JP7364440B2 - Liquefied gas tanks, ships, and floating structures - Google Patents

Liquefied gas tanks, ships, and floating structures Download PDF

Info

Publication number
JP7364440B2
JP7364440B2 JP2019212891A JP2019212891A JP7364440B2 JP 7364440 B2 JP7364440 B2 JP 7364440B2 JP 2019212891 A JP2019212891 A JP 2019212891A JP 2019212891 A JP2019212891 A JP 2019212891A JP 7364440 B2 JP7364440 B2 JP 7364440B2
Authority
JP
Japan
Prior art keywords
spherical shell
liquefied gas
tank
ship
equatorial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019212891A
Other languages
Japanese (ja)
Other versions
JP2021085423A (en
Inventor
崇 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui E&S Shipbuilding Co Ltd
Priority to JP2019212891A priority Critical patent/JP7364440B2/en
Publication of JP2021085423A publication Critical patent/JP2021085423A/en
Application granted granted Critical
Publication of JP7364440B2 publication Critical patent/JP7364440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

特許法第30条第2項適用 令和1年10月3日 ウェブサイト(https://www.hanketsu.jiii.or.jp/giho/Menu01.jsp)に掲載Article 30, Paragraph 2 of the Patent Act applies October 3, 2020 Published on the website (https://www.hanketsu.jiii.or.jp/giho/Menu01.jsp)

本発明はタンクの内表面に補強部材を設けない液化ガスタンク、当該液化ガスタンクを備えた船舶、及び当該液化ガスタンクを備えた浮体構造物に関する。 The present invention relates to a liquefied gas tank without a reinforcing member provided on the inner surface of the tank, a ship equipped with the liquefied gas tank, and a floating structure equipped with the liquefied gas tank.

LNG(液化天然ガス)船、LPG(液化石油ガス)船のように、液化ガスを運搬する船舶は、貨物タンクとして液化ガスタンクを備える。また、液化ガスを燃料とする液化ガス燃料船は燃料タンクとして液化ガスタンクを備える。 Ships that transport liquefied gas, such as LNG (liquefied natural gas) ships and LPG (liquefied petroleum gas) ships, are equipped with liquefied gas tanks as cargo tanks. Further, a liquefied gas fueled ship that uses liquefied gas as fuel is equipped with a liquefied gas tank as a fuel tank.

小型船用の液化ガスタンクは円筒状タンクが一般的である(特許文献1、2)。一方で特許文献1の段落0006にも記載されているように、円筒状タンク(シリンダータンク方式)は大型化が困難であるという問題があった。特にタンク容量が10000m3を超えるシリンダータンク方式の液化ガスタンクを円筒状タンクで形成する場合、外殻だけでは液化ガスを貯留できる強度を確保できないので支柱や隔壁等の補強部材をタンク内に設置する必要がある。しかしながら、補強部材を設置するとタンクが重くなり、タンク重量が船舶の船殻重量を超える恐れがあるため、大型の船舶に設置できない場合があった。 Liquefied gas tanks for small ships are generally cylindrical tanks (Patent Documents 1 and 2). On the other hand, as described in paragraph 0006 of Patent Document 1, there is a problem in that it is difficult to increase the size of a cylindrical tank (cylinder tank type). In particular, when forming a cylinder-type liquefied gas tank with a tank capacity exceeding 10,000 m3 using a cylindrical tank, the outer shell alone cannot ensure the strength to store the liquefied gas, so reinforcing members such as columns and bulkheads must be installed inside the tank. There is a need. However, installing the reinforcing member increases the weight of the tank, and there is a risk that the tank weight may exceed the hull weight of the ship, so it may not be possible to install it on a large ship.

そのため、大型の船舶に設置する液化ガスタンクは、MOSS型のような、タンクの内部に補強部材を設けなくても強度を確保できる独立球形タンクか、メンブレン型のように船体そのものにタンクを支持させる構造が一般的である。
中でもMOSS型液化ガスタンクは球形であるため特定箇所に応力が集中し難く、表面積を最小にでき入熱も最小にできるため、特にLNG運搬船に広く用いられている。
For this reason, liquefied gas tanks installed on large ships are either independent spherical tanks, such as the MOSS type, which can ensure strength without the need for reinforcing members inside the tank, or membrane-type tanks, in which the tank is supported by the ship itself. The structure is common.
Among them, MOSS type liquefied gas tanks are spherical, making it difficult for stress to concentrate in a specific location, minimizing the surface area, and minimizing heat input, so they are widely used in LNG carriers in particular.

一方でMOSS型液化ガスタンクは球形であるため船倉の底面や壁面との間に隙間が生じる。そのため、船倉内の空間利用効率がメンブレン型よりも悪いという問題があった。
そこでMOSS型液化ガスタンクにおいて、球殻体を赤道で2分割して分割面に円環(円筒)を挿入して、分割した各半球(上部・下部球殻体)を円環(円筒)と連結する構造が知られている(特許文献3)。
On the other hand, since the MOSS type liquefied gas tank is spherical, there is a gap between it and the bottom and wall of the hold. Therefore, there was a problem in that the space utilization efficiency within the hold was lower than that of the membrane type.
Therefore, in the MOSS type liquefied gas tank, the spherical shell is divided into two at the equator, a ring (cylinder) is inserted into the dividing plane, and each divided hemisphere (upper and lower spherical shell) is connected to the ring (cylinder). A structure is known (Patent Document 3).

特許文献3の構造は、タンクが球形であることの利点を残しつつ、円環の内側の容積に相当する容積分、タンク容量を大きくできる点で有用である。一方で特許文献3の構造は円環をタンクの高さ方向に挿入するため、タンク容量を大きくすると円環の高さが高くなってタンクの重心も高くなり、船舶の復原性に影響する。また円環の高さを高くするほどタンクの強度が下がるため、タンク容量を大きくするのに限度がある。 The structure of Patent Document 3 is useful in that the tank capacity can be increased by a volume corresponding to the volume inside the ring while retaining the advantage that the tank is spherical. On the other hand, in the structure of Patent Document 3, the ring is inserted in the height direction of the tank, so when the tank capacity is increased, the height of the ring becomes higher and the center of gravity of the tank also becomes higher, which affects the stability of the ship. Furthermore, as the height of the ring increases, the strength of the tank decreases, so there is a limit to how large the tank capacity can be.

特開平08-2478号公報Japanese Patent Application Publication No. 08-2478 特開2014-151922号公報JP2014-151922A 特開2019-15377号公報JP 2019-15377 Publication

本発明の目的は、搭載した船舶の復原性やタンクの強度を損なうことなくタンク容量を大きくできる、タンクの内表面に補強部材を設けない液化ガスタンクの提供である。 An object of the present invention is to provide a liquefied gas tank that does not require a reinforcing member on the inner surface of the tank, which can increase the tank capacity without impairing the stability of the ship carrying the tank or the strength of the tank.

上記の課題を解決するために、本発明の1態様である液化ガスタンクは、タンクの内表面に補強部材を設けない液化ガスタンクであって、下端が開放され、上に凸の半球状の上部球殻体と、上端が開放され、下に凸の半球状の下部球殻体と、前記上部球殻体の下端と前記下部球殻体の上端を連結する円環状の赤道円環部を有するシェル構造体を備え、前記シェル構造体は、前記上部球殻体、前記下部球殻体、前記赤道円環部が鉛直方向に平行な面で2分割された形状を有し、更に分割面を連結する円環状の子午線円環部も備え、前記子午線円環部は、前記上部球殻体の分割面同士、及び前記下部球殻体の分割面同士を各々連結する1対の半円環部と、前記赤道円環部の分割面同士、及び1対の前記半円環部の分割面同士を連結する平板状の板状連結部を備えていて、前記板状連結部の板厚は、前記赤道円環部、前記半円環部、前記上部球殻体、前記下部球殻体の少なくとも1つの径方向の板厚よりも厚く、かつ板厚の差により生じる段差が前記シェル構造体の内側に形成されることを特徴とする。 In order to solve the above problems, a liquefied gas tank that is one aspect of the present invention is a liquefied gas tank that does not provide a reinforcing member on the inner surface of the tank, has an open lower end, and has an upwardly convex hemispherical upper sphere. a shell, a hemispherical lower spherical shell having an open upper end and convex downward, and a shell having an annular equatorial ring portion connecting the lower end of the upper spherical shell and the upper end of the lower spherical shell. The shell structure has a shape in which the upper spherical shell, the lower spherical shell, and the equatorial ring portion are divided into two by a plane parallel to the vertical direction, and further connects the divided planes. The meridian ring part also includes a pair of semicircular ring parts that connect the dividing surfaces of the upper spherical shell and the dividing surfaces of the lower spherical shell, respectively. , comprising a flat plate-like connecting portion that connects the dividing surfaces of the equatorial ring portion and the dividing surfaces of the pair of semicircular ring portions, and the thickness of the plate-like connecting portion is equal to the thickness of the plate-like connecting portion. It is thicker than the radial plate thickness of at least one of the equatorial ring part, the semicircular ring part, the upper spherical shell, and the lower spherical shell, and a step caused by the difference in plate thickness is inside the shell structure. It is characterized by being formed .

この構成では、赤道円環部で球殻を高さ方向に延長した構造において、子午線円環部で球殻を水平方向にも延長しているため、子午線円環部の内容積に相当する容積分、タンク容量が大きくなってもタンクの高さは変わらず、重心が高くならない。そのため、このシェル構造体を搭載した船舶の復原性を損なうことなくタンク容量を大きくできる。 In this configuration, in a structure in which the spherical shell is extended in the height direction at the equatorial ring part, the spherical shell is also extended in the horizontal direction at the meridian ring part, so that the volume equivalent to the internal volume of the meridian ring part is Even if the tank capacity increases, the height of the tank remains the same, and the center of gravity does not rise. Therefore, the tank capacity can be increased without impairing the stability of a ship equipped with this shell structure.

また、この構成では、赤道円環部と子午線円環部の2つの円環部でタンク容量を大きくするため、一方の円環部のみでタンク容量を大きくする構造と比べ、個々の円環部の軸方向の幅をあまり長くしなくてもタンク容量を大きくできる。そのため、タンクの強度を損なうことなくタンク容量を大きくできる。 In addition, in this configuration, the tank capacity is increased in two annular sections, the equatorial annular section and the meridian annular section, so compared to a structure in which the tank capacity is increased only in one annular section, each annular section is The tank capacity can be increased without increasing the axial width of the tank. Therefore, the tank capacity can be increased without compromising the strength of the tank.

更に、この構成では赤道円環部と子午線円環部が円環状で、板状連結部が板状であるため、赤道円環部、子午線円環部、板状連結部のいずれも、連結される部分の断面が矩形となり、連結面の断面形状を整合させる加工をしなくても連結できる。
そのため、タンクの強度を損なうことなくタンク容量を大きくできる。
Furthermore, in this configuration, since the equatorial ring part and the meridian ring part are ring-shaped and the plate-like connecting part is plate-like, none of the equatorial ring part, the meridian ring part, and the plate-like connecting part are connected. The cross section of the connected portion is rectangular, and the connection can be made without any processing to match the cross-sectional shape of the connection surface.
Therefore, the tank capacity can be increased without compromising the strength of the tank.

本発明の他の態様である船舶は、上記いずれかに記載の液化ガスタンクが貨物タンク又は燃料タンクとして、前記子午線円環部の軸方向が船長方向に沿うように船倉に配置されたことを特徴とする。
本発明の更に他の態様である浮体構造物は、上記いずれかに記載の液化ガスタンクが貨物タンク又は燃料タンクとして、前記子午線円環部の軸方向が船長方向に沿うように船倉に配置されたことを特徴とする。
A ship according to another aspect of the present invention is characterized in that the liquefied gas tank according to any one of the above is arranged as a cargo tank or a fuel tank in a hold so that the axial direction of the meridian ring portion is along the ship's ship direction. shall be.
In a floating structure according to still another aspect of the present invention, the liquefied gas tank according to any one of the above is arranged as a cargo tank or a fuel tank in a hold so that the axial direction of the meridian ring portion is along the ship's ship direction. It is characterized by

この構成では赤道円環部と子午線円環部の2つの円環部で容量を大きくしたタンクを船舶又は浮体構造物が備えるため、復原性やタンクの強度を損なうことなく船舶又は浮体構造物に搭載できるタンク容量を大きくできる。
また、この構成では液化ガスタンクを子午線円環部の軸方向が船長方向に沿うように船倉に配置するため、子午線円環部を設けない液化ガスタンクと船幅方向の長さが変わらない。
液化ガスタンクは一般に船舶の船長方向に複数設けられるが、船幅方向には1つのみ設けられる。そのためタンクの船幅方向の長さが長くなるほど、タンクを搭載する船舶の船幅方向の長さを長くする必要があるが、運河などの制約によりこのような設計変更は困難である。そこで、船幅方向の長さを変えずにタンク容量を大きくできる本発明の液化ガスタンクを搭載することで、船舶の船幅方向の長さを長くせずに積載するタンク容量を大きくできる。
In this configuration, the ship or floating structure is equipped with a tank with a larger capacity in two ring parts, the equatorial ring part and the meridian ring part. The tank capacity that can be installed can be increased.
In addition, in this configuration, the liquefied gas tank is arranged in the hold so that the axial direction of the meridian ring part is along the ship's ship direction, so the length in the ship width direction is the same as that of a liquefied gas tank that does not have a meridian ring part.
Generally, a plurality of liquefied gas tanks are provided in the ship's longitudinal direction, but only one is provided in the ship's width direction. Therefore, as the length of the tank increases in the transverse direction, it is necessary to increase the length in the transverse direction of the ship on which the tank is mounted, but such design changes are difficult due to restrictions such as canals. Therefore, by installing the liquefied gas tank of the present invention that can increase the tank capacity without changing the length in the transverse direction of the ship, the capacity of the tank to be loaded can be increased without increasing the length in the transverse direction of the ship.

本発明によれば、搭載した船舶の復原性やタンクの強度を損なうことなくタンク容量を大きくできる、タンクの内表面に補強部材を設けない液化ガスタンクを提供できる。 According to the present invention, it is possible to provide a liquefied gas tank that does not include a reinforcing member on the inner surface of the tank and can increase the tank capacity without impairing the stability of the ship carrying the tank or the strength of the tank.

本実施形態に係る船舶を示す側面図である。It is a side view showing a ship concerning this embodiment. 本実施形態に係る船舶を示す平面図である。It is a top view showing a ship concerning this embodiment. 図2の液化ガスタンクの1つのシェル構造体の分解斜視図である。FIG. 3 is an exploded perspective view of one shell structure of the liquefied gas tank of FIG. 2; 図2の液化ガスタンクの1つのA-A断面図である。3 is a sectional view taken along line AA of one of the liquefied gas tanks of FIG. 2. FIG. 図2の液化ガスタンクの1つのB-B断面図であって、スカートは記載を省略している。FIG. 3 is a BB sectional view of one of the liquefied gas tanks in FIG. 2, with the skirt omitted.

以下、図1~図5を参照して、本発明に好適な実施形態に係る液化ガスタンク1を搭載した船舶2の構成を詳細に説明する。
ここでは船舶2として、液化ガスを液化ガスタンク1に貯蔵して運搬する液化ガス運搬船が例示されている。
Hereinafter, the configuration of a ship 2 equipped with a liquefied gas tank 1 according to a preferred embodiment of the present invention will be described in detail with reference to FIGS. 1 to 5.
Here, as the ship 2, a liquefied gas carrier ship that stores and transports liquefied gas in a liquefied gas tank 1 is illustrated.

図1及び図2に示すように船舶2は、船体3及び液化ガスタンク1を備える。
船体3は船舶2の船殻となる構造体であり、船底5a、側壁5b、及び暴露甲板5cで船内を囲むように構成される。
図1では船体3は、機関区画6、貨物区画7、及び船首区画11が船長方向で船首側に向かってこの順番で配置されており、隣接する区画は横隔壁で分離されている。
As shown in FIGS. 1 and 2, the ship 2 includes a hull 3 and a liquefied gas tank 1.
The hull 3 is a structure serving as the hull of the ship 2, and is configured to surround the inside of the ship with a bottom 5a, a side wall 5b, and an exposed deck 5c.
In FIG. 1, in the hull 3, an engine compartment 6, a cargo compartment 7, and a bow compartment 11 are arranged in this order toward the bow side in the longitudinal direction, and adjacent compartments are separated by a transverse bulkhead.

機関区画6は船舶2を推進させる主機、及び船舶2の航行に要するボイラ、ポンプ等の補機が配置される区画である。船舶2のような液化ガス運搬船では、図1のように貨物区画7よりも船尾側に機関区画6が配置される。
貨物区画7は貨物としての液化ガスを貯蔵する液化ガスタンク1が配置される区画である。貨物区画7は図1では船長方向における中央付近に配置される。図1のように液化ガスタンク1の上端が暴露甲板5cよりも高い位置にある場合、貨物区画7の暴露甲板5c上方には、液化ガスタンク1の上部を覆う上部構造物17が設けられる場合がある。図1では貨物区画7内に4つの液化ガスタンク1が船長方向に直列に配置されている。
船首区画11は船長方向における船首端の区画であり、排水設備や錨を収納する設備等が設けられる。
機関区画6、貨物区画7、及び船首区画11の船長方向の長さは、船舶2の航行に必要な設備や搭載する液化ガスタンク1の寸法に応じて適宜設定すればよい。
The engine compartment 6 is a compartment in which a main engine that propels the ship 2 and auxiliary equipment such as a boiler and a pump required for navigation of the ship 2 are arranged. In a liquefied gas carrier such as the ship 2, the engine compartment 6 is arranged closer to the stern than the cargo compartment 7, as shown in FIG.
The cargo compartment 7 is a compartment in which a liquefied gas tank 1 for storing liquefied gas as cargo is arranged. In FIG. 1, the cargo compartment 7 is arranged near the center in the longitudinal direction. When the upper end of the liquefied gas tank 1 is located at a higher position than the exposure deck 5c as shown in FIG. . In FIG. 1, four liquefied gas tanks 1 are arranged in series in the cargo compartment 7 in the longitudinal direction.
The bow compartment 11 is a compartment at the bow end in the ship's ship direction, and is provided with drainage equipment, equipment for storing an anchor, and the like.
The lengths of the engine compartment 6, the cargo compartment 7, and the bow compartment 11 in the longitudinal direction may be appropriately set according to the equipment necessary for navigation of the vessel 2 and the dimensions of the liquefied gas tank 1 to be mounted.

液化ガスタンク1は液化ガスを保冷、加圧又はその両方の方法により貯蔵する圧力容器である。液化ガスは、ここでは常温、常圧で気体である物質を冷却又は加圧で液化したものを意味する。具体的な液化ガスとしてはLNG、LPGのように、可燃性ガスを液化したものが挙げられる。 The liquefied gas tank 1 is a pressure vessel that stores liquefied gas by keeping it cool, pressurizing it, or both. Liquefied gas herein means a substance that is a gas at normal temperature and pressure and is liquefied by cooling or pressurizing. Specific examples of liquefied gases include liquefied combustible gases such as LNG and LPG.

液化ガスタンク1は船体3から独立した構造の圧力容器である。ここでいう独立した構造とは、液化ガスタンク1自身で内部の液化ガスを閉じ込める圧力を維持し、液化ガスの重量を保持する構造を意味する。よって、メンブレン構造のように、船体3の一部を圧力容器として用いる構造は含まない。 The liquefied gas tank 1 is a pressure vessel having a structure independent from the hull 3. The independent structure here means a structure in which the liquefied gas tank 1 itself maintains the pressure that confines the liquefied gas inside and maintains the weight of the liquefied gas. Therefore, a structure in which a part of the hull 3 is used as a pressure vessel, such as a membrane structure, is not included.

また、液化ガスタンク1はタンクの内表面に補強部材を設けない構造である。ここでいうタンクの内表面とは、液化ガスを貯蔵する中空容器であるシェル構造体15において、液化ガスを貯留する空間と接する表面を意味する。
ここでいう補強部材とは、液化ガスを貯留する強度を確保するために、シェル構造体15の内表面に設けられる構造物であって、シェル構造体15以外の構造物を意味する。補強部材の具体例としては、隔壁や支柱が挙げられる。
本実施形態の液化ガスタンク1がタンクの内表面に補強部材を設けない理由は、補強部材を設けると重量が増えて船舶2に搭載できない場合があるためである。また、補強部材を設ける場合は、従来の円筒形状でも強度を確保できるため、図3~図5に示す本実施形態のタンク形状を採用する必要がない。
Furthermore, the liquefied gas tank 1 has a structure in which no reinforcing member is provided on the inner surface of the tank. The inner surface of the tank here refers to the surface of the shell structure 15, which is a hollow container that stores liquefied gas, that is in contact with the space that stores liquefied gas.
The reinforcing member herein refers to a structure other than the shell structure 15 that is provided on the inner surface of the shell structure 15 in order to ensure the strength to store the liquefied gas. Specific examples of reinforcing members include partition walls and struts.
The reason why the liquefied gas tank 1 of this embodiment does not provide a reinforcing member on the inner surface of the tank is that if the reinforcing member is provided, the weight will increase and it may not be possible to mount it on the ship 2. Further, when a reinforcing member is provided, it is not necessary to adopt the tank shape of this embodiment shown in FIGS. 3 to 5 because strength can be ensured even with a conventional cylindrical shape.

図3~図5に示すように液化ガスタンク1はシェル構造体15、及びスカート31を備える。
シェル構造体15は液化ガスを貯蔵する中空容器であり、図3に示すように上部球殻体21、下部球殻体23、赤道円環部25、及び、子午線円環部27を備える。
As shown in FIGS. 3 to 5, the liquefied gas tank 1 includes a shell structure 15 and a skirt 31. As shown in FIGS.
The shell structure 15 is a hollow container for storing liquefied gas, and includes an upper spherical shell 21, a lower spherical shell 23, an equatorial ring part 25, and a meridian ring part 27, as shown in FIG.

上部球殻体21は上に凸の半球状の部材である。図3の上部球殻体21は下端の赤道面が開放された半球である。図3の上部球殻体21は子午線を含む面(鉛直方向に平行な面)で2分割された形状を有する。以下の説明では、分割された部分のうち、船首側(矢印Cの示す前方)の部分を船首側上部球殻体21a、船尾側の部分を船尾側上部球殻体21bと称す。図3では上部球殻体21の分割面と赤道が形成する面が直交している。 The upper spherical shell 21 is an upwardly convex hemispherical member. The upper spherical shell 21 in FIG. 3 is a hemisphere with an open equatorial plane at the lower end. The upper spherical shell 21 in FIG. 3 has a shape divided into two by a plane including the meridian (a plane parallel to the vertical direction). In the following description, among the divided parts, the part on the bow side (the front indicated by arrow C) will be referred to as the bow side upper spherical shell 21a, and the stern side part will be referred to as the stern side upper spherical shell 21b. In FIG. 3, the dividing plane of the upper spherical shell 21 and the plane formed by the equator are perpendicular to each other.

なお、以下の説明で「分割」とは、外観が分割されている形状を有するという意味である。子午線を含む面で半球を分割することで船首側上部球殻体21aと船尾側上部球殻体21bを製造する必要があるという意味ではない。シェル構造体15を構成する部材はいずれも、公知の材料を用いて公知の方法で製造できる。 Note that in the following description, "divided" means having a shape in which the appearance is divided. This does not mean that it is necessary to manufacture the bow side upper spherical shell 21a and the stern side upper spherical shell 21b by dividing the hemisphere along a plane including the meridian. All members constituting the shell structure 15 can be manufactured using known materials and methods.

上部球殻体21は図3では球体を赤道面で2分割した半球体の形状と同じである。そのため、上部球殻体21の赤道面の中心O1から内表面までの距離である半径R1は、内表面の位置によらず同じ値である。ただし、半径R1は内表面の位置によって異なってもよい。また下端は赤道であると内部容積が大きくなるので好ましいが、赤道に平行な面であれば、赤道よりも高い位置にある面でもよい。
更に、図3では船首側上部球殻体21aと船尾側上部球殻体21bは船長方向の向きが逆であるだけで形状は同じであるが、形状が異なってもよい。なお、同じ形状にすると、製造時の工作性が向上する。図3では船首側上部球殻体21aと船尾側上部球殻体21bの分割面は、半球の頂点を通る面であるが、赤道に直交する面であれば、頂点を通らない面でもよい。なお、船首側上部球殻体21aと船尾側上部球殻体21bの分割面を、半球の頂点を通る面とすると、船首側上部球殻体21aと船尾側上部球殻体21bが同じ形状になるため、製造時の工作性が向上する。
In FIG. 3, the upper spherical shell 21 has the same shape as a hemisphere obtained by dividing a sphere into two along the equatorial plane. Therefore, the radius R1 , which is the distance from the center O1 of the equatorial plane of the upper spherical shell 21 to the inner surface, has the same value regardless of the position of the inner surface. However, the radius R 1 may vary depending on the position of the inner surface. Further, it is preferable that the lower end be at the equator because the internal volume increases, but it may be a surface located higher than the equator as long as it is parallel to the equator.
Further, in FIG. 3, the bow-side upper spherical shell 21a and the stern-side upper spherical shell 21b have the same shape except that their directions in the ship length direction are opposite, but they may have different shapes. Note that if the shapes are the same, workability during manufacturing will be improved. In FIG. 3, the dividing plane between the bow side upper spherical shell 21a and the stern side upper spherical shell 21b is a plane that passes through the apex of the hemisphere, but it may be a plane that does not pass through the apex as long as it is perpendicular to the equator. Note that if the dividing plane between the bow side upper spherical shell 21a and the stern side upper spherical shell 21b is a plane passing through the apex of the hemisphere, the bow side upper spherical shell 21a and the stern side upper spherical shell 21b have the same shape. This improves workability during manufacturing.

下部球殻体23は下に凸の半球状の部材である。図3の下部球殻体23は上端の赤道面が開放された半球である。図3の下部球殻体23は子午線を含む面(鉛直方向に平行な面)で2分割された形状を有する。以下の説明では、分割された部分のうち、船首側の部分を船首側下部球殻体23a、船尾側の部分を船尾側下部球殻体23bと称す。図3では下部球殻体23の分割面と赤道が形成する面が直交している。 The lower spherical shell 23 is a downwardly convex hemispherical member. The lower spherical shell 23 in FIG. 3 is a hemisphere with an open equatorial plane at the upper end. The lower spherical shell 23 in FIG. 3 has a shape divided into two parts by a plane including the meridian (a plane parallel to the vertical direction). In the following description, among the divided parts, the bow side portion will be referred to as the bow side lower spherical shell body 23a, and the stern side portion will be referred to as the stern side lower spherical shell body 23b. In FIG. 3, the dividing plane of the lower spherical shell 23 and the plane formed by the equator are perpendicular to each other.

下部球殻体23は図3では球体を赤道面で2分割した半球体の形状と同じである。そのため、下部球殻体23の赤道面の中心О2から内表面までの距離である半径R2は、内表面の位置によらず同じである。ただし、半径R2は内表面の位置によって異なってもよい。また分割面は、赤道であると内部容積が大きくなるので好ましいが、赤道に平行な面であれば、赤道よりも低い位置にある面でもよい。
図3では下部球殻体23の半径R2が、上部球殻体21の半径R1と同じであるが、異なってもよい。なお、半径R2を半径R1と同じとすると、上部球殻体21と下部球殻体23が同じ形状になるため、製造時の工作性が向上する。
更に、図3では船首側下部球殻体23aと船尾側下部球殻体23bは船長方向の向きが逆であるだけで形状は同じであるが、形状が異なってもよい。なお、同じ形状にすると、製造時の工作性が向上する。
図3では船首側下部球殻体23aと船尾側下部球殻体23bの分割面は、半球の頂点(底点)を通る面であるが、赤道に直交する面であれば、頂点を通らない面でもよい。
なお、船首側下部球殻体23aと船尾側下部球殻体23bの分割面を、半球の頂点を通る面とすると、船首側下部球殻体23aと船尾側下部球殻体23bが同じ形状になるため、製造時の工作性が向上する。
In FIG. 3, the lower spherical shell 23 has the same shape as a hemisphere obtained by dividing a sphere into two along the equatorial plane. Therefore, the radius R2 , which is the distance from the center O2 of the equatorial plane of the lower spherical shell 23 to the inner surface, is the same regardless of the position of the inner surface. However, the radius R 2 may vary depending on the position of the inner surface. Further, it is preferable that the dividing plane be at the equator because the internal volume will be large, but it may be a plane located at a position lower than the equator as long as it is parallel to the equator.
In FIG. 3, the radius R 2 of the lower spherical shell 23 is the same as the radius R 1 of the upper spherical shell 21, but they may be different. Note that if the radius R 2 is the same as the radius R 1 , the upper spherical shell 21 and the lower spherical shell 23 have the same shape, which improves workability during manufacturing.
Further, in FIG. 3, the lower spherical shell 23a on the bow side and the lower spherical shell 23b on the stern side have the same shape except that their directions in the ship length direction are opposite, but they may have different shapes. Note that if the shapes are the same, workability during manufacturing will be improved.
In FIG. 3, the dividing plane between the bow side lower spherical shell 23a and the stern side lower spherical shell 23b is a plane that passes through the apex (bottom point) of the hemisphere, but if it is a plane perpendicular to the equator, it will not pass through the apex. It can also be a face.
In addition, if the dividing plane of the bow side lower spherical shell 23a and the stern side lower spherical shell 23b is a plane passing through the apex of the hemisphere, the bow side lower spherical shell 23a and the stern side lower spherical shell 23b have the same shape. This improves workability during manufacturing.

図3では上部球殻体21と下部球殻体23は上下の向きが逆であるだけで、形状はいずれも同じ半径の球体を赤道面で分割した半球である。ただし上部球殻体21と下部球殻体23の形状が異なってもよい。このような形状としては、所謂リンゴ型のMOSS球形タンクのように上部球殻体21の半径R1が、頂点に近いほど小さくなる構造が挙げられる。 In FIG. 3, the upper spherical shell 21 and the lower spherical shell 23 are simply opposite in their vertical directions, and are both hemispheres having the same radius divided at the equatorial plane. However, the shapes of the upper spherical shell 21 and the lower spherical shell 23 may be different. Examples of such a shape include a structure in which the radius R 1 of the upper spherical shell 21 becomes smaller as it approaches the apex, such as a so-called apple-shaped MOSS spherical tank.

赤道円環部25は上部球殻体21の下端と下部球殻体23の上端を連結する円環状の部材である。図3の赤道円環部25は、鉛直方向に平行な分割面で2分割された形状を有する。分割された部分のうち、船首側の部分を船首側赤道円環部25a、船尾側の部分を船尾側赤道円環部25bと称す。 The equatorial ring part 25 is a ring-shaped member that connects the lower end of the upper spherical shell 21 and the upper end of the lower spherical shell 23. The equatorial ring portion 25 in FIG. 3 has a shape divided into two by a dividing plane parallel to the vertical direction. Among the divided portions, the bow side portion is referred to as the bow side equatorial ring portion 25a, and the stern side portion is referred to as the stern side equatorial ring portion 25b.

赤道円環部25を設けることで、シェル構造体15が球の形状をある程度維持しつつ、赤道円環部25の内容積V1に相当する分、シェル構造体15の容量を大きくできる。具体的には赤道円環部25の円環の内周の半径をR3、軸方向の幅をH1とすると、V1=πR3 2×H1になる。 By providing the equatorial annular portion 25, the capacity of the shell structure 15 can be increased by an amount corresponding to the internal volume V 1 of the equatorial annular portion 25 while the shell structure 15 maintains its spherical shape to some extent. Specifically, if the radius of the inner periphery of the equatorial ring portion 25 is R 3 and the width in the axial direction is H 1 , then V 1 =πR 3 2 ×H 1 .

図3では赤道円環部25の半径R3は軸方向の位置によらず一定であるが、上部球殻体21と下部球殻体23の大きさが異なる場合等は、半径R3が軸方向で異なってもよい。
図3では赤道円環部25の分割面は、赤道円環部25の中心を通る面であるが、赤道に直交する面であれば、中心を通らない面でもよい。ただし、赤道円環部25の分割面と、上部球殻体21の分割面と、下部球殻体23の分割面は、水平方向で同じ位置である必要がある。
In FIG. 3, the radius R 3 of the equatorial ring portion 25 is constant regardless of the axial position, but if the sizes of the upper spherical shell 21 and the lower spherical shell 23 are different, the radius R 3 It may differ in direction.
In FIG. 3, the dividing plane of the equatorial annular portion 25 is a plane passing through the center of the equatorial annular portion 25, but it may be a plane that does not pass through the center as long as it is perpendicular to the equator. However, the dividing plane of the equatorial ring portion 25, the dividing plane of the upper spherical shell 21, and the dividing plane of the lower spherical shell 23 need to be at the same position in the horizontal direction.

子午線円環部27は上部球殻体21、下部球殻体23、赤道円環部25における、鉛直方向に平行な分割面を連結する円環状の部材であり、上部半円環部27a、下部半円環部27b、及び板状連結部29a、29bを備える。 The meridian ring part 27 is a ring-shaped member that connects the dividing planes parallel to the vertical direction in the upper spherical shell 21, the lower spherical shell 23, and the equatorial ring part 25, and includes the upper semicircular ring part 27a, the lower part It includes a semicircular ring portion 27b and plate-like connecting portions 29a and 29b.

上部半円環部27a、及び下部半円環部27bは上部球殻体21同士、及び下部球殻体23同士を各々連結する1対の半円環部である。
具体的には上部半円環部27aが船首側上部球殻体21aと船尾側上部球殻体21bの分割面を連結する。また下部半円環部27bが船首側下部球殻体23aと船尾側下部球殻体23bの分割面を連結する。
板状連結部29a、29bは赤道円環部25の分割面を連結する略矩形の平板状の部材である。板状連結部29a、29bは上部半円環部27aと下部半円環部27bを連結する部材でもある。
The upper semicircular ring part 27a and the lower semicircular ring part 27b are a pair of semicircular ring parts that connect the upper spherical shell bodies 21 and the lower spherical shell bodies 23, respectively.
Specifically, the upper semicircular ring portion 27a connects the dividing surfaces of the bow side upper spherical shell 21a and the stern side upper spherical shell 21b. Further, the lower semicircular ring portion 27b connects the divided surfaces of the bow-side lower spherical shell 23a and the stern-side lower spherical shell 23b.
The plate-like connecting parts 29a and 29b are substantially rectangular plate-like members that connect the divided surfaces of the equatorial ring part 25. The plate-like connecting parts 29a and 29b are also members that connect the upper semicircular ring part 27a and the lower semicircular ring part 27b.

図3では子午線円環部27の半径R4は軸方向の位置によらず一定であるが、船首側上部球殻体21aと船尾側上部球殻体21bの大きさが異なる場合等は、半径R4が軸方向で異なってもよい。船首側下部球殻体23aと船尾側下部球殻体23bの大きさが異なる場合も同様である。
図3では子午線円環部27の分割面は、子午線円環部27の中心を通る面であるが、水平面であれば、中心を通らない面でもよい。
In FIG. 3, the radius R4 of the meridian annular portion 27 is constant regardless of the axial position, but if the sizes of the bow side upper spherical shell 21a and the stern side upper spherical shell 21b are different, etc. R 4 may be different in the axial direction. The same applies when the bow side lower spherical shell body 23a and the stern side lower spherical shell body 23b are different in size.
In FIG. 3, the dividing plane of the meridian ring part 27 is a plane passing through the center of the meridian ring part 27, but it may be a plane that does not pass through the center as long as it is a horizontal plane.

このように、シェル構造体15では、赤道円環部25を高さ方向に挿入して球殻を高さ方向に延長した構造において、子午線円環部27を水平方向に挿入して球殻を水平方向(船長方向)にも延長している。そのため子午線円環部27の内容積に相当する容積V2だけ、シェル構造体15のタンク容量が大きくなるが、タンクの高さは変わらず、重心が高くならない。そのため、シェル構造体15のタンクを搭載した船舶2の復原性を損なうことなくタンク容量を大きくできる。 In this way, in the shell structure 15, in a structure in which the spherical shell is extended in the height direction by inserting the equatorial ring part 25 in the height direction, the spherical shell is extended in the height direction by inserting the meridian ring part 27 in the horizontal direction. It also extends in the horizontal direction (direction of the ship). Therefore, although the tank capacity of the shell structure 15 increases by a volume V 2 corresponding to the internal volume of the meridian ring portion 27, the height of the tank remains unchanged and the center of gravity does not become high. Therefore, the tank capacity can be increased without impairing the stability of the ship 2 on which the tank of the shell structure 15 is mounted.

なお、子午線円環部27の容積V2は、上部半円環部27aと下部半円環部27bの容積V2-1と、板状連結部29a、29bを設けたことにより形成される角柱状の領域D(図3参照)の容積V2-2を合わせたものになる。
子午線円環部27の円環の内周の半径をR4、軸方向の幅をL1とすると、V2-1=πR4 2×L1となり、V2-2=H1×L1×2R4になる。よって容積V2=πR4 2×L1+H1×L1×2R4になる。
Note that the volume V 2 of the meridian ring portion 27 is the volume V 2-1 of the upper semicircular ring portion 27a and the lower semicircular ring portion 27b, and the angle formed by providing the plate-shaped connecting portions 29a and 29b. This is the sum of the volumes V 2-2 of columnar regions D (see FIG. 3).
If the radius of the inner circumference of the meridian ring portion 27 is R 4 and the width in the axial direction is L 1 , then V 2-1 = πR 4 2 ×L 1 , and V 2-2 = H 1 ×L 1. ×2R becomes 4 . Therefore, the volume V 2 =πR 4 2 ×L 1 +H 1 ×L 1 ×2R 4 .

また、この構成では、赤道円環部25と子午線円環部27の2つの円環部でタンクの容量を大きくする。そのため、赤道円環部25のみでタンクの容量を大きくする従来の構造と比べ、個々の円環部(赤道円環部25と子午線円環部27)の軸方向の幅をあまり長くしなくてもタンク容量を大きくできる。よって、液化ガスタンク1は強度を損なうことなくタンク容量を大きくできる。 Further, in this configuration, the capacity of the tank is increased by two annular parts, the equatorial annular part 25 and the meridian annular part 27. Therefore, compared to the conventional structure in which the capacity of the tank is increased only with the equatorial ring part 25, the axial width of each ring part (the equatorial ring part 25 and the meridian ring part 27) does not have to be made very long. The tank capacity can also be increased. Therefore, the tank capacity of the liquefied gas tank 1 can be increased without losing strength.

更に、この構成では板状連結部29a、29bが略矩形の平板状である。そのため、赤道円環部25と子午線円環部27が半径一定の円環状の場合、赤道円環部25、子午線円環部27、板状連結部29a、29bのいずれも、連結される部分の断面が矩形となり、連結面の断面形状を整合させる加工をしなくても連結できる。
そのため、液化ガスタンク1は強度を損なうことなくタンク容量を大きくできる。
Furthermore, in this configuration, the plate-like connecting portions 29a and 29b are substantially rectangular flat plates. Therefore, when the equatorial annular portion 25 and the meridian annular portion 27 are annular with a constant radius, all of the equatorial annular portion 25, the meridian annular portion 27, and the plate-like connecting portions 29a and 29b are connected to each other. The cross section is rectangular, and the connection can be made without processing to match the cross-sectional shape of the connection surface.
Therefore, the tank capacity of the liquefied gas tank 1 can be increased without losing strength.

板状連結部29a、29bの平面状の寸法H´、L´は子午線円環部27の形状で決まる。具体的には赤道円環部25と連結される面の長さH1´は赤道円環部25の軸方向の幅H1と同じである。
また、上部半円環部27a及び下部半円環部27b(子午線円環部27)と連結される面の長さL1´は上部半円環部27aと下部半円環部27bの軸方向の幅L1と同じである。
The planar dimensions H 1 ′ and L 1 ′ of the plate-like connecting portions 29 a and 29 b are determined by the shape of the meridian ring portion 27 . Specifically, the length H 1 ′ of the surface connected to the equatorial ring portion 25 is the same as the width H 1 of the equatorial ring portion 25 in the axial direction.
Further, the length L 1 ' of the surface connected to the upper semicircular ring part 27a and the lower semicircular ring part 27b (meridian ring part 27) is the axial direction of the upper semicircular ring part 27a and the lower semicircular ring part 27b. is the same as the width L1 .

ただし、板状連結部29a、29bの板厚はシェル構造体15を構成する他の部材と同じ板厚である必要はない。
例えば板状連結部29aの板厚は、赤道円環部25、子午線円環部27、上部球殻体21、下部球殻体23の少なくとも1つの径方向の板厚より厚くてもよい。一例として、図4では子午線円環部27の上部半円環部27aと下部半円環部27bの径方向の板厚T1よりも板状連結部29aの板厚T2が厚い構成を示す。
この構成では板状連結部29aの板厚T2がシェル構造体15を構成する他の部材よりも厚いので、板状連結部29aが曲面を有さない形状でも強度を十分に確保できる。
However, the plate-like connecting parts 29a and 29b do not need to have the same thickness as the other members constituting the shell structure 15.
For example, the thickness of the plate-like connecting portion 29a may be greater than the thickness of at least one of the equatorial ring portion 25, the meridian ring portion 27, the upper spherical shell 21, and the lower spherical shell 23 in the radial direction. As an example, FIG. 4 shows a configuration in which the thickness T 2 of the plate-like connecting portion 29a is thicker than the radial thickness T 1 of the upper semicircular ring portion 27a and the lower semicircular ring portion 27b of the meridian ring portion 27. .
In this configuration, since the plate thickness T 2 of the plate-like connecting portion 29a is thicker than the other members constituting the shell structure 15, sufficient strength can be ensured even when the plate-like connecting portion 29a has a shape that does not have a curved surface.

板状連結部29aの板厚がシェル構造体15を構成する他の部材よりも厚い場合、図4に示すように、板厚の差により生じる段差Sがシェル構造体15の内側に形成されるのが好ましい。
この構成では段差Sをシェル構造体15の外側に形成しなくてもよいため、板状連結部29aの板厚を厚くしても、シェル構造体15の外形における板厚方向の幅が大きくならない。そのため、船舶2の貨物区画7の船倉に液化ガスタンク1を設置した状態で液化ガスタンク1が船倉の側面の壁部と干渉するのを防止できる。
When the thickness of the plate-like connecting portion 29a is thicker than the other members constituting the shell structure 15, a step S caused by the difference in plate thickness is formed inside the shell structure 15, as shown in FIG. is preferable.
In this configuration, it is not necessary to form the step S on the outside of the shell structure 15, so even if the thickness of the plate-like connecting portion 29a is increased, the width in the thickness direction of the outer shape of the shell structure 15 does not increase. . Therefore, when the liquefied gas tank 1 is installed in the hold of the cargo compartment 7 of the ship 2, it is possible to prevent the liquefied gas tank 1 from interfering with the side walls of the hold.

赤道円環部25の軸方向の幅H1と子午線円環部27の軸方向の幅Lが長いほどシェル構造体15の液化ガスの貯蔵量が増える。ただし長すぎるとシェル構造体15が円筒形状に近くなるため、求められる強度を確保するためにシェル構造体15の内部に補強構造が必要になり、重量が増加して船舶2に搭載できない可能性がある。よって赤道円環部25の軸方向の幅H1と子午線円環部27の軸方向の幅L1は、シェル構造体15で必要な強度を確保できる範囲で設定される。シェル構造体15のみで必要な強度を確保できれば、内部の補強構造は必要ない。 The longer the axial width H 1 of the equatorial ring portion 25 and the axial width L 1 of the meridian ring portion 27, the greater the amount of liquefied gas stored in the shell structure 15. However, if it is too long, the shell structure 15 will have a nearly cylindrical shape, which will require a reinforcing structure inside the shell structure 15 to ensure the required strength, which may increase the weight and make it impossible to mount it on the ship 2. There is. Therefore, the axial width H 1 of the equatorial ring portion 25 and the axial width L 1 of the meridian ring portion 27 are set within a range in which the shell structure 15 can secure the necessary strength. If the necessary strength can be secured only with the shell structure 15, no internal reinforcing structure is necessary.

また、図3に示す子午線円環部27の軸方向の幅L1(L1´)は赤道円環部25の軸方向の幅H1以下であるのが好ましい。理由は以下の通りである。
赤道円環部25は軸方向で上部球殻体21の荷重を受けるのに対し、子午線円環部27は径方向で上部球殻体21の荷重を受ける構造であるため、子午線円環部27は赤道円環部25よりも応力が集中しやすい。
そこで、子午線円環部27の軸方向の幅L1(L1´)を赤道円環部25の軸方向の幅H1以下とすることで、液化ガスタンク1の強度を損なうことなくタンク容量を大きくできる。
Further, it is preferable that the axial width L 1 (L 1 ') of the meridian annular portion 27 shown in FIG. 3 is equal to or less than the axial width H 1 of the equatorial annular portion 25. The reason is as follows.
The equatorial ring part 25 receives the load of the upper spherical shell 21 in the axial direction, whereas the meridian ring part 27 receives the load of the upper spherical shell 21 in the radial direction. Stress is more likely to be concentrated in the equatorial ring portion 25 than in the equatorial ring portion 25.
Therefore, by setting the axial width L 1 (L 1 ′) of the meridian ring portion 27 to be equal to or less than the axial width H 1 of the equatorial ring portion 25, the tank capacity can be increased without impairing the strength of the liquefied gas tank 1. You can make it bigger.

具体的にはシェル構造体15の球殻の半径の最大値が10m以上、25m以下の場合、赤道円環部25の軸方向の幅H1は1m以上、5m以下であるのが好ましい。子午線円環部27の軸方向の幅L1(L1´)は1m以上、5m以下であり、かつ赤道円環部25の軸方向の幅H1以下であるのが好ましい。割合で表せば、赤道円環部25の軸方向の幅H1はシェル構造体15の球殻の半径(図3の半径R1及び半径R2)の最大値の4%以上、20%以下であるのが好ましい。子午線円環部27の軸方向の幅L1(L1´)は、シェル構造体15の球殻の半径(図3の半径R1及び半径R2)の最大値の4%以上、20%以下であり、かつ赤道円環部25の軸方向の幅H1以下であるのが好ましい。 Specifically, when the maximum radius of the spherical shell of the shell structure 15 is 10 m or more and 25 m or less, the axial width H 1 of the equatorial ring portion 25 is preferably 1 m or more and 5 m or less. It is preferable that the axial width L 1 (L 1 ′) of the meridian annular portion 27 is 1 m or more and 5 m or less, and the axial width H 1 of the equatorial annular portion 25 is less than or equal to 1 m. Expressed as a percentage, the axial width H 1 of the equatorial ring portion 25 is 4% or more and 20% or less of the maximum value of the radius of the spherical shell of the shell structure 15 (radius R 1 and radius R 2 in FIG. 3). It is preferable that The axial width L 1 (L 1 ') of the meridian ring portion 27 is 4% or more and 20% of the maximum value of the radius of the spherical shell of the shell structure 15 (radius R 1 and radius R 2 in FIG. 3). It is preferable that the width H in the axial direction of the equatorial ring portion 25 is equal to or less than H 1 .

スカート31は、下部球殻体23を船舶2の船倉の底面から浮かせた状態でシェル構造体15を船舶2に支持させる支持構造であり、図4に示すように支持柱33及び接続部35を備える。
支持柱33はシェル構造体15の重量を受け止める部材であり、下部球殻体23を囲んで船倉の底面に立設される筒状の構造物である。
接続部35は支持柱33とシェル構造体15を接続する部材であり赤道円環部25及び板状連結部29a、29bと連結されて一体に形成される。
The skirt 31 is a support structure that allows the ship 2 to support the shell structure 15 with the lower spherical shell 23 floating above the bottom of the hold of the ship 2, and as shown in FIG. Be prepared.
The support column 33 is a member that receives the weight of the shell structure 15, and is a cylindrical structure that surrounds the lower spherical shell 23 and is erected on the bottom surface of the hold.
The connecting portion 35 is a member that connects the support column 33 and the shell structure 15, and is integrally connected to the equatorial ring portion 25 and the plate-like connecting portions 29a and 29b.

液化ガスタンク1のシェル構造体15のタンク容量は、求められる液化ガスの貯蔵量と、設置される船舶2の船倉の容積とを考慮して適宜設定する。
ただし、本実施形態ではタンク容量が10000m3以上、55000m3以下であるのが好ましい。理由は以下の通りである。
一般に容量が10000m3以上の円筒状の液化ガスタンクは内表面に支柱や隔壁等の補強構造を設けずに強度を確保するのは困難であるが、補強構造を設けると重量が増えて船舶2に搭載できない場合がある。一方で本実施形態の液化ガスタンク1は、赤道円環部25と子午線円環部27の2つの円環部をシェル構造体15に設けることでタンク容量を大きくできるため、シェル構造体15のみで補強構造なしでも強度的には十分である。そのため液化ガスタンク1はタンク容量が10000m3以上の場合に特に好適である。
一方でタンク容量が55000m3を超える液化ガスタンクは工業上、製造されることが想定し難いため、55000m3以下であることで、液化ガスタンク1は既存の液化ガスタンクに求められるタンク容量として十分となる。
The tank capacity of the shell structure 15 of the liquefied gas tank 1 is appropriately set in consideration of the required storage amount of liquefied gas and the capacity of the hold of the ship 2 in which it is installed.
However, in this embodiment, the tank capacity is preferably 10,000 m 3 or more and 55,000 m 3 or less. The reason is as follows.
In general, it is difficult to ensure the strength of cylindrical liquefied gas tanks with a capacity of 10,000 m3 or more without providing reinforcement structures such as columns and bulkheads on the inner surface, but if reinforcement structures are provided, the weight increases and the ship 2 It may not be possible to install it. On the other hand, in the liquefied gas tank 1 of this embodiment, the tank capacity can be increased by providing two annular parts, the equatorial annular part 25 and the meridian annular part 27, in the shell structure 15. It has sufficient strength even without a reinforcing structure. Therefore, the liquefied gas tank 1 is particularly suitable when the tank capacity is 10,000 m 3 or more.
On the other hand, it is difficult to imagine that a liquefied gas tank with a tank capacity exceeding 55,000 m 3 will be manufactured industrially, so by having a tank capacity of 55,000 m 3 or less, the liquefied gas tank 1 has a sufficient tank capacity required for existing liquefied gas tanks. .

液化ガスタンク1は貨物タンク又は燃料タンクとして、図2に示すように、子午線円環部27の軸方向(矢印C方向)が船体3の船長方向に沿うように船倉に配置される。
図1に示すように船舶2では、液化ガスタンク1は貨物タンクとして貨物区画7の船倉に配置される。
The liquefied gas tank 1 is a cargo tank or a fuel tank, and is arranged in a ship hold so that the axial direction (direction of arrow C) of the meridian ring portion 27 is along the longitudinal direction of the ship body 3, as shown in FIG.
As shown in FIG. 1, in a ship 2, a liquefied gas tank 1 is arranged in a hold of a cargo compartment 7 as a cargo tank.

このように船舶2では液化ガスタンク1が子午線円環部27の軸方向(矢印C方向)が船長方向に沿うように船倉に配置される。そのため、配置された状態の液化ガスタンク1は子午線円環部27を設けない独立球形タンクと船幅方向の長さが変わらない。 In this way, in the ship 2, the liquefied gas tank 1 is arranged in the hold so that the axial direction (arrow C direction) of the meridian ring portion 27 is along the ship's ship direction. Therefore, the length of the liquefied gas tank 1 in the arranged state in the ship width direction is the same as that of an independent spherical tank without the meridian ring portion 27.

本実施形態の液化ガスタンク1に限らず、MOSS型の独立球形タンクは一般に図1に示すように船舶2の船長方向に複数設けられるが、図2に示すように船幅方向には1つのみ設けられる。そのためタンクの船幅方向の長さが長くなるほど、タンクを搭載する船舶2の船幅方向の長さを長くする必要があるが、船舶2が航行する運河の幅等の制約により、船幅方向の長さの変更は困難である。そのため、船幅方向の長さを変えずにタンク容量を大きくできる液化ガスタンク1を搭載することで、船舶2の船幅方向の長さを長くせずに船舶2が積載するタンク容量を大きくできる。 Not limited to the liquefied gas tank 1 of this embodiment, a plurality of MOSS type independent spherical tanks are generally provided in the longitudinal direction of the ship 2 as shown in FIG. 1, but only one is provided in the ship width direction as shown in FIG. provided. Therefore, the longer the length of the tank in the transverse direction, the longer the length in the transverse direction of the ship 2 on which the tank is mounted needs to be lengthened. It is difficult to change the length of Therefore, by installing the liquefied gas tank 1 that can increase the tank capacity without changing the length in the transverse direction of the ship, the capacity of the tank loaded by the ship 2 can be increased without increasing the length in the transverse direction of the ship 2. .

液化ガスタンク1は船舶ではなく、浮体構造物に設けてもよい。ここでいう浮体構造物とは、洋上に浮かぶことが可能で、自航能力が必須とされない構造物を意味する。例えばFSRU(Floating Storage and Regasification Unit)が浮体構造物に該当する。
液化ガスタンク1を浮体構造物に設ける場合も、液化ガスタンク1が子午線円環部27の軸方向(矢印C方向)が船長方向に沿うように船倉に配置される。浮体構造物における船長方向とは長手方向を意味し、船倉とは浮体構造物内の貨物区画又は燃料貯蔵区画を意味する。ただし浮体構造物が中古の船舶を改造した構造物の場合は、改造元の船舶の船長方向が、浮体構造物の船長方向であり、改造元の船舶の船倉が、浮体構造物の船倉である。
以上が本実施形態に係る液化ガスタンク1を搭載した船舶2及び浮体構造物の構成の説明である。
The liquefied gas tank 1 may be provided not on a ship but on a floating structure. The term "floating structure" as used herein means a structure that can float on the ocean and does not require self-propulsion capability. For example, a floating storage and regasification unit (FSRU) corresponds to a floating structure.
Also when the liquefied gas tank 1 is provided in a floating structure, the liquefied gas tank 1 is arranged in the hold so that the axial direction (arrow C direction) of the meridian ring portion 27 is along the ship's ship direction. The longitudinal direction of a floating structure means the longitudinal direction, and the hold means a cargo compartment or a fuel storage compartment within the floating structure. However, if the floating structure is a modified second-hand ship, the direction of the ship's length is the direction of the ship's length, and the hold of the source ship is the hold of the floating structure. .
The above is an explanation of the configurations of the ship 2 and the floating structure on which the liquefied gas tank 1 is mounted according to the present embodiment.

このように本実施形態によれば液化ガスタンク1は上部球殻体21、下部球殻体23、赤道円環部25、及び子午線円環部27を備え、赤道円環部25で球殻を高さ方向に延長し、子午線円環部27で球殻を水平方向に延長してシェル構造体15を形成する。
そのため子午線円環部27の内容積に相当する容積V2だけタンク容量が大きくなっても液化ガスタンク1の高さは変わらず、重心が高くならない。そのため、シェル構造体15のタンクを搭載した船舶2の復原性を損なうことなくタンク容量を大きくできる。
As described above, according to the present embodiment, the liquefied gas tank 1 includes an upper spherical shell 21, a lower spherical shell 23, an equatorial ring part 25, and a meridian ring part 27, and the equatorial ring part 25 raises the spherical shell. The shell structure 15 is formed by extending the spherical shell horizontally at the meridian ring portion 27.
Therefore, even if the tank capacity increases by a volume V 2 corresponding to the internal volume of the meridian ring portion 27, the height of the liquefied gas tank 1 does not change, and the center of gravity does not become high. Therefore, the tank capacity can be increased without impairing the stability of the ship 2 on which the tank of the shell structure 15 is mounted.

また、本実施形態によれば、赤道円環部25と子午線円環部27の2つの円環部でタンク容量を大きくする。そのため、赤道円環部25のみでタンク容量を大きくする従来の構造と比べ、個々の円環部(赤道円環部25と子午線円環部27)の軸方向の幅をあまり長くしなくてもタンク容量を大きくできる。よって液化ガスタンク1は強度を損なうことなくタンク容量を大きくできる。 Further, according to the present embodiment, the tank capacity is increased in two annular parts, the equatorial annular part 25 and the meridian annular part 27. Therefore, compared to the conventional structure in which the tank capacity is increased only with the equatorial ring part 25, the axial width of each ring part (equatorial ring part 25 and meridian ring part 27) does not have to be made very long. Tank capacity can be increased. Therefore, the tank capacity of the liquefied gas tank 1 can be increased without losing strength.

更に、本実施形態によれば、板状連結部29a、29bが略矩形の平板状である。そのため、赤道円環部25と子午線円環部27が半径一定の円環状の場合、赤道円環部25、子午線円環部27、板状連結部29a、29bのいずれも、連結される部分の断面が矩形となり、連結面の断面形状を整合させる加工をしなくても連結できる。
よって、液化ガスタンク1は強度を損なうことなくタンク容量を大きくできる。
Furthermore, according to this embodiment, the plate-like connecting parts 29a and 29b are substantially rectangular flat plates. Therefore, when the equatorial annular portion 25 and the meridian annular portion 27 are annular with a constant radius, all of the equatorial annular portion 25, the meridian annular portion 27, and the plate-like connecting portions 29a and 29b are connected to each other. The cross section is rectangular, and the connection can be made without processing to match the cross-sectional shape of the connection surface.
Therefore, the tank capacity of the liquefied gas tank 1 can be increased without losing strength.

以上、実施形態に基づき本発明を説明したが、本発明は実施形態の構成に限定されない。当業者であれば本発明の技術思想の範囲内において各種変形例及び改良例に想到するのは当然のことであり、これらも本発明に含まれる。
例えば本実施形態では液化ガスを液化ガスタンク1に貯蔵して運搬する液化ガス運搬船を例に本発明を説明したが、本発明の船舶2は液化ガスを貯蔵する独立タンクを搭載できる構造を備えていればよいので、液化ガス燃料船でもよい。
Although the present invention has been described above based on the embodiments, the present invention is not limited to the configuration of the embodiments. It is natural for those skilled in the art to come up with various modifications and improvements within the scope of the technical idea of the present invention, and these are also included in the present invention.
For example, in the present embodiment, the present invention has been explained using a liquefied gas carrier that stores and transports liquefied gas in the liquefied gas tank 1, but the ship 2 of the present invention has a structure that can be equipped with an independent tank that stores liquefied gas. A liquefied gas fueled ship may also be used.

1 :液化ガスタンク
2 :船舶
3 :船体
5a :船底
5b :側壁
5c :暴露甲板
6 :機関区画
7 :貨物区画
11 :船首区画
15 :シェル構造体
17 :上部構造物
21 :上部球殻体
21a :船首側上部球殻体
21b :船尾側上部球殻体
23 :下部球殻体
23a :船首側下部球殻体
23b :船尾側下部球殻体
25 :赤道円環部
25a :船首側赤道円環部
25b :船尾側赤道円環部
27 :子午線円環部
27a :上部半円環部
27b :下部半円環部
29a、29b :板状連結部
31 :スカート
33 :支持柱
35 :接続部
1: Liquefied gas tank 2: Ship 3: Hull 5a: Bottom 5b: Side wall 5c: Exposure deck 6: Engine compartment 7: Cargo compartment 11: Bow compartment 15: Shell structure 17: Superstructure 21: Upper spherical shell 21a: Bow side upper spherical shell 21b: Stern side upper spherical shell 23: Lower spherical shell 23a: Bow side lower spherical shell 23b: Stern side lower spherical shell 25: Equatorial ring part 25a: Bow side equatorial ring part 25b: Stern side equatorial ring part 27: Meridian ring part 27a: Upper semicircular ring part 27b: Lower semicircular ring parts 29a, 29b: Plate-like connecting part 31: Skirt 33: Support column 35: Connection part

Claims (5)

タンクの内表面に補強部材を設けない液化ガスタンクであって、下端が開放され、上に凸の半球状の上部球殻体と、上端が開放され、下に凸の半球状の下部球殻体と、前記上部球殻体の下端と前記下部球殻体の上端を連結する円環状の赤道円環部を有するシェル構造体を備え、
前記シェル構造体は、
前記上部球殻体、前記下部球殻体、前記赤道円環部が鉛直方向に平行な面で2分割された形状を有し、更に分割面を連結する円環状の子午線円環部も備え、
前記子午線円環部は、
前記上部球殻体の分割面同士、及び前記下部球殻体の分割面同士を各々連結する1対の半円環部と、
前記赤道円環部の分割面同士、及び1対の前記半円環部の分割面同士を連結する平板状の板状連結部を備えていて、
前記板状連結部の板厚は、前記赤道円環部、前記半円環部、前記上部球殻体、前記下部球殻体の少なくとも1つの径方向の板厚よりも厚く、かつ板厚の差により生じる段差が前記シェル構造体の内側に形成されることを特徴とする液化ガスタンク。
A liquefied gas tank that does not have a reinforcing member on the inner surface of the tank, which has a hemispherical upper spherical shell with an open lower end and a convex upward, and a lower spherical shell with an open upper end and a downward convex shape. and a shell structure having an annular equatorial ring portion connecting the lower end of the upper spherical shell and the upper end of the lower spherical shell,
The shell structure is
The upper spherical shell, the lower spherical shell, and the equatorial ring part have a shape divided into two by a plane parallel to the vertical direction, and further include an annular meridian ring part connecting the divided planes,
The meridian ring portion is
a pair of semicircular ring portions that connect the dividing surfaces of the upper spherical shell and the dividing surfaces of the lower spherical shell, respectively;
comprising a flat plate-like connecting portion that connects the dividing surfaces of the equatorial ring portion and the dividing surfaces of the pair of semicircular ring portions,
The thickness of the plate-like connecting portion is thicker than the thickness of at least one of the equatorial ring portion, the semicircular ring portion, the upper spherical shell, and the lower spherical shell in the radial direction, and A liquefied gas tank characterized in that a step caused by the difference is formed inside the shell structure .
前記子午線円環部の軸方向の幅は、前記赤道円環部の軸方向の幅以下である請求項1に記載の液化ガスタンク。 The liquefied gas tank according to claim 1 , wherein the axial width of the meridian annular portion is less than or equal to the axial width of the equatorial annular portion. タンクの内表面に補強部材を設けない液化ガスタンクであって、下端が開放され、上に凸の半球状の上部球殻体と、上端が開放され、下に凸の半球状の下部球殻体と、前記上部球殻体の下端と前記下部球殻体の上端を連結する円環状の赤道円環部を有するシェル構造体を備え、
前記シェル構造体は、
前記上部球殻体、前記下部球殻体、前記赤道円環部が鉛直方向に平行な面で2分割された形状を有し、更に分割面を連結する円環状の子午線円環部も備え、
前記子午線円環部は、
前記上部球殻体の分割面同士、及び前記下部球殻体の分割面同士を各々連結する1対の半円環部と、
前記赤道円環部の分割面同士、及び1対の前記半円環部の分割面同士を連結する平板状の板状連結部を備えていて、
前記子午線円環部の軸方向の幅は前記赤道円環部の軸方向の幅以下であることを特徴とする液化ガスタンク。
A liquefied gas tank that does not have a reinforcing member on the inner surface of the tank, which has a hemispherical upper spherical shell with an open lower end and a convex upward, and a lower spherical shell with an open upper end and a downward convex shape. and a shell structure having an annular equatorial ring portion connecting the lower end of the upper spherical shell and the upper end of the lower spherical shell,
The shell structure is
The upper spherical shell, the lower spherical shell, and the equatorial ring part have a shape divided into two by a plane parallel to the vertical direction, and further include an annular meridian ring part connecting the divided planes,
The meridian ring portion is
a pair of semicircular ring portions that connect the dividing surfaces of the upper spherical shell and the dividing surfaces of the lower spherical shell, respectively;
comprising a flat plate-like connecting portion that connects the dividing surfaces of the equatorial ring portion and the dividing surfaces of the pair of semicircular ring portions,
A liquefied gas tank characterized in that an axial width of the meridian annular portion is less than or equal to an axial width of the equatorial annular portion.
請求項1~3のいずれか一項に記載の液化ガスタンクが貨物タンク又は燃料タンクとして、前記子午線円環部の軸方向が船長方向に沿うように船倉に配置されたことを特徴とする船舶。 A ship, characterized in that the liquefied gas tank according to any one of claims 1 to 3 is arranged as a cargo tank or a fuel tank in a hold so that the axial direction of the meridian ring portion is along the ship's ship direction. 請求項1~3のいずれか一項に記載の液化ガスタンクが貨物タンク又は燃料タンクとして、前記子午線円環部の軸方向が船長方向に沿うように船倉に配置されたことを特徴とする浮体構造物。 A floating structure, characterized in that the liquefied gas tank according to any one of claims 1 to 3 is arranged as a cargo tank or a fuel tank in a hold so that the axial direction of the meridian annular portion is along the ship's ship direction. thing.
JP2019212891A 2019-11-26 2019-11-26 Liquefied gas tanks, ships, and floating structures Active JP7364440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019212891A JP7364440B2 (en) 2019-11-26 2019-11-26 Liquefied gas tanks, ships, and floating structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019212891A JP7364440B2 (en) 2019-11-26 2019-11-26 Liquefied gas tanks, ships, and floating structures

Publications (2)

Publication Number Publication Date
JP2021085423A JP2021085423A (en) 2021-06-03
JP7364440B2 true JP7364440B2 (en) 2023-10-18

Family

ID=76087132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019212891A Active JP7364440B2 (en) 2019-11-26 2019-11-26 Liquefied gas tanks, ships, and floating structures

Country Status (1)

Country Link
JP (1) JP7364440B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151922A (en) 2013-02-05 2014-08-25 Izumi Steel Works Ltd Liquid storage tank
JP2017154702A (en) 2016-03-04 2017-09-07 三井造船株式会社 Floating body structure with production equipment
JP2019015377A (en) 2017-07-10 2019-01-31 三井E&S造船株式会社 Liquefied gas tank structure, ship, and floating structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151922A (en) 2013-02-05 2014-08-25 Izumi Steel Works Ltd Liquid storage tank
JP2017154702A (en) 2016-03-04 2017-09-07 三井造船株式会社 Floating body structure with production equipment
JP2019015377A (en) 2017-07-10 2019-01-31 三井E&S造船株式会社 Liquefied gas tank structure, ship, and floating structure

Also Published As

Publication number Publication date
JP2021085423A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6461686B2 (en) Marine liquefied gas tank and liquefied gas carrier equipped with the same
JP5785118B2 (en) Ship, offshore floating facility, and liquefied natural gas storage method
JP6496489B2 (en) LNG ship or LPG ship
US9347611B2 (en) Semi-submersible offshore structure having storage tanks for liquefied gas
WO2013024661A1 (en) Tank support structure and floating construction
JP6121900B2 (en) Supporting tanks in the ship
JP2020532685A (en) Storage tank storage system
WO2019168195A1 (en) Ship
KR101041782B1 (en) Floating ocean structure having indenpendent typed lng storage tank
JP7446928B2 (en) liquefied gas carrier
KR102006691B1 (en) Vessel having independent type storage tank
JP6899850B2 (en) Vessels with multiple fluid transport storage tanks
JP7364440B2 (en) Liquefied gas tanks, ships, and floating structures
CN114127464A (en) Tank device
KR101897727B1 (en) Hull support structure for liquefied gas tank, and liquefied gas carrier vessel
JP2018069980A (en) Tank cover for ship and ship equipped therewith
KR20100127470A (en) Floating structure having storage tanks arranged in plural rows
JP6423970B2 (en) Marine liquefied gas tank and liquefied gas carrier equipped with the same
WO2021200829A1 (en) Liquefied gas storage ship
KR101125107B1 (en) Floating structure having storage tanks arranged in plural rows
KR102585055B1 (en) Tank for vessel
KR20100125873A (en) Floating structure having storage tanks arranged in three rows
KR101973373B1 (en) Ship
JP2022111653A (en) Ship
KR20120058485A (en) Floating structure having storage tanks arranged in plural rows

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191129

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150