JP7364436B2 - Magnetic pole direction detection device and magnetic pole direction detection method - Google Patents

Magnetic pole direction detection device and magnetic pole direction detection method Download PDF

Info

Publication number
JP7364436B2
JP7364436B2 JP2019210686A JP2019210686A JP7364436B2 JP 7364436 B2 JP7364436 B2 JP 7364436B2 JP 2019210686 A JP2019210686 A JP 2019210686A JP 2019210686 A JP2019210686 A JP 2019210686A JP 7364436 B2 JP7364436 B2 JP 7364436B2
Authority
JP
Japan
Prior art keywords
magnetic pole
pole direction
excitation phase
electric motor
direction estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210686A
Other languages
Japanese (ja)
Other versions
JP2021083256A (en
Inventor
高志 岡本
有紀 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2019210686A priority Critical patent/JP7364436B2/en
Publication of JP2021083256A publication Critical patent/JP2021083256A/en
Application granted granted Critical
Publication of JP7364436B2 publication Critical patent/JP7364436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、磁極方向検出装置および磁極方向検出方法に関する。 The present invention relates to a magnetic pole direction detection device and a magnetic pole direction detection method.

従来、突極性のある同期モータにおいて、モータが停止した状態のまま磁極検出を行う手法が存在する。特許文献1には、モータの励磁位相を変えながら振幅の小さい高周波電圧をモータに印加したときに、各位相でのフィードバック電流値を測定し、その大きさから磁極方向を検出する技術が開示されている。 Conventionally, there is a method for detecting magnetic poles of a synchronous motor with salient poles while the motor is stopped. Patent Document 1 discloses a technique in which when a high frequency voltage with a small amplitude is applied to a motor while changing the excitation phase of the motor, a feedback current value at each phase is measured and the magnetic pole direction is detected from the magnitude. ing.

特開2005-130582号公報Japanese Patent Application Publication No. 2005-130582

しかしながら、インダクタンス値のオーダが大きい場合には得られるフィードバック電流値が小さくなり、ノイズの影響を受けやすくなる。そのため、磁極方向の検出結果に誤差が生じやすく、複数回の磁極方向推定を行っても推定結果のばらつきが大きかった。 However, when the inductance value is on the order of magnitude large, the obtained feedback current value becomes small and becomes susceptible to the influence of noise. Therefore, errors tend to occur in the detection results of the magnetic pole direction, and even if the magnetic pole direction is estimated multiple times, the estimation results vary widely.

本開示の一態様は、突極性を有する同期電動機(例えば、後述の電動機10)の磁極方向を検出する磁極方向検出装置(例えば、後述の磁極方向検出装置1)であって、前記電動機に対して高周波電圧を印加する高周波電圧印加部(例えば、後述の高周波電圧印加部2)と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化部(例えば、後述の励磁位相変化部3)と、前記電動機の駆動電流値を検出する駆動電流検出部(例えば、後述の駆動電流検出部4)と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部(例えば、後述の磁極方向推定部5)と、前記磁極方向推定部で推定された磁極方向推定結果のばらつきを算出するばらつき算出部(例えば、後述のばらつき算出部6)と、前記ばらつき算出部で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、ばらつきが最も小さい前記ばらつき算出結果に対応する前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力する判定部(例えば、後述の判定部7)と、を備える磁極方向検出装置を提供する。 One aspect of the present disclosure is a magnetic pole direction detection device (for example, a magnetic pole direction detection device 1 described below) that detects a magnetic pole direction of a synchronous motor having saliency (for example, a motor 10 described below), which a high-frequency voltage applying section (e.g., high-frequency voltage applying section 2, described below) that applies a high-frequency voltage, and an excitation phase changing section (for example, excitation phase changing section 3, described below) that changes the excitation phase of the motor to an arbitrary phase. a drive current detection unit (for example, drive current detection unit 4 described below) that detects a drive current value of the electric motor; and a magnetic pole direction based on the excitation phase and the drive current value under application of the high frequency voltage. A magnetic pole direction estimation section (for example, the magnetic pole direction estimation section 5 described later) that performs estimation, and a variation calculation section (for example, the variation calculation section described below) that calculates the dispersion of the magnetic pole direction estimation results estimated by the magnetic pole direction estimation section. 6), the variation calculation results calculated by the variation calculation unit are saved, and the variation calculation results calculated for each of the magnetic pole direction estimation results estimated with applied voltages of different frequencies are compared, and the variation is found to be the most A magnetic pole direction detection device is provided, including a determination unit (for example, determination unit 7 described below) that outputs the magnetic pole direction estimation result corresponding to the small variation calculation result as the magnetic pole direction detection result of the electric motor.

また本開示の一態様は、突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、前記電動機の駆動電流値を検出する駆動電流検出工程と、前記励磁位相と、前記駆動電流値と、に基づいて磁極方向を推定する磁極方向推定工程と、前記磁極方向推定工程で推定された磁極方向推定結果のばらつきを算出するばらつき算出工程と、前記ばらつき算出工程で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、ばらつきが最も小さい前記ばらつき算出結果に対応する前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力する判定工程と、を備える磁極方向検出方法を提供する。 Further, one aspect of the present disclosure is a magnetic pole direction detection method for detecting the magnetic pole direction of a synchronous motor having saliency, which includes a high frequency voltage application step of applying a high frequency voltage to the motor, and an excitation phase of the motor. An excitation phase changing step of changing to an arbitrary phase, a drive current detection step of detecting a drive current value of the motor, and a magnetic pole direction estimation step of estimating a magnetic pole direction based on the excitation phase and the drive current value. and a variation calculation step of calculating the variation of the magnetic pole direction estimation results estimated in the magnetic pole direction estimation step, and storing the variation calculation results calculated in the variation calculation step, and a variation calculation step of calculating the variation of the magnetic pole direction estimation results estimated in the magnetic pole direction estimation step, and storing the variation calculation results calculated in the variation calculation step, and a determination step of comparing the variation calculation results calculated for each of the magnetic pole direction estimation results and outputting the magnetic pole direction estimation result corresponding to the variation calculation result with the smallest variation as the magnetic pole direction detection result of the electric motor; A magnetic pole direction detection method is provided.

本発明によれば、突極性を有する同期電動機の磁極検出において、高精度な磁極方向検出装置を提供することができる。 According to the present invention, it is possible to provide a highly accurate magnetic pole direction detection device in detecting the magnetic pole of a synchronous motor having salient poles.

本発明の一実施形態に係る磁極方向検出装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a magnetic pole direction detection device according to an embodiment of the present invention. 埋込磁石型電動機における磁極方向について説明する説明図である。FIG. 2 is an explanatory diagram illustrating the direction of magnetic poles in an embedded magnet type electric motor. リラクタンス型電動機における磁極方向について説明する説明図である。It is an explanatory view explaining the magnetic pole direction in a reluctance type electric motor. 埋込磁石型電動機におけるインダクタンスと電流時間微分値の関係についての説明図である。FIG. 3 is an explanatory diagram of the relationship between inductance and current time differential value in an embedded magnet type electric motor. リラクタンス型電動機におけるインダクタンスと電流時間微分値の関係についての説明図である。FIG. 2 is an explanatory diagram of the relationship between inductance and current time differential value in a reluctance motor. 励磁位相の変化に対する電流値を示す図である。FIG. 3 is a diagram showing current values with respect to changes in excitation phase. 高い周波数の高周波電圧印加時の推定磁極方向を示すグラフである。It is a graph showing an estimated magnetic pole direction when applying a high-frequency high-frequency voltage. 低い周波数の高周波電圧印加時の推定磁極方向を示すグラフである。It is a graph showing an estimated magnetic pole direction when applying a low frequency high frequency voltage. 高い周波数の高周波電圧印加時の電流時間微分値と電流値の関係を示すグラフである。7 is a graph showing the relationship between the current time differential value and the current value when a high-frequency high-frequency voltage is applied. 低い周波数の高周波電圧印加時の電流時間微分値と電流値の関係を示すグラフである。7 is a graph showing the relationship between the current time differential value and the current value when a high-frequency voltage with a low frequency is applied. インダクタンスの電流値依存性について説明するグラフである。It is a graph explaining the current value dependence of inductance. 本発明の一実施形態に係る磁極方向検出方法を説明するフローチャートである。It is a flowchart explaining the magnetic pole direction detection method concerning one embodiment of the present invention.

以下、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。 Embodiments of the present invention will be described below, but the present invention is not limited thereto.

図1は、本発明の一実施形態に係る磁極方向検出装置の構成を示すブロック図である。
本実施形態の磁極方向検出装置1は、高周波電圧印加部2と、励磁位相変化部3と、駆動電流検出部4と、磁極方向推定部5と、ばらつき算出部6と、判定部7と、制御部8と、磁極位置検出部9と、を備える。磁極方向検出装置1は、突極性を有する同期式電動機10の磁極方向を高精度に検出可能である。
FIG. 1 is a block diagram showing the configuration of a magnetic pole direction detection device according to an embodiment of the present invention.
The magnetic pole direction detection device 1 of this embodiment includes a high frequency voltage application section 2, an excitation phase change section 3, a drive current detection section 4, a magnetic pole direction estimation section 5, a variation calculation section 6, a determination section 7, It includes a control section 8 and a magnetic pole position detection section 9. The magnetic pole direction detection device 1 is capable of detecting the magnetic pole direction of the synchronous electric motor 10 having saliency with high precision.

磁極方向の検出対象となる同期式電動機10は突極性を有するものであれば特に限定されず、例えば図2Aに示すようなロータ11上に鉄芯12が配置されるとともに内部に永久磁石13が埋め込まれた埋込磁石型の電動機10であってもよいし、図2Bに示すようなロータ21上に鉄芯22のみが配置されたリラクタンス型の電動機20であってもよい。これらの電動機10,20は、ロータ11,21に配置された鉄芯12,22や永久磁石13の非対称性によってロータ11,21の回転軸周りのインダクタンスが異なる。以下では、主として埋込磁石型の電動機10を検出対象とした実施形態について説明し、適宜リラクタンス型の電動機20を検出対象とした場合についても記述する。 The synchronous electric motor 10 whose magnetic pole direction is to be detected is not particularly limited as long as it has saliency. For example, as shown in FIG. 2A, an iron core 12 is arranged on a rotor 11 and a permanent magnet 13 is installed inside. The electric motor 10 may be of an embedded magnet type, or may be a reluctance type electric motor 20 in which only an iron core 22 is disposed on a rotor 21 as shown in FIG. 2B. These electric motors 10 and 20 have different inductances around the rotation axes of the rotors 11 and 21 due to the asymmetry of the iron cores 12 and 22 and the permanent magnets 13 arranged in the rotors 11 and 21. In the following, an embodiment in which the embedded magnet type electric motor 10 is the detection target will be mainly described, and a case in which the reluctance type electric motor 20 is the detection target will also be described as appropriate.

高周波電圧印加部2は、電動機10のロータ11に高周波電圧を印加可能である。励磁位相変化部3は、高周波電圧印加部2が印加される電動機10の励磁位相を変化させる。駆動電流検出部4は、高周波電圧の印加により電動機10に流れる駆動電流を検出する。磁極方向推定部5は、電動機10の励磁位相と、高周波電圧印加下の駆動電流検出部4によって検出した駆動電流の値に基づいて、電動機10の磁極方向を推定する。 The high frequency voltage application section 2 can apply a high frequency voltage to the rotor 11 of the electric motor 10. The excitation phase changing section 3 changes the excitation phase of the electric motor 10 to which the high frequency voltage applying section 2 is applied. The drive current detection unit 4 detects the drive current flowing through the electric motor 10 by applying a high frequency voltage. The magnetic pole direction estimation unit 5 estimates the magnetic pole direction of the electric motor 10 based on the excitation phase of the electric motor 10 and the value of the drive current detected by the drive current detection unit 4 under application of a high frequency voltage.

高周波電圧の印加により電動機10に流れる駆動電流値は、高周波電圧印加時の電動機10の励磁位相によって変化する。励磁位相θを励磁位相変化部3によって0≦θ≦180°で変化させ、駆動電流検出部4によって駆動電流の値を検出することで、その電圧周波数での励磁位相θに対する駆動電流値iの関係を調べることができる。電動機10の励磁位相は、例えばロータ11を回転させることによって変化させることができる。 The value of the drive current flowing through the motor 10 due to the application of the high-frequency voltage changes depending on the excitation phase of the motor 10 when the high-frequency voltage is applied. By changing the excitation phase θ at 0≦θ≦180° by the excitation phase changing unit 3 and detecting the value of the drive current by the drive current detection unit 4, the drive current value i for the excitation phase θ at the voltage frequency is determined. relationships can be investigated. The excitation phase of the electric motor 10 can be changed, for example, by rotating the rotor 11.

ここで、本実施形態の磁極方向検出装置1が検出する磁極方向について説明する。図2Aに示すようにロータ11の回転角をθとする。ロータ11に外部から磁石のS極を向けた場合に、回転して当該S極を向くロータ11の角度位置θをロータ11の磁極位置(D相)といい、ロータ11の回転中心と磁極位置を結ぶ直線(D軸)方向が磁極方向である。また、Q軸はロータ11の回転面内でD軸に直交する。
例えば、図2Aに示す埋込磁石型の電動機10のロータ11では、埋め込まれた永久磁石13のN-S極に沿って延びる方向が磁極方向となる。また、図2Bに示すリラクタンス型の電動機20のロータ21では、模式的に長方形で描画された鉄芯12の長辺方向が磁極方向となる。
Here, the magnetic pole direction detected by the magnetic pole direction detection device 1 of this embodiment will be explained. As shown in FIG. 2A, the rotation angle of the rotor 11 is assumed to be θ. When the S pole of a magnet is directed at the rotor 11 from the outside, the angular position θ of the rotor 11 that rotates and faces the S pole is called the magnetic pole position (D phase) of the rotor 11, and the rotation center of the rotor 11 and the magnetic pole position The direction of the straight line (D axis) connecting these is the magnetic pole direction. Further, the Q-axis is perpendicular to the D-axis within the rotational plane of the rotor 11.
For example, in the rotor 11 of the embedded magnet type electric motor 10 shown in FIG. 2A, the direction extending along the N-S poles of the embedded permanent magnet 13 is the magnetic pole direction. Further, in the rotor 21 of the reluctance type electric motor 20 shown in FIG. 2B, the long side direction of the iron core 12, which is schematically drawn as a rectangle, is the magnetic pole direction.

上述したように、突極性を有する同期電動機では、D相インダクタンスLdとQ相インダクタンスLqは、ロータ構造の非対称性によって異なる値となっている。インダクタンスは磁束の通りやすさを表す指標であり、埋込磁石型の電動機10のロータ11ではLd<Lqとなり、リラクタンス型の電動機20のロータ21ではLq<Ldとなる。 As described above, in a synchronous motor having saliency, the D-phase inductance Ld and the Q-phase inductance Lq have different values depending on the asymmetry of the rotor structure. Inductance is an index representing the ease with which magnetic flux passes, and in the rotor 11 of the built-in magnet type electric motor 10, Ld<Lq, and in the rotor 21 of the reluctance type electric motor 20, Lq<Ld.

本実施形態の磁極方向検出装置1は、電流値iを時間tで微分した電流時間微分値(di/dt)の振幅に基づいて磁極方向を検出する。電流時間微分値は次の式(1)のように表せ、励磁位相θの変化に伴って周期的に変化する。

Figure 0007364436000001
…(1)
ただし、
=(L+L)/2, L=(L-L)/2
θ(t):時刻tにおける印加電圧の位相
θ:磁極位置
Vsinγt:高周波電圧 The magnetic pole direction detection device 1 of this embodiment detects the magnetic pole direction based on the amplitude of a current time differential value (di/dt) obtained by differentiating a current value i with respect to time t. The current time differential value can be expressed as the following equation (1), and changes periodically as the excitation phase θ changes.
Figure 0007364436000001
...(1)
however,
L 0 = (L d + L q )/2, L 2 = (L d - L q )/2
θ(t): Phase of applied voltage at time t θ p : Magnetic pole position Vsinγt: High frequency voltage

図3Aおよび図3Bに示すように、インダクタンスの大小は電流時間微分値の振幅の大小と逆相関する。すなわち、例えば埋込磁石型の電動機10の場合、電流時間微分値の振幅が極小値をとるとき、インダクタンスが極大値Lqをとる。また、電流時間微分値の振幅が極大値をとるとき、インダクタンスが極小値Ldをとる(図3A)。リラクタンス型の電動機20の場合、電流時間微分値の振幅が極小値をとるとき、インダクタンスが極大値Ldをとる。また、電流時間微分値の振幅が極大値をとるとき、インダクタンスが極小値Lqをとる(図3B)。 As shown in FIGS. 3A and 3B, the magnitude of the inductance is inversely correlated with the magnitude of the amplitude of the current-time differential value. That is, in the case of the built-in magnet type electric motor 10, for example, when the amplitude of the current-time differential value takes a minimum value, the inductance takes a maximum value Lq. Further, when the amplitude of the current-time differential value takes a maximum value, the inductance takes a minimum value Ld (FIG. 3A). In the case of the reluctance type electric motor 20, when the amplitude of the current time differential value takes a minimum value, the inductance takes a maximum value Ld. Further, when the amplitude of the current-time differential value takes a maximum value, the inductance takes a minimum value Lq (FIG. 3B).

したがって、0°≦θ≦360°で励磁位相θを時刻tとともに変化させながら電流時間微分値の振幅の極小値または極大値を検出し、その時の励磁位相を出力することで、磁極方向を推定することができる。具体的には、上述の埋込磁石型の電動機10の場合、電流時間微分値の振幅が極大値をとるときインダクタンスはLdをとる。その時の励磁位相をθとすると、θ+n×180°(0°≦θ≦180°、nは整数)が磁極方向である。リラクタンス型の電動機20の場合、電流時間微分値の振幅が極小値をとるときインダクタンスはLdをとる。その時の励磁位相をθとすると、θ+n×180°(0°≦θ≦180°、nは整数)が磁極方向である。 Therefore, by detecting the minimum or maximum value of the amplitude of the current-time differential value while changing the excitation phase θ with time t so that 0°≦θ≦360°, and outputting the excitation phase at that time, the magnetic pole direction is estimated. can do. Specifically, in the case of the above-mentioned embedded magnet type electric motor 10, when the amplitude of the current time differential value takes a maximum value, the inductance takes Ld. If the excitation phase at that time is θ 1 , then θ 1 +n×180° (0°≦θ 1 ≦180°, n is an integer) is the magnetic pole direction. In the case of the reluctance type electric motor 20, the inductance takes Ld when the amplitude of the current time differential value takes a minimum value. If the excitation phase at that time is θ 2 , then θ 2 +n×180° (0°≦θ 2 ≦180°, n is an integer) is the magnetic pole direction.

図4は、駆動電流値と励磁位相の関係を示すグラフである。一定の高周波電圧印加の下、電流値と励磁位相θの変化を経時的に観測し、電流時間微分値の振幅が極小値をとるときの励磁位相θに基づいて磁極方向を推定する。 FIG. 4 is a graph showing the relationship between drive current value and excitation phase. Changes in the current value and excitation phase θ are observed over time under the application of a constant high-frequency voltage, and the magnetic pole direction is estimated based on the excitation phase θ when the amplitude of the current-time differential value takes a minimum value.

電流時間微分値はθの増加に伴って周期的に変化し、その極大値および極小値は1周につきそれぞれ2回ずつ現れる。したがって、複数の極大値および極小値に係る励磁位相θの値を推定して平均化することで、より高精度に磁極方向を推定することができるため、励磁位相は1周以上変化させて磁極方向を推定することが好ましい。なお、複数の励磁位相θの値の処理は平均化に限定されず、他の方法で処理してもよい。 The current time differential value changes periodically as θ increases, and its local maximum value and local minimum value each appear twice per round. Therefore, by estimating and averaging the values of excitation phase θ related to multiple local maximum values and local minimum values, it is possible to estimate the magnetic pole direction with higher accuracy. Preferably, the direction is estimated. Note that the processing of the plurality of excitation phase θ values is not limited to averaging, and may be processed using other methods.

磁極方向の推定は電流時間微分値の振幅の極大値と極小値のいずれを検出してもよいが、特に極大値を検出して行うことが好ましい。電流時間微分値の振幅は、極大値の方が極小値と比較して急峻に変化するためノイズの影響を受けにくく、検出精度が向上するためである。Ld<Lqである埋込磁石型の電動機10の場合、検出した極大値をとる励磁位相がそのまま磁極方向と推定される。Lq<Ldとなるリラクタンス型の電動機20の場合、検出した極大値をとる励磁位相から90°ずらした位相が磁極方向と推定される。このようにして、例えばロータ11をS周させて2S回現れる極大値について検出し、磁極方向を推定する。 Although the magnetic pole direction may be estimated by detecting either the maximum value or the minimum value of the amplitude of the current-time differential value, it is particularly preferable to detect the maximum value. This is because the amplitude of the current-time differential value changes more steeply at the maximum value than at the minimum value, so it is less susceptible to noise and the detection accuracy is improved. In the case of the built-in magnet type electric motor 10 where Ld<Lq, the excitation phase that takes the detected maximum value is directly estimated as the magnetic pole direction. In the case of the reluctance type electric motor 20 where Lq<Ld, the magnetic pole direction is estimated to be a phase shifted by 90 degrees from the excitation phase that takes the detected maximum value. In this way, for example, the rotor 11 is rotated S times, and the maximum value that appears 2S times is detected, and the magnetic pole direction is estimated.

ばらつき算出部6は、検出した2S個の極大値に係る磁極方向推定結果について、ばらつきを算出する。これを高周波電圧の周波数を変更して複数回行い、判定部7によって各ばらつきの大きさを比較し、ばらつきが最も小さかった時の周波数の電圧を印加した際の磁極方向推定結果を磁極方向検出結果として出力する。これにより、高精度に磁極方向を検出することが可能となる。ばらつきの大きさの基準のとり方としては特に限定されず、例えば2S個の値の分散を基準としてもよいし、2S個の位相のうち最大位相と最小位相の差を基準としてもよい。 The variation calculation unit 6 calculates the variation in the magnetic pole direction estimation results related to the detected 2S local maximum values. This is performed multiple times by changing the frequency of the high-frequency voltage, and the determination unit 7 compares the magnitude of each variation, and detects the magnetic pole direction by using the magnetic pole direction estimation result when applying the voltage at the frequency when the variation is the smallest. Output as result. This makes it possible to detect the magnetic pole direction with high precision. There is no particular limitation on how to take the standard for the magnitude of the variation, and for example, the standard may be the variance of 2S values, or the difference between the maximum phase and minimum phase among the 2S phases may be used as the standard.

図5Aおよび図5Bには、高周波電圧の周波数を変えて磁極方向の推定を行った結果を示す。図5Bでは、図5Aよりも低い周波数の高周波電圧を印加した際の結果を示している。図5Bのほうが図5Aよりも電流値が急峻に変化しているため検出される電流時間微分値が大きく、推定磁極方向のばらつきが小さくなっている。 FIGS. 5A and 5B show the results of estimating the magnetic pole direction by changing the frequency of the high-frequency voltage. FIG. 5B shows the result when a high frequency voltage having a lower frequency than that in FIG. 5A was applied. Since the current value changes more steeply in FIG. 5B than in FIG. 5A, the detected current time differential value is larger and the variation in the estimated magnetic pole direction is smaller.

印加する高周波電圧の周波数の変さらに際し、周波数を低くすると電流値は増加するため、磁極方向がより高精度に検出可能となる。これについて、詳しく説明する。図6Aおよび図6Bは電流時間微分値と電流値の継時変化を並べて表記したグラフであり、図6Bでは、図6Aよりも低い周波数の高周波電圧を印加した際の結果を示している。tおよびtは半周期となる時間tを、iおよびiは電流iの振幅を表しており、t<t、i<iである。 When changing the frequency of the applied high-frequency voltage, lowering the frequency causes the current value to increase, making it possible to detect the magnetic pole direction with higher accuracy. This will be explained in detail. 6A and 6B are graphs in which the current time differential value and the change in current value over time are displayed side by side, and FIG. 6B shows the result when a high frequency voltage with a lower frequency than that in FIG. 6A is applied. t 1 and t 2 represent the time t corresponding to a half cycle, and i 1 and i 2 represent the amplitude of the current i, where t 1 <t 2 and i 1 <i 2 .

式(1)より、電流時間微分値の振幅はθとインダクタンスのみに依存するから、高周波電圧の周波数を小さくしても一定である。一方で、周波数が低くなると波長は大きくなるため、tはtよりも大きくなる。結果、印加電圧の周波数が低くなると電流時間微分値のグラフの網掛け部分の面積は大きくなる。電流値のグラフを時間で微分したものが電流時間微分値のグラフであるから、電流時間微分値のグラフの網掛け部分の面積は、対応する電流値のグラフの振幅の大きさを表す。したがって、印加する高周波電圧の周波数を低くすると電流値は増加する。 From equation (1), the amplitude of the current-time differential value depends only on θ and inductance, so it remains constant even if the frequency of the high-frequency voltage is decreased. On the other hand, since the wavelength becomes larger as the frequency becomes lower, t 2 becomes larger than t 1 . As a result, as the frequency of the applied voltage decreases, the area of the shaded portion of the graph of the current-time differential value increases. Since the graph of the current time differential value is obtained by differentiating the graph of the current value with respect to time, the area of the shaded portion of the graph of the current time differential value represents the magnitude of the amplitude of the corresponding graph of the current value. Therefore, when the frequency of the applied high-frequency voltage is lowered, the current value increases.

一方で、電流値が大きくなりすぎると電動機10の発熱が大きくなるなどの弊害が生じるため、電動機10への印加電流として適切な電流値の範囲で印加電圧の周波数を変更することが好ましい。さらに、電動機10がリミッターを有し、過電流防止のために電動機10に流れる電流値の上限値が設定されているような場合には、電流値が大きくなりすぎると継時的変化を正確に測定できず、電流時間微分値の極大値および極小値を高精度に検出できなくなる。したがってこの場合には、電流値が設定された上限値未満となる範囲で印加電圧の周波数を変更することが好ましい。 On the other hand, if the current value becomes too large, there will be problems such as increased heat generation in the motor 10, so it is preferable to change the frequency of the applied voltage within a range of current values appropriate for the current applied to the motor 10. Furthermore, if the electric motor 10 has a limiter and an upper limit value of the current flowing through the electric motor 10 is set to prevent overcurrent, if the current value becomes too large, it is difficult to accurately control the change over time. Measurement is not possible, and the local maximum and minimum values of the current-time differential value cannot be detected with high accuracy. Therefore, in this case, it is preferable to change the frequency of the applied voltage within a range where the current value is less than the set upper limit value.

検出対象の電動機が埋込磁石型の電動機10の場合、磁極位置検出部9によってさらに磁極位置を検出可能であることが好ましい。磁極位置の検出方法としては従来公知の方法を用いることができ、例えば次のような方法で検出可能である。まず、電動機10に、磁極方向検出装置1によって検出された磁極方向に対して平行に、外部磁界を印加する。続いて、前記外部磁界の符号を反転させる。外部磁界の印加方向が永久磁石13によって形成される磁界と同方向である場合には磁気飽和が起こり、逆方向の磁界を印加した時と比較してインダクタンスが低下するため、電流値の変化が大きくなる。この性質を利用して、磁極位置を検出することができる。 When the electric motor to be detected is an embedded magnet type electric motor 10, it is preferable that the magnetic pole position detector 9 can further detect the magnetic pole position. Conventionally known methods can be used to detect the magnetic pole position, for example, the following method can be used. First, an external magnetic field is applied to the electric motor 10 in parallel to the magnetic pole direction detected by the magnetic pole direction detection device 1 . Subsequently, the sign of the external magnetic field is reversed. When the external magnetic field is applied in the same direction as the magnetic field formed by the permanent magnet 13, magnetic saturation occurs, and the inductance decreases compared to when a magnetic field in the opposite direction is applied, resulting in a change in the current value. growing. Using this property, the magnetic pole position can be detected.

さらに図7に示すように、インダクタンス値は電流値に依存し、電流値が大きくなるとインダクタンス値は低下する。すなわち、電流時間微分値の振幅が大きい励磁位相ほど電流値が大きくなりインダクタンスが低下するため、電流時間微分値の振幅はさらに大きくなる。結果、電流時間微分値の振幅は極大値において極小値よりも急峻に変化するためノイズの影響を受けにくく、磁極方向を高精度に検出できる。 Furthermore, as shown in FIG. 7, the inductance value depends on the current value, and as the current value increases, the inductance value decreases. That is, the larger the amplitude of the current-time differential value is in the excitation phase, the larger the current value and the lower the inductance, so the amplitude of the current-time differential value becomes even larger. As a result, the amplitude of the current-time differential value changes more steeply at the maximum value than at the minimum value, so it is less susceptible to noise and the magnetic pole direction can be detected with high precision.

以下に、本実施形態に係る磁極方向検出の一例について、図8のフローチャートを用いて説明する。 An example of magnetic pole direction detection according to this embodiment will be described below using the flowchart of FIG. 8.

まず、高周波電圧印加工程において、高周波電圧印加部2は電動機10のロータ11に周波数Aの高周波電圧を印加する。次いで、励磁位相変化工程において高周波電圧の励磁位相θを励磁位相変化部3によってS周変化させ、駆動電流検出工程において電動機10に流れる駆動電流を駆動電流検出部4によって検出する。次いで、磁極方向検出工程において、駆動電流検出部4によって2S回検出した駆動電流とその時の励磁位相θとに基づいて、磁極方向推定部5は電動機10の磁極方向を推定する。次いで、ばらつき算出工程において、ばらつき算出部6が周波数Aの印加電圧における推定磁極方向のばらつきを算出する(ステップS1)。 First, in the high-frequency voltage application step, the high-frequency voltage application section 2 applies a high-frequency voltage of frequency A to the rotor 11 of the electric motor 10. Next, in an excitation phase change step, the excitation phase θ of the high-frequency voltage is changed by S rotations by the excitation phase change section 3, and in a drive current detection step, the drive current flowing through the motor 10 is detected by the drive current detection section 4. Next, in the magnetic pole direction detection step, the magnetic pole direction estimation section 5 estimates the magnetic pole direction of the electric motor 10 based on the drive current detected 2S times by the drive current detection section 4 and the excitation phase θ at that time. Next, in the variation calculation step, the variation calculation unit 6 calculates the variation in the estimated magnetic pole direction in the applied voltage of frequency A (step S1).

続いて、判定部7は周波数Aの印加電圧について算出したばらつき結果σ(A)を保存する(ステップS2)。次いで、印加電圧の周波数を周波数Bに変更して、再度高周波電圧を印加し、ステップS1と同様に周波数Bの印加電圧における推定磁極方向のばらつきを算出する(ステップS3)、次いで、判定部7は周波数Bの印加電圧について算出したばらつき結果σ(B)を保存する(ステップS4)。同様にして、周波数Bの印加電圧における推定磁極方向のばらつきを算出し(ステップS5)、次いで、判定部7は周波数Cの印加電圧について算出したばらつき結果σ(C)を保存する(ステップS6)。 Subsequently, the determination unit 7 stores the variation result σ(A) calculated for the applied voltage of frequency A (step S2). Next, the frequency of the applied voltage is changed to frequency B, a high frequency voltage is applied again, and the variation in the estimated magnetic pole direction in the applied voltage of frequency B is calculated as in step S1 (step S3). Next, the determination unit 7 stores the variation result σ(B) calculated for the applied voltage of frequency B (step S4). Similarly, the variation in the estimated magnetic pole direction for the applied voltage of frequency B is calculated (step S5), and then the determination unit 7 stores the variation result σ(C) calculated for the applied voltage of frequency C (step S6). .

続いて、判定工程において判定部7は保存した3つのばらつき結果σ(A),σ(B),σ(C)について比較し(ステップS7)、ばらつきが最も小さかった時の磁極方向推定結果を電動機10の磁極方向検出結果として出力する(ステップS8)。 Next, in the determination step, the determination unit 7 compares the three stored variation results σ(A), σ(B), and σ(C) (step S7), and selects the magnetic pole direction estimation result when the variation is the smallest. It is output as the magnetic pole direction detection result of the electric motor 10 (step S8).

ばらつき結果について、例えば、周波数A,B,Cでの各8個の推定磁極方向が、以下の通りであった。
A(40°,42°,43°,61°,58°,56°,42°,59°) 分散72.4
B(40°,48°,52°,49°,70°,50°,48°,49°) 分散63.7
C(45°,48°,52°,49°,60°,50°,48°,49°) 分散17.4
8個の値の分散を基準に取るならば、ばらつき結果σ(A)=72.4、ばらつき結果σ(B)=63.7、ばらつき結果σ(C)=17.4であるので、ばらつきが最も小さいのは周波数Cであり、周波数Cの電圧印加時の磁極方向推定結果を電動機10の磁極方向検出結果として出力する。磁極方向θは8個の値の平均値50°(小数点第一位四捨五入)である。
Regarding the variation results, for example, the eight estimated magnetic pole directions at frequencies A, B, and C were as follows.
A (40°, 42°, 43°, 61°, 58°, 56°, 42°, 59°) Dispersion 72.4
B (40°, 48°, 52°, 49°, 70°, 50°, 48°, 49°) Dispersion 63.7
C (45°, 48°, 52°, 49°, 60°, 50°, 48°, 49°) Dispersion 17.4
If we take the variance of the eight values as a standard, the variation result σ(A) = 72.4, the variation result σ(B) = 63.7, and the variation result σ(C) = 17.4, so the variation is the smallest at frequency C, and the result of estimating the magnetic pole direction when a voltage of frequency C is applied is output as the result of detecting the magnetic pole direction of the motor 10. The magnetic pole direction θ C is an average value of 8 values of 50° (rounded to the first decimal place).

以上により、ばらつきが小さく高精度な磁極方向検出結果が得られる。なお、検出対象の電動機が埋込磁石型の電動機10の場合には、ステップS8の後に磁極位置検出部9によって電動機10に対して磁極方向と平行な双方向に外部磁界を印加することで、さらに磁極位置を検出してもよい。 As described above, highly accurate magnetic pole direction detection results with small variations can be obtained. Note that if the motor to be detected is an embedded magnet type motor 10, the magnetic pole position detection section 9 applies an external magnetic field to the motor 10 in both directions parallel to the magnetic pole direction after step S8. Furthermore, the magnetic pole position may be detected.

以上、本発明の一態様である磁極方向検出装置1について説明した。本発明によれば、以下のような効果が得られる。 The magnetic pole direction detection device 1, which is one aspect of the present invention, has been described above. According to the present invention, the following effects can be obtained.

本発明の一態様は、突極性を有する同期電動機10,20の磁極方向を検出する磁極方向検出装置1であって、電動機10に対して高周波電圧を印加する高周波電圧印加部2と、電動機10の励磁位相を任意の位相に変化させる励磁位相変化部3と、前記電動機の駆動電流値を検出する駆動電流検出部4と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部5と、磁極方向推定部5で推定された磁極方向推定結果のばらつきを算出するばらつき算出部6と、ばらつき算出部6で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、ばらつきが最も小さい前記ばらつき算出結果に対応する前記磁極方向推定結果を電動機10の磁極方向検出結果として出力する判定部7と、を備える磁極方向検出装置1である。これにより、高精度な磁極方向検出が可能である。 One aspect of the present invention is a magnetic pole direction detection device 1 that detects the magnetic pole direction of synchronous motors 10 and 20 having saliency, which includes a high frequency voltage applying section 2 that applies a high frequency voltage to the motor 10, and a high frequency voltage applying section 2 that applies a high frequency voltage to the motor 10. an excitation phase changing unit 3 that changes the excitation phase of the motor to an arbitrary phase; a drive current detection unit 4 that detects the drive current value of the motor; the excitation phase; and the drive current value under application of the high frequency voltage; a magnetic pole direction estimation unit 5 that performs magnetic pole direction estimation based on the magnetic pole direction estimation unit 5; a variation calculation unit 6 that calculates the dispersion of the magnetic pole direction estimation results estimated by the magnetic pole direction estimation unit 5; The results are saved, and the variation calculation results calculated for each of the magnetic pole direction estimation results estimated with applied voltages of different frequencies are compared, and the magnetic pole direction estimation result corresponding to the variation calculation result with the smallest variation is selected. A magnetic pole direction detection device 1 includes a determination unit 7 that outputs a result of detecting the magnetic pole direction of an electric motor 10. Thereby, highly accurate magnetic pole direction detection is possible.

磁極方向検出装置1はさらに、電動機10に対して、検出された前記磁極方向に平行な双方向に外部磁界を印加可能な磁極位置検出部8を備える。これにより、高精度に磁極位置を検出できる。 The magnetic pole direction detection device 1 further includes a magnetic pole position detection section 8 that can apply an external magnetic field to the electric motor 10 in both directions parallel to the detected magnetic pole direction. Thereby, the magnetic pole position can be detected with high precision.

磁極方向検出装置1はさらに、励磁位相変化部3が電動機10をS周(Sは1以上の整数)回転させる。これにより、ばらつき算出の精度が向上するため、より高精度に磁極方向検出が可能である。 Further, in the magnetic pole direction detection device 1, the excitation phase changing section 3 rotates the electric motor 10 S rotations (S is an integer of 1 or more). This improves the accuracy of variation calculation, and therefore enables more accurate magnetic pole direction detection.

磁極方向検出装置1はさらに、磁極方向推定部5が、駆動電流時間微分値が極大となる励磁位相を検出し、Ld<Lqの場合には当該励磁位相を、Lq<Ldの場合には当該励磁位相から90°変化させた位相を、磁極方向として推定する。これにより、電流値検出の精度が向上するため、より高精度に磁極方向検出が可能である。 The magnetic pole direction detection device 1 further includes a magnetic pole direction estimator 5 that detects the excitation phase at which the time differential value of the drive current becomes maximum, and detects the excitation phase when Ld<Lq, and the excitation phase when Lq<Ld. The phase changed by 90 degrees from the excitation phase is estimated as the magnetic pole direction. This improves the accuracy of current value detection, making it possible to detect the magnetic pole direction with higher accuracy.

また本開示の一態様は、突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、前記電動機の駆動電流値を検出する駆動電流検出工程と、前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定工程と、前記磁極方向検出工程で推定された磁極方向推定結果のばらつきを算出するばらつき算出工程と、前記ばらつき算出工程で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、ばらつきが最も小さい前記ばらつき算出結果に対応する前記磁極方向検出結果を前記電動機の磁極方向検出結果として出力する判定工程と、を備える磁極方向検出方法を提供する。これにより、高精度な磁極方向検出が可能である。 Further, one aspect of the present disclosure is a magnetic pole direction detection method for detecting the magnetic pole direction of a synchronous motor having saliency, which includes a high frequency voltage application step of applying a high frequency voltage to the motor, and an excitation phase of the motor. an excitation phase changing step of changing to an arbitrary phase; a drive current detection step of detecting a drive current value of the motor; and magnetic pole direction estimation based on the excitation phase and the drive current value under application of the high frequency voltage. a magnetic pole direction estimation step for performing the magnetic pole direction estimation step; a dispersion calculation step for calculating the dispersion of the magnetic pole direction estimation results estimated in the magnetic pole direction detecting step; and a dispersion calculation step for storing the dispersion calculation results calculated in the dispersion calculation step. The variation calculation results calculated for each of the magnetic pole direction estimation results estimated with the applied voltage are compared, and the magnetic pole direction detection result corresponding to the variation calculation result with the smallest variation is determined as the magnetic pole direction detection result of the motor. A determination step of outputting a magnetic pole direction is provided. Thereby, highly accurate magnetic pole direction detection is possible.

1 …磁極方向検出装置
2 …高周波電圧印加部
3 …励磁位相変化部
4 …駆動電流検出部
5 …磁極方向推定
6 …ばらつき算出部
7 …判定部
8 …磁極位置検出部
10,20 …電動機
11,21 …ロータ
12,22 …鉄芯
13 …永久磁石
1... Magnetic pole direction detection device 2... High frequency voltage application section 3... Excitation phase change section 4... Drive current detection section 5... Magnetic pole direction estimation section 6... Variation calculation section 7... Judgment section 8... Magnetic pole position detection section 10, 20... Electric motor 11, 21... Rotor 12, 22... Iron core 13... Permanent magnet

Claims (5)

突極性を有する同期電動機の磁極方向を検出する磁極方向検出装置であって、
前記電動機に高周波電圧を印加する高周波電圧印加部と、
前記電動機の励磁位相を任意の位相に変化させる励磁位相変化部と、
前記電動機の駆動電流値を検出する駆動電流検出部と、
前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定部と、
前記磁極方向推定部で推定された磁極方向推定結果のばらつきを算出するばらつき算出部と、
前記ばらつき算出部で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、最も小さい前記ばらつき算出結果に対応する前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力する判定部と、を備える磁極方向検出装置。
A magnetic pole direction detection device for detecting the magnetic pole direction of a synchronous motor having saliency,
a high-frequency voltage application unit that applies a high-frequency voltage to the electric motor;
an excitation phase changing unit that changes the excitation phase of the electric motor to an arbitrary phase;
a drive current detection unit that detects a drive current value of the electric motor;
a magnetic pole direction estimation unit that performs magnetic pole direction estimation based on the excitation phase and the drive current value under the application of the high frequency voltage;
a variation calculation unit that calculates variation in the magnetic pole direction estimation results estimated by the magnetic pole direction estimation unit;
The variation calculation result calculated by the variation calculation unit is saved, and the variation calculation results calculated for each of the magnetic pole direction estimation results estimated with applied voltages of different frequencies are compared, and the variation calculation result is the smallest. A magnetic pole direction detection device comprising: a determination unit that outputs the corresponding magnetic pole direction estimation result as a magnetic pole direction detection result of the electric motor.
前記磁極方向検出装置はさらに、前記電動機に対して、検出された前記磁極方向に平行な双方向に外部磁界を印加可能な磁極位置検出部を備える、請求項1に記載の磁極方向検出装置。 The magnetic pole direction detecting device according to claim 1, further comprising a magnetic pole position detecting section capable of applying an external magnetic field to the electric motor in both directions parallel to the detected magnetic pole direction. 前記励磁位相変化部は、前記励磁位相を360°以上変化させる、請求項1または2に記載の磁極方向検出装置。 The magnetic pole direction detection device according to claim 1 or 2, wherein the excitation phase changing section changes the excitation phase by 360 degrees or more. 前記磁極方向推定部は、前記駆動電流値の時間微分値が極大となる前記励磁位相を検出し、前記検出した励磁位相から90°変化させた位相を磁極方向として推定する、請求項1から3のいずれかに記載の磁極方向検出装置。 3. The magnetic pole direction estimation unit detects the excitation phase at which the time differential value of the drive current value becomes maximum, and estimates a phase changed by 90 degrees from the detected excitation phase as the magnetic pole direction. The magnetic pole direction detection device according to any one of the above. 突極性を有する同期電動機の磁極方向を検出する磁極方向検出方法であって、
前記電動機に対して高周波電圧を印加する高周波電圧印加工程と、
前記電動機の励磁位相を任意の位相に変化させる励磁位相変化工程と、
前記電動機の駆動電流値を検出する駆動電流検出工程と、
前記励磁位相と、前記高周波電圧印加下における前記駆動電流値と、に基づいて磁極方向推定を実行する磁極方向推定工程と、
前記磁極方向推定工程で推定された磁極方向推定結果のばらつきを算出するばらつき算出工程と、
前記ばらつき算出工程で算出されたばらつき算出結果を保存するとともに、異なる周波数の印加電圧で推定された前記磁極方向推定結果ごとに算出された前記ばらつき算出結果を比較し、ばらつきが最も小さい前記ばらつき算出結果に対応する前記磁極方向推定結果を前記電動機の磁極方向検出結果として出力する判定工程と、を備える磁極方向検出方法。
A magnetic pole direction detection method for detecting a magnetic pole direction of a synchronous motor having saliency, the method comprising:
a high-frequency voltage application step of applying a high-frequency voltage to the electric motor;
an excitation phase changing step of changing the excitation phase of the electric motor to an arbitrary phase;
a drive current detection step of detecting a drive current value of the motor;
a magnetic pole direction estimation step of performing magnetic pole direction estimation based on the excitation phase and the drive current value under the application of the high frequency voltage;
a dispersion calculation step of calculating dispersion of the magnetic pole direction estimation results estimated in the magnetic pole direction estimation step;
The variation calculation results calculated in the variation calculation step are saved, and the variation calculation results calculated for each of the magnetic pole direction estimation results estimated with applied voltages of different frequencies are compared, and the variation calculation with the smallest variation is performed. A magnetic pole direction detection method comprising: a determination step of outputting the magnetic pole direction estimation result corresponding to the result as a magnetic pole direction detection result of the electric motor.
JP2019210686A 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method Active JP7364436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210686A JP7364436B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210686A JP7364436B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Publications (2)

Publication Number Publication Date
JP2021083256A JP2021083256A (en) 2021-05-27
JP7364436B2 true JP7364436B2 (en) 2023-10-18

Family

ID=75963488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210686A Active JP7364436B2 (en) 2019-11-21 2019-11-21 Magnetic pole direction detection device and magnetic pole direction detection method

Country Status (1)

Country Link
JP (1) JP7364436B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130682A (en) 2003-10-24 2005-05-19 Saburo Tanaka Electric power multiplication device
JP2005151752A (en) 2003-11-18 2005-06-09 Fanuc Ltd Magnetic pole position detector
JP2007124836A (en) 2005-10-28 2007-05-17 Denso Corp Method of estimating rotating angle of synchronous machine having saliency
JP2011050198A (en) 2009-08-28 2011-03-10 Hitachi Industrial Equipment Systems Co Ltd Driving system of permanent magnet synchronous motor
JP2011239563A (en) 2010-05-10 2011-11-24 Toshiba Corp Motor control apparatus and control method
JP2016021800A (en) 2014-07-14 2016-02-04 株式会社リコー Position estimation device, motor drive control device, and position estimation method
WO2019244314A1 (en) 2018-06-21 2019-12-26 三菱電機株式会社 Synchronous rotating machine control device and machine learning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005130682A (en) 2003-10-24 2005-05-19 Saburo Tanaka Electric power multiplication device
JP2005151752A (en) 2003-11-18 2005-06-09 Fanuc Ltd Magnetic pole position detector
JP2007124836A (en) 2005-10-28 2007-05-17 Denso Corp Method of estimating rotating angle of synchronous machine having saliency
JP2011050198A (en) 2009-08-28 2011-03-10 Hitachi Industrial Equipment Systems Co Ltd Driving system of permanent magnet synchronous motor
JP2011239563A (en) 2010-05-10 2011-11-24 Toshiba Corp Motor control apparatus and control method
JP2016021800A (en) 2014-07-14 2016-02-04 株式会社リコー Position estimation device, motor drive control device, and position estimation method
WO2019244314A1 (en) 2018-06-21 2019-12-26 三菱電機株式会社 Synchronous rotating machine control device and machine learning device

Also Published As

Publication number Publication date
JP2021083256A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
Bolognani et al. Model sensitivity of fundamental-frequency-based position estimators for sensorless PM and reluctance synchronous motor drives
KR101506417B1 (en) Permanent-magnet type rotating electrical machine
JP3971741B2 (en) Magnetic pole position detector
CN107769633B (en) Method for determining the orientation of the rotor of a ironless PMSM motor and motor system
TW201618450A (en) Control device of AC rotary machine and method for calculating degree of correction of magnetic pole position
KR101133673B1 (en) Apparatus and method for estimating rotor position
US20120212215A1 (en) Method and apparatus for estimating rotor angle of synchronous reluctance motor
JP4853124B2 (en) Permanent magnet temperature detector for permanent magnet type rotating machine
US7774148B2 (en) Torque estimator for IPM motors
JP2005065415A (en) Magnetic pole position detector for permanent-magnet synchronous motor
JP7364436B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
JP7381303B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
Nguyen et al. High-speed sensorless control of a synchronous reluctance motor based on an Extended Kalman Filter
CN109699197B (en) Method for estimating the position and speed of the rotor of an alternating current machine of a motor vehicle and corresponding system
JP7294993B2 (en) Magnetic pole direction detection device and magnetic pole direction detection method
JP6108114B2 (en) Control device for permanent magnet type synchronous motor
JP5619225B1 (en) Control device for synchronous motor
KR101981682B1 (en) Induction motor for estimating mutual inductance and rotor resistance and method for estimating thereof
JP5169014B2 (en) Phase estimation method for AC motors
JP4061446B2 (en) Resistance value identification method and control device for synchronous motor
JP7199605B1 (en) Rotating machine control device
Friedmann et al. A new approach for a complete and ultrafast analysis of PMSMs using the arbitrary injection scheme
US11641172B2 (en) Method and device for load-free determining of load-dependent positioning parameters of a synchronous machine without a position sensor
JP6673175B2 (en) Induction motor control system
KR101849358B1 (en) Apparatus and method of controlling a Permanent Magnet Synchronous motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150