light emitting device that can be attenuated by the substance flowing into the detection space. and a scattered light receiving means for receiving scattered light generated when the detection light from the light emitting means is scattered by the substance flowing into the detection space, and the first detection target detecting means includes: The scattered light receiving means detects the substance based on the scattered light received, and the second detection target detecting means detects the substance based on the detection light received by the dimming light receiving means, and the second detection target detecting means detects the substance based on the detection light received by the light reduction light receiving means. The area abnormality determination means includes a first process for detecting a possibility of an abnormality occurring in the monitoring area based on the detection result of the second detection target detection unit, and a first process for detecting the possibility of an abnormality occurring in the monitoring area in the first process. a second process of comparing the detection result of the first detection target detection means and the detection result of the second detection target detection means when the possibility is detected; and based on the comparison result in the second process. , a third process of determining the occurrence of an abnormality in the monitoring area, and in the third process, the monitoring area abnormality determining means determines whether an abnormality may occur in the monitoring area detected in the first process. The probability of occurrence of the abnormality in the monitoring area detected in the first process is due to the smoke, which is the detection target, that is caused by the occurrence of the abnormality, or the possibility of the abnormality occurring in the monitoring area, which is detected in the first process, is due to steam, which is not the detection target. If it is determined that the possibility of occurrence of an abnormality in the monitoring area detected in the first process is caused by the smoke, it is determined whether an abnormality has occurred in the monitoring area.

また、請求項2に記載の感知器は、請求項1に記載の感知器において、前記監視領域異常判定手段は、前記異常の発生に伴い生じた前記煙の種類を識別し、前記煙の種類の識別結果に基づいて前記異常の種類を識別する処理、を更に行う。 In the sensor according to claim 2, in the sensor according to claim 1, the monitoring area abnormality determination means identifies the type of smoke that has occurred due to the occurrence of the abnormality, and A process of identifying the type of abnormality based on the identification result is further performed.

請求項1に記載の感知器によれば、課題を解決することができる。 According to the sensor according to claim 1, the problem can be solved.

本実施の形態に係る感知器の側面図である。It is a side view of the sensor concerning this embodiment. 感知器の底面図である。FIG. 3 is a bottom view of the sensor. 図1のA―A矢視断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1. FIG. 感知器のブロック図である。FIG. 2 is a block diagram of a sensor. 防災処理のフローチャートである。It is a flowchart of disaster prevention processing. 遮光空間の内部の平面図である。FIG. 3 is a plan view of the inside of the light-shielding space. 遮光空間の内部の平面図である。FIG. 3 is a plan view of the inside of the light-shielding space.

以下に、本発明に係る感知器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, embodiments of a sensor according to the present invention will be described in detail based on the drawings. Note that the present invention is not limited to this embodiment.

〔実施の形態の基本的概念〕
まずは、実施の形態の基本的概念について説明する。実施の形態は、概略的に、感知器に関するものである。
[Basic concept of embodiment]
First, the basic concept of the embodiment will be explained. Embodiments generally relate to sensors.

ここで、「感知器」とは、監視領域の異常を判定する機器であり、具体的には、監視領域の検出対象を検出することにより、異常を判定する機器であり、煙感知器、火災感知器、及びガス感知器等を含む概念であり、一例としては、検出空間、第1検出対象検出手段、第2検出対象検出手段、及び監視領域異常判定手段を備えるものである。なお、「監視領域」とは、感知器による監視の対象となっている領域であり、具体的には、一定の広がりを持った空間であって、屋内あるいは屋外の空間であって、例えば、建物の廊下、階段、又は部屋等の空間を含む概念である。また、「監視領域の異常」とは、監視領域が通常とは異なる状態になっていることであり、例えば、火災、及びガス漏れ等を含む概念である。また、「検出対象」とは、感知器による検出の対象であり、具体的には、監視領域の異常に関連するものであり、例えば、煙、及び一酸化炭素ガス等を含む概念である。 Here, a "sensor" is a device that determines an abnormality in a monitoring area. Specifically, it is a device that determines an abnormality by detecting a detection target in the monitoring area, such as a smoke detector, a fire alarm, etc. The concept includes a sensor, a gas sensor, etc., and, as an example, includes a detection space, a first detection object detection means, a second detection object detection means, and a monitoring area abnormality determination means. Note that the "monitoring area" is an area that is monitored by a sensor, and specifically, it is a space with a certain extent, indoors or outdoors, for example, This concept includes spaces such as corridors, stairs, and rooms in buildings. Furthermore, "abnormality in the monitoring area" refers to a situation in the monitoring area that is different from normal, and is a concept that includes, for example, fire, gas leak, and the like. Further, the term "detection target" refers to a target to be detected by a sensor, and specifically relates to an abnormality in a monitoring area, and is a concept that includes, for example, smoke, carbon monoxide gas, and the like.

また、「検出空間」とは、監視領域の検出対象が流入する空間であり、例えば、感知器の外部から遮光されている空間である。 Further, the "detection space" is a space into which the detection target of the monitoring area flows, and is, for example, a space that is shielded from light from the outside of the sensor.

また、「第1検出対象検出手段」とは、検出空間に流入する検出対象を第1検出手法にて検出する手段であり、「第2検出対象検出手段」とは、検出空間に流入する検出対象を第2検出手法にて検出する手段である。なお、「第1検出手法」とは、検出対象を検出する任意の手法であり、例えば、煙を検出する手法であり、一例としては、煙に対して検出光を照射した場合に、煙に検出光が照射されることにより発生する散乱光を利用して煙を検出する散乱光式検出手法である。また、「第2検出手法」とは、検出対象を検出する任意の手法であり、具体的には、第1検出手法とは異なる手法であり、例えば、煙を検出する手法であり、一例としては、煙に対して検出光を照射した場合に、煙に検出光が照射されることにより当該検出光が減光することを利用して煙を検出する減光式検出手法である。なお、「検出光」とは、検出対象を検出するための光であり、例えば、煙を検出するための光である。また、「散乱光」とは、検出光と検出対象とに基づいて発生する光であり、例えば、検出対象が煙に照射されて散乱することにより発生する光である。また、「減光する」とは、光の強度が減少することに対応する概念である。 Furthermore, the "first detection object detection means" is a means for detecting the detection object flowing into the detection space by the first detection method, and the "second detection object detection means" is the means for detecting the detection object flowing into the detection space. This is means for detecting an object using a second detection method. Note that the "first detection method" is any method for detecting a detection target, for example, a method for detecting smoke. For example, when smoke is irradiated with detection light, This is a scattered light detection method that detects smoke using scattered light generated by irradiation with detection light. In addition, the "second detection method" is any method for detecting a detection target, and specifically, it is a method different from the first detection method, for example, a method for detecting smoke. is an attenuation type detection method that detects smoke by utilizing the fact that when smoke is irradiated with detection light, the detection light is attenuated as the smoke is irradiated with the detection light. Note that "detection light" is light for detecting a detection target, for example, light for detecting smoke. Further, "scattered light" is light generated based on the detection light and the detection target, and is, for example, light generated when the detection target is irradiated with smoke and scattered. Moreover, "to reduce light" is a concept corresponding to a decrease in the intensity of light.

また、「監視領域異常判定手段」とは、第1検出対象検出手段の検出結果と、第2検出対象検出手段の検出結果とに基づいて、監視領域の異常を判定する監視領域異常判定手段である。 Furthermore, the "monitoring area abnormality determining means" is a monitoring area abnormality determining means that determines an abnormality in the monitoring area based on the detection result of the first detection target detection means and the detection result of the second detection target detection means. be.

そして、以下に示す実施の形態では、「監視領域」が「建物の部屋」であり、「監視領域の異常」が「火災」であり、「検出対象」が「煙」である場合について説明する。また、以下に示す実施の形態にて示す数値については、説明の便宜上、一例として示したものであり、実際には、実施の形態に示す概念に従う限りにおいて、当該例示した数値以外の数値を用いてもよい。 In the embodiment shown below, a case will be described in which the "monitoring area" is a "room in a building", the "abnormality in the monitoring area" is "fire", and the "detection target" is "smoke". . In addition, the numerical values shown in the embodiments below are shown as examples for convenience of explanation, and in reality, numerical values other than the exemplified values may be used as long as the concept shown in the embodiments is followed. It's okay.

[実施の形態の具体的内容]
次に、実施の形態の具体的内容について説明する。
[Specific contents of embodiment]
Next, specific contents of the embodiment will be explained.

(構成)
まず、本実施の形態に係る感知器の構成について説明する。図1は、本実施の形態に係る感知器の側面図であり、図2は、感知器の底面図であり、図3は、図1のA―A矢視断面図であり、図4は、感知器のブロック図である。なお、説明の便宜上、図1については、感知器100の外側を破線で示し、内側を実線で示しており、また、図3については、図2のA―A矢印の断面における遮光空間13の内部の一部を示す断面図であり、ハッチングは適宜省略している。また、以下の説明では、図1~図3に示すX―Y―Z方向が互いに直交する方向であり、具体的には、Z方向が鉛直方向であって、X方向及びY方向が鉛直方向に対して直交する水平方向であるものとして、例えば、Z方向を高さ方向と称し、+Z方向を上側(平面)と称し、-Z方向を下側(底面)と称して説明する。また、以下の「X―Y―Z方向」に関する用語については、図示の感知器100において、各構成品の相対的な位置関係(又は、方向)等を説明するための便宜的な表現であることとし、図3の遮光空間13の中心位置を基準として、遮光空間13から離れる方向を「外側」と称し、遮光空間13に近づく方向を「内側」と称して、以下説明する。
(composition)
First, the configuration of the sensor according to this embodiment will be explained. FIG. 1 is a side view of the sensor according to the present embodiment, FIG. 2 is a bottom view of the sensor, FIG. 3 is a sectional view taken along the line A--A in FIG. 1, and FIG. , is a block diagram of a sensor. For convenience of explanation, in FIG. 1, the outside of the sensor 100 is shown by a broken line, and the inside is shown by a solid line, and in FIG. It is a sectional view showing a part of the inside, and hatching is omitted as appropriate. In addition, in the following explanation, the X-Y-Z directions shown in FIGS. 1 to 3 are mutually orthogonal directions, and specifically, the Z direction is a vertical direction, and the X direction and Y direction are vertical directions. For example, the Z direction will be referred to as the height direction, the +Z direction will be referred to as the upper side (plane), and the -Z direction will be referred to as the lower side (bottom surface). In addition, the following terms related to "X-Y-Z direction" are convenient expressions for explaining the relative positional relationship (or direction) of each component in the illustrated sensor 100. In the following description, the direction away from the light-shielding space 13 will be referred to as "outside" and the direction approaching the light-shielding space 13 will be referred to as "inner" with reference to the center position of the light-shielding space 13 in FIG. 3.

これら各図に示す感知器100は、監視領域の検出対象である煙を検出することにより、異常である火災を判定する機器であり、具体的には、図1に示すように、監視領域の天井面である設置面900に取り付けて用いられるものであり、例えば、取付ベース11、筐体12、図3の遮光空間13、図1の防虫網14、図4の通信部21、警報部22、記録部23、及び制御部24を備える。 The detector 100 shown in each of these figures is a device that determines an abnormal fire by detecting smoke, which is a detection target in a monitoring area. Specifically, as shown in FIG. It is used by being attached to the installation surface 900, which is a ceiling surface, and includes, for example, the mounting base 11, the housing 12, the light-shielding space 13 in FIG. 3, the insect screen 14 in FIG. 1, the communication section 21, and the alarm section 22 in FIG. , a recording section 23, and a control section 24.

(構成-取付ベース)
図1の取付ベース11は、設置面900に対して、筐体12を取り付けるための取付手段である。この取付ベース11の具体的な種類や構成は任意であるが、例えば、筐体12と設置面900との間において用いられるものであって、公知の固定手段(例えば、ねじあるいは嵌合構造等)によって固定されているものである。
(Configuration - mounting base)
The mounting base 11 in FIG. 1 is a mounting means for mounting the housing 12 on the installation surface 900. The specific type and configuration of this mounting base 11 is arbitrary, but for example, it may be used between the housing 12 and the installation surface 900, and may be a known fixing means (for example, screws or a fitting structure, etc.). ) is fixed by

(構成-筐体)
図1の筐体12は、感知器100の各種構成要素を収容する収容手段である。この筐体12の具体的な種類や構成は任意であるが、例えば、高さ方向(Z方向)において上側(+Z方向)に設けられている円筒状部分と、この円筒状部分から下側(-Z方向)に突出するように形成されたドーム状部分とによって形成されているものであり、図2の開口部121が設けられているものである。
(Configuration - housing)
The housing 12 in FIG. 1 is a housing means for housing various components of the sensor 100. The specific type and configuration of this casing 12 is arbitrary, but for example, a cylindrical part provided on the upper side (+Z direction) in the height direction (Z direction), and a cylindrical part provided on the lower side (+Z direction) from this cylindrical part -Z direction), and is formed by a dome-shaped portion that is formed to protrude in the -Z direction), and is provided with an opening 121 shown in FIG.

(構成-筐体-開口部)
図2の開口部121は、筐体12に対して気体を流入させる流入手段であり、また、筐体12に対して気体を流出させる流出手段である。この開口部121の具体的な種類や構成は任意であるが、例えば、筐体12のドーム状部分に複数設けられているものである。
(Configuration - Housing - Opening)
The opening 121 in FIG. 2 is an inflow means for allowing gas to flow into the housing 12, and is an outflow means for causing gas to flow out from the housing 12. Although the specific type and configuration of the openings 121 are arbitrary, for example, a plurality of openings 121 may be provided in a dome-shaped portion of the housing 12.

(構成-遮光空間)
図3の遮光空間13は、遮光されている空間であって、監視領域の検出対象である煙が流入する空間である。この遮光空間13の具体的な種類や構成は任意であるが、例えば、図1の筐体12におけるドーム状部分に対応する部分に設けられているものであり、また、ベース部131、カバー部132、及び不図示のラビリンスによって取り囲まれているものであり、また、図3の発光部151、散乱光受光部152、減光受光部153、反射部154、遮光部155、散乱光用検出空間A1、及び減光用検出空間A2を収容しているものである。
(Configuration - light-shielded space)
The light-shielded space 13 in FIG. 3 is a light-shielded space into which smoke, which is a detection target of the monitoring area, flows. The specific type and configuration of this light-shielding space 13 is arbitrary, but for example, it may be provided in a portion corresponding to the dome-shaped portion of the casing 12 in FIG. 132, and a labyrinth (not shown), and also includes the light emitting section 151, scattered light receiving section 152, dimming light receiving section 153, reflecting section 154, light shielding section 155, and scattered light detection space shown in FIG. A1, and a detection space A2 for light attenuation.

(構成-遮光空間-ベース部、カバー部、及びラビリンス)
図1のベース部131、カバー部132、及び不図示のラビリンスは、遮光空間13を区画する区画手段であり、従来と同様にして構成することができるが、例えば、以下のように構成されている。ベース部131は、感知器100の外側からの光を遮光する遮光手段であり、例えば、遮光空間13を上側(+Z方向)から取り囲むものである。カバー部132は、感知器100の外側からの光を遮光する遮光手段であり、例えば、遮光空間13を下側(-Z方向)から取り囲むものである。不図示のラビリンスは、感知器100の外側からの光を遮光しつつ、気体を流入また又は流出させる遮光流入出手段であり、具体的には、遮光空間13を側面側から取り囲むものであり、例えば、円状に配置されているものである。
(Configuration - Shade space - Base part, cover part, and labyrinth)
The base portion 131, the cover portion 132, and the labyrinth (not shown) in FIG. 1 are partitioning means for partitioning the light-shielding space 13, and can be configured in the same manner as in the past, but for example, they may be configured as follows. There is. The base portion 131 is a light shielding means that blocks light from outside the sensor 100, and surrounds the light shielding space 13 from above (+Z direction), for example. The cover part 132 is a light shielding means for shielding light from the outside of the sensor 100, and for example, surrounds the light shielding space 13 from the lower side (-Z direction). The labyrinth (not shown) is a light-shielding inflow/output means that allows gas to flow in and out while blocking light from outside the sensor 100, and specifically surrounds the light-shielding space 13 from the side. For example, they are arranged in a circle.

(構成-遮光空間-発光部)
発光部151は、散乱光用検出空間A1に向けて検出光を発光する発光手段である。この発光部151の具体的な種類や構成は任意であるが、例えば、発光ダイオード等を用いて構成することができる。
(Configuration - Shade space - Light emitting part)
The light emitting unit 151 is a light emitting unit that emits detection light toward the scattered light detection space A1. Although the specific type and configuration of this light emitting section 151 are arbitrary, for example, it can be configured using a light emitting diode or the like.

(構成-検出空間-散乱光受光部)
散乱光受光部152は、発光部151からの検出光が散乱光用検出空間A1に流入する煙によって散乱されて発生する散乱光を受光する散乱光受光手段である。この散乱光受光部152の具体的な種類や構成は任意であるが、例えば、フォトダイオード等を用いて構成することができる。
(Configuration - Detection space - Scattered light receiver)
The scattered light receiving section 152 is a scattered light receiving means that receives scattered light generated when the detection light from the light emitting section 151 is scattered by smoke flowing into the scattered light detection space A1. Although the specific type and configuration of this scattered light receiving section 152 are arbitrary, for example, it can be configured using a photodiode or the like.

(構成-検出空間-減光受光部)
減光受光部153は、減光用検出空間A2に流入する煙によって減光され得る発光部151からの検出光を受光する減光受光手段である。この減光受光部153の具体的な種類や構成は任意であるが、例えば、散乱光受光部152と同様にして、フォトダイオード等を用いて構成することができる。
(Configuration - detection space - dimming light receiving section)
The dimming light receiving section 153 is a dimming light receiving means that receives the detection light from the light emitting section 151 that can be dimmed by smoke flowing into the detection space A2 for dimming. Although the specific type and configuration of this dimming light receiving section 153 are arbitrary, for example, like the scattered light receiving section 152, it can be configured using a photodiode or the like.

(構成-検出空間-反射部)
反射部154は、発光部151からの検出光を減光受光部153に反射する反射手段である。この反射部154の具体的な種類や構成は任意であるが、例えば、3つ設けられているものであり、また、少なくとも2つが相互に平行になるように設けられているものであり、また、比較的高い反射率(例えば、90%~95%以上等)にて反射する反射ミラー等を用いて構成することができる。
(Configuration - detection space - reflection part)
The reflecting section 154 is a reflecting means that reflects the detection light from the light emitting section 151 to the dimming light receiving section 153. The specific type and configuration of the reflecting portions 154 are arbitrary, but for example, three reflecting portions 154 are provided, at least two are provided parallel to each other, and , a reflective mirror that reflects at a relatively high reflectance (for example, 90% to 95% or more) can be used.

(構成-検出空間-遮光部)
遮光部155は、発光部151からの検出光が散乱光受光部152に直接入射することを防止するための遮光手段である。この遮光部155の具体的な種類や構成は任意であるが、例えば、黒色樹脂材等の遮光性の材料を用いて構成することができるものである。
(Configuration - detection space - light shielding part)
The light blocking section 155 is a light blocking means for preventing the detection light from the light emitting section 151 from directly entering the scattered light receiving section 152 . Although the specific type and configuration of the light shielding portion 155 are arbitrary, for example, it can be constructed using a light shielding material such as a black resin material.

(構成-検出空間-散乱光用検出空間)
散乱光用検出空間A1は、前述の検出空間であり、具体的には、散乱光が発生する空間であり、例えば、発光部151の不図示の光軸と散乱光受光部152の不図示の光軸とが交差する交差点及び当該交差点の周囲の空間である。この散乱光用検出空間A1の具体的な種類や構成は任意であるが、例えば、発光部151の不図示の光軸が散乱光受光部152に直接向けられずに、且つ、発光部151の不図示の光軸と散乱光受光部152の不図示の光軸とが交差するようにこれら各部を配置することにより構成されるものである。なお、図3においては、この散乱光用検出空間A1は、説明の便宜上、細線の破線の円形にて図示されている。
(Configuration - detection space - detection space for scattered light)
The scattered light detection space A1 is the above-mentioned detection space, specifically, a space where scattered light is generated. For example, the scattered light detection space A1 is a space where scattered light is generated. These are the intersection where the optical axis intersects and the space around the intersection. The specific type and configuration of this scattered light detection space A1 are arbitrary, but for example, if the optical axis (not shown) of the light emitting section 151 is not directed directly toward the scattered light receiving section 152, and the light emitting section 151 is It is constructed by arranging these parts so that the optical axis (not shown) and the optical axis (not shown) of the scattered light receiving section 152 intersect. In FIG. 3, this scattered light detection space A1 is illustrated as a circle with a thin broken line for convenience of explanation.

(構成-検出空間-減光用検出空間)
減光用検出空間A2は、前述の検出空間であり、具体的には、検出光が煙で減光され得る空間であり、例えば、発光部151から減光受光部153に至る検出光の光路及び当該光路の周囲の空間である。この減光用検出空間A2の具体的な種類や構成は任意であるが、例えば、減光用検出空間A2の少なくとも一部が散乱光用検出空間A1と重複するように構成されているものである。なお、図3においては、この減光用検出空間A2は、説明の便宜上、細線の破線の矩形にて図示されている。
(Configuration - detection space - detection space for dimming)
The detection space A2 for dimming is the above-mentioned detection space, and specifically is a space where the detection light can be dimmed by smoke, for example, the optical path of the detection light from the light emitting section 151 to the dimming light receiving section 153. and the space around the optical path. The specific type and configuration of this detection space A2 for light attenuation is arbitrary, but for example, it may be configured such that at least a part of the detection space A2 for light attenuation overlaps with the detection space A1 for scattered light. be. In addition, in FIG. 3, this detection space A2 for light attenuation is illustrated as a rectangle with a thin broken line for convenience of explanation.

(構成-防虫網)
図1の防虫網14は、遮光空間13に虫が進入するのを抑制する防虫手段である。この防虫網14の具体的な種類や構成は任意であるが、例えば、遮光空間13の外部と内部との間で、防虫網14自身の小孔を介して気体が流入又は流出するのを許容する一方で、遮光空間13に虫が入ることを防止するように構成されているものであり、また、不図示のラビリンスを外側から覆っているものであって、円状に配置されているものである。
(Composition - Insect net)
The insect repellent net 14 shown in FIG. 1 is an insect repellent means that prevents insects from entering the light-shielding space 13. The specific type and configuration of the insect screen 14 are arbitrary, but for example, it allows gas to flow in or out between the outside and the inside of the light-shielding space 13 through small holes in the insect screen 14 itself. On the other hand, it is configured to prevent insects from entering the light-shielding space 13, and it also covers a labyrinth (not shown) from the outside and is arranged in a circular shape. It is.

(構成-通信部)
図4の通信部21は、外部の機器(例えば、不図示の防災受信機等)との間で通信を行う通信手段である。この通信部21の具体的な種類や構成は任意であるが、例えば、公知の通信回路を用いて構成することができるものである。
(Configuration - Communication Department)
The communication unit 21 in FIG. 4 is a communication means for communicating with an external device (for example, a disaster prevention receiver, etc., not shown). Although the specific type and configuration of this communication section 21 are arbitrary, it can be configured using, for example, a known communication circuit.

(構成-警報部)
図4の警報部22は、感知器100が火災を判定した場合に、警報を出力する警報手段である。この警報部22の具体的な種類や構成は任意であるが、例えば、音声にて警報を出力する不図示のスピーカ、あるいは、発光表示にて警報を出力する図2の表示灯221等を備えるものである。
(Configuration - Alarm section)
The alarm section 22 in FIG. 4 is an alarm means that outputs an alarm when the sensor 100 determines a fire. Although the specific type and configuration of the alarm section 22 is arbitrary, it may include, for example, a speaker (not shown) that outputs an alarm with sound, or an indicator light 221 shown in FIG. 2 that outputs an alarm with a light-emitting display. It is something.

(構成-記録部)
図4の記録部23は、感知器100の動作に必要なプログラム及び各種のデータを記録する記録手段であり、例えば、EEPROMやFlashメモリ等を用いて構成されている。ただし、EEPROMやFlashメモリに代えてあるいはEEPROMやFlashメモリと共に、ハードディスクの如き外部記録装置、磁気ディスクの如き磁気的記録媒体、DVDやブルーレイディスクの如き光学的記録媒体、又はROM、USBメモリ、SDカードの如き電気的記録媒体を含む、その他の任意の記録媒体を用いることができる。
(Configuration - Recording section)
The recording unit 23 in FIG. 4 is a recording means for recording programs and various data necessary for the operation of the sensor 100, and is configured using, for example, an EEPROM or a Flash memory. However, instead of or in addition to EEPROM and Flash memory, external storage devices such as hard disks, magnetic recording media such as magnetic disks, optical recording media such as DVDs and Blu-ray discs, ROM, USB memory, and SD Any other storage medium can be used, including electrical storage media such as cards.

(構成-制御部)
図4の制御部24は、感知器100を制御する制御手段であり、具体的には、CPU、当該CPU上で解釈実行される各種のプログラム(OSなどの基本制御プログラムや、OS上で起動され特定機能を実現するアプリケーションプログラムを含む)、及びプログラムや各種のデータを格納するためのRAMの如き内部メモリを備えて構成されるコンピュータである。特に、実施の形態に係る制御プログラムは、任意の記録媒体又はネットワークを介して感知器100にインストールされることで、制御部24の各部を実質的に構成する。
(Configuration - control section)
The control unit 24 in FIG. 4 is a control unit that controls the sensor 100, and specifically includes a CPU, various programs that are interpreted and executed on the CPU (basic control programs such as an OS, and (including application programs that implement specific functions) and an internal memory such as a RAM for storing programs and various data. In particular, the control program according to the embodiment substantially configures each part of the control unit 24 by being installed in the sensor 100 via an arbitrary recording medium or network.

この制御部24は、機能概念的に、散乱光検出部241、減光検出部242、及び監視領域異常判定部243を備える。散乱光検出部241は、散乱光用検出空間A1に流入する煙を第1検出手法にて検出する第1検出対象検出手段であり、例えば、散乱光受光部152が受光する散乱光に基づいて煙を検出する第1検出対象検出手段である。減光検出部242は、減光用検出空間A2に流入する前記検出対象を、第2検出手法であって第1検出手法とは異なる第2検出手法にて検出する第2検出対象検出手段であり、例えば、減光受光部153が受光する検出光に基づいて煙を検出する第2検出対象検出手段である。監視領域異常判定部243は、散乱光検出部241の検出結果と、減光検出部242の検出結果とに基づいて、監視領域の火災を判定する監視領域異常判定手段である。この制御部24の各部により行われる処理については、後述する。 Functionally, the control unit 24 includes a scattered light detection unit 241, a dimming detection unit 242, and a monitoring area abnormality determination unit 243. The scattered light detection unit 241 is a first detection target detection unit that detects smoke flowing into the detection space A1 for scattered light using a first detection method, and for example, based on the scattered light received by the scattered light reception unit 152. This is first detection target detection means for detecting smoke. The light reduction detection unit 242 is a second detection object detection means that detects the detection object flowing into the light reduction detection space A2 using a second detection method, which is different from the first detection method. For example, it is a second detection target detection means that detects smoke based on the detection light received by the light-reducing light receiving section 153. The monitoring area abnormality determination unit 243 is a monitoring area abnormality determination unit that determines whether there is a fire in the monitoring area based on the detection result of the scattered light detection unit 241 and the detection result of the dimming detection unit 242. The processing performed by each part of the control unit 24 will be described later.

(処理)
次に、このように構成される感知器100によって実行される防災処理について説明する。
(process)
Next, a description will be given of disaster prevention processing executed by the sensor 100 configured as described above.

(処理-防災処理)
図5は、防災処理のフローチャートである(以下の各処理の説明ではステップを「S」と略記する)。「防災処理」とは、防災のための処理であり、具体的には、火災を判定する処理である。この防災処理を実行するタイミングは任意であるが、例えば、感知器100の電源をオンした後に、繰り返し起動されて実行するものとして、防災処理が起動されたところから説明する。
(Processing - disaster prevention processing)
FIG. 5 is a flowchart of the disaster prevention process (steps are abbreviated as "S" in the description of each process below). "Disaster prevention processing" is processing for disaster prevention, and specifically, processing for determining fire. Although the timing of executing this disaster prevention process is arbitrary, for example, the disaster prevention process will be explained starting from the start, assuming that it is repeatedly activated and executed after the power of the sensor 100 is turned on.

まず、図5のSA1において監視領域異常判定部243は、監視領域で火災(異常)が発生したか否かを判定する。具体的には任意であるが、例えば、以下に示すように、濃度を検出した上で、当該濃度を用いて火災を判定する。 First, in SA1 of FIG. 5, the monitoring area abnormality determination unit 243 determines whether a fire (abnormality) has occurred in the monitoring area. Although the specific details are arbitrary, for example, as shown below, the concentration is detected and then a fire is determined using the concentration.

詳細には、まず、散乱光検出部241が、図3の散乱光受光部152にアクセスして散乱光受光部152のフォトダイオードの出力値(つまり、散乱光受光部152が受光した散乱光の強度)を連続して取得して、取得した出力値に基づいて所定の手法で濃度を演算して検出する。なお、ここでの濃度を演算する手法は任意であり、散乱光用検出空間A1の煙の濃度が高くなるにつれて散乱光の強度が増大することに着目して演算する公知の手法を含む任意の手法を用いることができる。また、減光検出部242が、減光受光部153にアクセスして減光受光部153のフォトダイオードの出力値(つまり、減光受光部153が受光した検出光の強度)を連続して取得して、取得した出力値に基づいて所定の手法で濃度を演算して検出する。なお、ここでの濃度を演算する手法は任意であり、減光用検出空間A2の煙の濃度が高くなるにつれて検出光の強度が減少することに着目して演算する公知の手法を含む任意の手法を用いることができる。 In detail, first, the scattered light detection unit 241 accesses the scattered light receiving unit 152 in FIG. intensity) is continuously acquired, and the concentration is calculated and detected using a predetermined method based on the acquired output values. Note that the method for calculating the concentration here is arbitrary, and may be any method including a known method that calculates by focusing on the fact that the intensity of scattered light increases as the concentration of smoke in the detection space A1 for scattered light increases. method can be used. Further, the dimming detection unit 242 accesses the dimming light receiving unit 153 and continuously acquires the output value of the photodiode of the dimming light receiving unit 153 (that is, the intensity of the detection light received by the dimming light receiving unit 153). Then, the concentration is calculated and detected using a predetermined method based on the obtained output value. Note that the method for calculating the concentration here is arbitrary, and may be any method including a known method that calculates by focusing on the fact that the intensity of the detected light decreases as the concentration of smoke in the detection space A2 for dimming increases. method can be used.

次に、監視領域異常判定部243は、少なくとも、散乱光検出部241が検出した濃度と、減光検出部242が検出した濃度とを用いて火災を判定する。ここでの具体的な手法は任意であるが、例えば、図3の遮光空間13には、発炎火災での煙(以下、第1の煙)、発煙火災での煙(以下、第2の煙)、又は煙と誤認される可能性がある湯気が流入する可能性があり、火災が発生しているにも関わらず火災の判定が遅れてしまったり、あるいは、火災が発生していないにも関わらず火災を誤って判定してしまったりすることを防止して、適切に火災を判定する必要があるが、一例としては、以下のようにして判定する。なお、「発炎火災」は、例えば、粒子径が比較的小さな煙が発生する火災であって、黒色の煙が発生する火災である。また、「発煙火災」は、例えば、粒子径が比較的大きな煙(発炎火災の煙よりも粒子径が大きい煙)が発生する火災であって、白色の煙が発生する火災である。 Next, the monitoring area abnormality determination section 243 determines a fire using at least the concentration detected by the scattered light detection section 241 and the concentration detected by the dimming detection section 242. The specific method here is arbitrary, but for example, the light shielding space 13 in FIG. There is a possibility that steam (smoke) or steam that may be mistaken for smoke may flow in, causing a delay in determining whether there is a fire even though there is a fire, or even when there is no fire. It is necessary to prevent a fire from being erroneously determined in spite of the situation, and to appropriately determine a fire. As an example, the determination is made as follows. Note that a "flaming fire" is, for example, a fire that generates smoke with relatively small particle diameters, and a fire that generates black smoke. Furthermore, a "smoking fire" is, for example, a fire that generates smoke with relatively large particle diameters (smoke that has larger particle diameters than smoke from a flaming fire), and is a fire that generates white smoke.

詳細には、本願発明者は、第1の煙、第2の煙、及び湯気に対する散乱光検出部241及び減光検出部242の検出感度の実験又はシミュレーションを行ったところ、以下の結果を得たが、この結果に基づく判定手法を用いるものとする。結果については、減光検出部242については、第1の煙、第2の煙、及び湯気を相互に同様な感度にて検出し、例えば、実際には相互に同様な第1の煙、第2の煙、及び湯気に対して、「第1の煙」=「1.0」、「第2の煙」=「1.0」、及び「湯気」=「1.0」の濃度を検出する結果を得た(数値については、第2の煙の濃度を基準に正規化した値とする)。また、散乱光検出部241については、第1の煙、第2の煙、及び湯気を相互に異なる感度にて検出し、例えば、実際には相互に同様な第1の煙、第2の煙、及び湯気に対して、「第1の煙」=「0.5」、「第2の煙」=「1.0」、及び「湯気」=「3.0」の濃度を検出する結果を得た(数値については、前述と同様に、第2の煙の濃度を基準に正規化した値とする)。なお、「第2の煙」に対する散乱光検出部241及び減光検出部242の感度は相互に同様であり、同様な濃度を検出したものとする。この結果によると、所定の濃度の第2の煙については、散乱光検出部241及び減光検出部242は相互に同様な濃度を検出し、また、所定の濃度の第1の煙については、散乱光検出部241は、減光検出部242に対して感度が鈍く半分程度の濃度を検出し、また、所定の濃度の湯気については、散乱光検出部241は、減光検出部242に対して感度が鋭く3倍程度の濃度を検出することが確認された。そして、これらの結果を踏まえて、監視領域異常判定部243は、減光検出部242が検出した濃度に基づいて火災発生の可能性を検出した上で、減光検出部242が検出した濃度と散乱光検出部241が検出した濃度とを比較して、検出した火災の可能性が煙に起因するものであるか湯気に起因するものであるがを切り分けて、判定するように構成されていることとして以下説明する。 Specifically, the inventor conducted an experiment or simulation on the detection sensitivity of the scattered light detector 241 and the dimming detector 242 for first smoke, second smoke, and steam, and obtained the following results. However, a determination method based on this result will be used. As for the results, the dimming detection unit 242 detects the first smoke, second smoke, and steam with mutually similar sensitivities; for example, in reality, the first smoke, the second smoke, and the steam For the smoke and steam in No. 2, the concentrations of "first smoke" = "1.0", "second smoke" = "1.0", and "steam" = "1.0" are detected. (The numerical values are normalized based on the second smoke concentration). Further, the scattered light detection unit 241 detects the first smoke, second smoke, and steam with mutually different sensitivities, and for example, actually detects the same first smoke and second smoke. , and the results of detecting the concentrations of "first smoke" = "0.5", "second smoke" = "1.0", and "steam" = "3.0" for steam. (The numerical values are normalized based on the second smoke concentration, as described above). Note that the sensitivities of the scattered light detection section 241 and the light reduction detection section 242 to the "second smoke" are similar to each other, and it is assumed that similar concentrations are detected. According to this result, for the second smoke with a predetermined concentration, the scattered light detection unit 241 and the dimming detection unit 242 detect the same concentration, and for the first smoke with a predetermined concentration, The scattered light detection unit 241 is less sensitive than the light reduction detection unit 242 and detects a concentration that is about half, and for steam with a predetermined concentration, the scattered light detection unit 241 has a lower sensitivity than the light reduction detection unit 242. It was confirmed that the sensitivity was sharp and that it could detect concentrations approximately three times higher. Then, based on these results, the monitoring area abnormality determination unit 243 detects the possibility of a fire outbreak based on the concentration detected by the dimming detection unit 242, and then determines the possibility of a fire outbreak based on the concentration detected by the dimming detection unit 242. It is configured to compare the concentration detected by the scattered light detection unit 241 to determine whether the detected fire is likely to be caused by smoke or steam. This will be explained below.

より詳細には、記録部23に火災を判定するための閾値として用いられる濃度である濃度閾値が記録されていることとし、監視領域異常判定部243は、まず、減光検出部242が検出した濃度(以下、減光側濃度)を取得し、取得した減光側濃度と記録部23の濃度閾値とを比較し、減光側濃度が濃度閾値未満である場合、火災が発生していないものと判定し(SA1のNO)、火災が発生しているものと判定するまで、繰り返しSA1を実行する。また、減光側濃度が濃度閾値以上である場合、火災発生の可能性を検出した上で、散乱光検出部241が検出した濃度(以下、散乱側濃度)を取得し、取得した散乱側濃度と前述の取得した減光側濃度とを比較し、前述の実験等の結果から確認されたように、散乱側濃度が減光側濃度の3倍程度になっている場合には、湯気に起因している可能性が高く、また、散乱側濃度が減光側濃度の等倍(つまり、1倍)以下程度になっている場合には、火災に起因している可能性が高いことに着目して、以下のように判定する。具体的には、煙に起因するものであるか湯気に起因するものであるかを切り分けるための閾値である切分閾値として、前述の3倍程度に対応する数値よりも小さく、且つ、前述の等倍(つまり、1倍)以下程度に対応する数値よりも大きい数値である例えば「2.0」が記録部23に記録されていることとして、以下のように判定する。監視領域異常判定部243は、散乱側濃度に対する減光側濃度の除算(「散乱側濃度」÷「減光側濃度」)を行って、演算結果と記録部23の切分閾値とを比較して、演算結果が切分閾値以上である場合には、湯気に起因している可能が高いものとして、火災が発生していないものと判定し(SA1のNO)、火災が発生しているものと判定するまで、繰り返しSA1を実行する。また、演算結果が切分閾値未満である場合には、湯気ではなく火災に起因している可能が高いものとして、火災が発生しているものと判定し(SA1のYES)、SA2に移行する。 More specifically, it is assumed that the recording unit 23 records a concentration threshold value, which is a concentration used as a threshold value for determining a fire, and the monitoring area abnormality determination unit 243 first detects the concentration detected by the dimming detection unit 242. Obtain the density (hereinafter referred to as the attenuation side density), compare the obtained attenuation side density with the density threshold of the recording unit 23, and if the attenuation side density is less than the density threshold, no fire has occurred. SA1 is repeatedly executed until it is determined that a fire has occurred (NO in SA1). In addition, when the attenuation side concentration is equal to or higher than the concentration threshold, the possibility of fire occurrence is detected, and the concentration detected by the scattered light detection unit 241 (hereinafter referred to as the scattering side concentration) is acquired, and the acquired scattering side concentration is As confirmed by the results of the experiment mentioned above, if the concentration on the scattering side is about three times the concentration on the attenuation side, it is determined that the concentration is due to steam. If the concentration on the scattering side is less than or equal to the concentration on the attenuation side (in other words, 1 times), it is likely that the cause is a fire. Then, the judgment is made as follows. Specifically, the cutoff threshold, which is the threshold for distinguishing whether something is caused by smoke or steam, is a value that is smaller than the value corresponding to about three times the above value, and the above value. Assuming that a numerical value, for example "2.0", which is larger than the numerical value corresponding to approximately equal magnification (that is, 1 times) or less, is recorded in the recording unit 23, it is determined as follows. The monitoring area abnormality determination unit 243 divides the scattering side concentration by the light-attenuating side density (“scattering side density” ÷ “attenuating side density”), and compares the calculation result with the cutting threshold of the recording unit 23. If the calculation result is equal to or higher than the cutoff threshold, it is determined that the fire is not caused by steam (NO in SA1), and the fire is determined to be caused by steam. SA1 is repeatedly executed until it is determined that In addition, if the calculation result is less than the cutoff threshold, it is determined that the fire is likely to be caused by a fire rather than steam (YES in SA1), and the process moves to SA2. .

ここでは、例えば、発炎火災が発生し、当該火災の煙である「第1の煙」が図2の開口部121、図1の防虫網14、不図示のラビリンスを介して図3の遮光空間13に流入した上で、散乱光用検出空間A1及び減光用検出空間A2に入り込んだ場合、減光側濃度が濃度閾値以上になり、且つ、散乱側濃度に対する減光側濃度の除算の演算値が「0.5」(つまり、切分閾値未満)になるので、火災が発生しているものと判定することになる。また、例えば、発煙火災が発生し、当該火災の煙である「第2の煙」が、「第1の煙」と同様にして散乱光用検出空間A1及び減光用検出空間A2に入り込んだ場合、減光側濃度が濃度閾値以上になり、且つ、散乱側濃度に対する減光側濃度の除算の演算値が「1.0」(つまり、切分閾値未満)になるので、火災が発生しているものと判定することになる。また、例えば、火災が発生しておらず、湯気が「第1の煙」と同様にして散乱光用検出空間A1及び減光用検出空間A2に入り込んだ場合、減光側濃度が濃度閾値以上になるが、散乱側濃度に対する減光側濃度の除算の演算値が「3.0」(つまり、切分閾値以上)になるので、火災が発生していないものと判定することになる。つまり、火災が発生しているにも関わらず火災の判定が遅れてしまったり、あるいは、火災が発生していないにも関わらず火災を誤って判定してしまったりすることを防止することが可能となる。また、例えば、検出光を出力する発光部151を、散乱光受光部152及び減光受光部153に対して共通して用いることができるので、発光部151の発光ダイオードの経年劣化等により発光部の検出の濃度が変化したとしても、この変化に起因して散乱光受光部152及び減光受光部153で受光する光の強度がばらつくことを防止することが可能となる。 Here, for example, a flaming fire occurs, and "first smoke" that is smoke from the fire passes through the opening 121 in FIG. 2, the insect screen 14 in FIG. When the light enters the space 13 and then enters the scattered light detection space A1 and the light attenuation detection space A2, the light attenuation side concentration becomes equal to or higher than the concentration threshold, and the division of the light attenuation side concentration by the scattering side concentration Since the calculated value is "0.5" (that is, less than the cutoff threshold), it is determined that a fire has occurred. For example, when a smoking fire occurs, the "second smoke" from the fire enters the scattered light detection space A1 and the light attenuation detection space A2 in the same way as the "first smoke". In this case, the attenuation side concentration is equal to or higher than the concentration threshold, and the calculated value of dividing the attenuation side concentration by the scattering side concentration becomes "1.0" (that is, less than the cutoff threshold), so a fire occurs. It will be determined that the For example, if a fire has not occurred and steam enters the scattered light detection space A1 and the light reduction detection space A2 in the same manner as the "first smoke", the light reduction side concentration is equal to or higher than the concentration threshold. However, since the calculated value of dividing the attenuation side concentration by the scattering side concentration becomes "3.0" (that is, greater than or equal to the cutoff threshold), it is determined that no fire has occurred. In other words, it is possible to prevent delays in determining a fire even though a fire has occurred, or erroneously determining a fire even though no fire has occurred. becomes. Further, for example, since the light emitting section 151 that outputs detection light can be used in common for the scattered light receiving section 152 and the dimming light receiving section 153, the light emitting section 151 can be Even if the detected concentration changes, it is possible to prevent the intensity of the light received by the scattered light receiving section 152 and the dimming light receiving section 153 from varying due to this change.

図5のSA2において制御部24は、警報を行う。具体的には任意であるが、例えば、図4の警報部22の不図示のスピーカ、あるいは、図2の表示灯221等を介して、公知の手法を用いて、火災発生を警報する。ここでは、例えば、スピーカにて「火災を感知しました」等の警報メッセージを繰り返し音声出力し、また、表示灯221を赤色にて点灯して表示出力する。 At SA2 in FIG. 5, the control unit 24 issues an alarm. Although the specific details are arbitrary, for example, a known method is used to issue a warning of the occurrence of a fire via a speaker (not shown) of the alarm unit 22 in FIG. 4 or the indicator light 221 in FIG. 2. Here, for example, a warning message such as "Fire has been detected" is repeatedly output through a speaker, and an indicator light 221 is lit in red to display the message.

図5のSA3において制御部24は、復旧するか否かを判定する。具体的に任意であるが、例えば、ユーザによる不図示の防災受信機に対する所定操作により、当該防災受信機から送信させる復旧信号を、感知器100の不図示の通信手段を介して受信したか否かに基づいて判定する。そして、復旧信号を受信していない場合、復旧しないものと判定し(SA3のNO)、復旧するものと判定するまで、繰り返しSA3を実行する。また、復旧信号を受信した場合、復旧するものと判定し(SA3のYES)、SA4に移行する。ここでは、例えば、ユーザが不図示の防災受信機に対して所定操作を行わない場合、復旧しないものと判定することになり、一方、ユーザが不図示の防災受信機に対して所定操作を行った場合、復旧するものと判定することになる。 At SA3 in FIG. 5, the control unit 24 determines whether or not to restore. Although it is specifically arbitrary, for example, by a user's predetermined operation on the disaster prevention receiver (not shown), whether or not a recovery signal transmitted from the disaster prevention receiver is received via the communication means (not shown) of the sensor 100. Judgment based on If the restoration signal has not been received, it is determined that the restoration will not be performed (NO in SA3), and SA3 is repeatedly executed until it is determined that the restoration is to be performed. Further, when a restoration signal is received, it is determined that restoration is to be performed (YES in SA3), and the process moves to SA4. Here, for example, if the user does not perform a predetermined operation on the disaster prevention receiver (not shown), it will be determined that recovery will not occur; If it does, it will be determined that it will be restored.

図5のSA4において制御部24は、復旧を行う。具体的には、SA2で行った警報を停止することにより復旧を行った後、処理を終了する。これにて、防災処理を終了する。 At SA4 in FIG. 5, the control unit 24 performs restoration. Specifically, after recovery is performed by stopping the alarm issued in SA2, the process ends. This completes the disaster prevention process.

(実施の形態の効果)
このように本実施の形態によれば、散乱光検出部241の検出結果と、減光検出部242の検出結果とに基づいて、監視領域の火災を判定することにより、例えば、煙を複数の検出手法にて検出することができるので、監視領域の異常を多角的見地から判定することができ、実際には監視領域で異常が発生していないにも関わらず異常を報知する誤報の発生頻度を減少させることが可能となる。
(Effects of embodiment)
As described above, according to the present embodiment, by determining whether there is a fire in the monitoring area based on the detection result of the scattered light detection unit 241 and the detection result of the light reduction detection unit 242, for example, smoke can be detected by Since it can be detected using a detection method, abnormalities in the monitoring area can be determined from multiple perspectives, and the frequency of occurrence of false alarms that report an abnormality even though no abnormality has actually occurred in the monitoring area can be determined. It becomes possible to reduce the

また、散乱光検出部241が、散乱光受光部152が受光する散乱光に基づいて煙を検出し、また、減光検出部242が、減光受光部153が受光する検出光に基づいて煙を検出することにより、例えば、散乱光にて検出対象を検出する優位点(一例としては、検出対象である煙と検出対象でない湯気とでは、相互に検出感度が異なる点等)と、検出光にて検出対象を検出する優位点(一例としては、検出対象である煙の種類によらず一定の検出感度となる点等)とを生かして監視領域の異常を判定することができ、監視領域の火災委の判定精度を向上させることが可能となる。 Further, the scattered light detection section 241 detects smoke based on the scattered light received by the scattered light receiving section 152, and the dimming detection section 242 detects smoke based on the detected light received by the dimming light receiving section 153. By detecting the It is possible to determine abnormalities in the monitoring area by taking advantage of the advantage of detecting the detection target (for example, the detection sensitivity is constant regardless of the type of smoke that is the detection target). It becomes possible to improve the judgment accuracy of the fire committee.

また、反射部154を備えることにより、例えば、検出光の光路長を伸ばすことができるので、減光用検出空間A2に流入した煙にて検出光を十分に減光させることができ、監視領域の火災の判定精度を更に向上させることが可能となる。 Furthermore, by providing the reflection section 154, the optical path length of the detection light can be extended, for example, so that the detection light can be sufficiently attenuated by smoke flowing into the detection space A2 for dimming, and the monitoring area This makes it possible to further improve the accuracy of fire detection.

また、反射部154が相互に平行になるように少なくとも2個以上設けられていることにより、例えば、検出光を任意の方向に反射することができるので、感知器の設計の自由度を向上させることが可能となる。 Furthermore, by providing at least two reflecting portions 154 in parallel with each other, it is possible to reflect the detection light in any direction, for example, thereby improving the degree of freedom in designing the sensor. becomes possible.

〔実施の形態に対する変形例〕
以上、本発明に係る実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
[Modifications to the embodiment]
The embodiments according to the present invention have been described above, but the specific structure and means of the present invention may be arbitrarily modified and improved within the scope of the technical idea of each invention described in the claims. I can do it. Hereinafter, such a modified example will be explained.

(解決しようとする課題や発明の効果について)
まず、発明が解決しようとする課題や発明の効果は、上述の内容に限定されるものではなく、発明の実施環境や構成の詳細に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏したりすることがある。
(About the problems to be solved and the effects of the invention)
First of all, the problems to be solved by the invention and the effects of the invention are not limited to the above-mentioned content, but may differ depending on the implementation environment and configuration details of the invention, and only some of the problems described above can be solved. In some cases, the above-mentioned effects may be solved or only some of the above-mentioned effects may be achieved.

(分散や統合について)
また、上述した構成は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散や統合の具体的形態は図示のものに限られず、その全部または一部を、任意の単位で機能的または物理的に分散又は統合して構成できる。
(About distribution and integration)
Further, the above-described configuration is functional and conceptual, and does not necessarily need to be physically configured as shown in the drawings. That is, the specific form of dispersion or integration of each part is not limited to that shown in the drawings, and all or part of the parts can be configured by being functionally or physically distributed or integrated in arbitrary units.

(火災の判定について(その1))
また、上記実施の形態の図5のSA1で説明した火災の判定手法を任意に変更してもよい。例えば、散乱側濃度と比較する閾値と減光側濃度と比較する閾値を任意に決定した上で記録し、各濃度と各閾値とを比較して比較結果に基づいて火災を判定してもよい。また、例えば、散乱側濃度及び減光側濃度の変化速度に着目して火災を判定してもよい。
(About fire determination (Part 1))
Further, the fire determination method described in SA1 of FIG. 5 of the above embodiment may be arbitrarily changed. For example, a threshold value for comparison with the scattering side concentration and a threshold value for comparison with the attenuation side concentration may be arbitrarily determined and recorded, and each concentration and each threshold value may be compared to determine a fire based on the comparison results. . Further, for example, a fire may be determined by focusing on the rate of change of the scattering side concentration and the attenuation side concentration.

(火災の判定について(その2))
また、上記実施の形態の図5のSA1で説明したように、減光検出部242については、第1の煙、第2の煙、及び湯気を相互に同様な感度にて検出し、また、散乱光検出部241については、第1の煙、第2の煙、及び湯気を相互に異なる感度にて検出することに着目して、監視領域異常判定部243が、煙と湯気との切り分けのみではなく、煙の種類(例えば、前述の「第1の煙」及び「第2の煙」)を切り分けて、発生した火災の種類も切り分けるように構成してもよい。この場合、SA2にて、火災の種類も報知して警報を行ってもよい。
(About fire determination (Part 2))
Further, as explained in SA1 of FIG. 5 of the above embodiment, the light attenuation detection unit 242 detects the first smoke, the second smoke, and the steam with mutually similar sensitivity, and Regarding the scattered light detection unit 241, focusing on detecting the first smoke, second smoke, and steam with mutually different sensitivities, the monitoring area abnormality determination unit 243 only distinguishes between smoke and steam. Instead, the configuration may be such that the type of smoke (for example, the above-mentioned "first smoke" and "second smoke") is separated, and the type of fire that has occurred is also separated. In this case, in SA2, the type of fire may also be reported and an alarm may be issued.

(構成要素等について(その1))
また、上記実施の形態の図3において、遮光空間13内の構成要素の個数、配置等を任意に変更してもよい。例えば、散乱光受光部152の如き散乱光受光手段を1個のみではなく、2個以上等の複数個設けることにより、散乱光用検出空間A1を検出光の光路上に複数設けてもよい。この場合、複数の散乱光受光手段のうちの何れか1つ(例えば、任意に選択したもの、あるいは、最大強度の散乱光を受光しているもの等)が受光した散乱光の強度に基づいて濃度を検出して実施の形態の処理を行ってもよい。このように構成した場合、散乱光受光手段が複数設けられていることにより、例えば、散乱光を確実に受光することができるので、監視領域の異常の判定精度を更に一層向上させることが可能となる。
(About constituent elements (Part 1))
Further, in FIG. 3 of the above embodiment, the number, arrangement, etc. of the components in the light-shielding space 13 may be changed arbitrarily. For example, a plurality of scattered light detection spaces A1 may be provided on the optical path of the detection light by providing not only one but a plurality of scattered light receiving means such as the scattered light receiving section 152, such as two or more. In this case, based on the intensity of the scattered light received by any one of the plurality of scattered light receiving means (for example, the one arbitrarily selected, or the one receiving the highest intensity of scattered light, etc.) The processing of the embodiment may be performed by detecting the concentration. When configured in this way, by providing a plurality of scattered light receiving means, for example, scattered light can be reliably received, so that it is possible to further improve the accuracy of determining abnormalities in the monitoring area. Become.

(構成要素等について(その2))
また、例えば、発光部151の如き発光手段を1つのみではなく、2個以上等の複数個設けてもよい。また、例えば、反射部154を省略して、発光部151の検出光を減光受光部153が直接受光するように構成してもよい。
(About constituent elements (Part 2))
Further, for example, instead of only one light emitting means such as the light emitting section 151, a plurality of light emitting means, such as two or more, may be provided. Furthermore, for example, the reflecting section 154 may be omitted and the light attenuating light receiving section 153 may directly receive the detection light of the light emitting section 151.

(構成要素等について(その3))
また、例えば、散乱光受光部152の向きは任意であり、図3に示すように、いわゆる前方散乱光を主に受光するように、発光部151の不図示の光軸と散乱光受光部152の不図示の光軸とによって形成される角度(詳細には、発光部151と散乱光用検出空間A1の中心とを結ぶ線分と散乱光受光部152と散乱光用検出空間A1の中心とを結ぶ線分とによって形成される内角)が鈍角となるように配置してもよい。また、例えば、図示していないが、発光部151の不図示の光軸と散乱光受光部152の不図示の光軸とによって形成される角度が直角又は鋭角となるように散乱光受光部152を配置して、前方散乱光以外の散乱光を主に受光するようにしてもよい。
(About constituent elements (Part 3))
Further, for example, the direction of the scattered light receiver 152 is arbitrary, and as shown in FIG. (in detail, the angle formed by the line segment connecting the light emitting section 151 and the center of the scattered light detection space A1 and the center of the scattered light receiving section 152 and the scattered light detection space A1). The internal angle formed by the line segment connecting the two may be an obtuse angle. For example, although not shown, the scattered light receiving section 152 may be arranged such that the angle formed by the unillustrated optical axis of the light emitting section 151 and the unillustrated optical axis of the scattered light receiving section 152 is a right angle or an acute angle. may be arranged to mainly receive scattered light other than forward scattered light.

(構成要素等について(その4))
また、例えば、散乱光受光部152の如き散乱光受光手段を複数設ける場合、同一の散乱光用検出空間A1に対し、相互に異なる角度となるように複数の散乱光受光手段を設けてもよい。このように構成した場合、散乱特性により検出対象である煙の粒子径などが判断でき、煙の種類、または煙と煙以外との識別をより高精度で行うことが可能となる。
(About constituent elements (Part 4))
Further, for example, when a plurality of scattered light receiving means such as the scattered light receiving section 152 are provided, the plurality of scattered light receiving means may be provided at mutually different angles with respect to the same scattered light detection space A1. . With this configuration, the particle size of the smoke to be detected can be determined based on the scattering characteristics, and the type of smoke or discrimination between smoke and non-smoke can be performed with higher accuracy.

(部品配置について)
また、例えば、図3の発光部151、散乱光受光部152、減光受光部153、反射部154、及び遮光部155(以下、「各内部部品」と称する)の配置を任意に変更してもよい。図6及び図7は、遮光空間の内部の平面図である。例えば、図6に示すように、「各内部部品」と同様な構成の発光部151A、散乱光受光部152A、減光受光部153A、反射部154A、及び遮光部155Aを配置してもよいし、図7に示すように、「各内部部品」と同様な構成の発光部151B、散乱光受光部152B、減光受光部153B、反射部154B、及び遮光部155Bを配置してもよい。特に、図6に示すように配置した場合、3個の反射部154Aのうちの少なくとも2個の反射部154Aが相互に垂直になり、また、少なくとも2個の反射部154Aが相互に平行になるように設けてもよく、あるいは、図7に示すように配置した場合、光を遮蔽する遮蔽壁156も更に設けてもよい。そして、この場合、図6に示すように、少なくとも発光部151A、散乱光受光部152A、減光受光部153Aを一部の領域に相互にまとめて設けたり、あるいは、図7に示すように、発光部151B、散乱光受光部152B、減光受光部153Bを一部の領域に相互にまとめて設けたりすることがこと可能となる。このように図6又は図7に示すように配置した場合、検出光を全体として環状に導光したり(特に、図6)、あるいは、検出光を略矩形状に導光したり(特に、図7)することができるので、光路長を十分に確保することができ、火災を確実に判定することが可能となる。なお、「略矩形」とは、矩形の如き形状を示す概念であり、例えば、図7に示すように、矩形の一部の部分が欠けたコ字形状等を含む概念である。
(About parts placement)
Furthermore, for example, the arrangement of the light emitting section 151, the scattered light receiving section 152, the dimming light receiving section 153, the reflecting section 154, and the light shielding section 155 (hereinafter referred to as "internal parts") in FIG. 3 may be arbitrarily changed. Good too. 6 and 7 are plan views of the interior of the light-shielding space. For example, as shown in FIG. 6, a light emitting section 151A, a scattered light receiving section 152A, a light attenuation receiving section 153A, a reflecting section 154A, and a light shielding section 155A having the same configuration as "each internal component" may be arranged. As shown in FIG. 7, a light emitting section 151B, a scattered light receiving section 152B, a light attenuation receiving section 153B, a reflecting section 154B, and a light shielding section 155B having the same configuration as "each internal component" may be arranged. In particular, when arranged as shown in FIG. 6, at least two of the three reflective parts 154A are perpendicular to each other, and at least two reflective parts 154A are parallel to each other. Alternatively, when arranged as shown in FIG. 7, a shielding wall 156 that blocks light may also be provided. In this case, as shown in FIG. 6, at least the light emitting section 151A, the scattered light receiving section 152A, and the dimming light receiving section 153A are provided together in a part of the area, or as shown in FIG. It becomes possible to provide the light emitting section 151B, the scattered light receiving section 152B, and the dimming light receiving section 153B together in a certain area. When arranged as shown in FIG. 6 or 7, the detection light may be guided in an annular shape as a whole (especially in FIG. 6), or the detection light may be guided in a substantially rectangular shape (in particular, (Fig. 7), a sufficient optical path length can be ensured, and a fire can be reliably determined. Note that "substantially rectangular" is a concept indicating a shape such as a rectangle, and includes, for example, a U-shape in which a part of a rectangle is missing, as shown in FIG. 7.

そして、図6に示すように、反射部154Aが相互に垂直及び平行になるように少なくとも2個以上設けられていることにより、例えば、検出光を任意の方向に反射することができるので、感知器の設計の自由度を向上させることが可能となる。 As shown in FIG. 6, by providing at least two or more reflecting portions 154A so as to be perpendicular and parallel to each other, it is possible to reflect the detection light in any direction, for example. It becomes possible to improve the degree of freedom in the design of the device.

また、図6に示すように、検出光を環状に導光し、発光部151A、散乱光受光部152A、減光受光部153Aが、相互にまとめて設けられていることにより、例えば、感知器における煙が流入する空間の全体に検出光を導光することができるので、監視領域の異常の判定精度を更に向上させることが可能となる。また、例えば、発光部151A、散乱光受光部152A、減光受光部153Aにおける基板設置がコンパクトになり、感知器の低コスト化、及び省スペース化を図ることが可能となる。 Further, as shown in FIG. 6, the detection light is annularly guided and the light emitting section 151A, the scattered light receiving section 152A, and the light attenuation receiving section 153A are provided together, so that, for example, the sensor Since the detection light can be guided throughout the space into which smoke flows, it is possible to further improve the accuracy of determining abnormalities in the monitoring area. Further, for example, the board installation in the light emitting section 151A, the scattered light receiving section 152A, and the dimming light receiving section 153A becomes compact, making it possible to reduce the cost and space of the sensor.

また、図7に示すように、検出光を略矩形状に導光し、発光部151B、散乱光受光部152B、減光受光部153Bが、相互にまとめて設けられていることにより、例えば、感知器における煙が流入する空間の全体に検出光を導光することができるので、監視領域の異常の判定精度を更に向上させることが可能となる。また、例えば、発光部151B、散乱光受光部152B、減光受光部153Bにおける基板設置がコンパクトになり、感知器の低コスト化、及び省スペース化を図ることが可能となる。 Further, as shown in FIG. 7, the detection light is guided in a substantially rectangular shape, and the light emitting section 151B, the scattered light receiving section 152B, and the light attenuation receiving section 153B are provided together, so that, for example, Since the detection light can be guided throughout the space into which smoke flows into the sensor, it is possible to further improve the accuracy of determining abnormalities in the monitoring area. Further, for example, the board installation in the light emitting section 151B, the scattered light receiving section 152B, and the dimming light receiving section 153B becomes compact, making it possible to reduce the cost and space of the sensor.

(立体配置について)
また、例えば、図3の「各内部部品」については相互に立体配置してもよく、同様にして、図6及び図7の各部品についても相互に立体配置してもよい。
(About steric configuration)
Furthermore, for example, the "internal parts" in FIG. 3 may be arranged three-dimensionally relative to each other, and in the same way, the parts shown in FIGS. 6 and 7 may also be arranged three-dimensionally relative to each other.

(設置位置について)
また、感知器100については、監視領域の天井面ではなく、壁面に設置して利用してもよい。
(About installation location)
Furthermore, the sensor 100 may be installed and used on a wall surface of the monitoring area instead of on the ceiling surface.

(警報部について)
また、上記実施の形態の警報部22に代えて、無線又は有線での通信を行う通信部、又は、火災の移報を行う移報部等を備えることにより異常判定の結果を他の機器などに送信するよう構成してもよい。なお、これらの通信部又は移報部については、警報部22に代えてではなく、警報部22と共に設けてもよい。
(About the alarm part)
In addition, in place of the alarm unit 22 of the above embodiment, a communication unit that performs wireless or wired communication, a transfer unit that transfers fire alerts, etc. is provided, so that the results of abnormality determination can be transmitted to other equipment, etc. It may be configured to send to. Note that these communication units or relay units may be provided together with the alarm unit 22 rather than in place of the alarm unit 22.

(特徴について)
また、上記実施の形態の特徴及び変形例の特徴を任意に組み合わせてもよい。
(About features)
Further, the features of the above embodiments and the features of the modified examples may be combined arbitrarily.

(付記)
付記1の感知器は、監視領域の検出対象が流入する検出空間と、前記検出空間に流入する前記検出対象を第1検出手法にて検出する第1検出対象検出手段と、前記検出空間に流入する前記検出対象を、第2検出手法であって前記第1検出手法とは異なる前記第2検出手法にて検出する第2検出対象検出手段と、前記第1検出対象検出手段の検出結果と、前記第2検出対象検出手段の検出結果とに基づいて、前記監視領域の異常を判定する監視領域異常判定手段と、を備える。
(Additional note)
The sensor of Supplementary note 1 includes a detection space into which a detection object in a monitoring area flows, a first detection object detection means for detecting the detection object flowing into the detection space using a first detection method, and a first detection object detection means for detecting the detection object flowing into the detection space using a first detection method. a second detection target detection means for detecting the detection target using a second detection method that is different from the first detection method; and a detection result of the first detection target detection means; monitoring area abnormality determination means for determining abnormality in the monitoring area based on the detection result of the second detection target detection means.

付記2の感知器は、付記1に記載の感知器において、前記検出空間に向けて検出光を発光する発光手段と、前記検出空間に流入する前記検出対象によって減光され得る前記発光手段からの前記検出光を受光する減光受光手段と、前記発光手段からの前記検出光が前記検出空間に流入する前記検出対象によって散乱されて発生する散乱光を受光する散乱光受光手段と、を備え、前記第1検出対象検出手段は、前記散乱光受光手段が受光する前記散乱光に基づいて前記検出対象を検出し、前記第2検出対象検出手段は、前記減光受光手段が受光する前記検出光に基づいて前記検出対象を検出する。 The sensor according to Supplementary note 2 is the sensor according to Supplementary note 1, which includes a light emitting means that emits detection light toward the detection space, and a light emitting means from the light emitting means that can be attenuated by the detection target flowing into the detection space. comprising: a light-reducing light receiving means for receiving the detection light; and a scattered light receiving means for receiving scattered light generated when the detection light from the light emitting means is scattered by the detection target flowing into the detection space, The first detection target detection means detects the detection target based on the scattered light received by the scattered light receiving means, and the second detection target detection means detects the detection target based on the detected light received by the dimming light receiving means. The detection target is detected based on.

付記3の感知器は、付記2に記載の感知器において、前記発光手段からの前記検出光を前記減光受光手段に反射する反射手段と、を備える。 The sensor according to Supplementary note 3 is the sensor according to Supplementary note 2, and includes a reflecting means for reflecting the detection light from the light emitting means to the attenuating light receiving means.

付記4の感知器は、付記3に記載の感知器において、前記反射手段は、相互に垂直又は平行になるように少なくとも2個以上設けられている。 The sensor according to appendix 4 is the sensor according to appendix 3, in which at least two reflecting means are provided so as to be perpendicular or parallel to each other.

付記5の感知器は、付記3又は4に記載の感知器において、前記反射手段は、前記検出光を反射して前記感知器内で当該検出光を環状に導光し、前記発光手段、前記減光受光手段、及び前記散乱光受光手段は、相互にまとめて設けられている。 The sensor according to appendix 5 is the sensor according to appendix 3 or 4, in which the reflecting means reflects the detection light and guides the detection light in a circular shape within the sensor, and the light emitting means and the The dimming light receiving means and the scattered light receiving means are provided together.

付記6の感知器は、付記3又は4に記載の感知器において、前記反射手段は、前記検出光を反射して前記感知器内で当該検出光を略矩形状に導光し、前記発光手段、前記減光受光手段、及び前記散乱光受光手段は、相互にまとめて設けられている。 The sensor according to appendix 6 is the sensor according to appendix 3 or 4, in which the reflecting means reflects the detection light and guides the detection light in a substantially rectangular shape within the sensor, and the light emitting means , the light attenuation light receiving means, and the scattered light receiving means are provided together.

付記7の感知器は、付記2から6の何れか一項に記載の感知器において、前記散乱光受光手段は、複数設けられている。 The sensor according to appendix 7 is the sensor according to any one of appendixes 2 to 6, in which a plurality of the scattered light receiving means are provided.

(付記の効果)
付記1に記載の感知器によれば、第1検出対象検出手段の検出結果と、第2検出対象検出手段の検出結果とに基づいて、監視領域の異常を判定することにより、例えば、検出対象を複数の検出手法にて検出することができるので、監視領域の異常を多角的見地から判定することができ、実際には監視領域で異常が発生していないにも関わらず異常を報知する誤報の発生頻度を減少させることが可能となる。
(Effect of appendix)
According to the sensor described in Supplementary Note 1, by determining an abnormality in the monitoring area based on the detection result of the first detection target detection means and the detection result of the second detection target detection means, for example, the detection target is detected. can be detected using multiple detection methods, making it possible to determine abnormalities in the monitoring area from multiple perspectives. This makes it possible to reduce the frequency of occurrence.

付記2に記載の感知器によれば、第1検出対象検出手段が、散乱光受光手段が受光する散乱光に基づいて検出対象を検出し、また、第2検出対象検出手段が、減光受光手段が受光する検出光に基づいて検出対象を検出することにより、例えば、散乱光にて検出対象を検出する優位点(一例としては、検出対象である煙と検出対象でない湯気とでは、相互に検出感度が異なる点等)と、検出光にて検出対象を検出する優位点(一例としては、検出対象である煙の種類によらず一定の検出感度となる点等)とを生かして監視領域の異常を判定することができ、監視領域の異常の判定精度を向上させることが可能となる。 According to the sensor described in Appendix 2, the first detection target detection means detects the detection target based on the scattered light received by the scattered light reception means, and the second detection target detection means detects the detection target based on the scattered light received by the scattered light reception means. By detecting the detection target based on the detection light received by the means, for example, the advantage of detecting the detection target using scattered light (for example, smoke, which is the detection target, and steam, which is not the detection target, are mutually By taking advantage of the advantages of detecting the detection target using detection light (for example, the fact that the detection sensitivity is constant regardless of the type of smoke that is the detection target), the monitoring area can be It is possible to determine abnormalities in the monitoring area, and it is possible to improve the accuracy of determining abnormalities in the monitoring area.

付記3に記載の感知器によれば、反射手段を備えることにより、例えば、検出光の光路長を伸ばすことができるので、検出空間に流入した検出対象にて検出光を十分に減光させることができ、監視領域の異常の判定精度を更に向上させることが可能となる。 According to the sensor described in Appendix 3, by including the reflecting means, for example, the optical path length of the detection light can be extended, so that the detection light can be sufficiently attenuated at the detection target that has entered the detection space. This makes it possible to further improve the accuracy of determining abnormalities in the monitoring area.

付記4に記載の感知器によれば、反射手段が相互に垂直又は平行になるように少なくとも2個以上設けられていることにより、例えば、検出光を任意の方向に反射することができるので、感知器の設計の自由度を向上させることが可能となる。 According to the sensor described in Appendix 4, since at least two or more reflecting means are provided so as to be perpendicular or parallel to each other, the detection light can be reflected in any direction, for example. It becomes possible to improve the degree of freedom in designing the sensor.

付記5に記載の感知器によれば、検出光を環状に導光し、発光手段、減光受光手段、及び散乱光受光手段が、相互にまとめて設けられていることにより、例えば、感知器における煙が流入する空間の全体に検出光を導光することができるので、監視領域の異常の判定精度を更に向上させることが可能となる。また、例えば、発光手段、減光受光手段、及び散乱光受光手段における基板設置がコンパクトになり、感知器の低コスト化、及び省スペース化を図ることが可能となる。 According to the sensor described in Appendix 5, the detection light is annularly guided, and the light emitting means, the dimming light receiving means, and the scattered light receiving means are provided together, so that, for example, the sensor Since the detection light can be guided throughout the space into which smoke flows, it is possible to further improve the accuracy of determining abnormalities in the monitoring area. Furthermore, for example, the substrates for the light emitting means, the light receiving means at reduced light intensity, and the scattered light receiving means can be installed compactly, making it possible to reduce the cost and space of the sensor.

付記6に記載の感知器によれば、検出光を略矩形状に導光し、発光手段、減光受光手段、及び散乱光受光手段が、相互にまとめて設けられていることにより、例えば、感知器における煙が流入する空間の全体に検出光を導光することができるので、監視領域の異常の判定精度を更に向上させることが可能となる。また、例えば、発光手段、減光受光手段、及び散乱光受光手段における基板設置がコンパクトになり、感知器の低コスト化、及び省スペース化を図ることが可能となる。 According to the sensor described in Supplementary Note 6, the detection light is guided in a substantially rectangular shape, and the light emitting means, the dimming light receiving means, and the scattered light receiving means are provided together, so that, for example, Since the detection light can be guided throughout the space into which smoke flows into the sensor, it is possible to further improve the accuracy of determining abnormalities in the monitoring area. Furthermore, for example, the substrates for the light emitting means, the light receiving means at reduced light intensity, and the scattered light receiving means can be installed compactly, making it possible to reduce the cost and space of the sensor.

付記7に記載の感知器によれば、散乱光受光手段が複数設けられていることにより、例えば、散乱光を確実に受光することができるので、監視領域の異常の判定精度を更に一層向上させることが可能となる。また、例えば、散乱特性により検出対象である煙の粒子径などが判断でき、煙の種類、または煙と煙以外との識別をより高精度で行うことが可能となる。 According to the sensor described in Appendix 7, since a plurality of scattered light receiving means are provided, for example, scattered light can be reliably received, thereby further improving the accuracy of determining abnormalities in the monitoring area. becomes possible. Furthermore, for example, the particle size of the smoke to be detected can be determined based on the scattering characteristics, and the type of smoke or discrimination between smoke and non-smoke can be performed with higher accuracy.

11 取付ベース
12 筐体
13 遮光空間
14 防虫網
21 通信部
22 警報部
23 記録部
24 制御部
100 感知器
121 開口部
131 ベース部
132 カバー部
151 発光部
151A 発光部
151B 発光部
152 散乱光受光部
152A 散乱光受光部
152B 散乱光受光部
153 減光受光部
153A 減光受光部
153B 減光受光部
154 反射部
154A 反射部
154B 反射部
155 遮光部
155A 遮光部
155B 遮光部
156 遮蔽壁
221 表示灯
241 散乱光検出部
242 減光検出部
243 監視領域異常判定部
900 設置面
A1 散乱光用検出空間
A2 減光用検出空間
11 Mounting base 12 Housing 13 Light-shielding space 14 Insect screen 21 Communication section 22 Alarm section 23 Recording section 24 Control section 100 Sensor 121 Opening section 131 Base section 132 Cover section 151 Light emitting section 151A Light emitting section 151B Light emitting section 152 Scattered light receiving section 152A Scattered light receiving section 152B Scattered light receiving section 153 Dimming light receiving section 153A Dimming light receiving section 153B Dimming light receiving section 154 Reflecting section 154A Reflecting section 154B Reflecting section 155 Light blocking section 155A Light blocking section 155B Light blocking section 156 Shielding wall 221 Indicator lamp 241 Scattered light detection unit 242 Light reduction detection unit 243 Monitoring area abnormality determination unit 900 Installation surface A1 Scattered light detection space A2 Light reduction detection space

Claims (2)

感知器であって、
監視領域の物質が流入する検出空間と、
前記検出空間に流入する前記物質を第1検出手法にて検出する第1検出対象検出手段と、
前記検出空間に流入する前記物質を、第2検出手法であって前記第1検出手法とは異なる前記第2検出手法にて検出する第2検出対象検出手段と、
前記第1検出対象検出手段の検出結果と、前記第2検出対象検出手段の検出結果とに基づいて、前記監視領域の異常を判定する監視領域異常判定手段と、を備え、
前記感知器は、
前記検出空間に向けて検出光を発光する発光手段と、
前記検出空間に流入する前記物質によって減光され得る前記発光手段からの前記検出光を受光する減光受光手段と、
前記発光手段からの前記検出光が前記検出空間に流入する前記物質によって散乱されて発生する散乱光を受光する散乱光受光手段と、を備え、
前記第1検出対象検出手段は、前記散乱光受光手段が受光する前記散乱光に基づいて前記物質を検出し、
前記第2検出対象検出手段は、前記減光受光手段が受光する前記検出光に基づいて前記物質を検出し、
前記監視領域異常判定手段は、
前記第2検出対象検出手段の検出結果に基づいて、前記監視領域の異常発生の可能性を検出する第1処理と、
前記第1処理にて前記監視領域の異常発生の可能性を検出した場合に、前記第1検出対象検出手段の検出結果と、前記第2検出対象検出手段の検出結果とを比較する第2処理と、
前記第2処理での比較結果に基づいて、前記監視領域の異常の発生を判定する第3処理と、を行い、
前記監視領域異常判定手段は、
前記第3処理において、
前記第1処理にて検出した前記監視領域の異常発生の可能性が前記異常の発生に伴い生じた検出対象である煙に起因しているか、又は、前記第1処理にて検出した前記監視領域の異常発生の可能性が前記検出対象ではない湯気に起因しているかを識別し、
前記第1処理にて検出した前記監視領域の異常発生の可能性が前記煙に起因していることを識別した場合に、前記監視領域の異常の発生を判定する、
感知器。
A sensor,
a detection space into which substances in the monitoring area flow;
first detection target detection means for detecting the substance flowing into the detection space using a first detection method;
a second detection target detection means for detecting the substance flowing into the detection space using the second detection method, which is a second detection method and is different from the first detection method;
monitoring area abnormality determination means for determining an abnormality in the monitoring area based on the detection result of the first detection object detection means and the detection result of the second detection object detection means;
The sensor is
a light emitting unit that emits detection light toward the detection space;
Attenuation light receiving means for receiving the detection light from the light emitting means that can be attenuated by the substance flowing into the detection space;
Scattered light receiving means for receiving scattered light generated when the detection light from the light emitting means is scattered by the substance flowing into the detection space,
The first detection target detecting means detects the substance based on the scattered light received by the scattered light receiving means,
The second detection target detection means detects the substance based on the detection light received by the dimming light receiving means,
The monitoring area abnormality determination means includes:
a first process of detecting the possibility of an abnormality occurring in the monitoring area based on the detection result of the second detection target detection means;
a second process of comparing the detection result of the first detection target detection means and the detection result of the second detection target detection means when the possibility of an abnormality occurrence in the monitoring area is detected in the first process; and,
performing a third process of determining the occurrence of an abnormality in the monitoring area based on the comparison result in the second process;
The monitoring area abnormality determination means includes:
In the third process,
The possibility of occurrence of an abnormality in the monitoring area detected in the first process is caused by smoke that is a detection target that occurs due to the occurrence of the abnormality, or the monitoring area detected in the first process identify whether the possibility of abnormality occurring is due to steam that is not the detection target,
determining the occurrence of an abnormality in the monitoring area when it is identified that the possibility of the abnormality occurring in the monitoring area detected in the first process is caused by the smoke;
sensor.
前記監視領域異常判定手段は、
前記異常の発生に伴い生じた前記煙の種類を識別し、前記煙の種類の識別結果に基づいて前記異常の種類を識別する処理、を更に行う、
請求項に記載の感知器。
The monitoring area abnormality determination means includes:
further performing a process of identifying the type of smoke that has occurred due to the occurrence of the abnormality, and identifying the type of the abnormality based on the identification result of the smoke type;
The sensor according to claim 1 .
JP2022127541A 2018-02-21 2022-08-10 sensor Active JP7365470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022127541A JP7365470B2 (en) 2018-02-21 2022-08-10 sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028671A JP7171203B2 (en) 2018-02-21 2018-02-21 sensor
JP2022127541A JP7365470B2 (en) 2018-02-21 2022-08-10 sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018028671A Division JP7171203B2 (en) 2018-02-21 2018-02-21 sensor

Publications (2)

Publication Number Publication Date
JP2022164700A JP2022164700A (en) 2022-10-27
JP7365470B2 true JP7365470B2 (en) 2023-10-19

Family

ID=67772411

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018028671A Active JP7171203B2 (en) 2018-02-21 2018-02-21 sensor
JP2022127541A Active JP7365470B2 (en) 2018-02-21 2022-08-10 sensor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018028671A Active JP7171203B2 (en) 2018-02-21 2018-02-21 sensor

Country Status (1)

Country Link
JP (2) JP7171203B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH561942A5 (en) * 1974-03-08 1975-05-15 Cerberus Ag
JPS5539049A (en) * 1978-09-12 1980-03-18 Matsushita Electric Ind Co Ltd Detection and detector of optical attenuation
JPS5744445U (en) * 1980-08-27 1982-03-11
US4857895A (en) * 1987-08-31 1989-08-15 Kaprelian Edward K Combined scatter and light obscuration smoke detector
JPH09269293A (en) * 1996-04-01 1997-10-14 Nisshin Koki Kk Particulate detector
US6225910B1 (en) * 1999-12-08 2001-05-01 Gentex Corporation Smoke detector
JP2016071581A (en) * 2014-09-30 2016-05-09 能美防災株式会社 Smoke detector

Also Published As

Publication number Publication date
JP7171203B2 (en) 2022-11-15
JP2022164700A (en) 2022-10-27
JP2019144869A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US9652957B2 (en) Smoke detector chamber architecture and related methods
JP4347296B2 (en) Scattered smoke detector
US9685058B2 (en) Smoke detector chamber
EP2685437B1 (en) Fire sensor
JPH1166452A (en) Alarm system
US20220276163A1 (en) Forward and back scattering smoke detector and method of use
JP2021144746A (en) Alarm device
US7948628B2 (en) Window cleanliness detection system
JP2013109751A (en) Smoke sensor
CN112017389B (en) Fire detector and fire detection method
JP7365470B2 (en) sensor
CN111292500B (en) Smoke-sensitive fire detection alarm
JP2019066901A (en) Dimming type sensor
JP2009245088A (en) Fire detector and protective cover for fire detector
JP7336344B2 (en) Smoke detectors and smoke detection systems
JP7227716B2 (en) fire detection device
JP2020187462A (en) Scattered light type sensor
JP6830798B2 (en) sensor
JP2018124636A (en) Light extinction type sensor, sensitivity adjustment method, and inspection method
JP2011003163A (en) Fire alarm
JP3226329U (en) Dimming type sensor, sensitivity adjustment method, and inspection method
JP7432679B2 (en) fire detection device
JP6944325B2 (en) sensor
JPH0652464A (en) Compound fire sensor
JP7208730B2 (en) fire detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7365470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150